1 /*
2 * Copyright (C) 2011 Apple Inc. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 *
13 * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
14 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
16 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE COMPUTER, INC. OR
17 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
18 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
19 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
20 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
21 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
23 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24 */
25
26 #include "config.h"
27 #include "core/rendering/RenderGrid.h"
28
29 #include "core/rendering/FastTextAutosizer.h"
30 #include "core/rendering/LayoutRepainter.h"
31 #include "core/rendering/RenderLayer.h"
32 #include "core/rendering/RenderView.h"
33 #include "core/rendering/style/GridCoordinate.h"
34 #include "platform/LengthFunctions.h"
35
36 namespace WebCore {
37
38 static const int infinity = -1;
39
40 class GridTrack {
41 public:
GridTrack()42 GridTrack()
43 : m_usedBreadth(0)
44 , m_maxBreadth(0)
45 {
46 }
47
growUsedBreadth(LayoutUnit growth)48 void growUsedBreadth(LayoutUnit growth)
49 {
50 ASSERT(growth >= 0);
51 m_usedBreadth += growth;
52 }
usedBreadth() const53 LayoutUnit usedBreadth() const { return m_usedBreadth; }
54
growMaxBreadth(LayoutUnit growth)55 void growMaxBreadth(LayoutUnit growth)
56 {
57 if (m_maxBreadth == infinity)
58 m_maxBreadth = m_usedBreadth + growth;
59 else
60 m_maxBreadth += growth;
61 }
maxBreadthIfNotInfinite() const62 LayoutUnit maxBreadthIfNotInfinite() const
63 {
64 return (m_maxBreadth == infinity) ? m_usedBreadth : m_maxBreadth;
65 }
66
67 LayoutUnit m_usedBreadth;
68 LayoutUnit m_maxBreadth;
69 };
70
71 struct GridTrackForNormalization {
GridTrackForNormalizationWebCore::GridTrackForNormalization72 GridTrackForNormalization(const GridTrack& track, double flex)
73 : m_track(&track)
74 , m_flex(flex)
75 , m_normalizedFlexValue(track.m_usedBreadth / flex)
76 {
77 }
78
79 // Required by std::sort.
operator =WebCore::GridTrackForNormalization80 GridTrackForNormalization& operator=(const GridTrackForNormalization& o)
81 {
82 m_track = o.m_track;
83 m_flex = o.m_flex;
84 m_normalizedFlexValue = o.m_normalizedFlexValue;
85 return *this;
86 }
87
88 const GridTrack* m_track;
89 double m_flex;
90 LayoutUnit m_normalizedFlexValue;
91 };
92
93 class RenderGrid::GridIterator {
94 WTF_MAKE_NONCOPYABLE(GridIterator);
95 public:
96 // |direction| is the direction that is fixed to |fixedTrackIndex| so e.g
97 // GridIterator(m_grid, ForColumns, 1) will walk over the rows of the 2nd column.
GridIterator(const GridRepresentation & grid,GridTrackSizingDirection direction,size_t fixedTrackIndex)98 GridIterator(const GridRepresentation& grid, GridTrackSizingDirection direction, size_t fixedTrackIndex)
99 : m_grid(grid)
100 , m_direction(direction)
101 , m_rowIndex((direction == ForColumns) ? 0 : fixedTrackIndex)
102 , m_columnIndex((direction == ForColumns) ? fixedTrackIndex : 0)
103 , m_childIndex(0)
104 {
105 ASSERT(m_rowIndex < m_grid.size());
106 ASSERT(m_columnIndex < m_grid[0].size());
107 }
108
nextGridItem()109 RenderBox* nextGridItem()
110 {
111 ASSERT(!m_grid.isEmpty());
112
113 size_t& varyingTrackIndex = (m_direction == ForColumns) ? m_rowIndex : m_columnIndex;
114 const size_t endOfVaryingTrackIndex = (m_direction == ForColumns) ? m_grid.size() : m_grid[0].size();
115 for (; varyingTrackIndex < endOfVaryingTrackIndex; ++varyingTrackIndex) {
116 const GridCell& children = m_grid[m_rowIndex][m_columnIndex];
117 if (m_childIndex < children.size())
118 return children[m_childIndex++];
119
120 m_childIndex = 0;
121 }
122 return 0;
123 }
124
checkEmptyCells(size_t rowSpan,size_t columnSpan) const125 bool checkEmptyCells(size_t rowSpan, size_t columnSpan) const
126 {
127 // Ignore cells outside current grid as we will grow it later if needed.
128 size_t maxRows = std::min(m_rowIndex + rowSpan, m_grid.size());
129 size_t maxColumns = std::min(m_columnIndex + columnSpan, m_grid[0].size());
130
131 // This adds a O(N^2) behavior that shouldn't be a big deal as we expect spanning areas to be small.
132 for (size_t row = m_rowIndex; row < maxRows; ++row) {
133 for (size_t column = m_columnIndex; column < maxColumns; ++column) {
134 const GridCell& children = m_grid[row][column];
135 if (!children.isEmpty())
136 return false;
137 }
138 }
139
140 return true;
141 }
142
nextEmptyGridArea(size_t fixedTrackSpan,size_t varyingTrackSpan)143 PassOwnPtr<GridCoordinate> nextEmptyGridArea(size_t fixedTrackSpan, size_t varyingTrackSpan)
144 {
145 ASSERT(!m_grid.isEmpty());
146 ASSERT(fixedTrackSpan >= 1 && varyingTrackSpan >= 1);
147
148 size_t rowSpan = (m_direction == ForColumns) ? varyingTrackSpan : fixedTrackSpan;
149 size_t columnSpan = (m_direction == ForColumns) ? fixedTrackSpan : varyingTrackSpan;
150
151 size_t& varyingTrackIndex = (m_direction == ForColumns) ? m_rowIndex : m_columnIndex;
152 const size_t endOfVaryingTrackIndex = (m_direction == ForColumns) ? m_grid.size() : m_grid[0].size();
153 for (; varyingTrackIndex < endOfVaryingTrackIndex; ++varyingTrackIndex) {
154 if (checkEmptyCells(rowSpan, columnSpan)) {
155 OwnPtr<GridCoordinate> result = adoptPtr(new GridCoordinate(GridSpan(m_rowIndex, m_rowIndex + rowSpan - 1), GridSpan(m_columnIndex, m_columnIndex + columnSpan - 1)));
156 // Advance the iterator to avoid an infinite loop where we would return the same grid area over and over.
157 ++varyingTrackIndex;
158 return result.release();
159 }
160 }
161 return nullptr;
162 }
163
164 private:
165 const GridRepresentation& m_grid;
166 GridTrackSizingDirection m_direction;
167 size_t m_rowIndex;
168 size_t m_columnIndex;
169 size_t m_childIndex;
170 };
171
172 struct RenderGrid::GridSizingData {
173 WTF_MAKE_NONCOPYABLE(GridSizingData);
174 public:
GridSizingDataWebCore::RenderGrid::GridSizingData175 GridSizingData(size_t gridColumnCount, size_t gridRowCount)
176 : columnTracks(gridColumnCount)
177 , rowTracks(gridRowCount)
178 {
179 }
180
181 Vector<GridTrack> columnTracks;
182 Vector<GridTrack> rowTracks;
183 Vector<size_t> contentSizedTracksIndex;
184
185 // Performance optimization: hold onto these Vectors until the end of Layout to avoid repeated malloc / free.
186 Vector<LayoutUnit> distributeTrackVector;
187 Vector<GridTrack*> filteredTracks;
188 };
189
RenderGrid(Element * element)190 RenderGrid::RenderGrid(Element* element)
191 : RenderBlock(element)
192 , m_gridIsDirty(true)
193 , m_orderIterator(this)
194 {
195 // All of our children must be block level.
196 setChildrenInline(false);
197 }
198
~RenderGrid()199 RenderGrid::~RenderGrid()
200 {
201 }
202
addChild(RenderObject * newChild,RenderObject * beforeChild)203 void RenderGrid::addChild(RenderObject* newChild, RenderObject* beforeChild)
204 {
205 RenderBlock::addChild(newChild, beforeChild);
206
207 if (gridIsDirty())
208 return;
209
210 if (!newChild->isBox()) {
211 dirtyGrid();
212 return;
213 }
214
215 if (style()->gridAutoFlow() != AutoFlowNone) {
216 // The grid needs to be recomputed as it might contain auto-placed items that will change their position.
217 dirtyGrid();
218 return;
219 }
220
221 RenderBox* newChildBox = toRenderBox(newChild);
222 OwnPtr<GridSpan> rowPositions = GridResolvedPosition::resolveGridPositionsFromStyle(*style(), *newChildBox, ForRows);
223 OwnPtr<GridSpan> columnPositions = GridResolvedPosition::resolveGridPositionsFromStyle(*style(), *newChildBox, ForColumns);
224 if (!rowPositions || !columnPositions) {
225 // The new child requires the auto-placement algorithm to run so we need to recompute the grid fully.
226 dirtyGrid();
227 return;
228 } else {
229 insertItemIntoGrid(newChildBox, GridCoordinate(*rowPositions, *columnPositions));
230 addChildToIndexesMap(newChildBox);
231 }
232 }
233
addChildToIndexesMap(RenderBox * child)234 void RenderGrid::addChildToIndexesMap(RenderBox* child)
235 {
236 ASSERT(!m_gridItemsIndexesMap.contains(child));
237 RenderBox* sibling = child->nextSiblingBox();
238 bool lastSibling = !sibling;
239
240 if (lastSibling)
241 sibling = child->previousSiblingBox();
242
243 size_t index = 0;
244 if (sibling)
245 index = lastSibling ? m_gridItemsIndexesMap.get(sibling) + 1 : m_gridItemsIndexesMap.get(sibling);
246
247 if (sibling && !lastSibling) {
248 for (; sibling; sibling = sibling->nextSiblingBox())
249 m_gridItemsIndexesMap.set(sibling, m_gridItemsIndexesMap.get(sibling) + 1);
250 }
251
252 m_gridItemsIndexesMap.set(child, index);
253 }
254
removeChild(RenderObject * child)255 void RenderGrid::removeChild(RenderObject* child)
256 {
257 RenderBlock::removeChild(child);
258
259 if (gridIsDirty())
260 return;
261
262 ASSERT(child->isBox());
263
264 if (style()->gridAutoFlow() != AutoFlowNone) {
265 // The grid needs to be recomputed as it might contain auto-placed items that will change their position.
266 dirtyGrid();
267 return;
268 }
269
270 const RenderBox* childBox = toRenderBox(child);
271 GridCoordinate coordinate = m_gridItemCoordinate.take(childBox);
272
273 for (GridSpan::iterator row = coordinate.rows.begin(); row != coordinate.rows.end(); ++row) {
274 for (GridSpan::iterator column = coordinate.columns.begin(); column != coordinate.columns.end(); ++column) {
275 GridCell& cell = m_grid[row.toInt()][column.toInt()];
276 cell.remove(cell.find(childBox));
277 }
278 }
279
280 m_gridItemsIndexesMap.remove(childBox);
281 }
282
styleDidChange(StyleDifference diff,const RenderStyle * oldStyle)283 void RenderGrid::styleDidChange(StyleDifference diff, const RenderStyle* oldStyle)
284 {
285 RenderBlock::styleDidChange(diff, oldStyle);
286 if (!oldStyle)
287 return;
288
289 // FIXME: The following checks could be narrowed down if we kept track of which type of grid items we have:
290 // - explicit grid size changes impact negative explicitely positioned and auto-placed grid items.
291 // - named grid lines only impact grid items with named grid lines.
292 // - auto-flow changes only impacts auto-placed children.
293
294 if (explicitGridDidResize(oldStyle)
295 || namedGridLinesDefinitionDidChange(oldStyle)
296 || oldStyle->gridAutoFlow() != style()->gridAutoFlow())
297 dirtyGrid();
298 }
299
explicitGridDidResize(const RenderStyle * oldStyle) const300 bool RenderGrid::explicitGridDidResize(const RenderStyle* oldStyle) const
301 {
302 return oldStyle->gridTemplateColumns().size() != style()->gridTemplateColumns().size()
303 || oldStyle->gridTemplateRows().size() != style()->gridTemplateRows().size();
304 }
305
namedGridLinesDefinitionDidChange(const RenderStyle * oldStyle) const306 bool RenderGrid::namedGridLinesDefinitionDidChange(const RenderStyle* oldStyle) const
307 {
308 return oldStyle->namedGridRowLines() != style()->namedGridRowLines()
309 || oldStyle->namedGridColumnLines() != style()->namedGridColumnLines();
310 }
311
layoutBlock(bool relayoutChildren)312 void RenderGrid::layoutBlock(bool relayoutChildren)
313 {
314 ASSERT(needsLayout());
315
316 if (!relayoutChildren && simplifiedLayout())
317 return;
318
319 // FIXME: Much of this method is boiler plate that matches RenderBox::layoutBlock and Render*FlexibleBox::layoutBlock.
320 // It would be nice to refactor some of the duplicate code.
321 LayoutRepainter repainter(*this, checkForPaintInvalidationDuringLayout());
322 LayoutState state(*this, locationOffset());
323
324 LayoutSize previousSize = size();
325
326 setLogicalHeight(0);
327 updateLogicalWidth();
328
329 FastTextAutosizer::LayoutScope fastTextAutosizerLayoutScope(this);
330
331 layoutGridItems();
332
333 LayoutUnit oldClientAfterEdge = clientLogicalBottom();
334 updateLogicalHeight();
335
336 if (size() != previousSize)
337 relayoutChildren = true;
338
339 layoutPositionedObjects(relayoutChildren || isDocumentElement());
340
341 computeRegionRangeForBlock(flowThreadContainingBlock());
342
343 computeOverflow(oldClientAfterEdge);
344
345 updateLayerTransformAfterLayout();
346
347 // Update our scroll information if we're overflow:auto/scroll/hidden now that we know if
348 // we overflow or not.
349 if (hasOverflowClip())
350 layer()->scrollableArea()->updateAfterLayout();
351
352 repainter.repaintAfterLayout();
353
354 clearNeedsLayout();
355 }
356
computeIntrinsicLogicalWidths(LayoutUnit & minLogicalWidth,LayoutUnit & maxLogicalWidth) const357 void RenderGrid::computeIntrinsicLogicalWidths(LayoutUnit& minLogicalWidth, LayoutUnit& maxLogicalWidth) const
358 {
359 const_cast<RenderGrid*>(this)->placeItemsOnGrid();
360
361 GridSizingData sizingData(gridColumnCount(), gridRowCount());
362 LayoutUnit availableLogicalSpace = 0;
363 const_cast<RenderGrid*>(this)->computeUsedBreadthOfGridTracks(ForColumns, sizingData, availableLogicalSpace);
364
365 for (size_t i = 0; i < sizingData.columnTracks.size(); ++i) {
366 LayoutUnit minTrackBreadth = sizingData.columnTracks[i].m_usedBreadth;
367 LayoutUnit maxTrackBreadth = sizingData.columnTracks[i].m_maxBreadth;
368 maxTrackBreadth = std::max(maxTrackBreadth, minTrackBreadth);
369
370 minLogicalWidth += minTrackBreadth;
371 maxLogicalWidth += maxTrackBreadth;
372
373 // FIXME: This should add in the scrollbarWidth (e.g. see RenderFlexibleBox).
374 }
375 }
376
computePreferredLogicalWidths()377 void RenderGrid::computePreferredLogicalWidths()
378 {
379 ASSERT(preferredLogicalWidthsDirty());
380
381 m_minPreferredLogicalWidth = 0;
382 m_maxPreferredLogicalWidth = 0;
383
384 // FIXME: We don't take our own logical width into account. Once we do, we need to make sure
385 // we apply (and test the interaction with) min-width / max-width.
386
387 computeIntrinsicLogicalWidths(m_minPreferredLogicalWidth, m_maxPreferredLogicalWidth);
388
389 LayoutUnit borderAndPaddingInInlineDirection = borderAndPaddingLogicalWidth();
390 m_minPreferredLogicalWidth += borderAndPaddingInInlineDirection;
391 m_maxPreferredLogicalWidth += borderAndPaddingInInlineDirection;
392
393 clearPreferredLogicalWidthsDirty();
394 }
395
computeUsedBreadthOfGridTracks(GridTrackSizingDirection direction,GridSizingData & sizingData)396 void RenderGrid::computeUsedBreadthOfGridTracks(GridTrackSizingDirection direction, GridSizingData& sizingData)
397 {
398 LayoutUnit availableLogicalSpace = (direction == ForColumns) ? availableLogicalWidth() : availableLogicalHeight(IncludeMarginBorderPadding);
399 computeUsedBreadthOfGridTracks(direction, sizingData, availableLogicalSpace);
400 }
401
gridElementIsShrinkToFit()402 bool RenderGrid::gridElementIsShrinkToFit()
403 {
404 return isFloatingOrOutOfFlowPositioned();
405 }
406
computeUsedBreadthOfGridTracks(GridTrackSizingDirection direction,GridSizingData & sizingData,LayoutUnit & availableLogicalSpace)407 void RenderGrid::computeUsedBreadthOfGridTracks(GridTrackSizingDirection direction, GridSizingData& sizingData, LayoutUnit& availableLogicalSpace)
408 {
409 Vector<GridTrack>& tracks = (direction == ForColumns) ? sizingData.columnTracks : sizingData.rowTracks;
410 Vector<size_t> flexibleSizedTracksIndex;
411 sizingData.contentSizedTracksIndex.shrink(0);
412
413 // 1. Initialize per Grid track variables.
414 for (size_t i = 0; i < tracks.size(); ++i) {
415 GridTrack& track = tracks[i];
416 const GridTrackSize& trackSize = gridTrackSize(direction, i);
417 const GridLength& minTrackBreadth = trackSize.minTrackBreadth();
418 const GridLength& maxTrackBreadth = trackSize.maxTrackBreadth();
419
420 track.m_usedBreadth = computeUsedBreadthOfMinLength(direction, minTrackBreadth);
421 track.m_maxBreadth = computeUsedBreadthOfMaxLength(direction, maxTrackBreadth, track.m_usedBreadth);
422
423 track.m_maxBreadth = std::max(track.m_maxBreadth, track.m_usedBreadth);
424
425 if (trackSize.isContentSized())
426 sizingData.contentSizedTracksIndex.append(i);
427 if (trackSize.maxTrackBreadth().isFlex())
428 flexibleSizedTracksIndex.append(i);
429 }
430
431 // 2. Resolve content-based TrackSizingFunctions.
432 if (!sizingData.contentSizedTracksIndex.isEmpty())
433 resolveContentBasedTrackSizingFunctions(direction, sizingData, availableLogicalSpace);
434
435 for (size_t i = 0; i < tracks.size(); ++i) {
436 ASSERT(tracks[i].m_maxBreadth != infinity);
437 availableLogicalSpace -= tracks[i].m_usedBreadth;
438 }
439
440 const bool hasUndefinedRemainingSpace = (direction == ForRows) ? style()->logicalHeight().isAuto() : gridElementIsShrinkToFit();
441
442 if (!hasUndefinedRemainingSpace && availableLogicalSpace <= 0)
443 return;
444
445 // 3. Grow all Grid tracks in GridTracks from their UsedBreadth up to their MaxBreadth value until
446 // availableLogicalSpace (RemainingSpace in the specs) is exhausted.
447 const size_t tracksSize = tracks.size();
448 if (!hasUndefinedRemainingSpace) {
449 Vector<GridTrack*> tracksForDistribution(tracksSize);
450 for (size_t i = 0; i < tracksSize; ++i)
451 tracksForDistribution[i] = tracks.data() + i;
452
453 distributeSpaceToTracks(tracksForDistribution, 0, &GridTrack::usedBreadth, &GridTrack::growUsedBreadth, sizingData, availableLogicalSpace);
454 } else {
455 for (size_t i = 0; i < tracksSize; ++i)
456 tracks[i].m_usedBreadth = tracks[i].m_maxBreadth;
457 }
458
459 if (flexibleSizedTracksIndex.isEmpty())
460 return;
461
462 // 4. Grow all Grid tracks having a fraction as the MaxTrackSizingFunction.
463 double normalizedFractionBreadth = 0;
464 if (!hasUndefinedRemainingSpace) {
465 normalizedFractionBreadth = computeNormalizedFractionBreadth(tracks, GridSpan(0, tracks.size() - 1), direction, availableLogicalSpace);
466 } else {
467 for (size_t i = 0; i < flexibleSizedTracksIndex.size(); ++i) {
468 const size_t trackIndex = flexibleSizedTracksIndex[i];
469 const GridTrackSize& trackSize = gridTrackSize(direction, trackIndex);
470 normalizedFractionBreadth = std::max(normalizedFractionBreadth, tracks[trackIndex].m_usedBreadth / trackSize.maxTrackBreadth().flex());
471 }
472
473 for (size_t i = 0; i < flexibleSizedTracksIndex.size(); ++i) {
474 GridIterator iterator(m_grid, direction, flexibleSizedTracksIndex[i]);
475 while (RenderBox* gridItem = iterator.nextGridItem()) {
476 const GridCoordinate coordinate = cachedGridCoordinate(gridItem);
477 const GridSpan span = (direction == ForColumns) ? coordinate.columns : coordinate.rows;
478
479 // Do not include already processed items.
480 if (i > 0 && span.resolvedInitialPosition.toInt() <= flexibleSizedTracksIndex[i - 1])
481 continue;
482
483 double itemNormalizedFlexBreadth = computeNormalizedFractionBreadth(tracks, span, direction, maxContentForChild(gridItem, direction, sizingData.columnTracks));
484 normalizedFractionBreadth = std::max(normalizedFractionBreadth, itemNormalizedFlexBreadth);
485 }
486 }
487 }
488
489 for (size_t i = 0; i < flexibleSizedTracksIndex.size(); ++i) {
490 const size_t trackIndex = flexibleSizedTracksIndex[i];
491 const GridTrackSize& trackSize = gridTrackSize(direction, trackIndex);
492
493 tracks[trackIndex].m_usedBreadth = std::max<LayoutUnit>(tracks[trackIndex].m_usedBreadth, normalizedFractionBreadth * trackSize.maxTrackBreadth().flex());
494 }
495 }
496
computeUsedBreadthOfMinLength(GridTrackSizingDirection direction,const GridLength & gridLength) const497 LayoutUnit RenderGrid::computeUsedBreadthOfMinLength(GridTrackSizingDirection direction, const GridLength& gridLength) const
498 {
499 if (gridLength.isFlex())
500 return 0;
501
502 const Length& trackLength = gridLength.length();
503 ASSERT(!trackLength.isAuto());
504 if (trackLength.isSpecified())
505 return computeUsedBreadthOfSpecifiedLength(direction, trackLength);
506
507 ASSERT(trackLength.isMinContent() || trackLength.isMaxContent());
508 return 0;
509 }
510
computeUsedBreadthOfMaxLength(GridTrackSizingDirection direction,const GridLength & gridLength,LayoutUnit usedBreadth) const511 LayoutUnit RenderGrid::computeUsedBreadthOfMaxLength(GridTrackSizingDirection direction, const GridLength& gridLength, LayoutUnit usedBreadth) const
512 {
513 if (gridLength.isFlex())
514 return usedBreadth;
515
516 const Length& trackLength = gridLength.length();
517 ASSERT(!trackLength.isAuto());
518 if (trackLength.isSpecified()) {
519 LayoutUnit computedBreadth = computeUsedBreadthOfSpecifiedLength(direction, trackLength);
520 ASSERT(computedBreadth != infinity);
521 return computedBreadth;
522 }
523
524 ASSERT(trackLength.isMinContent() || trackLength.isMaxContent());
525 return infinity;
526 }
527
computeUsedBreadthOfSpecifiedLength(GridTrackSizingDirection direction,const Length & trackLength) const528 LayoutUnit RenderGrid::computeUsedBreadthOfSpecifiedLength(GridTrackSizingDirection direction, const Length& trackLength) const
529 {
530 ASSERT(trackLength.isSpecified());
531 // FIXME: The -1 here should be replaced by whatever the intrinsic height of the grid is.
532 return valueForLength(trackLength, direction == ForColumns ? logicalWidth() : computeContentLogicalHeight(style()->logicalHeight(), -1));
533 }
534
sortByGridNormalizedFlexValue(const GridTrackForNormalization & track1,const GridTrackForNormalization & track2)535 static bool sortByGridNormalizedFlexValue(const GridTrackForNormalization& track1, const GridTrackForNormalization& track2)
536 {
537 return track1.m_normalizedFlexValue < track2.m_normalizedFlexValue;
538 }
539
computeNormalizedFractionBreadth(Vector<GridTrack> & tracks,const GridSpan & tracksSpan,GridTrackSizingDirection direction,LayoutUnit availableLogicalSpace) const540 double RenderGrid::computeNormalizedFractionBreadth(Vector<GridTrack>& tracks, const GridSpan& tracksSpan, GridTrackSizingDirection direction, LayoutUnit availableLogicalSpace) const
541 {
542 // |availableLogicalSpace| already accounts for the used breadths so no need to remove it here.
543
544 Vector<GridTrackForNormalization> tracksForNormalization;
545 for (GridSpan::iterator resolvedPosition = tracksSpan.begin(); resolvedPosition != tracksSpan.end(); ++resolvedPosition) {
546 const GridTrackSize& trackSize = gridTrackSize(direction, resolvedPosition.toInt());
547 if (!trackSize.maxTrackBreadth().isFlex())
548 continue;
549
550 tracksForNormalization.append(GridTrackForNormalization(tracks[resolvedPosition.toInt()], trackSize.maxTrackBreadth().flex()));
551 }
552
553 // The function is not called if we don't have <flex> grid tracks
554 ASSERT(!tracksForNormalization.isEmpty());
555
556 std::sort(tracksForNormalization.begin(), tracksForNormalization.end(), sortByGridNormalizedFlexValue);
557
558 // These values work together: as we walk over our grid tracks, we increase fractionValueBasedOnGridItemsRatio
559 // to match a grid track's usedBreadth to <flex> ratio until the total fractions sized grid tracks wouldn't
560 // fit into availableLogicalSpaceIgnoringFractionTracks.
561 double accumulatedFractions = 0;
562 LayoutUnit fractionValueBasedOnGridItemsRatio = 0;
563 LayoutUnit availableLogicalSpaceIgnoringFractionTracks = availableLogicalSpace;
564
565 for (size_t i = 0; i < tracksForNormalization.size(); ++i) {
566 const GridTrackForNormalization& track = tracksForNormalization[i];
567 if (track.m_normalizedFlexValue > fractionValueBasedOnGridItemsRatio) {
568 // If the normalized flex value (we ordered |tracksForNormalization| by increasing normalized flex value)
569 // will make us overflow our container, then stop. We have the previous step's ratio is the best fit.
570 if (track.m_normalizedFlexValue * accumulatedFractions > availableLogicalSpaceIgnoringFractionTracks)
571 break;
572
573 fractionValueBasedOnGridItemsRatio = track.m_normalizedFlexValue;
574 }
575
576 accumulatedFractions += track.m_flex;
577 // This item was processed so we re-add its used breadth to the available space to accurately count the remaining space.
578 availableLogicalSpaceIgnoringFractionTracks += track.m_track->m_usedBreadth;
579 }
580
581 return availableLogicalSpaceIgnoringFractionTracks / accumulatedFractions;
582 }
583
gridTrackSize(GridTrackSizingDirection direction,size_t i) const584 const GridTrackSize& RenderGrid::gridTrackSize(GridTrackSizingDirection direction, size_t i) const
585 {
586 const Vector<GridTrackSize>& trackStyles = (direction == ForColumns) ? style()->gridTemplateColumns() : style()->gridTemplateRows();
587 if (i >= trackStyles.size())
588 return (direction == ForColumns) ? style()->gridAutoColumns() : style()->gridAutoRows();
589
590 const GridTrackSize& trackSize = trackStyles[i];
591 // If the logical width/height of the grid container is indefinite, percentage values are treated as <auto>.
592 if (trackSize.isPercentage()) {
593 Length logicalSize = direction == ForColumns ? style()->logicalWidth() : style()->logicalHeight();
594 if (logicalSize.isIntrinsicOrAuto()) {
595 DEFINE_STATIC_LOCAL(GridTrackSize, autoTrackSize, (Length(Auto)));
596 return autoTrackSize;
597 }
598 }
599
600 return trackSize;
601 }
602
logicalHeightForChild(RenderBox * child,Vector<GridTrack> & columnTracks)603 LayoutUnit RenderGrid::logicalHeightForChild(RenderBox* child, Vector<GridTrack>& columnTracks)
604 {
605 SubtreeLayoutScope layoutScope(*child);
606 LayoutUnit oldOverrideContainingBlockContentLogicalWidth = child->hasOverrideContainingBlockLogicalWidth() ? child->overrideContainingBlockContentLogicalWidth() : LayoutUnit();
607 LayoutUnit overrideContainingBlockContentLogicalWidth = gridAreaBreadthForChild(child, ForColumns, columnTracks);
608 if (child->style()->logicalHeight().isPercent() || oldOverrideContainingBlockContentLogicalWidth != overrideContainingBlockContentLogicalWidth)
609 layoutScope.setNeedsLayout(child);
610
611 child->setOverrideContainingBlockContentLogicalWidth(overrideContainingBlockContentLogicalWidth);
612 // If |child| has a percentage logical height, we shouldn't let it override its intrinsic height, which is
613 // what we are interested in here. Thus we need to set the override logical height to -1 (no possible resolution).
614 child->setOverrideContainingBlockContentLogicalHeight(-1);
615 child->layoutIfNeeded();
616 return child->logicalHeight() + child->marginLogicalHeight();
617 }
618
minContentForChild(RenderBox * child,GridTrackSizingDirection direction,Vector<GridTrack> & columnTracks)619 LayoutUnit RenderGrid::minContentForChild(RenderBox* child, GridTrackSizingDirection direction, Vector<GridTrack>& columnTracks)
620 {
621 bool hasOrthogonalWritingMode = child->isHorizontalWritingMode() != isHorizontalWritingMode();
622 // FIXME: Properly support orthogonal writing mode.
623 if (hasOrthogonalWritingMode)
624 return 0;
625
626 if (direction == ForColumns) {
627 // FIXME: It's unclear if we should return the intrinsic width or the preferred width.
628 // See http://lists.w3.org/Archives/Public/www-style/2013Jan/0245.html
629 return child->minPreferredLogicalWidth() + marginIntrinsicLogicalWidthForChild(child);
630 }
631
632 return logicalHeightForChild(child, columnTracks);
633 }
634
maxContentForChild(RenderBox * child,GridTrackSizingDirection direction,Vector<GridTrack> & columnTracks)635 LayoutUnit RenderGrid::maxContentForChild(RenderBox* child, GridTrackSizingDirection direction, Vector<GridTrack>& columnTracks)
636 {
637 bool hasOrthogonalWritingMode = child->isHorizontalWritingMode() != isHorizontalWritingMode();
638 // FIXME: Properly support orthogonal writing mode.
639 if (hasOrthogonalWritingMode)
640 return LayoutUnit();
641
642 if (direction == ForColumns) {
643 // FIXME: It's unclear if we should return the intrinsic width or the preferred width.
644 // See http://lists.w3.org/Archives/Public/www-style/2013Jan/0245.html
645 return child->maxPreferredLogicalWidth() + marginIntrinsicLogicalWidthForChild(child);
646 }
647
648 return logicalHeightForChild(child, columnTracks);
649 }
650
resolveContentBasedTrackSizingFunctions(GridTrackSizingDirection direction,GridSizingData & sizingData,LayoutUnit & availableLogicalSpace)651 void RenderGrid::resolveContentBasedTrackSizingFunctions(GridTrackSizingDirection direction, GridSizingData& sizingData, LayoutUnit& availableLogicalSpace)
652 {
653 // FIXME: Split the grid tracks into groups that doesn't overlap a <flex> grid track (crbug.com/235258).
654
655 // FIXME: Per step 2 of the specification, we should order the grid items by increasing span.
656
657 for (size_t i = 0; i < sizingData.contentSizedTracksIndex.size(); ++i) {
658 GridIterator iterator(m_grid, direction, sizingData.contentSizedTracksIndex[i]);
659 while (RenderBox* gridItem = iterator.nextGridItem()) {
660 resolveContentBasedTrackSizingFunctionsForItems(direction, sizingData, gridItem, &GridTrackSize::hasMinOrMaxContentMinTrackBreadth, &RenderGrid::minContentForChild, &GridTrack::usedBreadth, &GridTrack::growUsedBreadth);
661 resolveContentBasedTrackSizingFunctionsForItems(direction, sizingData, gridItem, &GridTrackSize::hasMaxContentMinTrackBreadth, &RenderGrid::maxContentForChild, &GridTrack::usedBreadth, &GridTrack::growUsedBreadth);
662 resolveContentBasedTrackSizingFunctionsForItems(direction, sizingData, gridItem, &GridTrackSize::hasMinOrMaxContentMaxTrackBreadth, &RenderGrid::minContentForChild, &GridTrack::maxBreadthIfNotInfinite, &GridTrack::growMaxBreadth);
663 resolveContentBasedTrackSizingFunctionsForItems(direction, sizingData, gridItem, &GridTrackSize::hasMaxContentMaxTrackBreadth, &RenderGrid::maxContentForChild, &GridTrack::maxBreadthIfNotInfinite, &GridTrack::growMaxBreadth);
664 }
665
666 GridTrack& track = (direction == ForColumns) ? sizingData.columnTracks[i] : sizingData.rowTracks[i];
667 if (track.m_maxBreadth == infinity)
668 track.m_maxBreadth = track.m_usedBreadth;
669 }
670 }
671
resolveContentBasedTrackSizingFunctionsForItems(GridTrackSizingDirection direction,GridSizingData & sizingData,RenderBox * gridItem,FilterFunction filterFunction,SizingFunction sizingFunction,AccumulatorGetter trackGetter,AccumulatorGrowFunction trackGrowthFunction)672 void RenderGrid::resolveContentBasedTrackSizingFunctionsForItems(GridTrackSizingDirection direction, GridSizingData& sizingData, RenderBox* gridItem, FilterFunction filterFunction, SizingFunction sizingFunction, AccumulatorGetter trackGetter, AccumulatorGrowFunction trackGrowthFunction)
673 {
674 const GridCoordinate coordinate = cachedGridCoordinate(gridItem);
675 const GridResolvedPosition initialTrackPosition = (direction == ForColumns) ? coordinate.columns.resolvedInitialPosition : coordinate.rows.resolvedInitialPosition;
676 const GridResolvedPosition finalTrackPosition = (direction == ForColumns) ? coordinate.columns.resolvedFinalPosition : coordinate.rows.resolvedFinalPosition;
677
678 sizingData.filteredTracks.shrink(0);
679 for (GridResolvedPosition trackPosition = initialTrackPosition; trackPosition <= finalTrackPosition; ++trackPosition) {
680 const GridTrackSize& trackSize = gridTrackSize(direction, trackPosition.toInt());
681 if (!(trackSize.*filterFunction)())
682 continue;
683
684 GridTrack& track = (direction == ForColumns) ? sizingData.columnTracks[trackPosition.toInt()] : sizingData.rowTracks[trackPosition.toInt()];
685 sizingData.filteredTracks.append(&track);
686 }
687
688 if (sizingData.filteredTracks.isEmpty())
689 return;
690
691 LayoutUnit additionalBreadthSpace = (this->*sizingFunction)(gridItem, direction, sizingData.columnTracks);
692 for (GridResolvedPosition trackIndexForSpace = initialTrackPosition; trackIndexForSpace <= finalTrackPosition; ++trackIndexForSpace) {
693 GridTrack& track = (direction == ForColumns) ? sizingData.columnTracks[trackIndexForSpace.toInt()] : sizingData.rowTracks[trackIndexForSpace.toInt()];
694 additionalBreadthSpace -= (track.*trackGetter)();
695 }
696
697 // FIXME: We should pass different values for |tracksForGrowthAboveMaxBreadth|.
698 distributeSpaceToTracks(sizingData.filteredTracks, &sizingData.filteredTracks, trackGetter, trackGrowthFunction, sizingData, additionalBreadthSpace);
699 }
700
sortByGridTrackGrowthPotential(const GridTrack * track1,const GridTrack * track2)701 static bool sortByGridTrackGrowthPotential(const GridTrack* track1, const GridTrack* track2)
702 {
703 return (track1->m_maxBreadth - track1->m_usedBreadth) < (track2->m_maxBreadth - track2->m_usedBreadth);
704 }
705
distributeSpaceToTracks(Vector<GridTrack * > & tracks,Vector<GridTrack * > * tracksForGrowthAboveMaxBreadth,AccumulatorGetter trackGetter,AccumulatorGrowFunction trackGrowthFunction,GridSizingData & sizingData,LayoutUnit & availableLogicalSpace)706 void RenderGrid::distributeSpaceToTracks(Vector<GridTrack*>& tracks, Vector<GridTrack*>* tracksForGrowthAboveMaxBreadth, AccumulatorGetter trackGetter, AccumulatorGrowFunction trackGrowthFunction, GridSizingData& sizingData, LayoutUnit& availableLogicalSpace)
707 {
708 std::sort(tracks.begin(), tracks.end(), sortByGridTrackGrowthPotential);
709
710 size_t tracksSize = tracks.size();
711 sizingData.distributeTrackVector.resize(tracksSize);
712
713 for (size_t i = 0; i < tracksSize; ++i) {
714 GridTrack& track = *tracks[i];
715 LayoutUnit availableLogicalSpaceShare = availableLogicalSpace / (tracksSize - i);
716 LayoutUnit trackBreadth = (tracks[i]->*trackGetter)();
717 LayoutUnit growthShare = std::min(availableLogicalSpaceShare, track.m_maxBreadth - trackBreadth);
718 sizingData.distributeTrackVector[i] = trackBreadth;
719 // We should never shrink any grid track or else we can't guarantee we abide by our min-sizing function.
720 if (growthShare > 0) {
721 sizingData.distributeTrackVector[i] += growthShare;
722 availableLogicalSpace -= growthShare;
723 }
724 }
725
726 if (availableLogicalSpace > 0 && tracksForGrowthAboveMaxBreadth) {
727 tracksSize = tracksForGrowthAboveMaxBreadth->size();
728 for (size_t i = 0; i < tracksSize; ++i) {
729 LayoutUnit growthShare = availableLogicalSpace / (tracksSize - i);
730 sizingData.distributeTrackVector[i] += growthShare;
731 availableLogicalSpace -= growthShare;
732 }
733 }
734
735 for (size_t i = 0; i < tracksSize; ++i) {
736 LayoutUnit growth = sizingData.distributeTrackVector[i] - (tracks[i]->*trackGetter)();
737 if (growth >= 0)
738 (tracks[i]->*trackGrowthFunction)(growth);
739 }
740 }
741
742 #ifndef NDEBUG
tracksAreWiderThanMinTrackBreadth(GridTrackSizingDirection direction,const Vector<GridTrack> & tracks)743 bool RenderGrid::tracksAreWiderThanMinTrackBreadth(GridTrackSizingDirection direction, const Vector<GridTrack>& tracks)
744 {
745 for (size_t i = 0; i < tracks.size(); ++i) {
746 const GridTrackSize& trackSize = gridTrackSize(direction, i);
747 const GridLength& minTrackBreadth = trackSize.minTrackBreadth();
748 if (computeUsedBreadthOfMinLength(direction, minTrackBreadth) > tracks[i].m_usedBreadth)
749 return false;
750 }
751 return true;
752 }
753 #endif
754
ensureGridSize(size_t maximumRowIndex,size_t maximumColumnIndex)755 void RenderGrid::ensureGridSize(size_t maximumRowIndex, size_t maximumColumnIndex)
756 {
757 const size_t oldRowSize = gridRowCount();
758 if (maximumRowIndex >= oldRowSize) {
759 m_grid.grow(maximumRowIndex + 1);
760 for (size_t row = oldRowSize; row < gridRowCount(); ++row)
761 m_grid[row].grow(gridColumnCount());
762 }
763
764 if (maximumColumnIndex >= gridColumnCount()) {
765 for (size_t row = 0; row < gridRowCount(); ++row)
766 m_grid[row].grow(maximumColumnIndex + 1);
767 }
768 }
769
insertItemIntoGrid(RenderBox * child,const GridCoordinate & coordinate)770 void RenderGrid::insertItemIntoGrid(RenderBox* child, const GridCoordinate& coordinate)
771 {
772 ensureGridSize(coordinate.rows.resolvedFinalPosition.toInt(), coordinate.columns.resolvedFinalPosition.toInt());
773
774 for (GridSpan::iterator row = coordinate.rows.begin(); row != coordinate.rows.end(); ++row) {
775 for (GridSpan::iterator column = coordinate.columns.begin(); column != coordinate.columns.end(); ++column)
776 m_grid[row.toInt()][column.toInt()].append(child);
777 }
778
779 m_gridItemCoordinate.set(child, coordinate);
780 }
781
placeItemsOnGrid()782 void RenderGrid::placeItemsOnGrid()
783 {
784 if (!gridIsDirty())
785 return;
786
787 ASSERT(m_gridItemCoordinate.isEmpty());
788
789 populateExplicitGridAndOrderIterator();
790
791 // We clear the dirty bit here as the grid sizes have been updated, this means
792 // that we can safely call gridRowCount() / gridColumnCount().
793 m_gridIsDirty = false;
794
795 Vector<RenderBox*> autoMajorAxisAutoGridItems;
796 Vector<RenderBox*> specifiedMajorAxisAutoGridItems;
797 GridAutoFlow autoFlow = style()->gridAutoFlow();
798 for (RenderBox* child = m_orderIterator.first(); child; child = m_orderIterator.next()) {
799 // FIXME: We never re-resolve positions if the grid is grown during auto-placement which may lead auto / <integer>
800 // positions to not match the author's intent. The specification is unclear on what should be done in this case.
801 OwnPtr<GridSpan> rowPositions = GridResolvedPosition::resolveGridPositionsFromStyle(*style(), *child, ForRows);
802 OwnPtr<GridSpan> columnPositions = GridResolvedPosition::resolveGridPositionsFromStyle(*style(), *child, ForColumns);
803 if (!rowPositions || !columnPositions) {
804 GridSpan* majorAxisPositions = (autoPlacementMajorAxisDirection() == ForColumns) ? columnPositions.get() : rowPositions.get();
805 if (!majorAxisPositions)
806 autoMajorAxisAutoGridItems.append(child);
807 else
808 specifiedMajorAxisAutoGridItems.append(child);
809 continue;
810 }
811 insertItemIntoGrid(child, GridCoordinate(*rowPositions, *columnPositions));
812 }
813
814 ASSERT(gridRowCount() >= style()->gridTemplateRows().size());
815 ASSERT(gridColumnCount() >= style()->gridTemplateColumns().size());
816
817 if (autoFlow == AutoFlowNone) {
818 // If we did collect some grid items, they won't be placed thus never laid out.
819 ASSERT(!autoMajorAxisAutoGridItems.size());
820 ASSERT(!specifiedMajorAxisAutoGridItems.size());
821 return;
822 }
823
824 placeSpecifiedMajorAxisItemsOnGrid(specifiedMajorAxisAutoGridItems);
825 placeAutoMajorAxisItemsOnGrid(autoMajorAxisAutoGridItems);
826
827 m_grid.shrinkToFit();
828 }
829
populateExplicitGridAndOrderIterator()830 void RenderGrid::populateExplicitGridAndOrderIterator()
831 {
832 OrderIteratorPopulator populator(m_orderIterator);
833
834 size_t maximumRowIndex = std::max<size_t>(1, GridResolvedPosition::explicitGridRowCount(*style()));
835 size_t maximumColumnIndex = std::max<size_t>(1, GridResolvedPosition::explicitGridColumnCount(*style()));
836
837 ASSERT(m_gridItemsIndexesMap.isEmpty());
838 size_t childIndex = 0;
839 for (RenderBox* child = firstChildBox(); child; child = child->nextSiblingBox()) {
840 populator.collectChild(child);
841 m_gridItemsIndexesMap.set(child, childIndex++);
842
843 // This function bypasses the cache (cachedGridCoordinate()) as it is used to build it.
844 OwnPtr<GridSpan> rowPositions = GridResolvedPosition::resolveGridPositionsFromStyle(*style(), *child, ForRows);
845 OwnPtr<GridSpan> columnPositions = GridResolvedPosition::resolveGridPositionsFromStyle(*style(), *child, ForColumns);
846
847 // |positions| is 0 if we need to run the auto-placement algorithm.
848 if (rowPositions) {
849 maximumRowIndex = std::max<size_t>(maximumRowIndex, rowPositions->resolvedFinalPosition.next().toInt());
850 } else {
851 // Grow the grid for items with a definite row span, getting the largest such span.
852 GridSpan positions = GridResolvedPosition::resolveGridPositionsFromAutoPlacementPosition(*style(), *child, ForRows, GridResolvedPosition(0));
853 maximumRowIndex = std::max<size_t>(maximumRowIndex, positions.resolvedFinalPosition.next().toInt());
854 }
855
856 if (columnPositions) {
857 maximumColumnIndex = std::max<size_t>(maximumColumnIndex, columnPositions->resolvedFinalPosition.next().toInt());
858 } else {
859 // Grow the grid for items with a definite column span, getting the largest such span.
860 GridSpan positions = GridResolvedPosition::resolveGridPositionsFromAutoPlacementPosition(*style(), *child, ForColumns, GridResolvedPosition(0));
861 maximumColumnIndex = std::max<size_t>(maximumColumnIndex, positions.resolvedFinalPosition.next().toInt());
862 }
863 }
864
865 m_grid.grow(maximumRowIndex);
866 for (size_t i = 0; i < m_grid.size(); ++i)
867 m_grid[i].grow(maximumColumnIndex);
868 }
869
createEmptyGridAreaAtSpecifiedPositionsOutsideGrid(const RenderBox * gridItem,GridTrackSizingDirection specifiedDirection,const GridSpan & specifiedPositions) const870 PassOwnPtr<GridCoordinate> RenderGrid::createEmptyGridAreaAtSpecifiedPositionsOutsideGrid(const RenderBox* gridItem, GridTrackSizingDirection specifiedDirection, const GridSpan& specifiedPositions) const
871 {
872 GridTrackSizingDirection crossDirection = specifiedDirection == ForColumns ? ForRows : ForColumns;
873 const size_t endOfCrossDirection = crossDirection == ForColumns ? gridColumnCount() : gridRowCount();
874 GridSpan crossDirectionPositions = GridResolvedPosition::resolveGridPositionsFromAutoPlacementPosition(*style(), *gridItem, crossDirection, GridResolvedPosition(endOfCrossDirection));
875 return adoptPtr(new GridCoordinate(specifiedDirection == ForColumns ? crossDirectionPositions : specifiedPositions, specifiedDirection == ForColumns ? specifiedPositions : crossDirectionPositions));
876 }
877
placeSpecifiedMajorAxisItemsOnGrid(const Vector<RenderBox * > & autoGridItems)878 void RenderGrid::placeSpecifiedMajorAxisItemsOnGrid(const Vector<RenderBox*>& autoGridItems)
879 {
880 for (size_t i = 0; i < autoGridItems.size(); ++i) {
881 OwnPtr<GridSpan> majorAxisPositions = GridResolvedPosition::resolveGridPositionsFromStyle(*style(), *autoGridItems[i], autoPlacementMajorAxisDirection());
882 GridSpan minorAxisPositions = GridResolvedPosition::resolveGridPositionsFromAutoPlacementPosition(*style(), *autoGridItems[i], autoPlacementMinorAxisDirection(), GridResolvedPosition(0));
883
884 GridIterator iterator(m_grid, autoPlacementMajorAxisDirection(), majorAxisPositions->resolvedInitialPosition.toInt());
885 OwnPtr<GridCoordinate> emptyGridArea = iterator.nextEmptyGridArea(majorAxisPositions->integerSpan(), minorAxisPositions.integerSpan());
886 if (!emptyGridArea)
887 emptyGridArea = createEmptyGridAreaAtSpecifiedPositionsOutsideGrid(autoGridItems[i], autoPlacementMajorAxisDirection(), *majorAxisPositions);
888 insertItemIntoGrid(autoGridItems[i], *emptyGridArea);
889 }
890 }
891
placeAutoMajorAxisItemsOnGrid(const Vector<RenderBox * > & autoGridItems)892 void RenderGrid::placeAutoMajorAxisItemsOnGrid(const Vector<RenderBox*>& autoGridItems)
893 {
894 for (size_t i = 0; i < autoGridItems.size(); ++i)
895 placeAutoMajorAxisItemOnGrid(autoGridItems[i]);
896 }
897
placeAutoMajorAxisItemOnGrid(RenderBox * gridItem)898 void RenderGrid::placeAutoMajorAxisItemOnGrid(RenderBox* gridItem)
899 {
900 OwnPtr<GridSpan> minorAxisPositions = GridResolvedPosition::resolveGridPositionsFromStyle(*style(), *gridItem, autoPlacementMinorAxisDirection());
901 ASSERT(!GridResolvedPosition::resolveGridPositionsFromStyle(*style(), *gridItem, autoPlacementMajorAxisDirection()));
902 GridSpan majorAxisPositions = GridResolvedPosition::resolveGridPositionsFromAutoPlacementPosition(*style(), *gridItem, autoPlacementMajorAxisDirection(), GridResolvedPosition(0));
903 OwnPtr<GridCoordinate> emptyGridArea;
904 if (minorAxisPositions) {
905 GridIterator iterator(m_grid, autoPlacementMinorAxisDirection(), minorAxisPositions->resolvedInitialPosition.toInt());
906 emptyGridArea = iterator.nextEmptyGridArea(minorAxisPositions->integerSpan(), majorAxisPositions.integerSpan());
907 if (!emptyGridArea)
908 emptyGridArea = createEmptyGridAreaAtSpecifiedPositionsOutsideGrid(gridItem, autoPlacementMinorAxisDirection(), *minorAxisPositions);
909 } else {
910 GridSpan minorAxisPositions = GridResolvedPosition::resolveGridPositionsFromAutoPlacementPosition(*style(), *gridItem, autoPlacementMinorAxisDirection(), GridResolvedPosition(0));
911
912 const size_t endOfMajorAxis = (autoPlacementMajorAxisDirection() == ForColumns) ? gridColumnCount() : gridRowCount();
913 for (size_t majorAxisIndex = 0; majorAxisIndex < endOfMajorAxis; ++majorAxisIndex) {
914 GridIterator iterator(m_grid, autoPlacementMajorAxisDirection(), majorAxisIndex);
915 emptyGridArea = iterator.nextEmptyGridArea(majorAxisPositions.integerSpan(), minorAxisPositions.integerSpan());
916
917 if (emptyGridArea) {
918 // Check that it fits in the minor axis direction, as we shouldn't grow in that direction here (it was already managed in populateExplicitGridAndOrderIterator()).
919 GridResolvedPosition minorAxisFinalPositionIndex = autoPlacementMinorAxisDirection() == ForColumns ? emptyGridArea->columns.resolvedFinalPosition : emptyGridArea->rows.resolvedFinalPosition;
920 const size_t endOfMinorAxis = autoPlacementMinorAxisDirection() == ForColumns ? gridColumnCount() : gridRowCount();
921 if (minorAxisFinalPositionIndex.toInt() < endOfMinorAxis)
922 break;
923
924 // Discard empty grid area as it does not fit in the minor axis direction.
925 // We don't need to create a new empty grid area yet as we might find a valid one in the next iteration.
926 emptyGridArea = nullptr;
927 }
928 }
929
930 if (!emptyGridArea)
931 emptyGridArea = createEmptyGridAreaAtSpecifiedPositionsOutsideGrid(gridItem, autoPlacementMinorAxisDirection(), minorAxisPositions);
932 }
933
934 insertItemIntoGrid(gridItem, *emptyGridArea);
935 }
936
autoPlacementMajorAxisDirection() const937 GridTrackSizingDirection RenderGrid::autoPlacementMajorAxisDirection() const
938 {
939 GridAutoFlow flow = style()->gridAutoFlow();
940 ASSERT(flow != AutoFlowNone);
941 return (flow == AutoFlowColumn) ? ForColumns : ForRows;
942 }
943
autoPlacementMinorAxisDirection() const944 GridTrackSizingDirection RenderGrid::autoPlacementMinorAxisDirection() const
945 {
946 GridAutoFlow flow = style()->gridAutoFlow();
947 ASSERT(flow != AutoFlowNone);
948 return (flow == AutoFlowColumn) ? ForRows : ForColumns;
949 }
950
dirtyGrid()951 void RenderGrid::dirtyGrid()
952 {
953 m_grid.resize(0);
954 m_gridItemCoordinate.clear();
955 m_gridIsDirty = true;
956 m_gridItemsOverflowingGridArea.resize(0);
957 m_gridItemsIndexesMap.clear();
958 }
959
layoutGridItems()960 void RenderGrid::layoutGridItems()
961 {
962 placeItemsOnGrid();
963
964 GridSizingData sizingData(gridColumnCount(), gridRowCount());
965 computeUsedBreadthOfGridTracks(ForColumns, sizingData);
966 ASSERT(tracksAreWiderThanMinTrackBreadth(ForColumns, sizingData.columnTracks));
967 computeUsedBreadthOfGridTracks(ForRows, sizingData);
968 ASSERT(tracksAreWiderThanMinTrackBreadth(ForRows, sizingData.rowTracks));
969
970 populateGridPositions(sizingData);
971 m_gridItemsOverflowingGridArea.resize(0);
972
973 for (RenderBox* child = firstChildBox(); child; child = child->nextSiblingBox()) {
974 // Because the grid area cannot be styled, we don't need to adjust
975 // the grid breadth to account for 'box-sizing'.
976 LayoutUnit oldOverrideContainingBlockContentLogicalWidth = child->hasOverrideContainingBlockLogicalWidth() ? child->overrideContainingBlockContentLogicalWidth() : LayoutUnit();
977 LayoutUnit oldOverrideContainingBlockContentLogicalHeight = child->hasOverrideContainingBlockLogicalHeight() ? child->overrideContainingBlockContentLogicalHeight() : LayoutUnit();
978
979 LayoutUnit overrideContainingBlockContentLogicalWidth = gridAreaBreadthForChild(child, ForColumns, sizingData.columnTracks);
980 LayoutUnit overrideContainingBlockContentLogicalHeight = gridAreaBreadthForChild(child, ForRows, sizingData.rowTracks);
981
982 SubtreeLayoutScope layoutScope(*child);
983 if (oldOverrideContainingBlockContentLogicalWidth != overrideContainingBlockContentLogicalWidth || (oldOverrideContainingBlockContentLogicalHeight != overrideContainingBlockContentLogicalHeight && child->hasRelativeLogicalHeight()))
984 layoutScope.setNeedsLayout(child);
985
986 child->setOverrideContainingBlockContentLogicalWidth(overrideContainingBlockContentLogicalWidth);
987 child->setOverrideContainingBlockContentLogicalHeight(overrideContainingBlockContentLogicalHeight);
988
989 LayoutRect oldChildRect = child->frameRect();
990
991 // FIXME: Grid items should stretch to fill their cells. Once we
992 // implement grid-{column,row}-align, we can also shrink to fit. For
993 // now, just size as if we were a regular child.
994 child->layoutIfNeeded();
995
996 #ifndef NDEBUG
997 const GridCoordinate& coordinate = cachedGridCoordinate(child);
998 ASSERT(coordinate.columns.resolvedInitialPosition.toInt() < sizingData.columnTracks.size());
999 ASSERT(coordinate.rows.resolvedInitialPosition.toInt() < sizingData.rowTracks.size());
1000 #endif
1001 child->setLogicalLocation(findChildLogicalPosition(child));
1002
1003 // Keep track of children overflowing their grid area as we might need to paint them even if the grid-area is
1004 // not visible
1005 if (child->logicalHeight() > overrideContainingBlockContentLogicalHeight
1006 || child->logicalWidth() > overrideContainingBlockContentLogicalWidth)
1007 m_gridItemsOverflowingGridArea.append(child);
1008
1009 // If the child moved, we have to repaint it as well as any floating/positioned
1010 // descendants. An exception is if we need a layout. In this case, we know we're going to
1011 // repaint ourselves (and the child) anyway.
1012 if (!selfNeedsLayout() && child->checkForPaintInvalidationDuringLayout())
1013 child->repaintDuringLayoutIfMoved(oldChildRect);
1014 }
1015
1016 for (size_t i = 0; i < sizingData.rowTracks.size(); ++i)
1017 setLogicalHeight(logicalHeight() + sizingData.rowTracks[i].m_usedBreadth);
1018
1019 // Min / max logical height is handled by the call to updateLogicalHeight in layoutBlock.
1020
1021 setLogicalHeight(logicalHeight() + borderAndPaddingLogicalHeight());
1022 }
1023
cachedGridCoordinate(const RenderBox * gridItem) const1024 GridCoordinate RenderGrid::cachedGridCoordinate(const RenderBox* gridItem) const
1025 {
1026 ASSERT(m_gridItemCoordinate.contains(gridItem));
1027 return m_gridItemCoordinate.get(gridItem);
1028 }
1029
gridAreaBreadthForChild(const RenderBox * child,GridTrackSizingDirection direction,const Vector<GridTrack> & tracks) const1030 LayoutUnit RenderGrid::gridAreaBreadthForChild(const RenderBox* child, GridTrackSizingDirection direction, const Vector<GridTrack>& tracks) const
1031 {
1032 const GridCoordinate& coordinate = cachedGridCoordinate(child);
1033 const GridSpan& span = (direction == ForColumns) ? coordinate.columns : coordinate.rows;
1034 LayoutUnit gridAreaBreadth = 0;
1035 for (GridSpan::iterator trackPosition = span.begin(); trackPosition != span.end(); ++trackPosition)
1036 gridAreaBreadth += tracks[trackPosition.toInt()].m_usedBreadth;
1037 return gridAreaBreadth;
1038 }
1039
populateGridPositions(const GridSizingData & sizingData)1040 void RenderGrid::populateGridPositions(const GridSizingData& sizingData)
1041 {
1042 m_columnPositions.resize(sizingData.columnTracks.size() + 1);
1043 m_columnPositions[0] = borderAndPaddingStart();
1044 for (size_t i = 0; i < m_columnPositions.size() - 1; ++i)
1045 m_columnPositions[i + 1] = m_columnPositions[i] + sizingData.columnTracks[i].m_usedBreadth;
1046
1047 m_rowPositions.resize(sizingData.rowTracks.size() + 1);
1048 m_rowPositions[0] = borderAndPaddingBefore();
1049 for (size_t i = 0; i < m_rowPositions.size() - 1; ++i)
1050 m_rowPositions[i + 1] = m_rowPositions[i] + sizingData.rowTracks[i].m_usedBreadth;
1051 }
1052
startOfColumnForChild(const RenderBox * child) const1053 LayoutUnit RenderGrid::startOfColumnForChild(const RenderBox* child) const
1054 {
1055 const GridCoordinate& coordinate = cachedGridCoordinate(child);
1056 LayoutUnit startOfColumn = m_columnPositions[coordinate.columns.resolvedInitialPosition.toInt()];
1057 // The grid items should be inside the grid container's border box, that's why they need to be shifted.
1058 // FIXME: This should account for the grid item's <overflow-position>.
1059 return startOfColumn + marginStartForChild(child);
1060 }
1061
endOfColumnForChild(const RenderBox * child) const1062 LayoutUnit RenderGrid::endOfColumnForChild(const RenderBox* child) const
1063 {
1064 const GridCoordinate& coordinate = cachedGridCoordinate(child);
1065 LayoutUnit startOfColumn = m_columnPositions[coordinate.columns.resolvedInitialPosition.toInt()];
1066 // The grid items should be inside the grid container's border box, that's why they need to be shifted.
1067 LayoutUnit columnPosition = startOfColumn + marginStartForChild(child);
1068
1069 LayoutUnit endOfColumn = m_columnPositions[coordinate.columns.resolvedFinalPosition.next().toInt()];
1070 // FIXME: This should account for the grid item's <overflow-position>.
1071 return columnPosition + std::max<LayoutUnit>(0, endOfColumn - m_columnPositions[coordinate.columns.resolvedInitialPosition.toInt()] - child->logicalWidth());
1072 }
1073
columnPositionAlignedWithGridContainerStart(const RenderBox * child) const1074 LayoutUnit RenderGrid::columnPositionAlignedWithGridContainerStart(const RenderBox* child) const
1075 {
1076 if (style()->isLeftToRightDirection())
1077 return startOfColumnForChild(child);
1078
1079 return endOfColumnForChild(child);
1080 }
1081
columnPositionAlignedWithGridContainerEnd(const RenderBox * child) const1082 LayoutUnit RenderGrid::columnPositionAlignedWithGridContainerEnd(const RenderBox* child) const
1083 {
1084 if (!style()->isLeftToRightDirection())
1085 return startOfColumnForChild(child);
1086
1087 return endOfColumnForChild(child);
1088 }
1089
centeredColumnPositionForChild(const RenderBox * child) const1090 LayoutUnit RenderGrid::centeredColumnPositionForChild(const RenderBox* child) const
1091 {
1092 const GridCoordinate& coordinate = cachedGridCoordinate(child);
1093 LayoutUnit startOfColumn = m_columnPositions[coordinate.columns.resolvedInitialPosition.toInt()];
1094 LayoutUnit endOfColumn = m_columnPositions[coordinate.columns.resolvedFinalPosition.next().toInt()];
1095 LayoutUnit columnPosition = startOfColumn + marginStartForChild(child);
1096 return columnPosition + std::max<LayoutUnit>(0, endOfColumn - startOfColumn - child->logicalWidth()) / 2;
1097 }
1098
columnPositionForChild(const RenderBox * child) const1099 LayoutUnit RenderGrid::columnPositionForChild(const RenderBox* child) const
1100 {
1101 ItemPosition childJustifySelf = child->style()->justifySelf();
1102 switch (childJustifySelf) {
1103 case ItemPositionSelfStart:
1104 // self-start is based on the child's direction. That's why we need to check against the grid container's direction.
1105 if (child->style()->direction() != style()->direction())
1106 return columnPositionAlignedWithGridContainerEnd(child);
1107
1108 return columnPositionAlignedWithGridContainerStart(child);
1109 case ItemPositionSelfEnd:
1110 // self-end is based on the child's direction. That's why we need to check against the grid container's direction.
1111 if (child->style()->direction() != style()->direction())
1112 return columnPositionAlignedWithGridContainerStart(child);
1113
1114 return columnPositionAlignedWithGridContainerEnd(child);
1115
1116 case ItemPositionFlexStart:
1117 case ItemPositionFlexEnd:
1118 // Only used in flex layout, for other layout, it's equivalent to 'start'.
1119 return columnPositionAlignedWithGridContainerStart(child);
1120
1121 case ItemPositionLeft:
1122 // If the property's axis is not parallel with the inline axis, this is equivalent to ‘start’.
1123 if (!isHorizontalWritingMode())
1124 return columnPositionAlignedWithGridContainerStart(child);
1125
1126 if (style()->isLeftToRightDirection())
1127 return columnPositionAlignedWithGridContainerStart(child);
1128
1129 return columnPositionAlignedWithGridContainerEnd(child);
1130 case ItemPositionRight:
1131 // If the property's axis is not parallel with the inline axis, this is equivalent to ‘start’.
1132 if (!isHorizontalWritingMode())
1133 return columnPositionAlignedWithGridContainerStart(child);
1134
1135 if (style()->isLeftToRightDirection())
1136 return columnPositionAlignedWithGridContainerEnd(child);
1137
1138 return columnPositionAlignedWithGridContainerStart(child);
1139
1140 case ItemPositionCenter:
1141 return centeredColumnPositionForChild(child);
1142 case ItemPositionStart:
1143 return columnPositionAlignedWithGridContainerStart(child);
1144 case ItemPositionEnd:
1145 return columnPositionAlignedWithGridContainerEnd(child);
1146
1147 case ItemPositionAuto:
1148 case ItemPositionStretch:
1149 case ItemPositionBaseline:
1150 // FIXME: Implement the previous values. For now, we always start align the child.
1151 return startOfColumnForChild(child);
1152 }
1153
1154 ASSERT_NOT_REACHED();
1155 return 0;
1156 }
1157
rowPositionForChild(const RenderBox * child) const1158 LayoutUnit RenderGrid::rowPositionForChild(const RenderBox* child) const
1159 {
1160 const GridCoordinate& coordinate = cachedGridCoordinate(child);
1161
1162 // The grid items should be inside the grid container's border box, that's why they need to be shifted.
1163 LayoutUnit startOfRow = m_rowPositions[coordinate.rows.resolvedInitialPosition.toInt()];
1164 LayoutUnit rowPosition = startOfRow + marginBeforeForChild(child);
1165
1166 // FIXME: This function should account for 'align-self'.
1167
1168 return rowPosition;
1169 }
1170
findChildLogicalPosition(const RenderBox * child) const1171 LayoutPoint RenderGrid::findChildLogicalPosition(const RenderBox* child) const
1172 {
1173 return LayoutPoint(columnPositionForChild(child), rowPositionForChild(child));
1174 }
1175
dirtiedGridAreas(const Vector<LayoutUnit> & coordinates,LayoutUnit start,LayoutUnit end)1176 static GridSpan dirtiedGridAreas(const Vector<LayoutUnit>& coordinates, LayoutUnit start, LayoutUnit end)
1177 {
1178 // This function does a binary search over the coordinates.
1179 // This doesn't work with grid items overflowing their grid areas, but that is managed with m_gridItemsOverflowingGridArea.
1180
1181 size_t startGridAreaIndex = std::upper_bound(coordinates.begin(), coordinates.end() - 1, start) - coordinates.begin();
1182 if (startGridAreaIndex > 0)
1183 --startGridAreaIndex;
1184
1185 size_t endGridAreaIndex = std::upper_bound(coordinates.begin() + startGridAreaIndex, coordinates.end() - 1, end) - coordinates.begin();
1186 if (endGridAreaIndex > 0)
1187 --endGridAreaIndex;
1188
1189 return GridSpan(startGridAreaIndex, endGridAreaIndex);
1190 }
1191
1192 class GridItemsSorter {
1193 public:
operator ()(const std::pair<RenderBox *,size_t> firstChild,const std::pair<RenderBox *,size_t> secondChild) const1194 bool operator()(const std::pair<RenderBox*, size_t> firstChild, const std::pair<RenderBox*, size_t> secondChild) const
1195 {
1196 if (firstChild.first->style()->order() != secondChild.first->style()->order())
1197 return firstChild.first->style()->order() < secondChild.first->style()->order();
1198
1199 return firstChild.second < secondChild.second;
1200 }
1201 };
1202
paintChildren(PaintInfo & paintInfo,const LayoutPoint & paintOffset)1203 void RenderGrid::paintChildren(PaintInfo& paintInfo, const LayoutPoint& paintOffset)
1204 {
1205 ASSERT_WITH_SECURITY_IMPLICATION(!gridIsDirty());
1206
1207 LayoutRect localRepaintRect = paintInfo.rect;
1208 localRepaintRect.moveBy(-paintOffset);
1209
1210 GridSpan dirtiedColumns = dirtiedGridAreas(m_columnPositions, localRepaintRect.x(), localRepaintRect.maxX());
1211 GridSpan dirtiedRows = dirtiedGridAreas(m_rowPositions, localRepaintRect.y(), localRepaintRect.maxY());
1212
1213 Vector<std::pair<RenderBox*, size_t> > gridItemsToBePainted;
1214
1215 for (GridSpan::iterator row = dirtiedRows.begin(); row != dirtiedRows.end(); ++row) {
1216 for (GridSpan::iterator column = dirtiedColumns.begin(); column != dirtiedColumns.end(); ++column) {
1217 const Vector<RenderBox*, 1>& children = m_grid[row.toInt()][column.toInt()];
1218 for (size_t j = 0; j < children.size(); ++j)
1219 gridItemsToBePainted.append(std::make_pair(children[j], m_gridItemsIndexesMap.get(children[j])));
1220 }
1221 }
1222
1223 for (Vector<RenderBox*>::const_iterator it = m_gridItemsOverflowingGridArea.begin(); it != m_gridItemsOverflowingGridArea.end(); ++it) {
1224 if ((*it)->frameRect().intersects(localRepaintRect))
1225 gridItemsToBePainted.append(std::make_pair(*it, m_gridItemsIndexesMap.get(*it)));
1226 }
1227
1228 // Sort grid items following order-modified document order.
1229 // See http://www.w3.org/TR/css-flexbox/#order-modified-document-order
1230 std::stable_sort(gridItemsToBePainted.begin(), gridItemsToBePainted.end(), GridItemsSorter());
1231
1232 RenderBox* previous = 0;
1233 for (Vector<std::pair<RenderBox*, size_t> >::const_iterator it = gridItemsToBePainted.begin(); it != gridItemsToBePainted.end(); ++it) {
1234 // We might have duplicates because of spanning children are included in all cells they span.
1235 // Skip them here to avoid painting items several times.
1236 RenderBox* current = (*it).first;
1237 if (current == previous)
1238 continue;
1239
1240 paintChild(current, paintInfo, paintOffset);
1241 previous = current;
1242 }
1243 }
1244
renderName() const1245 const char* RenderGrid::renderName() const
1246 {
1247 if (isFloating())
1248 return "RenderGrid (floating)";
1249 if (isOutOfFlowPositioned())
1250 return "RenderGrid (positioned)";
1251 if (isAnonymous())
1252 return "RenderGrid (generated)";
1253 if (isRelPositioned())
1254 return "RenderGrid (relative positioned)";
1255 return "RenderGrid";
1256 }
1257
1258 } // namespace WebCore
1259