1 //===-- DataFlowSanitizer.cpp - dynamic data flow analysis ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 /// \file
10 /// This file is a part of DataFlowSanitizer, a generalised dynamic data flow
11 /// analysis.
12 ///
13 /// Unlike other Sanitizer tools, this tool is not designed to detect a specific
14 /// class of bugs on its own. Instead, it provides a generic dynamic data flow
15 /// analysis framework to be used by clients to help detect application-specific
16 /// issues within their own code.
17 ///
18 /// The analysis is based on automatic propagation of data flow labels (also
19 /// known as taint labels) through a program as it performs computation. Each
20 /// byte of application memory is backed by two bytes of shadow memory which
21 /// hold the label. On Linux/x86_64, memory is laid out as follows:
22 ///
23 /// +--------------------+ 0x800000000000 (top of memory)
24 /// | application memory |
25 /// +--------------------+ 0x700000008000 (kAppAddr)
26 /// | |
27 /// | unused |
28 /// | |
29 /// +--------------------+ 0x200200000000 (kUnusedAddr)
30 /// | union table |
31 /// +--------------------+ 0x200000000000 (kUnionTableAddr)
32 /// | shadow memory |
33 /// +--------------------+ 0x000000010000 (kShadowAddr)
34 /// | reserved by kernel |
35 /// +--------------------+ 0x000000000000
36 ///
37 /// To derive a shadow memory address from an application memory address,
38 /// bits 44-46 are cleared to bring the address into the range
39 /// [0x000000008000,0x100000000000). Then the address is shifted left by 1 to
40 /// account for the double byte representation of shadow labels and move the
41 /// address into the shadow memory range. See the function
42 /// DataFlowSanitizer::getShadowAddress below.
43 ///
44 /// For more information, please refer to the design document:
45 /// http://clang.llvm.org/docs/DataFlowSanitizerDesign.html
46
47 #include "llvm/Transforms/Instrumentation.h"
48 #include "llvm/ADT/DenseMap.h"
49 #include "llvm/ADT/DenseSet.h"
50 #include "llvm/ADT/DepthFirstIterator.h"
51 #include "llvm/ADT/StringExtras.h"
52 #include "llvm/Analysis/ValueTracking.h"
53 #include "llvm/IR/IRBuilder.h"
54 #include "llvm/IR/InlineAsm.h"
55 #include "llvm/IR/InstVisitor.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/MDBuilder.h"
58 #include "llvm/IR/Type.h"
59 #include "llvm/IR/Value.h"
60 #include "llvm/Pass.h"
61 #include "llvm/Support/CommandLine.h"
62 #include "llvm/Support/SpecialCaseList.h"
63 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
64 #include "llvm/Transforms/Utils/Local.h"
65 #include <iterator>
66
67 using namespace llvm;
68
69 // The -dfsan-preserve-alignment flag controls whether this pass assumes that
70 // alignment requirements provided by the input IR are correct. For example,
71 // if the input IR contains a load with alignment 8, this flag will cause
72 // the shadow load to have alignment 16. This flag is disabled by default as
73 // we have unfortunately encountered too much code (including Clang itself;
74 // see PR14291) which performs misaligned access.
75 static cl::opt<bool> ClPreserveAlignment(
76 "dfsan-preserve-alignment",
77 cl::desc("respect alignment requirements provided by input IR"), cl::Hidden,
78 cl::init(false));
79
80 // The ABI list file controls how shadow parameters are passed. The pass treats
81 // every function labelled "uninstrumented" in the ABI list file as conforming
82 // to the "native" (i.e. unsanitized) ABI. Unless the ABI list contains
83 // additional annotations for those functions, a call to one of those functions
84 // will produce a warning message, as the labelling behaviour of the function is
85 // unknown. The other supported annotations are "functional" and "discard",
86 // which are described below under DataFlowSanitizer::WrapperKind.
87 static cl::opt<std::string> ClABIListFile(
88 "dfsan-abilist",
89 cl::desc("File listing native ABI functions and how the pass treats them"),
90 cl::Hidden);
91
92 // Controls whether the pass uses IA_Args or IA_TLS as the ABI for instrumented
93 // functions (see DataFlowSanitizer::InstrumentedABI below).
94 static cl::opt<bool> ClArgsABI(
95 "dfsan-args-abi",
96 cl::desc("Use the argument ABI rather than the TLS ABI"),
97 cl::Hidden);
98
99 // Controls whether the pass includes or ignores the labels of pointers in load
100 // instructions.
101 static cl::opt<bool> ClCombinePointerLabelsOnLoad(
102 "dfsan-combine-pointer-labels-on-load",
103 cl::desc("Combine the label of the pointer with the label of the data when "
104 "loading from memory."),
105 cl::Hidden, cl::init(true));
106
107 // Controls whether the pass includes or ignores the labels of pointers in
108 // stores instructions.
109 static cl::opt<bool> ClCombinePointerLabelsOnStore(
110 "dfsan-combine-pointer-labels-on-store",
111 cl::desc("Combine the label of the pointer with the label of the data when "
112 "storing in memory."),
113 cl::Hidden, cl::init(false));
114
115 static cl::opt<bool> ClDebugNonzeroLabels(
116 "dfsan-debug-nonzero-labels",
117 cl::desc("Insert calls to __dfsan_nonzero_label on observing a parameter, "
118 "load or return with a nonzero label"),
119 cl::Hidden);
120
121 namespace {
122
GetGlobalTypeString(const GlobalValue & G)123 StringRef GetGlobalTypeString(const GlobalValue &G) {
124 // Types of GlobalVariables are always pointer types.
125 Type *GType = G.getType()->getElementType();
126 // For now we support blacklisting struct types only.
127 if (StructType *SGType = dyn_cast<StructType>(GType)) {
128 if (!SGType->isLiteral())
129 return SGType->getName();
130 }
131 return "<unknown type>";
132 }
133
134 class DFSanABIList {
135 std::unique_ptr<SpecialCaseList> SCL;
136
137 public:
DFSanABIList(SpecialCaseList * SCL)138 DFSanABIList(SpecialCaseList *SCL) : SCL(SCL) {}
139
140 /// Returns whether either this function or its source file are listed in the
141 /// given category.
isIn(const Function & F,const StringRef Category) const142 bool isIn(const Function &F, const StringRef Category) const {
143 return isIn(*F.getParent(), Category) ||
144 SCL->inSection("fun", F.getName(), Category);
145 }
146
147 /// Returns whether this global alias is listed in the given category.
148 ///
149 /// If GA aliases a function, the alias's name is matched as a function name
150 /// would be. Similarly, aliases of globals are matched like globals.
isIn(const GlobalAlias & GA,const StringRef Category) const151 bool isIn(const GlobalAlias &GA, const StringRef Category) const {
152 if (isIn(*GA.getParent(), Category))
153 return true;
154
155 if (isa<FunctionType>(GA.getType()->getElementType()))
156 return SCL->inSection("fun", GA.getName(), Category);
157
158 return SCL->inSection("global", GA.getName(), Category) ||
159 SCL->inSection("type", GetGlobalTypeString(GA), Category);
160 }
161
162 /// Returns whether this module is listed in the given category.
isIn(const Module & M,const StringRef Category) const163 bool isIn(const Module &M, const StringRef Category) const {
164 return SCL->inSection("src", M.getModuleIdentifier(), Category);
165 }
166 };
167
168 class DataFlowSanitizer : public ModulePass {
169 friend struct DFSanFunction;
170 friend class DFSanVisitor;
171
172 enum {
173 ShadowWidth = 16
174 };
175
176 /// Which ABI should be used for instrumented functions?
177 enum InstrumentedABI {
178 /// Argument and return value labels are passed through additional
179 /// arguments and by modifying the return type.
180 IA_Args,
181
182 /// Argument and return value labels are passed through TLS variables
183 /// __dfsan_arg_tls and __dfsan_retval_tls.
184 IA_TLS
185 };
186
187 /// How should calls to uninstrumented functions be handled?
188 enum WrapperKind {
189 /// This function is present in an uninstrumented form but we don't know
190 /// how it should be handled. Print a warning and call the function anyway.
191 /// Don't label the return value.
192 WK_Warning,
193
194 /// This function does not write to (user-accessible) memory, and its return
195 /// value is unlabelled.
196 WK_Discard,
197
198 /// This function does not write to (user-accessible) memory, and the label
199 /// of its return value is the union of the label of its arguments.
200 WK_Functional,
201
202 /// Instead of calling the function, a custom wrapper __dfsw_F is called,
203 /// where F is the name of the function. This function may wrap the
204 /// original function or provide its own implementation. This is similar to
205 /// the IA_Args ABI, except that IA_Args uses a struct return type to
206 /// pass the return value shadow in a register, while WK_Custom uses an
207 /// extra pointer argument to return the shadow. This allows the wrapped
208 /// form of the function type to be expressed in C.
209 WK_Custom
210 };
211
212 const DataLayout *DL;
213 Module *Mod;
214 LLVMContext *Ctx;
215 IntegerType *ShadowTy;
216 PointerType *ShadowPtrTy;
217 IntegerType *IntptrTy;
218 ConstantInt *ZeroShadow;
219 ConstantInt *ShadowPtrMask;
220 ConstantInt *ShadowPtrMul;
221 Constant *ArgTLS;
222 Constant *RetvalTLS;
223 void *(*GetArgTLSPtr)();
224 void *(*GetRetvalTLSPtr)();
225 Constant *GetArgTLS;
226 Constant *GetRetvalTLS;
227 FunctionType *DFSanUnionFnTy;
228 FunctionType *DFSanUnionLoadFnTy;
229 FunctionType *DFSanUnimplementedFnTy;
230 FunctionType *DFSanSetLabelFnTy;
231 FunctionType *DFSanNonzeroLabelFnTy;
232 Constant *DFSanUnionFn;
233 Constant *DFSanUnionLoadFn;
234 Constant *DFSanUnimplementedFn;
235 Constant *DFSanSetLabelFn;
236 Constant *DFSanNonzeroLabelFn;
237 MDNode *ColdCallWeights;
238 DFSanABIList ABIList;
239 DenseMap<Value *, Function *> UnwrappedFnMap;
240 AttributeSet ReadOnlyNoneAttrs;
241
242 Value *getShadowAddress(Value *Addr, Instruction *Pos);
243 Value *combineShadows(Value *V1, Value *V2, Instruction *Pos);
244 bool isInstrumented(const Function *F);
245 bool isInstrumented(const GlobalAlias *GA);
246 FunctionType *getArgsFunctionType(FunctionType *T);
247 FunctionType *getTrampolineFunctionType(FunctionType *T);
248 FunctionType *getCustomFunctionType(FunctionType *T);
249 InstrumentedABI getInstrumentedABI();
250 WrapperKind getWrapperKind(Function *F);
251 void addGlobalNamePrefix(GlobalValue *GV);
252 Function *buildWrapperFunction(Function *F, StringRef NewFName,
253 GlobalValue::LinkageTypes NewFLink,
254 FunctionType *NewFT);
255 Constant *getOrBuildTrampolineFunction(FunctionType *FT, StringRef FName);
256
257 public:
258 DataFlowSanitizer(StringRef ABIListFile = StringRef(),
259 void *(*getArgTLS)() = nullptr,
260 void *(*getRetValTLS)() = nullptr);
261 static char ID;
262 bool doInitialization(Module &M) override;
263 bool runOnModule(Module &M) override;
264 };
265
266 struct DFSanFunction {
267 DataFlowSanitizer &DFS;
268 Function *F;
269 DataFlowSanitizer::InstrumentedABI IA;
270 bool IsNativeABI;
271 Value *ArgTLSPtr;
272 Value *RetvalTLSPtr;
273 AllocaInst *LabelReturnAlloca;
274 DenseMap<Value *, Value *> ValShadowMap;
275 DenseMap<AllocaInst *, AllocaInst *> AllocaShadowMap;
276 std::vector<std::pair<PHINode *, PHINode *> > PHIFixups;
277 DenseSet<Instruction *> SkipInsts;
278 DenseSet<Value *> NonZeroChecks;
279
DFSanFunction__anon28576a020111::DFSanFunction280 DFSanFunction(DataFlowSanitizer &DFS, Function *F, bool IsNativeABI)
281 : DFS(DFS), F(F), IA(DFS.getInstrumentedABI()),
282 IsNativeABI(IsNativeABI), ArgTLSPtr(nullptr), RetvalTLSPtr(nullptr),
283 LabelReturnAlloca(nullptr) {}
284 Value *getArgTLSPtr();
285 Value *getArgTLS(unsigned Index, Instruction *Pos);
286 Value *getRetvalTLS();
287 Value *getShadow(Value *V);
288 void setShadow(Instruction *I, Value *Shadow);
289 Value *combineOperandShadows(Instruction *Inst);
290 Value *loadShadow(Value *ShadowAddr, uint64_t Size, uint64_t Align,
291 Instruction *Pos);
292 void storeShadow(Value *Addr, uint64_t Size, uint64_t Align, Value *Shadow,
293 Instruction *Pos);
294 };
295
296 class DFSanVisitor : public InstVisitor<DFSanVisitor> {
297 public:
298 DFSanFunction &DFSF;
DFSanVisitor(DFSanFunction & DFSF)299 DFSanVisitor(DFSanFunction &DFSF) : DFSF(DFSF) {}
300
301 void visitOperandShadowInst(Instruction &I);
302
303 void visitBinaryOperator(BinaryOperator &BO);
304 void visitCastInst(CastInst &CI);
305 void visitCmpInst(CmpInst &CI);
306 void visitGetElementPtrInst(GetElementPtrInst &GEPI);
307 void visitLoadInst(LoadInst &LI);
308 void visitStoreInst(StoreInst &SI);
309 void visitReturnInst(ReturnInst &RI);
310 void visitCallSite(CallSite CS);
311 void visitPHINode(PHINode &PN);
312 void visitExtractElementInst(ExtractElementInst &I);
313 void visitInsertElementInst(InsertElementInst &I);
314 void visitShuffleVectorInst(ShuffleVectorInst &I);
315 void visitExtractValueInst(ExtractValueInst &I);
316 void visitInsertValueInst(InsertValueInst &I);
317 void visitAllocaInst(AllocaInst &I);
318 void visitSelectInst(SelectInst &I);
319 void visitMemSetInst(MemSetInst &I);
320 void visitMemTransferInst(MemTransferInst &I);
321 };
322
323 }
324
325 char DataFlowSanitizer::ID;
326 INITIALIZE_PASS(DataFlowSanitizer, "dfsan",
327 "DataFlowSanitizer: dynamic data flow analysis.", false, false)
328
createDataFlowSanitizerPass(StringRef ABIListFile,void * (* getArgTLS)(),void * (* getRetValTLS)())329 ModulePass *llvm::createDataFlowSanitizerPass(StringRef ABIListFile,
330 void *(*getArgTLS)(),
331 void *(*getRetValTLS)()) {
332 return new DataFlowSanitizer(ABIListFile, getArgTLS, getRetValTLS);
333 }
334
DataFlowSanitizer(StringRef ABIListFile,void * (* getArgTLS)(),void * (* getRetValTLS)())335 DataFlowSanitizer::DataFlowSanitizer(StringRef ABIListFile,
336 void *(*getArgTLS)(),
337 void *(*getRetValTLS)())
338 : ModulePass(ID), GetArgTLSPtr(getArgTLS), GetRetvalTLSPtr(getRetValTLS),
339 ABIList(SpecialCaseList::createOrDie(ABIListFile.empty() ? ClABIListFile
340 : ABIListFile)) {
341 }
342
getArgsFunctionType(FunctionType * T)343 FunctionType *DataFlowSanitizer::getArgsFunctionType(FunctionType *T) {
344 llvm::SmallVector<Type *, 4> ArgTypes;
345 std::copy(T->param_begin(), T->param_end(), std::back_inserter(ArgTypes));
346 for (unsigned i = 0, e = T->getNumParams(); i != e; ++i)
347 ArgTypes.push_back(ShadowTy);
348 if (T->isVarArg())
349 ArgTypes.push_back(ShadowPtrTy);
350 Type *RetType = T->getReturnType();
351 if (!RetType->isVoidTy())
352 RetType = StructType::get(RetType, ShadowTy, (Type *)nullptr);
353 return FunctionType::get(RetType, ArgTypes, T->isVarArg());
354 }
355
getTrampolineFunctionType(FunctionType * T)356 FunctionType *DataFlowSanitizer::getTrampolineFunctionType(FunctionType *T) {
357 assert(!T->isVarArg());
358 llvm::SmallVector<Type *, 4> ArgTypes;
359 ArgTypes.push_back(T->getPointerTo());
360 std::copy(T->param_begin(), T->param_end(), std::back_inserter(ArgTypes));
361 for (unsigned i = 0, e = T->getNumParams(); i != e; ++i)
362 ArgTypes.push_back(ShadowTy);
363 Type *RetType = T->getReturnType();
364 if (!RetType->isVoidTy())
365 ArgTypes.push_back(ShadowPtrTy);
366 return FunctionType::get(T->getReturnType(), ArgTypes, false);
367 }
368
getCustomFunctionType(FunctionType * T)369 FunctionType *DataFlowSanitizer::getCustomFunctionType(FunctionType *T) {
370 assert(!T->isVarArg());
371 llvm::SmallVector<Type *, 4> ArgTypes;
372 for (FunctionType::param_iterator i = T->param_begin(), e = T->param_end();
373 i != e; ++i) {
374 FunctionType *FT;
375 if (isa<PointerType>(*i) && (FT = dyn_cast<FunctionType>(cast<PointerType>(
376 *i)->getElementType()))) {
377 ArgTypes.push_back(getTrampolineFunctionType(FT)->getPointerTo());
378 ArgTypes.push_back(Type::getInt8PtrTy(*Ctx));
379 } else {
380 ArgTypes.push_back(*i);
381 }
382 }
383 for (unsigned i = 0, e = T->getNumParams(); i != e; ++i)
384 ArgTypes.push_back(ShadowTy);
385 Type *RetType = T->getReturnType();
386 if (!RetType->isVoidTy())
387 ArgTypes.push_back(ShadowPtrTy);
388 return FunctionType::get(T->getReturnType(), ArgTypes, false);
389 }
390
doInitialization(Module & M)391 bool DataFlowSanitizer::doInitialization(Module &M) {
392 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
393 if (!DLP)
394 report_fatal_error("data layout missing");
395 DL = &DLP->getDataLayout();
396
397 Mod = &M;
398 Ctx = &M.getContext();
399 ShadowTy = IntegerType::get(*Ctx, ShadowWidth);
400 ShadowPtrTy = PointerType::getUnqual(ShadowTy);
401 IntptrTy = DL->getIntPtrType(*Ctx);
402 ZeroShadow = ConstantInt::getSigned(ShadowTy, 0);
403 ShadowPtrMask = ConstantInt::getSigned(IntptrTy, ~0x700000000000LL);
404 ShadowPtrMul = ConstantInt::getSigned(IntptrTy, ShadowWidth / 8);
405
406 Type *DFSanUnionArgs[2] = { ShadowTy, ShadowTy };
407 DFSanUnionFnTy =
408 FunctionType::get(ShadowTy, DFSanUnionArgs, /*isVarArg=*/ false);
409 Type *DFSanUnionLoadArgs[2] = { ShadowPtrTy, IntptrTy };
410 DFSanUnionLoadFnTy =
411 FunctionType::get(ShadowTy, DFSanUnionLoadArgs, /*isVarArg=*/ false);
412 DFSanUnimplementedFnTy = FunctionType::get(
413 Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false);
414 Type *DFSanSetLabelArgs[3] = { ShadowTy, Type::getInt8PtrTy(*Ctx), IntptrTy };
415 DFSanSetLabelFnTy = FunctionType::get(Type::getVoidTy(*Ctx),
416 DFSanSetLabelArgs, /*isVarArg=*/false);
417 DFSanNonzeroLabelFnTy = FunctionType::get(
418 Type::getVoidTy(*Ctx), ArrayRef<Type *>(), /*isVarArg=*/false);
419
420 if (GetArgTLSPtr) {
421 Type *ArgTLSTy = ArrayType::get(ShadowTy, 64);
422 ArgTLS = nullptr;
423 GetArgTLS = ConstantExpr::getIntToPtr(
424 ConstantInt::get(IntptrTy, uintptr_t(GetArgTLSPtr)),
425 PointerType::getUnqual(
426 FunctionType::get(PointerType::getUnqual(ArgTLSTy),
427 (Type *)nullptr)));
428 }
429 if (GetRetvalTLSPtr) {
430 RetvalTLS = nullptr;
431 GetRetvalTLS = ConstantExpr::getIntToPtr(
432 ConstantInt::get(IntptrTy, uintptr_t(GetRetvalTLSPtr)),
433 PointerType::getUnqual(
434 FunctionType::get(PointerType::getUnqual(ShadowTy),
435 (Type *)nullptr)));
436 }
437
438 ColdCallWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000);
439 return true;
440 }
441
isInstrumented(const Function * F)442 bool DataFlowSanitizer::isInstrumented(const Function *F) {
443 return !ABIList.isIn(*F, "uninstrumented");
444 }
445
isInstrumented(const GlobalAlias * GA)446 bool DataFlowSanitizer::isInstrumented(const GlobalAlias *GA) {
447 return !ABIList.isIn(*GA, "uninstrumented");
448 }
449
getInstrumentedABI()450 DataFlowSanitizer::InstrumentedABI DataFlowSanitizer::getInstrumentedABI() {
451 return ClArgsABI ? IA_Args : IA_TLS;
452 }
453
getWrapperKind(Function * F)454 DataFlowSanitizer::WrapperKind DataFlowSanitizer::getWrapperKind(Function *F) {
455 if (ABIList.isIn(*F, "functional"))
456 return WK_Functional;
457 if (ABIList.isIn(*F, "discard"))
458 return WK_Discard;
459 if (ABIList.isIn(*F, "custom"))
460 return WK_Custom;
461
462 return WK_Warning;
463 }
464
addGlobalNamePrefix(GlobalValue * GV)465 void DataFlowSanitizer::addGlobalNamePrefix(GlobalValue *GV) {
466 std::string GVName = GV->getName(), Prefix = "dfs$";
467 GV->setName(Prefix + GVName);
468
469 // Try to change the name of the function in module inline asm. We only do
470 // this for specific asm directives, currently only ".symver", to try to avoid
471 // corrupting asm which happens to contain the symbol name as a substring.
472 // Note that the substitution for .symver assumes that the versioned symbol
473 // also has an instrumented name.
474 std::string Asm = GV->getParent()->getModuleInlineAsm();
475 std::string SearchStr = ".symver " + GVName + ",";
476 size_t Pos = Asm.find(SearchStr);
477 if (Pos != std::string::npos) {
478 Asm.replace(Pos, SearchStr.size(),
479 ".symver " + Prefix + GVName + "," + Prefix);
480 GV->getParent()->setModuleInlineAsm(Asm);
481 }
482 }
483
484 Function *
buildWrapperFunction(Function * F,StringRef NewFName,GlobalValue::LinkageTypes NewFLink,FunctionType * NewFT)485 DataFlowSanitizer::buildWrapperFunction(Function *F, StringRef NewFName,
486 GlobalValue::LinkageTypes NewFLink,
487 FunctionType *NewFT) {
488 FunctionType *FT = F->getFunctionType();
489 Function *NewF = Function::Create(NewFT, NewFLink, NewFName,
490 F->getParent());
491 NewF->copyAttributesFrom(F);
492 NewF->removeAttributes(
493 AttributeSet::ReturnIndex,
494 AttributeFuncs::typeIncompatible(NewFT->getReturnType(),
495 AttributeSet::ReturnIndex));
496
497 BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", NewF);
498 std::vector<Value *> Args;
499 unsigned n = FT->getNumParams();
500 for (Function::arg_iterator ai = NewF->arg_begin(); n != 0; ++ai, --n)
501 Args.push_back(&*ai);
502 CallInst *CI = CallInst::Create(F, Args, "", BB);
503 if (FT->getReturnType()->isVoidTy())
504 ReturnInst::Create(*Ctx, BB);
505 else
506 ReturnInst::Create(*Ctx, CI, BB);
507
508 return NewF;
509 }
510
getOrBuildTrampolineFunction(FunctionType * FT,StringRef FName)511 Constant *DataFlowSanitizer::getOrBuildTrampolineFunction(FunctionType *FT,
512 StringRef FName) {
513 FunctionType *FTT = getTrampolineFunctionType(FT);
514 Constant *C = Mod->getOrInsertFunction(FName, FTT);
515 Function *F = dyn_cast<Function>(C);
516 if (F && F->isDeclaration()) {
517 F->setLinkage(GlobalValue::LinkOnceODRLinkage);
518 BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", F);
519 std::vector<Value *> Args;
520 Function::arg_iterator AI = F->arg_begin(); ++AI;
521 for (unsigned N = FT->getNumParams(); N != 0; ++AI, --N)
522 Args.push_back(&*AI);
523 CallInst *CI =
524 CallInst::Create(&F->getArgumentList().front(), Args, "", BB);
525 ReturnInst *RI;
526 if (FT->getReturnType()->isVoidTy())
527 RI = ReturnInst::Create(*Ctx, BB);
528 else
529 RI = ReturnInst::Create(*Ctx, CI, BB);
530
531 DFSanFunction DFSF(*this, F, /*IsNativeABI=*/true);
532 Function::arg_iterator ValAI = F->arg_begin(), ShadowAI = AI; ++ValAI;
533 for (unsigned N = FT->getNumParams(); N != 0; ++ValAI, ++ShadowAI, --N)
534 DFSF.ValShadowMap[ValAI] = ShadowAI;
535 DFSanVisitor(DFSF).visitCallInst(*CI);
536 if (!FT->getReturnType()->isVoidTy())
537 new StoreInst(DFSF.getShadow(RI->getReturnValue()),
538 &F->getArgumentList().back(), RI);
539 }
540
541 return C;
542 }
543
runOnModule(Module & M)544 bool DataFlowSanitizer::runOnModule(Module &M) {
545 if (!DL)
546 return false;
547
548 if (ABIList.isIn(M, "skip"))
549 return false;
550
551 if (!GetArgTLSPtr) {
552 Type *ArgTLSTy = ArrayType::get(ShadowTy, 64);
553 ArgTLS = Mod->getOrInsertGlobal("__dfsan_arg_tls", ArgTLSTy);
554 if (GlobalVariable *G = dyn_cast<GlobalVariable>(ArgTLS))
555 G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel);
556 }
557 if (!GetRetvalTLSPtr) {
558 RetvalTLS = Mod->getOrInsertGlobal("__dfsan_retval_tls", ShadowTy);
559 if (GlobalVariable *G = dyn_cast<GlobalVariable>(RetvalTLS))
560 G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel);
561 }
562
563 DFSanUnionFn = Mod->getOrInsertFunction("__dfsan_union", DFSanUnionFnTy);
564 if (Function *F = dyn_cast<Function>(DFSanUnionFn)) {
565 F->addAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone);
566 F->addAttribute(AttributeSet::ReturnIndex, Attribute::ZExt);
567 F->addAttribute(1, Attribute::ZExt);
568 F->addAttribute(2, Attribute::ZExt);
569 }
570 DFSanUnionLoadFn =
571 Mod->getOrInsertFunction("__dfsan_union_load", DFSanUnionLoadFnTy);
572 if (Function *F = dyn_cast<Function>(DFSanUnionLoadFn)) {
573 F->addAttribute(AttributeSet::FunctionIndex, Attribute::ReadOnly);
574 F->addAttribute(AttributeSet::ReturnIndex, Attribute::ZExt);
575 }
576 DFSanUnimplementedFn =
577 Mod->getOrInsertFunction("__dfsan_unimplemented", DFSanUnimplementedFnTy);
578 DFSanSetLabelFn =
579 Mod->getOrInsertFunction("__dfsan_set_label", DFSanSetLabelFnTy);
580 if (Function *F = dyn_cast<Function>(DFSanSetLabelFn)) {
581 F->addAttribute(1, Attribute::ZExt);
582 }
583 DFSanNonzeroLabelFn =
584 Mod->getOrInsertFunction("__dfsan_nonzero_label", DFSanNonzeroLabelFnTy);
585
586 std::vector<Function *> FnsToInstrument;
587 llvm::SmallPtrSet<Function *, 2> FnsWithNativeABI;
588 for (Module::iterator i = M.begin(), e = M.end(); i != e; ++i) {
589 if (!i->isIntrinsic() &&
590 i != DFSanUnionFn &&
591 i != DFSanUnionLoadFn &&
592 i != DFSanUnimplementedFn &&
593 i != DFSanSetLabelFn &&
594 i != DFSanNonzeroLabelFn)
595 FnsToInstrument.push_back(&*i);
596 }
597
598 // Give function aliases prefixes when necessary, and build wrappers where the
599 // instrumentedness is inconsistent.
600 for (Module::alias_iterator i = M.alias_begin(), e = M.alias_end(); i != e;) {
601 GlobalAlias *GA = &*i;
602 ++i;
603 // Don't stop on weak. We assume people aren't playing games with the
604 // instrumentedness of overridden weak aliases.
605 if (auto F = dyn_cast<Function>(GA->getBaseObject())) {
606 bool GAInst = isInstrumented(GA), FInst = isInstrumented(F);
607 if (GAInst && FInst) {
608 addGlobalNamePrefix(GA);
609 } else if (GAInst != FInst) {
610 // Non-instrumented alias of an instrumented function, or vice versa.
611 // Replace the alias with a native-ABI wrapper of the aliasee. The pass
612 // below will take care of instrumenting it.
613 Function *NewF =
614 buildWrapperFunction(F, "", GA->getLinkage(), F->getFunctionType());
615 GA->replaceAllUsesWith(ConstantExpr::getBitCast(NewF, GA->getType()));
616 NewF->takeName(GA);
617 GA->eraseFromParent();
618 FnsToInstrument.push_back(NewF);
619 }
620 }
621 }
622
623 AttrBuilder B;
624 B.addAttribute(Attribute::ReadOnly).addAttribute(Attribute::ReadNone);
625 ReadOnlyNoneAttrs = AttributeSet::get(*Ctx, AttributeSet::FunctionIndex, B);
626
627 // First, change the ABI of every function in the module. ABI-listed
628 // functions keep their original ABI and get a wrapper function.
629 for (std::vector<Function *>::iterator i = FnsToInstrument.begin(),
630 e = FnsToInstrument.end();
631 i != e; ++i) {
632 Function &F = **i;
633 FunctionType *FT = F.getFunctionType();
634
635 bool IsZeroArgsVoidRet = (FT->getNumParams() == 0 && !FT->isVarArg() &&
636 FT->getReturnType()->isVoidTy());
637
638 if (isInstrumented(&F)) {
639 // Instrumented functions get a 'dfs$' prefix. This allows us to more
640 // easily identify cases of mismatching ABIs.
641 if (getInstrumentedABI() == IA_Args && !IsZeroArgsVoidRet) {
642 FunctionType *NewFT = getArgsFunctionType(FT);
643 Function *NewF = Function::Create(NewFT, F.getLinkage(), "", &M);
644 NewF->copyAttributesFrom(&F);
645 NewF->removeAttributes(
646 AttributeSet::ReturnIndex,
647 AttributeFuncs::typeIncompatible(NewFT->getReturnType(),
648 AttributeSet::ReturnIndex));
649 for (Function::arg_iterator FArg = F.arg_begin(),
650 NewFArg = NewF->arg_begin(),
651 FArgEnd = F.arg_end();
652 FArg != FArgEnd; ++FArg, ++NewFArg) {
653 FArg->replaceAllUsesWith(NewFArg);
654 }
655 NewF->getBasicBlockList().splice(NewF->begin(), F.getBasicBlockList());
656
657 for (Function::user_iterator UI = F.user_begin(), UE = F.user_end();
658 UI != UE;) {
659 BlockAddress *BA = dyn_cast<BlockAddress>(*UI);
660 ++UI;
661 if (BA) {
662 BA->replaceAllUsesWith(
663 BlockAddress::get(NewF, BA->getBasicBlock()));
664 delete BA;
665 }
666 }
667 F.replaceAllUsesWith(
668 ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT)));
669 NewF->takeName(&F);
670 F.eraseFromParent();
671 *i = NewF;
672 addGlobalNamePrefix(NewF);
673 } else {
674 addGlobalNamePrefix(&F);
675 }
676 // Hopefully, nobody will try to indirectly call a vararg
677 // function... yet.
678 } else if (FT->isVarArg()) {
679 UnwrappedFnMap[&F] = &F;
680 *i = nullptr;
681 } else if (!IsZeroArgsVoidRet || getWrapperKind(&F) == WK_Custom) {
682 // Build a wrapper function for F. The wrapper simply calls F, and is
683 // added to FnsToInstrument so that any instrumentation according to its
684 // WrapperKind is done in the second pass below.
685 FunctionType *NewFT = getInstrumentedABI() == IA_Args
686 ? getArgsFunctionType(FT)
687 : FT;
688 Function *NewF = buildWrapperFunction(
689 &F, std::string("dfsw$") + std::string(F.getName()),
690 GlobalValue::LinkOnceODRLinkage, NewFT);
691 if (getInstrumentedABI() == IA_TLS)
692 NewF->removeAttributes(AttributeSet::FunctionIndex, ReadOnlyNoneAttrs);
693
694 Value *WrappedFnCst =
695 ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT));
696 F.replaceAllUsesWith(WrappedFnCst);
697 UnwrappedFnMap[WrappedFnCst] = &F;
698 *i = NewF;
699
700 if (!F.isDeclaration()) {
701 // This function is probably defining an interposition of an
702 // uninstrumented function and hence needs to keep the original ABI.
703 // But any functions it may call need to use the instrumented ABI, so
704 // we instrument it in a mode which preserves the original ABI.
705 FnsWithNativeABI.insert(&F);
706
707 // This code needs to rebuild the iterators, as they may be invalidated
708 // by the push_back, taking care that the new range does not include
709 // any functions added by this code.
710 size_t N = i - FnsToInstrument.begin(),
711 Count = e - FnsToInstrument.begin();
712 FnsToInstrument.push_back(&F);
713 i = FnsToInstrument.begin() + N;
714 e = FnsToInstrument.begin() + Count;
715 }
716 }
717 }
718
719 for (std::vector<Function *>::iterator i = FnsToInstrument.begin(),
720 e = FnsToInstrument.end();
721 i != e; ++i) {
722 if (!*i || (*i)->isDeclaration())
723 continue;
724
725 removeUnreachableBlocks(**i);
726
727 DFSanFunction DFSF(*this, *i, FnsWithNativeABI.count(*i));
728
729 // DFSanVisitor may create new basic blocks, which confuses df_iterator.
730 // Build a copy of the list before iterating over it.
731 llvm::SmallVector<BasicBlock *, 4> BBList(
732 depth_first(&(*i)->getEntryBlock()));
733
734 for (llvm::SmallVector<BasicBlock *, 4>::iterator i = BBList.begin(),
735 e = BBList.end();
736 i != e; ++i) {
737 Instruction *Inst = &(*i)->front();
738 while (1) {
739 // DFSanVisitor may split the current basic block, changing the current
740 // instruction's next pointer and moving the next instruction to the
741 // tail block from which we should continue.
742 Instruction *Next = Inst->getNextNode();
743 // DFSanVisitor may delete Inst, so keep track of whether it was a
744 // terminator.
745 bool IsTerminator = isa<TerminatorInst>(Inst);
746 if (!DFSF.SkipInsts.count(Inst))
747 DFSanVisitor(DFSF).visit(Inst);
748 if (IsTerminator)
749 break;
750 Inst = Next;
751 }
752 }
753
754 // We will not necessarily be able to compute the shadow for every phi node
755 // until we have visited every block. Therefore, the code that handles phi
756 // nodes adds them to the PHIFixups list so that they can be properly
757 // handled here.
758 for (std::vector<std::pair<PHINode *, PHINode *> >::iterator
759 i = DFSF.PHIFixups.begin(),
760 e = DFSF.PHIFixups.end();
761 i != e; ++i) {
762 for (unsigned val = 0, n = i->first->getNumIncomingValues(); val != n;
763 ++val) {
764 i->second->setIncomingValue(
765 val, DFSF.getShadow(i->first->getIncomingValue(val)));
766 }
767 }
768
769 // -dfsan-debug-nonzero-labels will split the CFG in all kinds of crazy
770 // places (i.e. instructions in basic blocks we haven't even begun visiting
771 // yet). To make our life easier, do this work in a pass after the main
772 // instrumentation.
773 if (ClDebugNonzeroLabels) {
774 for (DenseSet<Value *>::iterator i = DFSF.NonZeroChecks.begin(),
775 e = DFSF.NonZeroChecks.end();
776 i != e; ++i) {
777 Instruction *Pos;
778 if (Instruction *I = dyn_cast<Instruction>(*i))
779 Pos = I->getNextNode();
780 else
781 Pos = DFSF.F->getEntryBlock().begin();
782 while (isa<PHINode>(Pos) || isa<AllocaInst>(Pos))
783 Pos = Pos->getNextNode();
784 IRBuilder<> IRB(Pos);
785 Value *Ne = IRB.CreateICmpNE(*i, DFSF.DFS.ZeroShadow);
786 BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen(
787 Ne, Pos, /*Unreachable=*/false, ColdCallWeights));
788 IRBuilder<> ThenIRB(BI);
789 ThenIRB.CreateCall(DFSF.DFS.DFSanNonzeroLabelFn);
790 }
791 }
792 }
793
794 return false;
795 }
796
getArgTLSPtr()797 Value *DFSanFunction::getArgTLSPtr() {
798 if (ArgTLSPtr)
799 return ArgTLSPtr;
800 if (DFS.ArgTLS)
801 return ArgTLSPtr = DFS.ArgTLS;
802
803 IRBuilder<> IRB(F->getEntryBlock().begin());
804 return ArgTLSPtr = IRB.CreateCall(DFS.GetArgTLS);
805 }
806
getRetvalTLS()807 Value *DFSanFunction::getRetvalTLS() {
808 if (RetvalTLSPtr)
809 return RetvalTLSPtr;
810 if (DFS.RetvalTLS)
811 return RetvalTLSPtr = DFS.RetvalTLS;
812
813 IRBuilder<> IRB(F->getEntryBlock().begin());
814 return RetvalTLSPtr = IRB.CreateCall(DFS.GetRetvalTLS);
815 }
816
getArgTLS(unsigned Idx,Instruction * Pos)817 Value *DFSanFunction::getArgTLS(unsigned Idx, Instruction *Pos) {
818 IRBuilder<> IRB(Pos);
819 return IRB.CreateConstGEP2_64(getArgTLSPtr(), 0, Idx);
820 }
821
getShadow(Value * V)822 Value *DFSanFunction::getShadow(Value *V) {
823 if (!isa<Argument>(V) && !isa<Instruction>(V))
824 return DFS.ZeroShadow;
825 Value *&Shadow = ValShadowMap[V];
826 if (!Shadow) {
827 if (Argument *A = dyn_cast<Argument>(V)) {
828 if (IsNativeABI)
829 return DFS.ZeroShadow;
830 switch (IA) {
831 case DataFlowSanitizer::IA_TLS: {
832 Value *ArgTLSPtr = getArgTLSPtr();
833 Instruction *ArgTLSPos =
834 DFS.ArgTLS ? &*F->getEntryBlock().begin()
835 : cast<Instruction>(ArgTLSPtr)->getNextNode();
836 IRBuilder<> IRB(ArgTLSPos);
837 Shadow = IRB.CreateLoad(getArgTLS(A->getArgNo(), ArgTLSPos));
838 break;
839 }
840 case DataFlowSanitizer::IA_Args: {
841 unsigned ArgIdx = A->getArgNo() + F->getArgumentList().size() / 2;
842 Function::arg_iterator i = F->arg_begin();
843 while (ArgIdx--)
844 ++i;
845 Shadow = i;
846 assert(Shadow->getType() == DFS.ShadowTy);
847 break;
848 }
849 }
850 NonZeroChecks.insert(Shadow);
851 } else {
852 Shadow = DFS.ZeroShadow;
853 }
854 }
855 return Shadow;
856 }
857
setShadow(Instruction * I,Value * Shadow)858 void DFSanFunction::setShadow(Instruction *I, Value *Shadow) {
859 assert(!ValShadowMap.count(I));
860 assert(Shadow->getType() == DFS.ShadowTy);
861 ValShadowMap[I] = Shadow;
862 }
863
getShadowAddress(Value * Addr,Instruction * Pos)864 Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos) {
865 assert(Addr != RetvalTLS && "Reinstrumenting?");
866 IRBuilder<> IRB(Pos);
867 return IRB.CreateIntToPtr(
868 IRB.CreateMul(
869 IRB.CreateAnd(IRB.CreatePtrToInt(Addr, IntptrTy), ShadowPtrMask),
870 ShadowPtrMul),
871 ShadowPtrTy);
872 }
873
874 // Generates IR to compute the union of the two given shadows, inserting it
875 // before Pos. Returns the computed union Value.
combineShadows(Value * V1,Value * V2,Instruction * Pos)876 Value *DataFlowSanitizer::combineShadows(Value *V1, Value *V2,
877 Instruction *Pos) {
878 if (V1 == ZeroShadow)
879 return V2;
880 if (V2 == ZeroShadow)
881 return V1;
882 if (V1 == V2)
883 return V1;
884 IRBuilder<> IRB(Pos);
885 BasicBlock *Head = Pos->getParent();
886 Value *Ne = IRB.CreateICmpNE(V1, V2);
887 BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen(
888 Ne, Pos, /*Unreachable=*/false, ColdCallWeights));
889 IRBuilder<> ThenIRB(BI);
890 CallInst *Call = ThenIRB.CreateCall2(DFSanUnionFn, V1, V2);
891 Call->addAttribute(AttributeSet::ReturnIndex, Attribute::ZExt);
892 Call->addAttribute(1, Attribute::ZExt);
893 Call->addAttribute(2, Attribute::ZExt);
894
895 BasicBlock *Tail = BI->getSuccessor(0);
896 PHINode *Phi = PHINode::Create(ShadowTy, 2, "", Tail->begin());
897 Phi->addIncoming(Call, Call->getParent());
898 Phi->addIncoming(V1, Head);
899 return Phi;
900 }
901
902 // A convenience function which folds the shadows of each of the operands
903 // of the provided instruction Inst, inserting the IR before Inst. Returns
904 // the computed union Value.
combineOperandShadows(Instruction * Inst)905 Value *DFSanFunction::combineOperandShadows(Instruction *Inst) {
906 if (Inst->getNumOperands() == 0)
907 return DFS.ZeroShadow;
908
909 Value *Shadow = getShadow(Inst->getOperand(0));
910 for (unsigned i = 1, n = Inst->getNumOperands(); i != n; ++i) {
911 Shadow = DFS.combineShadows(Shadow, getShadow(Inst->getOperand(i)), Inst);
912 }
913 return Shadow;
914 }
915
visitOperandShadowInst(Instruction & I)916 void DFSanVisitor::visitOperandShadowInst(Instruction &I) {
917 Value *CombinedShadow = DFSF.combineOperandShadows(&I);
918 DFSF.setShadow(&I, CombinedShadow);
919 }
920
921 // Generates IR to load shadow corresponding to bytes [Addr, Addr+Size), where
922 // Addr has alignment Align, and take the union of each of those shadows.
loadShadow(Value * Addr,uint64_t Size,uint64_t Align,Instruction * Pos)923 Value *DFSanFunction::loadShadow(Value *Addr, uint64_t Size, uint64_t Align,
924 Instruction *Pos) {
925 if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) {
926 llvm::DenseMap<AllocaInst *, AllocaInst *>::iterator i =
927 AllocaShadowMap.find(AI);
928 if (i != AllocaShadowMap.end()) {
929 IRBuilder<> IRB(Pos);
930 return IRB.CreateLoad(i->second);
931 }
932 }
933
934 uint64_t ShadowAlign = Align * DFS.ShadowWidth / 8;
935 SmallVector<Value *, 2> Objs;
936 GetUnderlyingObjects(Addr, Objs, DFS.DL);
937 bool AllConstants = true;
938 for (SmallVector<Value *, 2>::iterator i = Objs.begin(), e = Objs.end();
939 i != e; ++i) {
940 if (isa<Function>(*i) || isa<BlockAddress>(*i))
941 continue;
942 if (isa<GlobalVariable>(*i) && cast<GlobalVariable>(*i)->isConstant())
943 continue;
944
945 AllConstants = false;
946 break;
947 }
948 if (AllConstants)
949 return DFS.ZeroShadow;
950
951 Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos);
952 switch (Size) {
953 case 0:
954 return DFS.ZeroShadow;
955 case 1: {
956 LoadInst *LI = new LoadInst(ShadowAddr, "", Pos);
957 LI->setAlignment(ShadowAlign);
958 return LI;
959 }
960 case 2: {
961 IRBuilder<> IRB(Pos);
962 Value *ShadowAddr1 =
963 IRB.CreateGEP(ShadowAddr, ConstantInt::get(DFS.IntptrTy, 1));
964 return DFS.combineShadows(IRB.CreateAlignedLoad(ShadowAddr, ShadowAlign),
965 IRB.CreateAlignedLoad(ShadowAddr1, ShadowAlign),
966 Pos);
967 }
968 }
969 if (Size % (64 / DFS.ShadowWidth) == 0) {
970 // Fast path for the common case where each byte has identical shadow: load
971 // shadow 64 bits at a time, fall out to a __dfsan_union_load call if any
972 // shadow is non-equal.
973 BasicBlock *FallbackBB = BasicBlock::Create(*DFS.Ctx, "", F);
974 IRBuilder<> FallbackIRB(FallbackBB);
975 CallInst *FallbackCall = FallbackIRB.CreateCall2(
976 DFS.DFSanUnionLoadFn, ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size));
977 FallbackCall->addAttribute(AttributeSet::ReturnIndex, Attribute::ZExt);
978
979 // Compare each of the shadows stored in the loaded 64 bits to each other,
980 // by computing (WideShadow rotl ShadowWidth) == WideShadow.
981 IRBuilder<> IRB(Pos);
982 Value *WideAddr =
983 IRB.CreateBitCast(ShadowAddr, Type::getInt64PtrTy(*DFS.Ctx));
984 Value *WideShadow = IRB.CreateAlignedLoad(WideAddr, ShadowAlign);
985 Value *TruncShadow = IRB.CreateTrunc(WideShadow, DFS.ShadowTy);
986 Value *ShlShadow = IRB.CreateShl(WideShadow, DFS.ShadowWidth);
987 Value *ShrShadow = IRB.CreateLShr(WideShadow, 64 - DFS.ShadowWidth);
988 Value *RotShadow = IRB.CreateOr(ShlShadow, ShrShadow);
989 Value *ShadowsEq = IRB.CreateICmpEQ(WideShadow, RotShadow);
990
991 BasicBlock *Head = Pos->getParent();
992 BasicBlock *Tail = Head->splitBasicBlock(Pos);
993 // In the following code LastBr will refer to the previous basic block's
994 // conditional branch instruction, whose true successor is fixed up to point
995 // to the next block during the loop below or to the tail after the final
996 // iteration.
997 BranchInst *LastBr = BranchInst::Create(FallbackBB, FallbackBB, ShadowsEq);
998 ReplaceInstWithInst(Head->getTerminator(), LastBr);
999
1000 for (uint64_t Ofs = 64 / DFS.ShadowWidth; Ofs != Size;
1001 Ofs += 64 / DFS.ShadowWidth) {
1002 BasicBlock *NextBB = BasicBlock::Create(*DFS.Ctx, "", F);
1003 IRBuilder<> NextIRB(NextBB);
1004 WideAddr = NextIRB.CreateGEP(WideAddr, ConstantInt::get(DFS.IntptrTy, 1));
1005 Value *NextWideShadow = NextIRB.CreateAlignedLoad(WideAddr, ShadowAlign);
1006 ShadowsEq = NextIRB.CreateICmpEQ(WideShadow, NextWideShadow);
1007 LastBr->setSuccessor(0, NextBB);
1008 LastBr = NextIRB.CreateCondBr(ShadowsEq, FallbackBB, FallbackBB);
1009 }
1010
1011 LastBr->setSuccessor(0, Tail);
1012 FallbackIRB.CreateBr(Tail);
1013 PHINode *Shadow = PHINode::Create(DFS.ShadowTy, 2, "", &Tail->front());
1014 Shadow->addIncoming(FallbackCall, FallbackBB);
1015 Shadow->addIncoming(TruncShadow, LastBr->getParent());
1016 return Shadow;
1017 }
1018
1019 IRBuilder<> IRB(Pos);
1020 CallInst *FallbackCall = IRB.CreateCall2(
1021 DFS.DFSanUnionLoadFn, ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size));
1022 FallbackCall->addAttribute(AttributeSet::ReturnIndex, Attribute::ZExt);
1023 return FallbackCall;
1024 }
1025
visitLoadInst(LoadInst & LI)1026 void DFSanVisitor::visitLoadInst(LoadInst &LI) {
1027 uint64_t Size = DFSF.DFS.DL->getTypeStoreSize(LI.getType());
1028 uint64_t Align;
1029 if (ClPreserveAlignment) {
1030 Align = LI.getAlignment();
1031 if (Align == 0)
1032 Align = DFSF.DFS.DL->getABITypeAlignment(LI.getType());
1033 } else {
1034 Align = 1;
1035 }
1036 IRBuilder<> IRB(&LI);
1037 Value *Shadow = DFSF.loadShadow(LI.getPointerOperand(), Size, Align, &LI);
1038 if (ClCombinePointerLabelsOnLoad) {
1039 Value *PtrShadow = DFSF.getShadow(LI.getPointerOperand());
1040 Shadow = DFSF.DFS.combineShadows(Shadow, PtrShadow, &LI);
1041 }
1042 if (Shadow != DFSF.DFS.ZeroShadow)
1043 DFSF.NonZeroChecks.insert(Shadow);
1044
1045 DFSF.setShadow(&LI, Shadow);
1046 }
1047
storeShadow(Value * Addr,uint64_t Size,uint64_t Align,Value * Shadow,Instruction * Pos)1048 void DFSanFunction::storeShadow(Value *Addr, uint64_t Size, uint64_t Align,
1049 Value *Shadow, Instruction *Pos) {
1050 if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) {
1051 llvm::DenseMap<AllocaInst *, AllocaInst *>::iterator i =
1052 AllocaShadowMap.find(AI);
1053 if (i != AllocaShadowMap.end()) {
1054 IRBuilder<> IRB(Pos);
1055 IRB.CreateStore(Shadow, i->second);
1056 return;
1057 }
1058 }
1059
1060 uint64_t ShadowAlign = Align * DFS.ShadowWidth / 8;
1061 IRBuilder<> IRB(Pos);
1062 Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos);
1063 if (Shadow == DFS.ZeroShadow) {
1064 IntegerType *ShadowTy = IntegerType::get(*DFS.Ctx, Size * DFS.ShadowWidth);
1065 Value *ExtZeroShadow = ConstantInt::get(ShadowTy, 0);
1066 Value *ExtShadowAddr =
1067 IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowTy));
1068 IRB.CreateAlignedStore(ExtZeroShadow, ExtShadowAddr, ShadowAlign);
1069 return;
1070 }
1071
1072 const unsigned ShadowVecSize = 128 / DFS.ShadowWidth;
1073 uint64_t Offset = 0;
1074 if (Size >= ShadowVecSize) {
1075 VectorType *ShadowVecTy = VectorType::get(DFS.ShadowTy, ShadowVecSize);
1076 Value *ShadowVec = UndefValue::get(ShadowVecTy);
1077 for (unsigned i = 0; i != ShadowVecSize; ++i) {
1078 ShadowVec = IRB.CreateInsertElement(
1079 ShadowVec, Shadow, ConstantInt::get(Type::getInt32Ty(*DFS.Ctx), i));
1080 }
1081 Value *ShadowVecAddr =
1082 IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowVecTy));
1083 do {
1084 Value *CurShadowVecAddr = IRB.CreateConstGEP1_32(ShadowVecAddr, Offset);
1085 IRB.CreateAlignedStore(ShadowVec, CurShadowVecAddr, ShadowAlign);
1086 Size -= ShadowVecSize;
1087 ++Offset;
1088 } while (Size >= ShadowVecSize);
1089 Offset *= ShadowVecSize;
1090 }
1091 while (Size > 0) {
1092 Value *CurShadowAddr = IRB.CreateConstGEP1_32(ShadowAddr, Offset);
1093 IRB.CreateAlignedStore(Shadow, CurShadowAddr, ShadowAlign);
1094 --Size;
1095 ++Offset;
1096 }
1097 }
1098
visitStoreInst(StoreInst & SI)1099 void DFSanVisitor::visitStoreInst(StoreInst &SI) {
1100 uint64_t Size =
1101 DFSF.DFS.DL->getTypeStoreSize(SI.getValueOperand()->getType());
1102 uint64_t Align;
1103 if (ClPreserveAlignment) {
1104 Align = SI.getAlignment();
1105 if (Align == 0)
1106 Align = DFSF.DFS.DL->getABITypeAlignment(SI.getValueOperand()->getType());
1107 } else {
1108 Align = 1;
1109 }
1110
1111 Value* Shadow = DFSF.getShadow(SI.getValueOperand());
1112 if (ClCombinePointerLabelsOnStore) {
1113 Value *PtrShadow = DFSF.getShadow(SI.getPointerOperand());
1114 Shadow = DFSF.DFS.combineShadows(Shadow, PtrShadow, &SI);
1115 }
1116 DFSF.storeShadow(SI.getPointerOperand(), Size, Align, Shadow, &SI);
1117 }
1118
visitBinaryOperator(BinaryOperator & BO)1119 void DFSanVisitor::visitBinaryOperator(BinaryOperator &BO) {
1120 visitOperandShadowInst(BO);
1121 }
1122
visitCastInst(CastInst & CI)1123 void DFSanVisitor::visitCastInst(CastInst &CI) { visitOperandShadowInst(CI); }
1124
visitCmpInst(CmpInst & CI)1125 void DFSanVisitor::visitCmpInst(CmpInst &CI) { visitOperandShadowInst(CI); }
1126
visitGetElementPtrInst(GetElementPtrInst & GEPI)1127 void DFSanVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) {
1128 visitOperandShadowInst(GEPI);
1129 }
1130
visitExtractElementInst(ExtractElementInst & I)1131 void DFSanVisitor::visitExtractElementInst(ExtractElementInst &I) {
1132 visitOperandShadowInst(I);
1133 }
1134
visitInsertElementInst(InsertElementInst & I)1135 void DFSanVisitor::visitInsertElementInst(InsertElementInst &I) {
1136 visitOperandShadowInst(I);
1137 }
1138
visitShuffleVectorInst(ShuffleVectorInst & I)1139 void DFSanVisitor::visitShuffleVectorInst(ShuffleVectorInst &I) {
1140 visitOperandShadowInst(I);
1141 }
1142
visitExtractValueInst(ExtractValueInst & I)1143 void DFSanVisitor::visitExtractValueInst(ExtractValueInst &I) {
1144 visitOperandShadowInst(I);
1145 }
1146
visitInsertValueInst(InsertValueInst & I)1147 void DFSanVisitor::visitInsertValueInst(InsertValueInst &I) {
1148 visitOperandShadowInst(I);
1149 }
1150
visitAllocaInst(AllocaInst & I)1151 void DFSanVisitor::visitAllocaInst(AllocaInst &I) {
1152 bool AllLoadsStores = true;
1153 for (User *U : I.users()) {
1154 if (isa<LoadInst>(U))
1155 continue;
1156
1157 if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1158 if (SI->getPointerOperand() == &I)
1159 continue;
1160 }
1161
1162 AllLoadsStores = false;
1163 break;
1164 }
1165 if (AllLoadsStores) {
1166 IRBuilder<> IRB(&I);
1167 DFSF.AllocaShadowMap[&I] = IRB.CreateAlloca(DFSF.DFS.ShadowTy);
1168 }
1169 DFSF.setShadow(&I, DFSF.DFS.ZeroShadow);
1170 }
1171
visitSelectInst(SelectInst & I)1172 void DFSanVisitor::visitSelectInst(SelectInst &I) {
1173 Value *CondShadow = DFSF.getShadow(I.getCondition());
1174 Value *TrueShadow = DFSF.getShadow(I.getTrueValue());
1175 Value *FalseShadow = DFSF.getShadow(I.getFalseValue());
1176
1177 if (isa<VectorType>(I.getCondition()->getType())) {
1178 DFSF.setShadow(
1179 &I, DFSF.DFS.combineShadows(
1180 CondShadow,
1181 DFSF.DFS.combineShadows(TrueShadow, FalseShadow, &I), &I));
1182 } else {
1183 Value *ShadowSel;
1184 if (TrueShadow == FalseShadow) {
1185 ShadowSel = TrueShadow;
1186 } else {
1187 ShadowSel =
1188 SelectInst::Create(I.getCondition(), TrueShadow, FalseShadow, "", &I);
1189 }
1190 DFSF.setShadow(&I, DFSF.DFS.combineShadows(CondShadow, ShadowSel, &I));
1191 }
1192 }
1193
visitMemSetInst(MemSetInst & I)1194 void DFSanVisitor::visitMemSetInst(MemSetInst &I) {
1195 IRBuilder<> IRB(&I);
1196 Value *ValShadow = DFSF.getShadow(I.getValue());
1197 IRB.CreateCall3(
1198 DFSF.DFS.DFSanSetLabelFn, ValShadow,
1199 IRB.CreateBitCast(I.getDest(), Type::getInt8PtrTy(*DFSF.DFS.Ctx)),
1200 IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy));
1201 }
1202
visitMemTransferInst(MemTransferInst & I)1203 void DFSanVisitor::visitMemTransferInst(MemTransferInst &I) {
1204 IRBuilder<> IRB(&I);
1205 Value *DestShadow = DFSF.DFS.getShadowAddress(I.getDest(), &I);
1206 Value *SrcShadow = DFSF.DFS.getShadowAddress(I.getSource(), &I);
1207 Value *LenShadow = IRB.CreateMul(
1208 I.getLength(),
1209 ConstantInt::get(I.getLength()->getType(), DFSF.DFS.ShadowWidth / 8));
1210 Value *AlignShadow;
1211 if (ClPreserveAlignment) {
1212 AlignShadow = IRB.CreateMul(I.getAlignmentCst(),
1213 ConstantInt::get(I.getAlignmentCst()->getType(),
1214 DFSF.DFS.ShadowWidth / 8));
1215 } else {
1216 AlignShadow = ConstantInt::get(I.getAlignmentCst()->getType(),
1217 DFSF.DFS.ShadowWidth / 8);
1218 }
1219 Type *Int8Ptr = Type::getInt8PtrTy(*DFSF.DFS.Ctx);
1220 DestShadow = IRB.CreateBitCast(DestShadow, Int8Ptr);
1221 SrcShadow = IRB.CreateBitCast(SrcShadow, Int8Ptr);
1222 IRB.CreateCall5(I.getCalledValue(), DestShadow, SrcShadow, LenShadow,
1223 AlignShadow, I.getVolatileCst());
1224 }
1225
visitReturnInst(ReturnInst & RI)1226 void DFSanVisitor::visitReturnInst(ReturnInst &RI) {
1227 if (!DFSF.IsNativeABI && RI.getReturnValue()) {
1228 switch (DFSF.IA) {
1229 case DataFlowSanitizer::IA_TLS: {
1230 Value *S = DFSF.getShadow(RI.getReturnValue());
1231 IRBuilder<> IRB(&RI);
1232 IRB.CreateStore(S, DFSF.getRetvalTLS());
1233 break;
1234 }
1235 case DataFlowSanitizer::IA_Args: {
1236 IRBuilder<> IRB(&RI);
1237 Type *RT = DFSF.F->getFunctionType()->getReturnType();
1238 Value *InsVal =
1239 IRB.CreateInsertValue(UndefValue::get(RT), RI.getReturnValue(), 0);
1240 Value *InsShadow =
1241 IRB.CreateInsertValue(InsVal, DFSF.getShadow(RI.getReturnValue()), 1);
1242 RI.setOperand(0, InsShadow);
1243 break;
1244 }
1245 }
1246 }
1247 }
1248
visitCallSite(CallSite CS)1249 void DFSanVisitor::visitCallSite(CallSite CS) {
1250 Function *F = CS.getCalledFunction();
1251 if ((F && F->isIntrinsic()) || isa<InlineAsm>(CS.getCalledValue())) {
1252 visitOperandShadowInst(*CS.getInstruction());
1253 return;
1254 }
1255
1256 IRBuilder<> IRB(CS.getInstruction());
1257
1258 DenseMap<Value *, Function *>::iterator i =
1259 DFSF.DFS.UnwrappedFnMap.find(CS.getCalledValue());
1260 if (i != DFSF.DFS.UnwrappedFnMap.end()) {
1261 Function *F = i->second;
1262 switch (DFSF.DFS.getWrapperKind(F)) {
1263 case DataFlowSanitizer::WK_Warning: {
1264 CS.setCalledFunction(F);
1265 IRB.CreateCall(DFSF.DFS.DFSanUnimplementedFn,
1266 IRB.CreateGlobalStringPtr(F->getName()));
1267 DFSF.setShadow(CS.getInstruction(), DFSF.DFS.ZeroShadow);
1268 return;
1269 }
1270 case DataFlowSanitizer::WK_Discard: {
1271 CS.setCalledFunction(F);
1272 DFSF.setShadow(CS.getInstruction(), DFSF.DFS.ZeroShadow);
1273 return;
1274 }
1275 case DataFlowSanitizer::WK_Functional: {
1276 CS.setCalledFunction(F);
1277 visitOperandShadowInst(*CS.getInstruction());
1278 return;
1279 }
1280 case DataFlowSanitizer::WK_Custom: {
1281 // Don't try to handle invokes of custom functions, it's too complicated.
1282 // Instead, invoke the dfsw$ wrapper, which will in turn call the __dfsw_
1283 // wrapper.
1284 if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) {
1285 FunctionType *FT = F->getFunctionType();
1286 FunctionType *CustomFT = DFSF.DFS.getCustomFunctionType(FT);
1287 std::string CustomFName = "__dfsw_";
1288 CustomFName += F->getName();
1289 Constant *CustomF =
1290 DFSF.DFS.Mod->getOrInsertFunction(CustomFName, CustomFT);
1291 if (Function *CustomFn = dyn_cast<Function>(CustomF)) {
1292 CustomFn->copyAttributesFrom(F);
1293
1294 // Custom functions returning non-void will write to the return label.
1295 if (!FT->getReturnType()->isVoidTy()) {
1296 CustomFn->removeAttributes(AttributeSet::FunctionIndex,
1297 DFSF.DFS.ReadOnlyNoneAttrs);
1298 }
1299 }
1300
1301 std::vector<Value *> Args;
1302
1303 CallSite::arg_iterator i = CS.arg_begin();
1304 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) {
1305 Type *T = (*i)->getType();
1306 FunctionType *ParamFT;
1307 if (isa<PointerType>(T) &&
1308 (ParamFT = dyn_cast<FunctionType>(
1309 cast<PointerType>(T)->getElementType()))) {
1310 std::string TName = "dfst";
1311 TName += utostr(FT->getNumParams() - n);
1312 TName += "$";
1313 TName += F->getName();
1314 Constant *T = DFSF.DFS.getOrBuildTrampolineFunction(ParamFT, TName);
1315 Args.push_back(T);
1316 Args.push_back(
1317 IRB.CreateBitCast(*i, Type::getInt8PtrTy(*DFSF.DFS.Ctx)));
1318 } else {
1319 Args.push_back(*i);
1320 }
1321 }
1322
1323 i = CS.arg_begin();
1324 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n)
1325 Args.push_back(DFSF.getShadow(*i));
1326
1327 if (!FT->getReturnType()->isVoidTy()) {
1328 if (!DFSF.LabelReturnAlloca) {
1329 DFSF.LabelReturnAlloca =
1330 new AllocaInst(DFSF.DFS.ShadowTy, "labelreturn",
1331 DFSF.F->getEntryBlock().begin());
1332 }
1333 Args.push_back(DFSF.LabelReturnAlloca);
1334 }
1335
1336 CallInst *CustomCI = IRB.CreateCall(CustomF, Args);
1337 CustomCI->setCallingConv(CI->getCallingConv());
1338 CustomCI->setAttributes(CI->getAttributes());
1339
1340 if (!FT->getReturnType()->isVoidTy()) {
1341 LoadInst *LabelLoad = IRB.CreateLoad(DFSF.LabelReturnAlloca);
1342 DFSF.setShadow(CustomCI, LabelLoad);
1343 }
1344
1345 CI->replaceAllUsesWith(CustomCI);
1346 CI->eraseFromParent();
1347 return;
1348 }
1349 break;
1350 }
1351 }
1352 }
1353
1354 FunctionType *FT = cast<FunctionType>(
1355 CS.getCalledValue()->getType()->getPointerElementType());
1356 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) {
1357 for (unsigned i = 0, n = FT->getNumParams(); i != n; ++i) {
1358 IRB.CreateStore(DFSF.getShadow(CS.getArgument(i)),
1359 DFSF.getArgTLS(i, CS.getInstruction()));
1360 }
1361 }
1362
1363 Instruction *Next = nullptr;
1364 if (!CS.getType()->isVoidTy()) {
1365 if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
1366 if (II->getNormalDest()->getSinglePredecessor()) {
1367 Next = II->getNormalDest()->begin();
1368 } else {
1369 BasicBlock *NewBB =
1370 SplitEdge(II->getParent(), II->getNormalDest(), &DFSF.DFS);
1371 Next = NewBB->begin();
1372 }
1373 } else {
1374 Next = CS->getNextNode();
1375 }
1376
1377 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) {
1378 IRBuilder<> NextIRB(Next);
1379 LoadInst *LI = NextIRB.CreateLoad(DFSF.getRetvalTLS());
1380 DFSF.SkipInsts.insert(LI);
1381 DFSF.setShadow(CS.getInstruction(), LI);
1382 DFSF.NonZeroChecks.insert(LI);
1383 }
1384 }
1385
1386 // Do all instrumentation for IA_Args down here to defer tampering with the
1387 // CFG in a way that SplitEdge may be able to detect.
1388 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_Args) {
1389 FunctionType *NewFT = DFSF.DFS.getArgsFunctionType(FT);
1390 Value *Func =
1391 IRB.CreateBitCast(CS.getCalledValue(), PointerType::getUnqual(NewFT));
1392 std::vector<Value *> Args;
1393
1394 CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
1395 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n)
1396 Args.push_back(*i);
1397
1398 i = CS.arg_begin();
1399 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n)
1400 Args.push_back(DFSF.getShadow(*i));
1401
1402 if (FT->isVarArg()) {
1403 unsigned VarArgSize = CS.arg_size() - FT->getNumParams();
1404 ArrayType *VarArgArrayTy = ArrayType::get(DFSF.DFS.ShadowTy, VarArgSize);
1405 AllocaInst *VarArgShadow =
1406 new AllocaInst(VarArgArrayTy, "", DFSF.F->getEntryBlock().begin());
1407 Args.push_back(IRB.CreateConstGEP2_32(VarArgShadow, 0, 0));
1408 for (unsigned n = 0; i != e; ++i, ++n) {
1409 IRB.CreateStore(DFSF.getShadow(*i),
1410 IRB.CreateConstGEP2_32(VarArgShadow, 0, n));
1411 Args.push_back(*i);
1412 }
1413 }
1414
1415 CallSite NewCS;
1416 if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
1417 NewCS = IRB.CreateInvoke(Func, II->getNormalDest(), II->getUnwindDest(),
1418 Args);
1419 } else {
1420 NewCS = IRB.CreateCall(Func, Args);
1421 }
1422 NewCS.setCallingConv(CS.getCallingConv());
1423 NewCS.setAttributes(CS.getAttributes().removeAttributes(
1424 *DFSF.DFS.Ctx, AttributeSet::ReturnIndex,
1425 AttributeFuncs::typeIncompatible(NewCS.getInstruction()->getType(),
1426 AttributeSet::ReturnIndex)));
1427
1428 if (Next) {
1429 ExtractValueInst *ExVal =
1430 ExtractValueInst::Create(NewCS.getInstruction(), 0, "", Next);
1431 DFSF.SkipInsts.insert(ExVal);
1432 ExtractValueInst *ExShadow =
1433 ExtractValueInst::Create(NewCS.getInstruction(), 1, "", Next);
1434 DFSF.SkipInsts.insert(ExShadow);
1435 DFSF.setShadow(ExVal, ExShadow);
1436 DFSF.NonZeroChecks.insert(ExShadow);
1437
1438 CS.getInstruction()->replaceAllUsesWith(ExVal);
1439 }
1440
1441 CS.getInstruction()->eraseFromParent();
1442 }
1443 }
1444
visitPHINode(PHINode & PN)1445 void DFSanVisitor::visitPHINode(PHINode &PN) {
1446 PHINode *ShadowPN =
1447 PHINode::Create(DFSF.DFS.ShadowTy, PN.getNumIncomingValues(), "", &PN);
1448
1449 // Give the shadow phi node valid predecessors to fool SplitEdge into working.
1450 Value *UndefShadow = UndefValue::get(DFSF.DFS.ShadowTy);
1451 for (PHINode::block_iterator i = PN.block_begin(), e = PN.block_end(); i != e;
1452 ++i) {
1453 ShadowPN->addIncoming(UndefShadow, *i);
1454 }
1455
1456 DFSF.PHIFixups.push_back(std::make_pair(&PN, ShadowPN));
1457 DFSF.setShadow(&PN, ShadowPN);
1458 }
1459