1 //===- LowerSwitch.cpp - Eliminate Switch instructions --------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // The LowerSwitch transformation rewrites switch instructions with a sequence
11 // of branches, which allows targets to get away with not implementing the
12 // switch instruction until it is convenient.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "llvm/Transforms/Scalar.h"
17 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/IR/Constants.h"
20 #include "llvm/IR/Function.h"
21 #include "llvm/IR/Instructions.h"
22 #include "llvm/IR/LLVMContext.h"
23 #include "llvm/IR/CFG.h"
24 #include "llvm/Pass.h"
25 #include "llvm/Support/Compiler.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include "llvm/Transforms/Utils/UnifyFunctionExitNodes.h"
29 #include <algorithm>
30 using namespace llvm;
31
32 #define DEBUG_TYPE "lower-switch"
33
34 namespace {
35 /// LowerSwitch Pass - Replace all SwitchInst instructions with chained branch
36 /// instructions.
37 class LowerSwitch : public FunctionPass {
38 public:
39 static char ID; // Pass identification, replacement for typeid
LowerSwitch()40 LowerSwitch() : FunctionPass(ID) {
41 initializeLowerSwitchPass(*PassRegistry::getPassRegistry());
42 }
43
44 bool runOnFunction(Function &F) override;
45
getAnalysisUsage(AnalysisUsage & AU) const46 void getAnalysisUsage(AnalysisUsage &AU) const override {
47 // This is a cluster of orthogonal Transforms
48 AU.addPreserved<UnifyFunctionExitNodes>();
49 AU.addPreserved("mem2reg");
50 AU.addPreservedID(LowerInvokePassID);
51 }
52
53 struct CaseRange {
54 Constant* Low;
55 Constant* High;
56 BasicBlock* BB;
57
CaseRange__anona93f758f0111::LowerSwitch::CaseRange58 CaseRange(Constant *low = nullptr, Constant *high = nullptr,
59 BasicBlock *bb = nullptr) :
60 Low(low), High(high), BB(bb) { }
61 };
62
63 typedef std::vector<CaseRange> CaseVector;
64 typedef std::vector<CaseRange>::iterator CaseItr;
65 private:
66 void processSwitchInst(SwitchInst *SI);
67
68 BasicBlock *switchConvert(CaseItr Begin, CaseItr End,
69 ConstantInt *LowerBound, ConstantInt *UpperBound,
70 Value *Val, BasicBlock *OrigBlock,
71 BasicBlock *Default);
72 BasicBlock *newLeafBlock(CaseRange &Leaf, Value *Val, BasicBlock *OrigBlock,
73 BasicBlock *Default);
74 unsigned Clusterify(CaseVector &Cases, SwitchInst *SI);
75 };
76
77 /// The comparison function for sorting the switch case values in the vector.
78 /// WARNING: Case ranges should be disjoint!
79 struct CaseCmp {
operator ()__anona93f758f0111::CaseCmp80 bool operator () (const LowerSwitch::CaseRange& C1,
81 const LowerSwitch::CaseRange& C2) {
82
83 const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
84 const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
85 return CI1->getValue().slt(CI2->getValue());
86 }
87 };
88 }
89
90 char LowerSwitch::ID = 0;
91 INITIALIZE_PASS(LowerSwitch, "lowerswitch",
92 "Lower SwitchInst's to branches", false, false)
93
94 // Publicly exposed interface to pass...
95 char &llvm::LowerSwitchID = LowerSwitch::ID;
96 // createLowerSwitchPass - Interface to this file...
createLowerSwitchPass()97 FunctionPass *llvm::createLowerSwitchPass() {
98 return new LowerSwitch();
99 }
100
runOnFunction(Function & F)101 bool LowerSwitch::runOnFunction(Function &F) {
102 bool Changed = false;
103
104 for (Function::iterator I = F.begin(), E = F.end(); I != E; ) {
105 BasicBlock *Cur = I++; // Advance over block so we don't traverse new blocks
106
107 if (SwitchInst *SI = dyn_cast<SwitchInst>(Cur->getTerminator())) {
108 Changed = true;
109 processSwitchInst(SI);
110 }
111 }
112
113 return Changed;
114 }
115
116 // operator<< - Used for debugging purposes.
117 //
118 static raw_ostream& operator<<(raw_ostream &O,
119 const LowerSwitch::CaseVector &C)
120 LLVM_ATTRIBUTE_USED;
operator <<(raw_ostream & O,const LowerSwitch::CaseVector & C)121 static raw_ostream& operator<<(raw_ostream &O,
122 const LowerSwitch::CaseVector &C) {
123 O << "[";
124
125 for (LowerSwitch::CaseVector::const_iterator B = C.begin(),
126 E = C.end(); B != E; ) {
127 O << *B->Low << " -" << *B->High;
128 if (++B != E) O << ", ";
129 }
130
131 return O << "]";
132 }
133
134 // switchConvert - Convert the switch statement into a binary lookup of
135 // the case values. The function recursively builds this tree.
136 // LowerBound and UpperBound are used to keep track of the bounds for Val
137 // that have already been checked by a block emitted by one of the previous
138 // calls to switchConvert in the call stack.
switchConvert(CaseItr Begin,CaseItr End,ConstantInt * LowerBound,ConstantInt * UpperBound,Value * Val,BasicBlock * OrigBlock,BasicBlock * Default)139 BasicBlock *LowerSwitch::switchConvert(CaseItr Begin, CaseItr End,
140 ConstantInt *LowerBound,
141 ConstantInt *UpperBound, Value *Val,
142 BasicBlock *OrigBlock,
143 BasicBlock *Default) {
144 unsigned Size = End - Begin;
145
146 if (Size == 1) {
147 // Check if the Case Range is perfectly squeezed in between
148 // already checked Upper and Lower bounds. If it is then we can avoid
149 // emitting the code that checks if the value actually falls in the range
150 // because the bounds already tell us so.
151 if (Begin->Low == LowerBound && Begin->High == UpperBound) {
152 return Begin->BB;
153 }
154 return newLeafBlock(*Begin, Val, OrigBlock, Default);
155 }
156
157 unsigned Mid = Size / 2;
158 std::vector<CaseRange> LHS(Begin, Begin + Mid);
159 DEBUG(dbgs() << "LHS: " << LHS << "\n");
160 std::vector<CaseRange> RHS(Begin + Mid, End);
161 DEBUG(dbgs() << "RHS: " << RHS << "\n");
162
163 CaseRange &Pivot = *(Begin + Mid);
164 DEBUG(dbgs() << "Pivot ==> "
165 << cast<ConstantInt>(Pivot.Low)->getValue()
166 << " -" << cast<ConstantInt>(Pivot.High)->getValue() << "\n");
167
168 // NewLowerBound here should never be the integer minimal value.
169 // This is because it is computed from a case range that is never
170 // the smallest, so there is always a case range that has at least
171 // a smaller value.
172 ConstantInt *NewLowerBound = cast<ConstantInt>(Pivot.Low);
173 ConstantInt *NewUpperBound;
174
175 // If we don't have a Default block then it means that we can never
176 // have a value outside of a case range, so set the UpperBound to the highest
177 // value in the LHS part of the case ranges.
178 if (Default != nullptr) {
179 // Because NewLowerBound is never the smallest representable integer
180 // it is safe here to subtract one.
181 NewUpperBound = ConstantInt::get(NewLowerBound->getContext(),
182 NewLowerBound->getValue() - 1);
183 } else {
184 CaseItr LastLHS = LHS.begin() + LHS.size() - 1;
185 NewUpperBound = cast<ConstantInt>(LastLHS->High);
186 }
187
188 DEBUG(dbgs() << "LHS Bounds ==> ";
189 if (LowerBound) {
190 dbgs() << cast<ConstantInt>(LowerBound)->getSExtValue();
191 } else {
192 dbgs() << "NONE";
193 }
194 dbgs() << " - " << NewUpperBound->getSExtValue() << "\n";
195 dbgs() << "RHS Bounds ==> ";
196 dbgs() << NewLowerBound->getSExtValue() << " - ";
197 if (UpperBound) {
198 dbgs() << cast<ConstantInt>(UpperBound)->getSExtValue() << "\n";
199 } else {
200 dbgs() << "NONE\n";
201 });
202
203 BasicBlock *LBranch = switchConvert(LHS.begin(), LHS.end(), LowerBound,
204 NewUpperBound, Val, OrigBlock, Default);
205 BasicBlock *RBranch = switchConvert(RHS.begin(), RHS.end(), NewLowerBound,
206 UpperBound, Val, OrigBlock, Default);
207
208 // Create a new node that checks if the value is < pivot. Go to the
209 // left branch if it is and right branch if not.
210 Function* F = OrigBlock->getParent();
211 BasicBlock* NewNode = BasicBlock::Create(Val->getContext(), "NodeBlock");
212 Function::iterator FI = OrigBlock;
213 F->getBasicBlockList().insert(++FI, NewNode);
214
215 ICmpInst* Comp = new ICmpInst(ICmpInst::ICMP_SLT,
216 Val, Pivot.Low, "Pivot");
217 NewNode->getInstList().push_back(Comp);
218 BranchInst::Create(LBranch, RBranch, Comp, NewNode);
219 return NewNode;
220 }
221
222 // newLeafBlock - Create a new leaf block for the binary lookup tree. It
223 // checks if the switch's value == the case's value. If not, then it
224 // jumps to the default branch. At this point in the tree, the value
225 // can't be another valid case value, so the jump to the "default" branch
226 // is warranted.
227 //
newLeafBlock(CaseRange & Leaf,Value * Val,BasicBlock * OrigBlock,BasicBlock * Default)228 BasicBlock* LowerSwitch::newLeafBlock(CaseRange& Leaf, Value* Val,
229 BasicBlock* OrigBlock,
230 BasicBlock* Default)
231 {
232 Function* F = OrigBlock->getParent();
233 BasicBlock* NewLeaf = BasicBlock::Create(Val->getContext(), "LeafBlock");
234 Function::iterator FI = OrigBlock;
235 F->getBasicBlockList().insert(++FI, NewLeaf);
236
237 // Emit comparison
238 ICmpInst* Comp = nullptr;
239 if (Leaf.Low == Leaf.High) {
240 // Make the seteq instruction...
241 Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_EQ, Val,
242 Leaf.Low, "SwitchLeaf");
243 } else {
244 // Make range comparison
245 if (cast<ConstantInt>(Leaf.Low)->isMinValue(true /*isSigned*/)) {
246 // Val >= Min && Val <= Hi --> Val <= Hi
247 Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_SLE, Val, Leaf.High,
248 "SwitchLeaf");
249 } else if (cast<ConstantInt>(Leaf.Low)->isZero()) {
250 // Val >= 0 && Val <= Hi --> Val <=u Hi
251 Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Val, Leaf.High,
252 "SwitchLeaf");
253 } else {
254 // Emit V-Lo <=u Hi-Lo
255 Constant* NegLo = ConstantExpr::getNeg(Leaf.Low);
256 Instruction* Add = BinaryOperator::CreateAdd(Val, NegLo,
257 Val->getName()+".off",
258 NewLeaf);
259 Constant *UpperBound = ConstantExpr::getAdd(NegLo, Leaf.High);
260 Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Add, UpperBound,
261 "SwitchLeaf");
262 }
263 }
264
265 // Make the conditional branch...
266 BasicBlock* Succ = Leaf.BB;
267 BranchInst::Create(Succ, Default, Comp, NewLeaf);
268
269 // If there were any PHI nodes in this successor, rewrite one entry
270 // from OrigBlock to come from NewLeaf.
271 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
272 PHINode* PN = cast<PHINode>(I);
273 // Remove all but one incoming entries from the cluster
274 uint64_t Range = cast<ConstantInt>(Leaf.High)->getSExtValue() -
275 cast<ConstantInt>(Leaf.Low)->getSExtValue();
276 for (uint64_t j = 0; j < Range; ++j) {
277 PN->removeIncomingValue(OrigBlock);
278 }
279
280 int BlockIdx = PN->getBasicBlockIndex(OrigBlock);
281 assert(BlockIdx != -1 && "Switch didn't go to this successor??");
282 PN->setIncomingBlock((unsigned)BlockIdx, NewLeaf);
283 }
284
285 return NewLeaf;
286 }
287
288 // Clusterify - Transform simple list of Cases into list of CaseRange's
Clusterify(CaseVector & Cases,SwitchInst * SI)289 unsigned LowerSwitch::Clusterify(CaseVector& Cases, SwitchInst *SI) {
290 unsigned numCmps = 0;
291
292 // Start with "simple" cases
293 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; ++i)
294 Cases.push_back(CaseRange(i.getCaseValue(), i.getCaseValue(),
295 i.getCaseSuccessor()));
296
297 std::sort(Cases.begin(), Cases.end(), CaseCmp());
298
299 // Merge case into clusters
300 if (Cases.size()>=2)
301 for (CaseItr I = Cases.begin(), J = std::next(Cases.begin());
302 J != Cases.end();) {
303 int64_t nextValue = cast<ConstantInt>(J->Low)->getSExtValue();
304 int64_t currentValue = cast<ConstantInt>(I->High)->getSExtValue();
305 BasicBlock* nextBB = J->BB;
306 BasicBlock* currentBB = I->BB;
307
308 // If the two neighboring cases go to the same destination, merge them
309 // into a single case.
310 if ((nextValue-currentValue==1) && (currentBB == nextBB)) {
311 I->High = J->High;
312 J = Cases.erase(J);
313 } else {
314 I = J++;
315 }
316 }
317
318 for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
319 if (I->Low != I->High)
320 // A range counts double, since it requires two compares.
321 ++numCmps;
322 }
323
324 return numCmps;
325 }
326
327 // processSwitchInst - Replace the specified switch instruction with a sequence
328 // of chained if-then insts in a balanced binary search.
329 //
processSwitchInst(SwitchInst * SI)330 void LowerSwitch::processSwitchInst(SwitchInst *SI) {
331 BasicBlock *CurBlock = SI->getParent();
332 BasicBlock *OrigBlock = CurBlock;
333 Function *F = CurBlock->getParent();
334 Value *Val = SI->getCondition(); // The value we are switching on...
335 BasicBlock* Default = SI->getDefaultDest();
336
337 // If there is only the default destination, don't bother with the code below.
338 if (!SI->getNumCases()) {
339 BranchInst::Create(SI->getDefaultDest(), CurBlock);
340 CurBlock->getInstList().erase(SI);
341 return;
342 }
343
344 const bool DefaultIsUnreachable =
345 Default->size() == 1 && isa<UnreachableInst>(Default->getTerminator());
346 // Create a new, empty default block so that the new hierarchy of
347 // if-then statements go to this and the PHI nodes are happy.
348 // if the default block is set as an unreachable we avoid creating one
349 // because will never be a valid target.
350 BasicBlock *NewDefault = nullptr;
351 if (!DefaultIsUnreachable) {
352 NewDefault = BasicBlock::Create(SI->getContext(), "NewDefault");
353 F->getBasicBlockList().insert(Default, NewDefault);
354
355 BranchInst::Create(Default, NewDefault);
356 }
357 // If there is an entry in any PHI nodes for the default edge, make sure
358 // to update them as well.
359 for (BasicBlock::iterator I = Default->begin(); isa<PHINode>(I); ++I) {
360 PHINode *PN = cast<PHINode>(I);
361 int BlockIdx = PN->getBasicBlockIndex(OrigBlock);
362 assert(BlockIdx != -1 && "Switch didn't go to this successor??");
363 PN->setIncomingBlock((unsigned)BlockIdx, NewDefault);
364 }
365
366 // Prepare cases vector.
367 CaseVector Cases;
368 unsigned numCmps = Clusterify(Cases, SI);
369
370 DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
371 << ". Total compares: " << numCmps << "\n");
372 DEBUG(dbgs() << "Cases: " << Cases << "\n");
373 (void)numCmps;
374
375 ConstantInt *UpperBound = nullptr;
376 ConstantInt *LowerBound = nullptr;
377
378 // Optimize the condition where Default is an unreachable block. In this case
379 // we can make the bounds tightly fitted around the case value ranges,
380 // because we know that the value passed to the switch should always be
381 // exactly one of the case values.
382 if (DefaultIsUnreachable) {
383 CaseItr LastCase = Cases.begin() + Cases.size() - 1;
384 UpperBound = cast<ConstantInt>(LastCase->High);
385 LowerBound = cast<ConstantInt>(Cases.begin()->Low);
386 }
387 BasicBlock *SwitchBlock =
388 switchConvert(Cases.begin(), Cases.end(), LowerBound, UpperBound, Val,
389 OrigBlock, NewDefault);
390
391 // Branch to our shiny new if-then stuff...
392 BranchInst::Create(SwitchBlock, OrigBlock);
393
394 // We are now done with the switch instruction, delete it.
395 CurBlock->getInstList().erase(SI);
396
397 pred_iterator PI = pred_begin(Default), E = pred_end(Default);
398 // If the Default block has no more predecessors just remove it
399 if (PI == E) {
400 DeleteDeadBlock(Default);
401 }
402 }
403