1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive
10 // stores that can be put together into vector-stores. Next, it attempts to
11 // construct vectorizable tree using the use-def chains. If a profitable tree
12 // was found, the SLP vectorizer performs vectorization on the tree.
13 //
14 // The pass is inspired by the work described in the paper:
15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks.
16 //
17 //===----------------------------------------------------------------------===//
18 #include "llvm/Transforms/Vectorize.h"
19 #include "llvm/ADT/MapVector.h"
20 #include "llvm/ADT/PostOrderIterator.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/LoopInfo.h"
24 #include "llvm/Analysis/ScalarEvolution.h"
25 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
26 #include "llvm/Analysis/TargetTransformInfo.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/Dominators.h"
30 #include "llvm/IR/IRBuilder.h"
31 #include "llvm/IR/Instructions.h"
32 #include "llvm/IR/IntrinsicInst.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/IR/NoFolder.h"
35 #include "llvm/IR/Type.h"
36 #include "llvm/IR/Value.h"
37 #include "llvm/IR/Verifier.h"
38 #include "llvm/Pass.h"
39 #include "llvm/Support/CommandLine.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include "llvm/Transforms/Utils/VectorUtils.h"
43 #include <algorithm>
44 #include <map>
45
46 using namespace llvm;
47
48 #define SV_NAME "slp-vectorizer"
49 #define DEBUG_TYPE "SLP"
50
51 static cl::opt<int>
52 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden,
53 cl::desc("Only vectorize if you gain more than this "
54 "number "));
55
56 static cl::opt<bool>
57 ShouldVectorizeHor("slp-vectorize-hor", cl::init(false), cl::Hidden,
58 cl::desc("Attempt to vectorize horizontal reductions"));
59
60 static cl::opt<bool> ShouldStartVectorizeHorAtStore(
61 "slp-vectorize-hor-store", cl::init(false), cl::Hidden,
62 cl::desc(
63 "Attempt to vectorize horizontal reductions feeding into a store"));
64
65 namespace {
66
67 static const unsigned MinVecRegSize = 128;
68
69 static const unsigned RecursionMaxDepth = 12;
70
71 /// A helper class for numbering instructions in multiple blocks.
72 /// Numbers start at zero for each basic block.
73 struct BlockNumbering {
74
BlockNumbering__anon3797f89a0111::BlockNumbering75 BlockNumbering(BasicBlock *Bb) : BB(Bb), Valid(false) {}
76
numberInstructions__anon3797f89a0111::BlockNumbering77 void numberInstructions() {
78 unsigned Loc = 0;
79 InstrIdx.clear();
80 InstrVec.clear();
81 // Number the instructions in the block.
82 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
83 InstrIdx[it] = Loc++;
84 InstrVec.push_back(it);
85 assert(InstrVec[InstrIdx[it]] == it && "Invalid allocation");
86 }
87 Valid = true;
88 }
89
getIndex__anon3797f89a0111::BlockNumbering90 int getIndex(Instruction *I) {
91 assert(I->getParent() == BB && "Invalid instruction");
92 if (!Valid)
93 numberInstructions();
94 assert(InstrIdx.count(I) && "Unknown instruction");
95 return InstrIdx[I];
96 }
97
getInstruction__anon3797f89a0111::BlockNumbering98 Instruction *getInstruction(unsigned loc) {
99 if (!Valid)
100 numberInstructions();
101 assert(InstrVec.size() > loc && "Invalid Index");
102 return InstrVec[loc];
103 }
104
forget__anon3797f89a0111::BlockNumbering105 void forget() { Valid = false; }
106
107 private:
108 /// The block we are numbering.
109 BasicBlock *BB;
110 /// Is the block numbered.
111 bool Valid;
112 /// Maps instructions to numbers and back.
113 SmallDenseMap<Instruction *, int> InstrIdx;
114 /// Maps integers to Instructions.
115 SmallVector<Instruction *, 32> InstrVec;
116 };
117
118 /// \returns the parent basic block if all of the instructions in \p VL
119 /// are in the same block or null otherwise.
getSameBlock(ArrayRef<Value * > VL)120 static BasicBlock *getSameBlock(ArrayRef<Value *> VL) {
121 Instruction *I0 = dyn_cast<Instruction>(VL[0]);
122 if (!I0)
123 return nullptr;
124 BasicBlock *BB = I0->getParent();
125 for (int i = 1, e = VL.size(); i < e; i++) {
126 Instruction *I = dyn_cast<Instruction>(VL[i]);
127 if (!I)
128 return nullptr;
129
130 if (BB != I->getParent())
131 return nullptr;
132 }
133 return BB;
134 }
135
136 /// \returns True if all of the values in \p VL are constants.
allConstant(ArrayRef<Value * > VL)137 static bool allConstant(ArrayRef<Value *> VL) {
138 for (unsigned i = 0, e = VL.size(); i < e; ++i)
139 if (!isa<Constant>(VL[i]))
140 return false;
141 return true;
142 }
143
144 /// \returns True if all of the values in \p VL are identical.
isSplat(ArrayRef<Value * > VL)145 static bool isSplat(ArrayRef<Value *> VL) {
146 for (unsigned i = 1, e = VL.size(); i < e; ++i)
147 if (VL[i] != VL[0])
148 return false;
149 return true;
150 }
151
152 ///\returns Opcode that can be clubbed with \p Op to create an alternate
153 /// sequence which can later be merged as a ShuffleVector instruction.
getAltOpcode(unsigned Op)154 static unsigned getAltOpcode(unsigned Op) {
155 switch (Op) {
156 case Instruction::FAdd:
157 return Instruction::FSub;
158 case Instruction::FSub:
159 return Instruction::FAdd;
160 case Instruction::Add:
161 return Instruction::Sub;
162 case Instruction::Sub:
163 return Instruction::Add;
164 default:
165 return 0;
166 }
167 }
168
169 ///\returns bool representing if Opcode \p Op can be part
170 /// of an alternate sequence which can later be merged as
171 /// a ShuffleVector instruction.
canCombineAsAltInst(unsigned Op)172 static bool canCombineAsAltInst(unsigned Op) {
173 if (Op == Instruction::FAdd || Op == Instruction::FSub ||
174 Op == Instruction::Sub || Op == Instruction::Add)
175 return true;
176 return false;
177 }
178
179 /// \returns ShuffleVector instruction if intructions in \p VL have
180 /// alternate fadd,fsub / fsub,fadd/add,sub/sub,add sequence.
181 /// (i.e. e.g. opcodes of fadd,fsub,fadd,fsub...)
isAltInst(ArrayRef<Value * > VL)182 static unsigned isAltInst(ArrayRef<Value *> VL) {
183 Instruction *I0 = dyn_cast<Instruction>(VL[0]);
184 unsigned Opcode = I0->getOpcode();
185 unsigned AltOpcode = getAltOpcode(Opcode);
186 for (int i = 1, e = VL.size(); i < e; i++) {
187 Instruction *I = dyn_cast<Instruction>(VL[i]);
188 if (!I || I->getOpcode() != ((i & 1) ? AltOpcode : Opcode))
189 return 0;
190 }
191 return Instruction::ShuffleVector;
192 }
193
194 /// \returns The opcode if all of the Instructions in \p VL have the same
195 /// opcode, or zero.
getSameOpcode(ArrayRef<Value * > VL)196 static unsigned getSameOpcode(ArrayRef<Value *> VL) {
197 Instruction *I0 = dyn_cast<Instruction>(VL[0]);
198 if (!I0)
199 return 0;
200 unsigned Opcode = I0->getOpcode();
201 for (int i = 1, e = VL.size(); i < e; i++) {
202 Instruction *I = dyn_cast<Instruction>(VL[i]);
203 if (!I || Opcode != I->getOpcode()) {
204 if (canCombineAsAltInst(Opcode) && i == 1)
205 return isAltInst(VL);
206 return 0;
207 }
208 }
209 return Opcode;
210 }
211
212 /// \returns \p I after propagating metadata from \p VL.
propagateMetadata(Instruction * I,ArrayRef<Value * > VL)213 static Instruction *propagateMetadata(Instruction *I, ArrayRef<Value *> VL) {
214 Instruction *I0 = cast<Instruction>(VL[0]);
215 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
216 I0->getAllMetadataOtherThanDebugLoc(Metadata);
217
218 for (unsigned i = 0, n = Metadata.size(); i != n; ++i) {
219 unsigned Kind = Metadata[i].first;
220 MDNode *MD = Metadata[i].second;
221
222 for (int i = 1, e = VL.size(); MD && i != e; i++) {
223 Instruction *I = cast<Instruction>(VL[i]);
224 MDNode *IMD = I->getMetadata(Kind);
225
226 switch (Kind) {
227 default:
228 MD = nullptr; // Remove unknown metadata
229 break;
230 case LLVMContext::MD_tbaa:
231 MD = MDNode::getMostGenericTBAA(MD, IMD);
232 break;
233 case LLVMContext::MD_fpmath:
234 MD = MDNode::getMostGenericFPMath(MD, IMD);
235 break;
236 }
237 }
238 I->setMetadata(Kind, MD);
239 }
240 return I;
241 }
242
243 /// \returns The type that all of the values in \p VL have or null if there
244 /// are different types.
getSameType(ArrayRef<Value * > VL)245 static Type* getSameType(ArrayRef<Value *> VL) {
246 Type *Ty = VL[0]->getType();
247 for (int i = 1, e = VL.size(); i < e; i++)
248 if (VL[i]->getType() != Ty)
249 return nullptr;
250
251 return Ty;
252 }
253
254 /// \returns True if the ExtractElement instructions in VL can be vectorized
255 /// to use the original vector.
CanReuseExtract(ArrayRef<Value * > VL)256 static bool CanReuseExtract(ArrayRef<Value *> VL) {
257 assert(Instruction::ExtractElement == getSameOpcode(VL) && "Invalid opcode");
258 // Check if all of the extracts come from the same vector and from the
259 // correct offset.
260 Value *VL0 = VL[0];
261 ExtractElementInst *E0 = cast<ExtractElementInst>(VL0);
262 Value *Vec = E0->getOperand(0);
263
264 // We have to extract from the same vector type.
265 unsigned NElts = Vec->getType()->getVectorNumElements();
266
267 if (NElts != VL.size())
268 return false;
269
270 // Check that all of the indices extract from the correct offset.
271 ConstantInt *CI = dyn_cast<ConstantInt>(E0->getOperand(1));
272 if (!CI || CI->getZExtValue())
273 return false;
274
275 for (unsigned i = 1, e = VL.size(); i < e; ++i) {
276 ExtractElementInst *E = cast<ExtractElementInst>(VL[i]);
277 ConstantInt *CI = dyn_cast<ConstantInt>(E->getOperand(1));
278
279 if (!CI || CI->getZExtValue() != i || E->getOperand(0) != Vec)
280 return false;
281 }
282
283 return true;
284 }
285
reorderInputsAccordingToOpcode(ArrayRef<Value * > VL,SmallVectorImpl<Value * > & Left,SmallVectorImpl<Value * > & Right)286 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
287 SmallVectorImpl<Value *> &Left,
288 SmallVectorImpl<Value *> &Right) {
289
290 SmallVector<Value *, 16> OrigLeft, OrigRight;
291
292 bool AllSameOpcodeLeft = true;
293 bool AllSameOpcodeRight = true;
294 for (unsigned i = 0, e = VL.size(); i != e; ++i) {
295 Instruction *I = cast<Instruction>(VL[i]);
296 Value *V0 = I->getOperand(0);
297 Value *V1 = I->getOperand(1);
298
299 OrigLeft.push_back(V0);
300 OrigRight.push_back(V1);
301
302 Instruction *I0 = dyn_cast<Instruction>(V0);
303 Instruction *I1 = dyn_cast<Instruction>(V1);
304
305 // Check whether all operands on one side have the same opcode. In this case
306 // we want to preserve the original order and not make things worse by
307 // reordering.
308 AllSameOpcodeLeft = I0;
309 AllSameOpcodeRight = I1;
310
311 if (i && AllSameOpcodeLeft) {
312 if(Instruction *P0 = dyn_cast<Instruction>(OrigLeft[i-1])) {
313 if(P0->getOpcode() != I0->getOpcode())
314 AllSameOpcodeLeft = false;
315 } else
316 AllSameOpcodeLeft = false;
317 }
318 if (i && AllSameOpcodeRight) {
319 if(Instruction *P1 = dyn_cast<Instruction>(OrigRight[i-1])) {
320 if(P1->getOpcode() != I1->getOpcode())
321 AllSameOpcodeRight = false;
322 } else
323 AllSameOpcodeRight = false;
324 }
325
326 // Sort two opcodes. In the code below we try to preserve the ability to use
327 // broadcast of values instead of individual inserts.
328 // vl1 = load
329 // vl2 = phi
330 // vr1 = load
331 // vr2 = vr2
332 // = vl1 x vr1
333 // = vl2 x vr2
334 // If we just sorted according to opcode we would leave the first line in
335 // tact but we would swap vl2 with vr2 because opcode(phi) > opcode(load).
336 // = vl1 x vr1
337 // = vr2 x vl2
338 // Because vr2 and vr1 are from the same load we loose the opportunity of a
339 // broadcast for the packed right side in the backend: we have [vr1, vl2]
340 // instead of [vr1, vr2=vr1].
341 if (I0 && I1) {
342 if(!i && I0->getOpcode() > I1->getOpcode()) {
343 Left.push_back(I1);
344 Right.push_back(I0);
345 } else if (i && I0->getOpcode() > I1->getOpcode() && Right[i-1] != I1) {
346 // Try not to destroy a broad cast for no apparent benefit.
347 Left.push_back(I1);
348 Right.push_back(I0);
349 } else if (i && I0->getOpcode() == I1->getOpcode() && Right[i-1] == I0) {
350 // Try preserve broadcasts.
351 Left.push_back(I1);
352 Right.push_back(I0);
353 } else if (i && I0->getOpcode() == I1->getOpcode() && Left[i-1] == I1) {
354 // Try preserve broadcasts.
355 Left.push_back(I1);
356 Right.push_back(I0);
357 } else {
358 Left.push_back(I0);
359 Right.push_back(I1);
360 }
361 continue;
362 }
363 // One opcode, put the instruction on the right.
364 if (I0) {
365 Left.push_back(V1);
366 Right.push_back(I0);
367 continue;
368 }
369 Left.push_back(V0);
370 Right.push_back(V1);
371 }
372
373 bool LeftBroadcast = isSplat(Left);
374 bool RightBroadcast = isSplat(Right);
375
376 // Don't reorder if the operands where good to begin with.
377 if (!(LeftBroadcast || RightBroadcast) &&
378 (AllSameOpcodeRight || AllSameOpcodeLeft)) {
379 Left = OrigLeft;
380 Right = OrigRight;
381 }
382 }
383
384 /// Bottom Up SLP Vectorizer.
385 class BoUpSLP {
386 public:
387 typedef SmallVector<Value *, 8> ValueList;
388 typedef SmallVector<Instruction *, 16> InstrList;
389 typedef SmallPtrSet<Value *, 16> ValueSet;
390 typedef SmallVector<StoreInst *, 8> StoreList;
391
BoUpSLP(Function * Func,ScalarEvolution * Se,const DataLayout * Dl,TargetTransformInfo * Tti,TargetLibraryInfo * TLi,AliasAnalysis * Aa,LoopInfo * Li,DominatorTree * Dt)392 BoUpSLP(Function *Func, ScalarEvolution *Se, const DataLayout *Dl,
393 TargetTransformInfo *Tti, TargetLibraryInfo *TLi, AliasAnalysis *Aa,
394 LoopInfo *Li, DominatorTree *Dt)
395 : F(Func), SE(Se), DL(Dl), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt),
396 Builder(Se->getContext()) {}
397
398 /// \brief Vectorize the tree that starts with the elements in \p VL.
399 /// Returns the vectorized root.
400 Value *vectorizeTree();
401
402 /// \returns the vectorization cost of the subtree that starts at \p VL.
403 /// A negative number means that this is profitable.
404 int getTreeCost();
405
406 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
407 /// the purpose of scheduling and extraction in the \p UserIgnoreLst.
408 void buildTree(ArrayRef<Value *> Roots,
409 ArrayRef<Value *> UserIgnoreLst = None);
410
411 /// Clear the internal data structures that are created by 'buildTree'.
deleteTree()412 void deleteTree() {
413 VectorizableTree.clear();
414 ScalarToTreeEntry.clear();
415 MustGather.clear();
416 ExternalUses.clear();
417 MemBarrierIgnoreList.clear();
418 }
419
420 /// \returns true if the memory operations A and B are consecutive.
421 bool isConsecutiveAccess(Value *A, Value *B);
422
423 /// \brief Perform LICM and CSE on the newly generated gather sequences.
424 void optimizeGatherSequence();
425
426 private:
427 struct TreeEntry;
428
429 /// \returns the cost of the vectorizable entry.
430 int getEntryCost(TreeEntry *E);
431
432 /// This is the recursive part of buildTree.
433 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth);
434
435 /// Vectorize a single entry in the tree.
436 Value *vectorizeTree(TreeEntry *E);
437
438 /// Vectorize a single entry in the tree, starting in \p VL.
439 Value *vectorizeTree(ArrayRef<Value *> VL);
440
441 /// \returns the pointer to the vectorized value if \p VL is already
442 /// vectorized, or NULL. They may happen in cycles.
443 Value *alreadyVectorized(ArrayRef<Value *> VL) const;
444
445 /// \brief Take the pointer operand from the Load/Store instruction.
446 /// \returns NULL if this is not a valid Load/Store instruction.
447 static Value *getPointerOperand(Value *I);
448
449 /// \brief Take the address space operand from the Load/Store instruction.
450 /// \returns -1 if this is not a valid Load/Store instruction.
451 static unsigned getAddressSpaceOperand(Value *I);
452
453 /// \returns the scalarization cost for this type. Scalarization in this
454 /// context means the creation of vectors from a group of scalars.
455 int getGatherCost(Type *Ty);
456
457 /// \returns the scalarization cost for this list of values. Assuming that
458 /// this subtree gets vectorized, we may need to extract the values from the
459 /// roots. This method calculates the cost of extracting the values.
460 int getGatherCost(ArrayRef<Value *> VL);
461
462 /// \returns the AA location that is being access by the instruction.
463 AliasAnalysis::Location getLocation(Instruction *I);
464
465 /// \brief Checks if it is possible to sink an instruction from
466 /// \p Src to \p Dst.
467 /// \returns the pointer to the barrier instruction if we can't sink.
468 Value *getSinkBarrier(Instruction *Src, Instruction *Dst);
469
470 /// \returns the index of the last instruction in the BB from \p VL.
471 int getLastIndex(ArrayRef<Value *> VL);
472
473 /// \returns the Instruction in the bundle \p VL.
474 Instruction *getLastInstruction(ArrayRef<Value *> VL);
475
476 /// \brief Set the Builder insert point to one after the last instruction in
477 /// the bundle
478 void setInsertPointAfterBundle(ArrayRef<Value *> VL);
479
480 /// \returns a vector from a collection of scalars in \p VL.
481 Value *Gather(ArrayRef<Value *> VL, VectorType *Ty);
482
483 /// \returns whether the VectorizableTree is fully vectoriable and will
484 /// be beneficial even the tree height is tiny.
485 bool isFullyVectorizableTinyTree();
486
487 struct TreeEntry {
TreeEntry__anon3797f89a0111::BoUpSLP::TreeEntry488 TreeEntry() : Scalars(), VectorizedValue(nullptr), LastScalarIndex(0),
489 NeedToGather(0) {}
490
491 /// \returns true if the scalars in VL are equal to this entry.
isSame__anon3797f89a0111::BoUpSLP::TreeEntry492 bool isSame(ArrayRef<Value *> VL) const {
493 assert(VL.size() == Scalars.size() && "Invalid size");
494 return std::equal(VL.begin(), VL.end(), Scalars.begin());
495 }
496
497 /// A vector of scalars.
498 ValueList Scalars;
499
500 /// The Scalars are vectorized into this value. It is initialized to Null.
501 Value *VectorizedValue;
502
503 /// The index in the basic block of the last scalar.
504 int LastScalarIndex;
505
506 /// Do we need to gather this sequence ?
507 bool NeedToGather;
508 };
509
510 /// Create a new VectorizableTree entry.
newTreeEntry(ArrayRef<Value * > VL,bool Vectorized)511 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, bool Vectorized) {
512 VectorizableTree.push_back(TreeEntry());
513 int idx = VectorizableTree.size() - 1;
514 TreeEntry *Last = &VectorizableTree[idx];
515 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end());
516 Last->NeedToGather = !Vectorized;
517 if (Vectorized) {
518 Last->LastScalarIndex = getLastIndex(VL);
519 for (int i = 0, e = VL.size(); i != e; ++i) {
520 assert(!ScalarToTreeEntry.count(VL[i]) && "Scalar already in tree!");
521 ScalarToTreeEntry[VL[i]] = idx;
522 }
523 } else {
524 Last->LastScalarIndex = 0;
525 MustGather.insert(VL.begin(), VL.end());
526 }
527 return Last;
528 }
529
530 /// -- Vectorization State --
531 /// Holds all of the tree entries.
532 std::vector<TreeEntry> VectorizableTree;
533
534 /// Maps a specific scalar to its tree entry.
535 SmallDenseMap<Value*, int> ScalarToTreeEntry;
536
537 /// A list of scalars that we found that we need to keep as scalars.
538 ValueSet MustGather;
539
540 /// This POD struct describes one external user in the vectorized tree.
541 struct ExternalUser {
ExternalUser__anon3797f89a0111::BoUpSLP::ExternalUser542 ExternalUser (Value *S, llvm::User *U, int L) :
543 Scalar(S), User(U), Lane(L){};
544 // Which scalar in our function.
545 Value *Scalar;
546 // Which user that uses the scalar.
547 llvm::User *User;
548 // Which lane does the scalar belong to.
549 int Lane;
550 };
551 typedef SmallVector<ExternalUser, 16> UserList;
552
553 /// A list of values that need to extracted out of the tree.
554 /// This list holds pairs of (Internal Scalar : External User).
555 UserList ExternalUses;
556
557 /// A list of instructions to ignore while sinking
558 /// memory instructions. This map must be reset between runs of getCost.
559 ValueSet MemBarrierIgnoreList;
560
561 /// Holds all of the instructions that we gathered.
562 SetVector<Instruction *> GatherSeq;
563 /// A list of blocks that we are going to CSE.
564 SetVector<BasicBlock *> CSEBlocks;
565
566 /// Numbers instructions in different blocks.
567 DenseMap<BasicBlock *, BlockNumbering> BlocksNumbers;
568
569 /// \brief Get the corresponding instruction numbering list for a given
570 /// BasicBlock. The list is allocated lazily.
getBlockNumbering(BasicBlock * BB)571 BlockNumbering &getBlockNumbering(BasicBlock *BB) {
572 auto I = BlocksNumbers.insert(std::make_pair(BB, BlockNumbering(BB)));
573 return I.first->second;
574 }
575
576 /// List of users to ignore during scheduling and that don't need extracting.
577 ArrayRef<Value *> UserIgnoreList;
578
579 // Analysis and block reference.
580 Function *F;
581 ScalarEvolution *SE;
582 const DataLayout *DL;
583 TargetTransformInfo *TTI;
584 TargetLibraryInfo *TLI;
585 AliasAnalysis *AA;
586 LoopInfo *LI;
587 DominatorTree *DT;
588 /// Instruction builder to construct the vectorized tree.
589 IRBuilder<> Builder;
590 };
591
buildTree(ArrayRef<Value * > Roots,ArrayRef<Value * > UserIgnoreLst)592 void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
593 ArrayRef<Value *> UserIgnoreLst) {
594 deleteTree();
595 UserIgnoreList = UserIgnoreLst;
596 if (!getSameType(Roots))
597 return;
598 buildTree_rec(Roots, 0);
599
600 // Collect the values that we need to extract from the tree.
601 for (int EIdx = 0, EE = VectorizableTree.size(); EIdx < EE; ++EIdx) {
602 TreeEntry *Entry = &VectorizableTree[EIdx];
603
604 // For each lane:
605 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
606 Value *Scalar = Entry->Scalars[Lane];
607
608 // No need to handle users of gathered values.
609 if (Entry->NeedToGather)
610 continue;
611
612 for (User *U : Scalar->users()) {
613 DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n");
614
615 // Skip in-tree scalars that become vectors.
616 if (ScalarToTreeEntry.count(U)) {
617 DEBUG(dbgs() << "SLP: \tInternal user will be removed:" <<
618 *U << ".\n");
619 int Idx = ScalarToTreeEntry[U]; (void) Idx;
620 assert(!VectorizableTree[Idx].NeedToGather && "Bad state");
621 continue;
622 }
623 Instruction *UserInst = dyn_cast<Instruction>(U);
624 if (!UserInst)
625 continue;
626
627 // Ignore users in the user ignore list.
628 if (std::find(UserIgnoreList.begin(), UserIgnoreList.end(), UserInst) !=
629 UserIgnoreList.end())
630 continue;
631
632 DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " <<
633 Lane << " from " << *Scalar << ".\n");
634 ExternalUses.push_back(ExternalUser(Scalar, U, Lane));
635 }
636 }
637 }
638 }
639
640
buildTree_rec(ArrayRef<Value * > VL,unsigned Depth)641 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) {
642 bool SameTy = getSameType(VL); (void)SameTy;
643 bool isAltShuffle = false;
644 assert(SameTy && "Invalid types!");
645
646 if (Depth == RecursionMaxDepth) {
647 DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n");
648 newTreeEntry(VL, false);
649 return;
650 }
651
652 // Don't handle vectors.
653 if (VL[0]->getType()->isVectorTy()) {
654 DEBUG(dbgs() << "SLP: Gathering due to vector type.\n");
655 newTreeEntry(VL, false);
656 return;
657 }
658
659 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
660 if (SI->getValueOperand()->getType()->isVectorTy()) {
661 DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n");
662 newTreeEntry(VL, false);
663 return;
664 }
665 unsigned Opcode = getSameOpcode(VL);
666
667 // Check that this shuffle vector refers to the alternate
668 // sequence of opcodes.
669 if (Opcode == Instruction::ShuffleVector) {
670 Instruction *I0 = dyn_cast<Instruction>(VL[0]);
671 unsigned Op = I0->getOpcode();
672 if (Op != Instruction::ShuffleVector)
673 isAltShuffle = true;
674 }
675
676 // If all of the operands are identical or constant we have a simple solution.
677 if (allConstant(VL) || isSplat(VL) || !getSameBlock(VL) || !Opcode) {
678 DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n");
679 newTreeEntry(VL, false);
680 return;
681 }
682
683 // We now know that this is a vector of instructions of the same type from
684 // the same block.
685
686 // Check if this is a duplicate of another entry.
687 if (ScalarToTreeEntry.count(VL[0])) {
688 int Idx = ScalarToTreeEntry[VL[0]];
689 TreeEntry *E = &VectorizableTree[Idx];
690 for (unsigned i = 0, e = VL.size(); i != e; ++i) {
691 DEBUG(dbgs() << "SLP: \tChecking bundle: " << *VL[i] << ".\n");
692 if (E->Scalars[i] != VL[i]) {
693 DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n");
694 newTreeEntry(VL, false);
695 return;
696 }
697 }
698 DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *VL[0] << ".\n");
699 return;
700 }
701
702 // Check that none of the instructions in the bundle are already in the tree.
703 for (unsigned i = 0, e = VL.size(); i != e; ++i) {
704 if (ScalarToTreeEntry.count(VL[i])) {
705 DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] <<
706 ") is already in tree.\n");
707 newTreeEntry(VL, false);
708 return;
709 }
710 }
711
712 // If any of the scalars appears in the table OR it is marked as a value that
713 // needs to stat scalar then we need to gather the scalars.
714 for (unsigned i = 0, e = VL.size(); i != e; ++i) {
715 if (ScalarToTreeEntry.count(VL[i]) || MustGather.count(VL[i])) {
716 DEBUG(dbgs() << "SLP: Gathering due to gathered scalar. \n");
717 newTreeEntry(VL, false);
718 return;
719 }
720 }
721
722 // Check that all of the users of the scalars that we want to vectorize are
723 // schedulable.
724 Instruction *VL0 = cast<Instruction>(VL[0]);
725 int MyLastIndex = getLastIndex(VL);
726 BasicBlock *BB = cast<Instruction>(VL0)->getParent();
727
728 for (unsigned i = 0, e = VL.size(); i != e; ++i) {
729 Instruction *Scalar = cast<Instruction>(VL[i]);
730 DEBUG(dbgs() << "SLP: Checking users of " << *Scalar << ". \n");
731 for (User *U : Scalar->users()) {
732 DEBUG(dbgs() << "SLP: \tUser " << *U << ". \n");
733 Instruction *UI = dyn_cast<Instruction>(U);
734 if (!UI) {
735 DEBUG(dbgs() << "SLP: Gathering due unknown user. \n");
736 newTreeEntry(VL, false);
737 return;
738 }
739
740 // We don't care if the user is in a different basic block.
741 BasicBlock *UserBlock = UI->getParent();
742 if (UserBlock != BB) {
743 DEBUG(dbgs() << "SLP: User from a different basic block "
744 << *UI << ". \n");
745 continue;
746 }
747
748 // If this is a PHINode within this basic block then we can place the
749 // extract wherever we want.
750 if (isa<PHINode>(*UI)) {
751 DEBUG(dbgs() << "SLP: \tWe can schedule PHIs:" << *UI << ". \n");
752 continue;
753 }
754
755 // Check if this is a safe in-tree user.
756 if (ScalarToTreeEntry.count(UI)) {
757 int Idx = ScalarToTreeEntry[UI];
758 int VecLocation = VectorizableTree[Idx].LastScalarIndex;
759 if (VecLocation <= MyLastIndex) {
760 DEBUG(dbgs() << "SLP: Gathering due to unschedulable vector. \n");
761 newTreeEntry(VL, false);
762 return;
763 }
764 DEBUG(dbgs() << "SLP: In-tree user (" << *UI << ") at #" <<
765 VecLocation << " vector value (" << *Scalar << ") at #"
766 << MyLastIndex << ".\n");
767 continue;
768 }
769
770 // Ignore users in the user ignore list.
771 if (std::find(UserIgnoreList.begin(), UserIgnoreList.end(), UI) !=
772 UserIgnoreList.end())
773 continue;
774
775 // Make sure that we can schedule this unknown user.
776 BlockNumbering &BN = getBlockNumbering(BB);
777 int UserIndex = BN.getIndex(UI);
778 if (UserIndex < MyLastIndex) {
779
780 DEBUG(dbgs() << "SLP: Can't schedule extractelement for "
781 << *UI << ". \n");
782 newTreeEntry(VL, false);
783 return;
784 }
785 }
786 }
787
788 // Check that every instructions appears once in this bundle.
789 for (unsigned i = 0, e = VL.size(); i < e; ++i)
790 for (unsigned j = i+1; j < e; ++j)
791 if (VL[i] == VL[j]) {
792 DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n");
793 newTreeEntry(VL, false);
794 return;
795 }
796
797 // Check that instructions in this bundle don't reference other instructions.
798 // The runtime of this check is O(N * N-1 * uses(N)) and a typical N is 4.
799 for (unsigned i = 0, e = VL.size(); i < e; ++i) {
800 for (User *U : VL[i]->users()) {
801 for (unsigned j = 0; j < e; ++j) {
802 if (i != j && U == VL[j]) {
803 DEBUG(dbgs() << "SLP: Intra-bundle dependencies!" << *U << ". \n");
804 newTreeEntry(VL, false);
805 return;
806 }
807 }
808 }
809 }
810
811 DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n");
812
813 // Check if it is safe to sink the loads or the stores.
814 if (Opcode == Instruction::Load || Opcode == Instruction::Store) {
815 Instruction *Last = getLastInstruction(VL);
816
817 for (unsigned i = 0, e = VL.size(); i < e; ++i) {
818 if (VL[i] == Last)
819 continue;
820 Value *Barrier = getSinkBarrier(cast<Instruction>(VL[i]), Last);
821 if (Barrier) {
822 DEBUG(dbgs() << "SLP: Can't sink " << *VL[i] << "\n down to " << *Last
823 << "\n because of " << *Barrier << ". Gathering.\n");
824 newTreeEntry(VL, false);
825 return;
826 }
827 }
828 }
829
830 switch (Opcode) {
831 case Instruction::PHI: {
832 PHINode *PH = dyn_cast<PHINode>(VL0);
833
834 // Check for terminator values (e.g. invoke).
835 for (unsigned j = 0; j < VL.size(); ++j)
836 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
837 TerminatorInst *Term = dyn_cast<TerminatorInst>(
838 cast<PHINode>(VL[j])->getIncomingValueForBlock(PH->getIncomingBlock(i)));
839 if (Term) {
840 DEBUG(dbgs() << "SLP: Need to swizzle PHINodes (TerminatorInst use).\n");
841 newTreeEntry(VL, false);
842 return;
843 }
844 }
845
846 newTreeEntry(VL, true);
847 DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n");
848
849 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
850 ValueList Operands;
851 // Prepare the operand vector.
852 for (unsigned j = 0; j < VL.size(); ++j)
853 Operands.push_back(cast<PHINode>(VL[j])->getIncomingValueForBlock(
854 PH->getIncomingBlock(i)));
855
856 buildTree_rec(Operands, Depth + 1);
857 }
858 return;
859 }
860 case Instruction::ExtractElement: {
861 bool Reuse = CanReuseExtract(VL);
862 if (Reuse) {
863 DEBUG(dbgs() << "SLP: Reusing extract sequence.\n");
864 }
865 newTreeEntry(VL, Reuse);
866 return;
867 }
868 case Instruction::Load: {
869 // Check if the loads are consecutive or of we need to swizzle them.
870 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) {
871 LoadInst *L = cast<LoadInst>(VL[i]);
872 if (!L->isSimple() || !isConsecutiveAccess(VL[i], VL[i + 1])) {
873 newTreeEntry(VL, false);
874 DEBUG(dbgs() << "SLP: Need to swizzle loads.\n");
875 return;
876 }
877 }
878 newTreeEntry(VL, true);
879 DEBUG(dbgs() << "SLP: added a vector of loads.\n");
880 return;
881 }
882 case Instruction::ZExt:
883 case Instruction::SExt:
884 case Instruction::FPToUI:
885 case Instruction::FPToSI:
886 case Instruction::FPExt:
887 case Instruction::PtrToInt:
888 case Instruction::IntToPtr:
889 case Instruction::SIToFP:
890 case Instruction::UIToFP:
891 case Instruction::Trunc:
892 case Instruction::FPTrunc:
893 case Instruction::BitCast: {
894 Type *SrcTy = VL0->getOperand(0)->getType();
895 for (unsigned i = 0; i < VL.size(); ++i) {
896 Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType();
897 if (Ty != SrcTy || Ty->isAggregateType() || Ty->isVectorTy()) {
898 newTreeEntry(VL, false);
899 DEBUG(dbgs() << "SLP: Gathering casts with different src types.\n");
900 return;
901 }
902 }
903 newTreeEntry(VL, true);
904 DEBUG(dbgs() << "SLP: added a vector of casts.\n");
905
906 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
907 ValueList Operands;
908 // Prepare the operand vector.
909 for (unsigned j = 0; j < VL.size(); ++j)
910 Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
911
912 buildTree_rec(Operands, Depth+1);
913 }
914 return;
915 }
916 case Instruction::ICmp:
917 case Instruction::FCmp: {
918 // Check that all of the compares have the same predicate.
919 CmpInst::Predicate P0 = dyn_cast<CmpInst>(VL0)->getPredicate();
920 Type *ComparedTy = cast<Instruction>(VL[0])->getOperand(0)->getType();
921 for (unsigned i = 1, e = VL.size(); i < e; ++i) {
922 CmpInst *Cmp = cast<CmpInst>(VL[i]);
923 if (Cmp->getPredicate() != P0 ||
924 Cmp->getOperand(0)->getType() != ComparedTy) {
925 newTreeEntry(VL, false);
926 DEBUG(dbgs() << "SLP: Gathering cmp with different predicate.\n");
927 return;
928 }
929 }
930
931 newTreeEntry(VL, true);
932 DEBUG(dbgs() << "SLP: added a vector of compares.\n");
933
934 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
935 ValueList Operands;
936 // Prepare the operand vector.
937 for (unsigned j = 0; j < VL.size(); ++j)
938 Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
939
940 buildTree_rec(Operands, Depth+1);
941 }
942 return;
943 }
944 case Instruction::Select:
945 case Instruction::Add:
946 case Instruction::FAdd:
947 case Instruction::Sub:
948 case Instruction::FSub:
949 case Instruction::Mul:
950 case Instruction::FMul:
951 case Instruction::UDiv:
952 case Instruction::SDiv:
953 case Instruction::FDiv:
954 case Instruction::URem:
955 case Instruction::SRem:
956 case Instruction::FRem:
957 case Instruction::Shl:
958 case Instruction::LShr:
959 case Instruction::AShr:
960 case Instruction::And:
961 case Instruction::Or:
962 case Instruction::Xor: {
963 newTreeEntry(VL, true);
964 DEBUG(dbgs() << "SLP: added a vector of bin op.\n");
965
966 // Sort operands of the instructions so that each side is more likely to
967 // have the same opcode.
968 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) {
969 ValueList Left, Right;
970 reorderInputsAccordingToOpcode(VL, Left, Right);
971 BasicBlock *LeftBB = getSameBlock(Left);
972 BasicBlock *RightBB = getSameBlock(Right);
973 // If we have common uses on separate paths in the tree make sure we
974 // process the one with greater common depth first.
975 // We can use block numbering to determine the subtree traversal as
976 // earler user has to come in between the common use and the later user.
977 if (LeftBB && RightBB && LeftBB == RightBB &&
978 getLastIndex(Right) > getLastIndex(Left)) {
979 buildTree_rec(Right, Depth + 1);
980 buildTree_rec(Left, Depth + 1);
981 } else {
982 buildTree_rec(Left, Depth + 1);
983 buildTree_rec(Right, Depth + 1);
984 }
985 return;
986 }
987
988 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
989 ValueList Operands;
990 // Prepare the operand vector.
991 for (unsigned j = 0; j < VL.size(); ++j)
992 Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
993
994 buildTree_rec(Operands, Depth+1);
995 }
996 return;
997 }
998 case Instruction::GetElementPtr: {
999 // We don't combine GEPs with complicated (nested) indexing.
1000 for (unsigned j = 0; j < VL.size(); ++j) {
1001 if (cast<Instruction>(VL[j])->getNumOperands() != 2) {
1002 DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n");
1003 newTreeEntry(VL, false);
1004 return;
1005 }
1006 }
1007
1008 // We can't combine several GEPs into one vector if they operate on
1009 // different types.
1010 Type *Ty0 = cast<Instruction>(VL0)->getOperand(0)->getType();
1011 for (unsigned j = 0; j < VL.size(); ++j) {
1012 Type *CurTy = cast<Instruction>(VL[j])->getOperand(0)->getType();
1013 if (Ty0 != CurTy) {
1014 DEBUG(dbgs() << "SLP: not-vectorizable GEP (different types).\n");
1015 newTreeEntry(VL, false);
1016 return;
1017 }
1018 }
1019
1020 // We don't combine GEPs with non-constant indexes.
1021 for (unsigned j = 0; j < VL.size(); ++j) {
1022 auto Op = cast<Instruction>(VL[j])->getOperand(1);
1023 if (!isa<ConstantInt>(Op)) {
1024 DEBUG(
1025 dbgs() << "SLP: not-vectorizable GEP (non-constant indexes).\n");
1026 newTreeEntry(VL, false);
1027 return;
1028 }
1029 }
1030
1031 newTreeEntry(VL, true);
1032 DEBUG(dbgs() << "SLP: added a vector of GEPs.\n");
1033 for (unsigned i = 0, e = 2; i < e; ++i) {
1034 ValueList Operands;
1035 // Prepare the operand vector.
1036 for (unsigned j = 0; j < VL.size(); ++j)
1037 Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
1038
1039 buildTree_rec(Operands, Depth + 1);
1040 }
1041 return;
1042 }
1043 case Instruction::Store: {
1044 // Check if the stores are consecutive or of we need to swizzle them.
1045 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i)
1046 if (!isConsecutiveAccess(VL[i], VL[i + 1])) {
1047 newTreeEntry(VL, false);
1048 DEBUG(dbgs() << "SLP: Non-consecutive store.\n");
1049 return;
1050 }
1051
1052 newTreeEntry(VL, true);
1053 DEBUG(dbgs() << "SLP: added a vector of stores.\n");
1054
1055 ValueList Operands;
1056 for (unsigned j = 0; j < VL.size(); ++j)
1057 Operands.push_back(cast<Instruction>(VL[j])->getOperand(0));
1058
1059 // We can ignore these values because we are sinking them down.
1060 MemBarrierIgnoreList.insert(VL.begin(), VL.end());
1061 buildTree_rec(Operands, Depth + 1);
1062 return;
1063 }
1064 case Instruction::Call: {
1065 // Check if the calls are all to the same vectorizable intrinsic.
1066 CallInst *CI = cast<CallInst>(VL[0]);
1067 // Check if this is an Intrinsic call or something that can be
1068 // represented by an intrinsic call
1069 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
1070 if (!isTriviallyVectorizable(ID)) {
1071 newTreeEntry(VL, false);
1072 DEBUG(dbgs() << "SLP: Non-vectorizable call.\n");
1073 return;
1074 }
1075 Function *Int = CI->getCalledFunction();
1076 Value *A1I = nullptr;
1077 if (hasVectorInstrinsicScalarOpd(ID, 1))
1078 A1I = CI->getArgOperand(1);
1079 for (unsigned i = 1, e = VL.size(); i != e; ++i) {
1080 CallInst *CI2 = dyn_cast<CallInst>(VL[i]);
1081 if (!CI2 || CI2->getCalledFunction() != Int ||
1082 getIntrinsicIDForCall(CI2, TLI) != ID) {
1083 newTreeEntry(VL, false);
1084 DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i]
1085 << "\n");
1086 return;
1087 }
1088 // ctlz,cttz and powi are special intrinsics whose second argument
1089 // should be same in order for them to be vectorized.
1090 if (hasVectorInstrinsicScalarOpd(ID, 1)) {
1091 Value *A1J = CI2->getArgOperand(1);
1092 if (A1I != A1J) {
1093 newTreeEntry(VL, false);
1094 DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI
1095 << " argument "<< A1I<<"!=" << A1J
1096 << "\n");
1097 return;
1098 }
1099 }
1100 }
1101
1102 newTreeEntry(VL, true);
1103 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) {
1104 ValueList Operands;
1105 // Prepare the operand vector.
1106 for (unsigned j = 0; j < VL.size(); ++j) {
1107 CallInst *CI2 = dyn_cast<CallInst>(VL[j]);
1108 Operands.push_back(CI2->getArgOperand(i));
1109 }
1110 buildTree_rec(Operands, Depth + 1);
1111 }
1112 return;
1113 }
1114 case Instruction::ShuffleVector: {
1115 // If this is not an alternate sequence of opcode like add-sub
1116 // then do not vectorize this instruction.
1117 if (!isAltShuffle) {
1118 newTreeEntry(VL, false);
1119 DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n");
1120 return;
1121 }
1122 newTreeEntry(VL, true);
1123 DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n");
1124 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
1125 ValueList Operands;
1126 // Prepare the operand vector.
1127 for (unsigned j = 0; j < VL.size(); ++j)
1128 Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
1129
1130 buildTree_rec(Operands, Depth + 1);
1131 }
1132 return;
1133 }
1134 default:
1135 newTreeEntry(VL, false);
1136 DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n");
1137 return;
1138 }
1139 }
1140
getEntryCost(TreeEntry * E)1141 int BoUpSLP::getEntryCost(TreeEntry *E) {
1142 ArrayRef<Value*> VL = E->Scalars;
1143
1144 Type *ScalarTy = VL[0]->getType();
1145 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
1146 ScalarTy = SI->getValueOperand()->getType();
1147 VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
1148
1149 if (E->NeedToGather) {
1150 if (allConstant(VL))
1151 return 0;
1152 if (isSplat(VL)) {
1153 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0);
1154 }
1155 return getGatherCost(E->Scalars);
1156 }
1157 unsigned Opcode = getSameOpcode(VL);
1158 assert(Opcode && getSameType(VL) && getSameBlock(VL) && "Invalid VL");
1159 Instruction *VL0 = cast<Instruction>(VL[0]);
1160 switch (Opcode) {
1161 case Instruction::PHI: {
1162 return 0;
1163 }
1164 case Instruction::ExtractElement: {
1165 if (CanReuseExtract(VL)) {
1166 int DeadCost = 0;
1167 for (unsigned i = 0, e = VL.size(); i < e; ++i) {
1168 ExtractElementInst *E = cast<ExtractElementInst>(VL[i]);
1169 if (E->hasOneUse())
1170 // Take credit for instruction that will become dead.
1171 DeadCost +=
1172 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i);
1173 }
1174 return -DeadCost;
1175 }
1176 return getGatherCost(VecTy);
1177 }
1178 case Instruction::ZExt:
1179 case Instruction::SExt:
1180 case Instruction::FPToUI:
1181 case Instruction::FPToSI:
1182 case Instruction::FPExt:
1183 case Instruction::PtrToInt:
1184 case Instruction::IntToPtr:
1185 case Instruction::SIToFP:
1186 case Instruction::UIToFP:
1187 case Instruction::Trunc:
1188 case Instruction::FPTrunc:
1189 case Instruction::BitCast: {
1190 Type *SrcTy = VL0->getOperand(0)->getType();
1191
1192 // Calculate the cost of this instruction.
1193 int ScalarCost = VL.size() * TTI->getCastInstrCost(VL0->getOpcode(),
1194 VL0->getType(), SrcTy);
1195
1196 VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size());
1197 int VecCost = TTI->getCastInstrCost(VL0->getOpcode(), VecTy, SrcVecTy);
1198 return VecCost - ScalarCost;
1199 }
1200 case Instruction::FCmp:
1201 case Instruction::ICmp:
1202 case Instruction::Select:
1203 case Instruction::Add:
1204 case Instruction::FAdd:
1205 case Instruction::Sub:
1206 case Instruction::FSub:
1207 case Instruction::Mul:
1208 case Instruction::FMul:
1209 case Instruction::UDiv:
1210 case Instruction::SDiv:
1211 case Instruction::FDiv:
1212 case Instruction::URem:
1213 case Instruction::SRem:
1214 case Instruction::FRem:
1215 case Instruction::Shl:
1216 case Instruction::LShr:
1217 case Instruction::AShr:
1218 case Instruction::And:
1219 case Instruction::Or:
1220 case Instruction::Xor: {
1221 // Calculate the cost of this instruction.
1222 int ScalarCost = 0;
1223 int VecCost = 0;
1224 if (Opcode == Instruction::FCmp || Opcode == Instruction::ICmp ||
1225 Opcode == Instruction::Select) {
1226 VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size());
1227 ScalarCost = VecTy->getNumElements() *
1228 TTI->getCmpSelInstrCost(Opcode, ScalarTy, Builder.getInt1Ty());
1229 VecCost = TTI->getCmpSelInstrCost(Opcode, VecTy, MaskTy);
1230 } else {
1231 // Certain instructions can be cheaper to vectorize if they have a
1232 // constant second vector operand.
1233 TargetTransformInfo::OperandValueKind Op1VK =
1234 TargetTransformInfo::OK_AnyValue;
1235 TargetTransformInfo::OperandValueKind Op2VK =
1236 TargetTransformInfo::OK_UniformConstantValue;
1237
1238 // If all operands are exactly the same ConstantInt then set the
1239 // operand kind to OK_UniformConstantValue.
1240 // If instead not all operands are constants, then set the operand kind
1241 // to OK_AnyValue. If all operands are constants but not the same,
1242 // then set the operand kind to OK_NonUniformConstantValue.
1243 ConstantInt *CInt = nullptr;
1244 for (unsigned i = 0; i < VL.size(); ++i) {
1245 const Instruction *I = cast<Instruction>(VL[i]);
1246 if (!isa<ConstantInt>(I->getOperand(1))) {
1247 Op2VK = TargetTransformInfo::OK_AnyValue;
1248 break;
1249 }
1250 if (i == 0) {
1251 CInt = cast<ConstantInt>(I->getOperand(1));
1252 continue;
1253 }
1254 if (Op2VK == TargetTransformInfo::OK_UniformConstantValue &&
1255 CInt != cast<ConstantInt>(I->getOperand(1)))
1256 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
1257 }
1258
1259 ScalarCost =
1260 VecTy->getNumElements() *
1261 TTI->getArithmeticInstrCost(Opcode, ScalarTy, Op1VK, Op2VK);
1262 VecCost = TTI->getArithmeticInstrCost(Opcode, VecTy, Op1VK, Op2VK);
1263 }
1264 return VecCost - ScalarCost;
1265 }
1266 case Instruction::GetElementPtr: {
1267 TargetTransformInfo::OperandValueKind Op1VK =
1268 TargetTransformInfo::OK_AnyValue;
1269 TargetTransformInfo::OperandValueKind Op2VK =
1270 TargetTransformInfo::OK_UniformConstantValue;
1271
1272 int ScalarCost =
1273 VecTy->getNumElements() *
1274 TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK);
1275 int VecCost =
1276 TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK);
1277
1278 return VecCost - ScalarCost;
1279 }
1280 case Instruction::Load: {
1281 // Cost of wide load - cost of scalar loads.
1282 int ScalarLdCost = VecTy->getNumElements() *
1283 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, 1, 0);
1284 int VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, 1, 0);
1285 return VecLdCost - ScalarLdCost;
1286 }
1287 case Instruction::Store: {
1288 // We know that we can merge the stores. Calculate the cost.
1289 int ScalarStCost = VecTy->getNumElements() *
1290 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, 1, 0);
1291 int VecStCost = TTI->getMemoryOpCost(Instruction::Store, VecTy, 1, 0);
1292 return VecStCost - ScalarStCost;
1293 }
1294 case Instruction::Call: {
1295 CallInst *CI = cast<CallInst>(VL0);
1296 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
1297
1298 // Calculate the cost of the scalar and vector calls.
1299 SmallVector<Type*, 4> ScalarTys, VecTys;
1300 for (unsigned op = 0, opc = CI->getNumArgOperands(); op!= opc; ++op) {
1301 ScalarTys.push_back(CI->getArgOperand(op)->getType());
1302 VecTys.push_back(VectorType::get(CI->getArgOperand(op)->getType(),
1303 VecTy->getNumElements()));
1304 }
1305
1306 int ScalarCallCost = VecTy->getNumElements() *
1307 TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys);
1308
1309 int VecCallCost = TTI->getIntrinsicInstrCost(ID, VecTy, VecTys);
1310
1311 DEBUG(dbgs() << "SLP: Call cost "<< VecCallCost - ScalarCallCost
1312 << " (" << VecCallCost << "-" << ScalarCallCost << ")"
1313 << " for " << *CI << "\n");
1314
1315 return VecCallCost - ScalarCallCost;
1316 }
1317 case Instruction::ShuffleVector: {
1318 TargetTransformInfo::OperandValueKind Op1VK =
1319 TargetTransformInfo::OK_AnyValue;
1320 TargetTransformInfo::OperandValueKind Op2VK =
1321 TargetTransformInfo::OK_AnyValue;
1322 int ScalarCost = 0;
1323 int VecCost = 0;
1324 for (unsigned i = 0; i < VL.size(); ++i) {
1325 Instruction *I = cast<Instruction>(VL[i]);
1326 if (!I)
1327 break;
1328 ScalarCost +=
1329 TTI->getArithmeticInstrCost(I->getOpcode(), ScalarTy, Op1VK, Op2VK);
1330 }
1331 // VecCost is equal to sum of the cost of creating 2 vectors
1332 // and the cost of creating shuffle.
1333 Instruction *I0 = cast<Instruction>(VL[0]);
1334 VecCost =
1335 TTI->getArithmeticInstrCost(I0->getOpcode(), VecTy, Op1VK, Op2VK);
1336 Instruction *I1 = cast<Instruction>(VL[1]);
1337 VecCost +=
1338 TTI->getArithmeticInstrCost(I1->getOpcode(), VecTy, Op1VK, Op2VK);
1339 VecCost +=
1340 TTI->getShuffleCost(TargetTransformInfo::SK_Alternate, VecTy, 0);
1341 return VecCost - ScalarCost;
1342 }
1343 default:
1344 llvm_unreachable("Unknown instruction");
1345 }
1346 }
1347
isFullyVectorizableTinyTree()1348 bool BoUpSLP::isFullyVectorizableTinyTree() {
1349 DEBUG(dbgs() << "SLP: Check whether the tree with height " <<
1350 VectorizableTree.size() << " is fully vectorizable .\n");
1351
1352 // We only handle trees of height 2.
1353 if (VectorizableTree.size() != 2)
1354 return false;
1355
1356 // Handle splat stores.
1357 if (!VectorizableTree[0].NeedToGather && isSplat(VectorizableTree[1].Scalars))
1358 return true;
1359
1360 // Gathering cost would be too much for tiny trees.
1361 if (VectorizableTree[0].NeedToGather || VectorizableTree[1].NeedToGather)
1362 return false;
1363
1364 return true;
1365 }
1366
getTreeCost()1367 int BoUpSLP::getTreeCost() {
1368 int Cost = 0;
1369 DEBUG(dbgs() << "SLP: Calculating cost for tree of size " <<
1370 VectorizableTree.size() << ".\n");
1371
1372 // We only vectorize tiny trees if it is fully vectorizable.
1373 if (VectorizableTree.size() < 3 && !isFullyVectorizableTinyTree()) {
1374 if (!VectorizableTree.size()) {
1375 assert(!ExternalUses.size() && "We should not have any external users");
1376 }
1377 return INT_MAX;
1378 }
1379
1380 unsigned BundleWidth = VectorizableTree[0].Scalars.size();
1381
1382 for (unsigned i = 0, e = VectorizableTree.size(); i != e; ++i) {
1383 int C = getEntryCost(&VectorizableTree[i]);
1384 DEBUG(dbgs() << "SLP: Adding cost " << C << " for bundle that starts with "
1385 << *VectorizableTree[i].Scalars[0] << " .\n");
1386 Cost += C;
1387 }
1388
1389 SmallSet<Value *, 16> ExtractCostCalculated;
1390 int ExtractCost = 0;
1391 for (UserList::iterator I = ExternalUses.begin(), E = ExternalUses.end();
1392 I != E; ++I) {
1393 // We only add extract cost once for the same scalar.
1394 if (!ExtractCostCalculated.insert(I->Scalar))
1395 continue;
1396
1397 VectorType *VecTy = VectorType::get(I->Scalar->getType(), BundleWidth);
1398 ExtractCost += TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy,
1399 I->Lane);
1400 }
1401
1402 DEBUG(dbgs() << "SLP: Total Cost " << Cost + ExtractCost<< ".\n");
1403 return Cost + ExtractCost;
1404 }
1405
getGatherCost(Type * Ty)1406 int BoUpSLP::getGatherCost(Type *Ty) {
1407 int Cost = 0;
1408 for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i)
1409 Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i);
1410 return Cost;
1411 }
1412
getGatherCost(ArrayRef<Value * > VL)1413 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) {
1414 // Find the type of the operands in VL.
1415 Type *ScalarTy = VL[0]->getType();
1416 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
1417 ScalarTy = SI->getValueOperand()->getType();
1418 VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
1419 // Find the cost of inserting/extracting values from the vector.
1420 return getGatherCost(VecTy);
1421 }
1422
getLocation(Instruction * I)1423 AliasAnalysis::Location BoUpSLP::getLocation(Instruction *I) {
1424 if (StoreInst *SI = dyn_cast<StoreInst>(I))
1425 return AA->getLocation(SI);
1426 if (LoadInst *LI = dyn_cast<LoadInst>(I))
1427 return AA->getLocation(LI);
1428 return AliasAnalysis::Location();
1429 }
1430
getPointerOperand(Value * I)1431 Value *BoUpSLP::getPointerOperand(Value *I) {
1432 if (LoadInst *LI = dyn_cast<LoadInst>(I))
1433 return LI->getPointerOperand();
1434 if (StoreInst *SI = dyn_cast<StoreInst>(I))
1435 return SI->getPointerOperand();
1436 return nullptr;
1437 }
1438
getAddressSpaceOperand(Value * I)1439 unsigned BoUpSLP::getAddressSpaceOperand(Value *I) {
1440 if (LoadInst *L = dyn_cast<LoadInst>(I))
1441 return L->getPointerAddressSpace();
1442 if (StoreInst *S = dyn_cast<StoreInst>(I))
1443 return S->getPointerAddressSpace();
1444 return -1;
1445 }
1446
isConsecutiveAccess(Value * A,Value * B)1447 bool BoUpSLP::isConsecutiveAccess(Value *A, Value *B) {
1448 Value *PtrA = getPointerOperand(A);
1449 Value *PtrB = getPointerOperand(B);
1450 unsigned ASA = getAddressSpaceOperand(A);
1451 unsigned ASB = getAddressSpaceOperand(B);
1452
1453 // Check that the address spaces match and that the pointers are valid.
1454 if (!PtrA || !PtrB || (ASA != ASB))
1455 return false;
1456
1457 // Make sure that A and B are different pointers of the same type.
1458 if (PtrA == PtrB || PtrA->getType() != PtrB->getType())
1459 return false;
1460
1461 unsigned PtrBitWidth = DL->getPointerSizeInBits(ASA);
1462 Type *Ty = cast<PointerType>(PtrA->getType())->getElementType();
1463 APInt Size(PtrBitWidth, DL->getTypeStoreSize(Ty));
1464
1465 APInt OffsetA(PtrBitWidth, 0), OffsetB(PtrBitWidth, 0);
1466 PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(*DL, OffsetA);
1467 PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(*DL, OffsetB);
1468
1469 APInt OffsetDelta = OffsetB - OffsetA;
1470
1471 // Check if they are based on the same pointer. That makes the offsets
1472 // sufficient.
1473 if (PtrA == PtrB)
1474 return OffsetDelta == Size;
1475
1476 // Compute the necessary base pointer delta to have the necessary final delta
1477 // equal to the size.
1478 APInt BaseDelta = Size - OffsetDelta;
1479
1480 // Otherwise compute the distance with SCEV between the base pointers.
1481 const SCEV *PtrSCEVA = SE->getSCEV(PtrA);
1482 const SCEV *PtrSCEVB = SE->getSCEV(PtrB);
1483 const SCEV *C = SE->getConstant(BaseDelta);
1484 const SCEV *X = SE->getAddExpr(PtrSCEVA, C);
1485 return X == PtrSCEVB;
1486 }
1487
getSinkBarrier(Instruction * Src,Instruction * Dst)1488 Value *BoUpSLP::getSinkBarrier(Instruction *Src, Instruction *Dst) {
1489 assert(Src->getParent() == Dst->getParent() && "Not the same BB");
1490 BasicBlock::iterator I = Src, E = Dst;
1491 /// Scan all of the instruction from SRC to DST and check if
1492 /// the source may alias.
1493 for (++I; I != E; ++I) {
1494 // Ignore store instructions that are marked as 'ignore'.
1495 if (MemBarrierIgnoreList.count(I))
1496 continue;
1497 if (Src->mayWriteToMemory()) /* Write */ {
1498 if (!I->mayReadOrWriteMemory())
1499 continue;
1500 } else /* Read */ {
1501 if (!I->mayWriteToMemory())
1502 continue;
1503 }
1504 AliasAnalysis::Location A = getLocation(&*I);
1505 AliasAnalysis::Location B = getLocation(Src);
1506
1507 if (!A.Ptr || !B.Ptr || AA->alias(A, B))
1508 return I;
1509 }
1510 return nullptr;
1511 }
1512
getLastIndex(ArrayRef<Value * > VL)1513 int BoUpSLP::getLastIndex(ArrayRef<Value *> VL) {
1514 BasicBlock *BB = cast<Instruction>(VL[0])->getParent();
1515 assert(BB == getSameBlock(VL) && "Invalid block");
1516 BlockNumbering &BN = getBlockNumbering(BB);
1517
1518 int MaxIdx = BN.getIndex(BB->getFirstNonPHI());
1519 for (unsigned i = 0, e = VL.size(); i < e; ++i)
1520 MaxIdx = std::max(MaxIdx, BN.getIndex(cast<Instruction>(VL[i])));
1521 return MaxIdx;
1522 }
1523
getLastInstruction(ArrayRef<Value * > VL)1524 Instruction *BoUpSLP::getLastInstruction(ArrayRef<Value *> VL) {
1525 BasicBlock *BB = cast<Instruction>(VL[0])->getParent();
1526 assert(BB == getSameBlock(VL) && "Invalid block");
1527 BlockNumbering &BN = getBlockNumbering(BB);
1528
1529 int MaxIdx = BN.getIndex(cast<Instruction>(VL[0]));
1530 for (unsigned i = 1, e = VL.size(); i < e; ++i)
1531 MaxIdx = std::max(MaxIdx, BN.getIndex(cast<Instruction>(VL[i])));
1532 Instruction *I = BN.getInstruction(MaxIdx);
1533 assert(I && "bad location");
1534 return I;
1535 }
1536
setInsertPointAfterBundle(ArrayRef<Value * > VL)1537 void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL) {
1538 Instruction *VL0 = cast<Instruction>(VL[0]);
1539 Instruction *LastInst = getLastInstruction(VL);
1540 BasicBlock::iterator NextInst = LastInst;
1541 ++NextInst;
1542 Builder.SetInsertPoint(VL0->getParent(), NextInst);
1543 Builder.SetCurrentDebugLocation(VL0->getDebugLoc());
1544 }
1545
Gather(ArrayRef<Value * > VL,VectorType * Ty)1546 Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) {
1547 Value *Vec = UndefValue::get(Ty);
1548 // Generate the 'InsertElement' instruction.
1549 for (unsigned i = 0; i < Ty->getNumElements(); ++i) {
1550 Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i));
1551 if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) {
1552 GatherSeq.insert(Insrt);
1553 CSEBlocks.insert(Insrt->getParent());
1554
1555 // Add to our 'need-to-extract' list.
1556 if (ScalarToTreeEntry.count(VL[i])) {
1557 int Idx = ScalarToTreeEntry[VL[i]];
1558 TreeEntry *E = &VectorizableTree[Idx];
1559 // Find which lane we need to extract.
1560 int FoundLane = -1;
1561 for (unsigned Lane = 0, LE = VL.size(); Lane != LE; ++Lane) {
1562 // Is this the lane of the scalar that we are looking for ?
1563 if (E->Scalars[Lane] == VL[i]) {
1564 FoundLane = Lane;
1565 break;
1566 }
1567 }
1568 assert(FoundLane >= 0 && "Could not find the correct lane");
1569 ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane));
1570 }
1571 }
1572 }
1573
1574 return Vec;
1575 }
1576
alreadyVectorized(ArrayRef<Value * > VL) const1577 Value *BoUpSLP::alreadyVectorized(ArrayRef<Value *> VL) const {
1578 SmallDenseMap<Value*, int>::const_iterator Entry
1579 = ScalarToTreeEntry.find(VL[0]);
1580 if (Entry != ScalarToTreeEntry.end()) {
1581 int Idx = Entry->second;
1582 const TreeEntry *En = &VectorizableTree[Idx];
1583 if (En->isSame(VL) && En->VectorizedValue)
1584 return En->VectorizedValue;
1585 }
1586 return nullptr;
1587 }
1588
vectorizeTree(ArrayRef<Value * > VL)1589 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) {
1590 if (ScalarToTreeEntry.count(VL[0])) {
1591 int Idx = ScalarToTreeEntry[VL[0]];
1592 TreeEntry *E = &VectorizableTree[Idx];
1593 if (E->isSame(VL))
1594 return vectorizeTree(E);
1595 }
1596
1597 Type *ScalarTy = VL[0]->getType();
1598 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
1599 ScalarTy = SI->getValueOperand()->getType();
1600 VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
1601
1602 return Gather(VL, VecTy);
1603 }
1604
vectorizeTree(TreeEntry * E)1605 Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
1606 IRBuilder<>::InsertPointGuard Guard(Builder);
1607
1608 if (E->VectorizedValue) {
1609 DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n");
1610 return E->VectorizedValue;
1611 }
1612
1613 Instruction *VL0 = cast<Instruction>(E->Scalars[0]);
1614 Type *ScalarTy = VL0->getType();
1615 if (StoreInst *SI = dyn_cast<StoreInst>(VL0))
1616 ScalarTy = SI->getValueOperand()->getType();
1617 VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size());
1618
1619 if (E->NeedToGather) {
1620 setInsertPointAfterBundle(E->Scalars);
1621 return Gather(E->Scalars, VecTy);
1622 }
1623 unsigned Opcode = getSameOpcode(E->Scalars);
1624
1625 switch (Opcode) {
1626 case Instruction::PHI: {
1627 PHINode *PH = dyn_cast<PHINode>(VL0);
1628 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI());
1629 Builder.SetCurrentDebugLocation(PH->getDebugLoc());
1630 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues());
1631 E->VectorizedValue = NewPhi;
1632
1633 // PHINodes may have multiple entries from the same block. We want to
1634 // visit every block once.
1635 SmallSet<BasicBlock*, 4> VisitedBBs;
1636
1637 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
1638 ValueList Operands;
1639 BasicBlock *IBB = PH->getIncomingBlock(i);
1640
1641 if (!VisitedBBs.insert(IBB)) {
1642 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB);
1643 continue;
1644 }
1645
1646 // Prepare the operand vector.
1647 for (unsigned j = 0; j < E->Scalars.size(); ++j)
1648 Operands.push_back(cast<PHINode>(E->Scalars[j])->
1649 getIncomingValueForBlock(IBB));
1650
1651 Builder.SetInsertPoint(IBB->getTerminator());
1652 Builder.SetCurrentDebugLocation(PH->getDebugLoc());
1653 Value *Vec = vectorizeTree(Operands);
1654 NewPhi->addIncoming(Vec, IBB);
1655 }
1656
1657 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() &&
1658 "Invalid number of incoming values");
1659 return NewPhi;
1660 }
1661
1662 case Instruction::ExtractElement: {
1663 if (CanReuseExtract(E->Scalars)) {
1664 Value *V = VL0->getOperand(0);
1665 E->VectorizedValue = V;
1666 return V;
1667 }
1668 return Gather(E->Scalars, VecTy);
1669 }
1670 case Instruction::ZExt:
1671 case Instruction::SExt:
1672 case Instruction::FPToUI:
1673 case Instruction::FPToSI:
1674 case Instruction::FPExt:
1675 case Instruction::PtrToInt:
1676 case Instruction::IntToPtr:
1677 case Instruction::SIToFP:
1678 case Instruction::UIToFP:
1679 case Instruction::Trunc:
1680 case Instruction::FPTrunc:
1681 case Instruction::BitCast: {
1682 ValueList INVL;
1683 for (int i = 0, e = E->Scalars.size(); i < e; ++i)
1684 INVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0));
1685
1686 setInsertPointAfterBundle(E->Scalars);
1687
1688 Value *InVec = vectorizeTree(INVL);
1689
1690 if (Value *V = alreadyVectorized(E->Scalars))
1691 return V;
1692
1693 CastInst *CI = dyn_cast<CastInst>(VL0);
1694 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy);
1695 E->VectorizedValue = V;
1696 return V;
1697 }
1698 case Instruction::FCmp:
1699 case Instruction::ICmp: {
1700 ValueList LHSV, RHSV;
1701 for (int i = 0, e = E->Scalars.size(); i < e; ++i) {
1702 LHSV.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0));
1703 RHSV.push_back(cast<Instruction>(E->Scalars[i])->getOperand(1));
1704 }
1705
1706 setInsertPointAfterBundle(E->Scalars);
1707
1708 Value *L = vectorizeTree(LHSV);
1709 Value *R = vectorizeTree(RHSV);
1710
1711 if (Value *V = alreadyVectorized(E->Scalars))
1712 return V;
1713
1714 CmpInst::Predicate P0 = dyn_cast<CmpInst>(VL0)->getPredicate();
1715 Value *V;
1716 if (Opcode == Instruction::FCmp)
1717 V = Builder.CreateFCmp(P0, L, R);
1718 else
1719 V = Builder.CreateICmp(P0, L, R);
1720
1721 E->VectorizedValue = V;
1722 return V;
1723 }
1724 case Instruction::Select: {
1725 ValueList TrueVec, FalseVec, CondVec;
1726 for (int i = 0, e = E->Scalars.size(); i < e; ++i) {
1727 CondVec.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0));
1728 TrueVec.push_back(cast<Instruction>(E->Scalars[i])->getOperand(1));
1729 FalseVec.push_back(cast<Instruction>(E->Scalars[i])->getOperand(2));
1730 }
1731
1732 setInsertPointAfterBundle(E->Scalars);
1733
1734 Value *Cond = vectorizeTree(CondVec);
1735 Value *True = vectorizeTree(TrueVec);
1736 Value *False = vectorizeTree(FalseVec);
1737
1738 if (Value *V = alreadyVectorized(E->Scalars))
1739 return V;
1740
1741 Value *V = Builder.CreateSelect(Cond, True, False);
1742 E->VectorizedValue = V;
1743 return V;
1744 }
1745 case Instruction::Add:
1746 case Instruction::FAdd:
1747 case Instruction::Sub:
1748 case Instruction::FSub:
1749 case Instruction::Mul:
1750 case Instruction::FMul:
1751 case Instruction::UDiv:
1752 case Instruction::SDiv:
1753 case Instruction::FDiv:
1754 case Instruction::URem:
1755 case Instruction::SRem:
1756 case Instruction::FRem:
1757 case Instruction::Shl:
1758 case Instruction::LShr:
1759 case Instruction::AShr:
1760 case Instruction::And:
1761 case Instruction::Or:
1762 case Instruction::Xor: {
1763 ValueList LHSVL, RHSVL;
1764 if (isa<BinaryOperator>(VL0) && VL0->isCommutative())
1765 reorderInputsAccordingToOpcode(E->Scalars, LHSVL, RHSVL);
1766 else
1767 for (int i = 0, e = E->Scalars.size(); i < e; ++i) {
1768 LHSVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0));
1769 RHSVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(1));
1770 }
1771
1772 setInsertPointAfterBundle(E->Scalars);
1773
1774 Value *LHS = vectorizeTree(LHSVL);
1775 Value *RHS = vectorizeTree(RHSVL);
1776
1777 if (LHS == RHS && isa<Instruction>(LHS)) {
1778 assert((VL0->getOperand(0) == VL0->getOperand(1)) && "Invalid order");
1779 }
1780
1781 if (Value *V = alreadyVectorized(E->Scalars))
1782 return V;
1783
1784 BinaryOperator *BinOp = cast<BinaryOperator>(VL0);
1785 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), LHS, RHS);
1786 E->VectorizedValue = V;
1787
1788 if (Instruction *I = dyn_cast<Instruction>(V))
1789 return propagateMetadata(I, E->Scalars);
1790
1791 return V;
1792 }
1793 case Instruction::Load: {
1794 // Loads are inserted at the head of the tree because we don't want to
1795 // sink them all the way down past store instructions.
1796 setInsertPointAfterBundle(E->Scalars);
1797
1798 LoadInst *LI = cast<LoadInst>(VL0);
1799 unsigned AS = LI->getPointerAddressSpace();
1800
1801 Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(),
1802 VecTy->getPointerTo(AS));
1803 unsigned Alignment = LI->getAlignment();
1804 LI = Builder.CreateLoad(VecPtr);
1805 if (!Alignment)
1806 Alignment = DL->getABITypeAlignment(LI->getPointerOperand()->getType());
1807 LI->setAlignment(Alignment);
1808 E->VectorizedValue = LI;
1809 return propagateMetadata(LI, E->Scalars);
1810 }
1811 case Instruction::Store: {
1812 StoreInst *SI = cast<StoreInst>(VL0);
1813 unsigned Alignment = SI->getAlignment();
1814 unsigned AS = SI->getPointerAddressSpace();
1815
1816 ValueList ValueOp;
1817 for (int i = 0, e = E->Scalars.size(); i < e; ++i)
1818 ValueOp.push_back(cast<StoreInst>(E->Scalars[i])->getValueOperand());
1819
1820 setInsertPointAfterBundle(E->Scalars);
1821
1822 Value *VecValue = vectorizeTree(ValueOp);
1823 Value *VecPtr = Builder.CreateBitCast(SI->getPointerOperand(),
1824 VecTy->getPointerTo(AS));
1825 StoreInst *S = Builder.CreateStore(VecValue, VecPtr);
1826 if (!Alignment)
1827 Alignment = DL->getABITypeAlignment(SI->getPointerOperand()->getType());
1828 S->setAlignment(Alignment);
1829 E->VectorizedValue = S;
1830 return propagateMetadata(S, E->Scalars);
1831 }
1832 case Instruction::GetElementPtr: {
1833 setInsertPointAfterBundle(E->Scalars);
1834
1835 ValueList Op0VL;
1836 for (int i = 0, e = E->Scalars.size(); i < e; ++i)
1837 Op0VL.push_back(cast<GetElementPtrInst>(E->Scalars[i])->getOperand(0));
1838
1839 Value *Op0 = vectorizeTree(Op0VL);
1840
1841 std::vector<Value *> OpVecs;
1842 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e;
1843 ++j) {
1844 ValueList OpVL;
1845 for (int i = 0, e = E->Scalars.size(); i < e; ++i)
1846 OpVL.push_back(cast<GetElementPtrInst>(E->Scalars[i])->getOperand(j));
1847
1848 Value *OpVec = vectorizeTree(OpVL);
1849 OpVecs.push_back(OpVec);
1850 }
1851
1852 Value *V = Builder.CreateGEP(Op0, OpVecs);
1853 E->VectorizedValue = V;
1854
1855 if (Instruction *I = dyn_cast<Instruction>(V))
1856 return propagateMetadata(I, E->Scalars);
1857
1858 return V;
1859 }
1860 case Instruction::Call: {
1861 CallInst *CI = cast<CallInst>(VL0);
1862 setInsertPointAfterBundle(E->Scalars);
1863 Function *FI;
1864 Intrinsic::ID IID = Intrinsic::not_intrinsic;
1865 if (CI && (FI = CI->getCalledFunction())) {
1866 IID = (Intrinsic::ID) FI->getIntrinsicID();
1867 }
1868 std::vector<Value *> OpVecs;
1869 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) {
1870 ValueList OpVL;
1871 // ctlz,cttz and powi are special intrinsics whose second argument is
1872 // a scalar. This argument should not be vectorized.
1873 if (hasVectorInstrinsicScalarOpd(IID, 1) && j == 1) {
1874 CallInst *CEI = cast<CallInst>(E->Scalars[0]);
1875 OpVecs.push_back(CEI->getArgOperand(j));
1876 continue;
1877 }
1878 for (int i = 0, e = E->Scalars.size(); i < e; ++i) {
1879 CallInst *CEI = cast<CallInst>(E->Scalars[i]);
1880 OpVL.push_back(CEI->getArgOperand(j));
1881 }
1882
1883 Value *OpVec = vectorizeTree(OpVL);
1884 DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n");
1885 OpVecs.push_back(OpVec);
1886 }
1887
1888 Module *M = F->getParent();
1889 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
1890 Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) };
1891 Function *CF = Intrinsic::getDeclaration(M, ID, Tys);
1892 Value *V = Builder.CreateCall(CF, OpVecs);
1893 E->VectorizedValue = V;
1894 return V;
1895 }
1896 case Instruction::ShuffleVector: {
1897 ValueList LHSVL, RHSVL;
1898 for (int i = 0, e = E->Scalars.size(); i < e; ++i) {
1899 LHSVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0));
1900 RHSVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(1));
1901 }
1902 setInsertPointAfterBundle(E->Scalars);
1903
1904 Value *LHS = vectorizeTree(LHSVL);
1905 Value *RHS = vectorizeTree(RHSVL);
1906
1907 if (Value *V = alreadyVectorized(E->Scalars))
1908 return V;
1909
1910 // Create a vector of LHS op1 RHS
1911 BinaryOperator *BinOp0 = cast<BinaryOperator>(VL0);
1912 Value *V0 = Builder.CreateBinOp(BinOp0->getOpcode(), LHS, RHS);
1913
1914 // Create a vector of LHS op2 RHS
1915 Instruction *VL1 = cast<Instruction>(E->Scalars[1]);
1916 BinaryOperator *BinOp1 = cast<BinaryOperator>(VL1);
1917 Value *V1 = Builder.CreateBinOp(BinOp1->getOpcode(), LHS, RHS);
1918
1919 // Create appropriate shuffle to take alternative operations from
1920 // the vector.
1921 std::vector<Constant *> Mask(E->Scalars.size());
1922 unsigned e = E->Scalars.size();
1923 for (unsigned i = 0; i < e; ++i) {
1924 if (i & 1)
1925 Mask[i] = Builder.getInt32(e + i);
1926 else
1927 Mask[i] = Builder.getInt32(i);
1928 }
1929
1930 Value *ShuffleMask = ConstantVector::get(Mask);
1931
1932 Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask);
1933 E->VectorizedValue = V;
1934 if (Instruction *I = dyn_cast<Instruction>(V))
1935 return propagateMetadata(I, E->Scalars);
1936
1937 return V;
1938 }
1939 default:
1940 llvm_unreachable("unknown inst");
1941 }
1942 return nullptr;
1943 }
1944
vectorizeTree()1945 Value *BoUpSLP::vectorizeTree() {
1946 Builder.SetInsertPoint(F->getEntryBlock().begin());
1947 vectorizeTree(&VectorizableTree[0]);
1948
1949 DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() << " values .\n");
1950
1951 // Extract all of the elements with the external uses.
1952 for (UserList::iterator it = ExternalUses.begin(), e = ExternalUses.end();
1953 it != e; ++it) {
1954 Value *Scalar = it->Scalar;
1955 llvm::User *User = it->User;
1956
1957 // Skip users that we already RAUW. This happens when one instruction
1958 // has multiple uses of the same value.
1959 if (std::find(Scalar->user_begin(), Scalar->user_end(), User) ==
1960 Scalar->user_end())
1961 continue;
1962 assert(ScalarToTreeEntry.count(Scalar) && "Invalid scalar");
1963
1964 int Idx = ScalarToTreeEntry[Scalar];
1965 TreeEntry *E = &VectorizableTree[Idx];
1966 assert(!E->NeedToGather && "Extracting from a gather list");
1967
1968 Value *Vec = E->VectorizedValue;
1969 assert(Vec && "Can't find vectorizable value");
1970
1971 Value *Lane = Builder.getInt32(it->Lane);
1972 // Generate extracts for out-of-tree users.
1973 // Find the insertion point for the extractelement lane.
1974 if (isa<Instruction>(Vec)){
1975 if (PHINode *PH = dyn_cast<PHINode>(User)) {
1976 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) {
1977 if (PH->getIncomingValue(i) == Scalar) {
1978 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator());
1979 Value *Ex = Builder.CreateExtractElement(Vec, Lane);
1980 CSEBlocks.insert(PH->getIncomingBlock(i));
1981 PH->setOperand(i, Ex);
1982 }
1983 }
1984 } else {
1985 Builder.SetInsertPoint(cast<Instruction>(User));
1986 Value *Ex = Builder.CreateExtractElement(Vec, Lane);
1987 CSEBlocks.insert(cast<Instruction>(User)->getParent());
1988 User->replaceUsesOfWith(Scalar, Ex);
1989 }
1990 } else {
1991 Builder.SetInsertPoint(F->getEntryBlock().begin());
1992 Value *Ex = Builder.CreateExtractElement(Vec, Lane);
1993 CSEBlocks.insert(&F->getEntryBlock());
1994 User->replaceUsesOfWith(Scalar, Ex);
1995 }
1996
1997 DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n");
1998 }
1999
2000 // For each vectorized value:
2001 for (int EIdx = 0, EE = VectorizableTree.size(); EIdx < EE; ++EIdx) {
2002 TreeEntry *Entry = &VectorizableTree[EIdx];
2003
2004 // For each lane:
2005 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
2006 Value *Scalar = Entry->Scalars[Lane];
2007 // No need to handle users of gathered values.
2008 if (Entry->NeedToGather)
2009 continue;
2010
2011 assert(Entry->VectorizedValue && "Can't find vectorizable value");
2012
2013 Type *Ty = Scalar->getType();
2014 if (!Ty->isVoidTy()) {
2015 #ifndef NDEBUG
2016 for (User *U : Scalar->users()) {
2017 DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n");
2018
2019 assert((ScalarToTreeEntry.count(U) ||
2020 // It is legal to replace users in the ignorelist by undef.
2021 (std::find(UserIgnoreList.begin(), UserIgnoreList.end(), U) !=
2022 UserIgnoreList.end())) &&
2023 "Replacing out-of-tree value with undef");
2024 }
2025 #endif
2026 Value *Undef = UndefValue::get(Ty);
2027 Scalar->replaceAllUsesWith(Undef);
2028 }
2029 DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n");
2030 cast<Instruction>(Scalar)->eraseFromParent();
2031 }
2032 }
2033
2034 for (auto &BN : BlocksNumbers)
2035 BN.second.forget();
2036
2037 Builder.ClearInsertionPoint();
2038
2039 return VectorizableTree[0].VectorizedValue;
2040 }
2041
optimizeGatherSequence()2042 void BoUpSLP::optimizeGatherSequence() {
2043 DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size()
2044 << " gather sequences instructions.\n");
2045 // LICM InsertElementInst sequences.
2046 for (SetVector<Instruction *>::iterator it = GatherSeq.begin(),
2047 e = GatherSeq.end(); it != e; ++it) {
2048 InsertElementInst *Insert = dyn_cast<InsertElementInst>(*it);
2049
2050 if (!Insert)
2051 continue;
2052
2053 // Check if this block is inside a loop.
2054 Loop *L = LI->getLoopFor(Insert->getParent());
2055 if (!L)
2056 continue;
2057
2058 // Check if it has a preheader.
2059 BasicBlock *PreHeader = L->getLoopPreheader();
2060 if (!PreHeader)
2061 continue;
2062
2063 // If the vector or the element that we insert into it are
2064 // instructions that are defined in this basic block then we can't
2065 // hoist this instruction.
2066 Instruction *CurrVec = dyn_cast<Instruction>(Insert->getOperand(0));
2067 Instruction *NewElem = dyn_cast<Instruction>(Insert->getOperand(1));
2068 if (CurrVec && L->contains(CurrVec))
2069 continue;
2070 if (NewElem && L->contains(NewElem))
2071 continue;
2072
2073 // We can hoist this instruction. Move it to the pre-header.
2074 Insert->moveBefore(PreHeader->getTerminator());
2075 }
2076
2077 // Make a list of all reachable blocks in our CSE queue.
2078 SmallVector<const DomTreeNode *, 8> CSEWorkList;
2079 CSEWorkList.reserve(CSEBlocks.size());
2080 for (BasicBlock *BB : CSEBlocks)
2081 if (DomTreeNode *N = DT->getNode(BB)) {
2082 assert(DT->isReachableFromEntry(N));
2083 CSEWorkList.push_back(N);
2084 }
2085
2086 // Sort blocks by domination. This ensures we visit a block after all blocks
2087 // dominating it are visited.
2088 std::stable_sort(CSEWorkList.begin(), CSEWorkList.end(),
2089 [this](const DomTreeNode *A, const DomTreeNode *B) {
2090 return DT->properlyDominates(A, B);
2091 });
2092
2093 // Perform O(N^2) search over the gather sequences and merge identical
2094 // instructions. TODO: We can further optimize this scan if we split the
2095 // instructions into different buckets based on the insert lane.
2096 SmallVector<Instruction *, 16> Visited;
2097 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) {
2098 assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) &&
2099 "Worklist not sorted properly!");
2100 BasicBlock *BB = (*I)->getBlock();
2101 // For all instructions in blocks containing gather sequences:
2102 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) {
2103 Instruction *In = it++;
2104 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In))
2105 continue;
2106
2107 // Check if we can replace this instruction with any of the
2108 // visited instructions.
2109 for (SmallVectorImpl<Instruction *>::iterator v = Visited.begin(),
2110 ve = Visited.end();
2111 v != ve; ++v) {
2112 if (In->isIdenticalTo(*v) &&
2113 DT->dominates((*v)->getParent(), In->getParent())) {
2114 In->replaceAllUsesWith(*v);
2115 In->eraseFromParent();
2116 In = nullptr;
2117 break;
2118 }
2119 }
2120 if (In) {
2121 assert(std::find(Visited.begin(), Visited.end(), In) == Visited.end());
2122 Visited.push_back(In);
2123 }
2124 }
2125 }
2126 CSEBlocks.clear();
2127 GatherSeq.clear();
2128 }
2129
2130 /// The SLPVectorizer Pass.
2131 struct SLPVectorizer : public FunctionPass {
2132 typedef SmallVector<StoreInst *, 8> StoreList;
2133 typedef MapVector<Value *, StoreList> StoreListMap;
2134
2135 /// Pass identification, replacement for typeid
2136 static char ID;
2137
SLPVectorizer__anon3797f89a0111::SLPVectorizer2138 explicit SLPVectorizer() : FunctionPass(ID) {
2139 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry());
2140 }
2141
2142 ScalarEvolution *SE;
2143 const DataLayout *DL;
2144 TargetTransformInfo *TTI;
2145 TargetLibraryInfo *TLI;
2146 AliasAnalysis *AA;
2147 LoopInfo *LI;
2148 DominatorTree *DT;
2149
runOnFunction__anon3797f89a0111::SLPVectorizer2150 bool runOnFunction(Function &F) override {
2151 if (skipOptnoneFunction(F))
2152 return false;
2153
2154 SE = &getAnalysis<ScalarEvolution>();
2155 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
2156 DL = DLP ? &DLP->getDataLayout() : nullptr;
2157 TTI = &getAnalysis<TargetTransformInfo>();
2158 TLI = getAnalysisIfAvailable<TargetLibraryInfo>();
2159 AA = &getAnalysis<AliasAnalysis>();
2160 LI = &getAnalysis<LoopInfo>();
2161 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2162
2163 StoreRefs.clear();
2164 bool Changed = false;
2165
2166 // If the target claims to have no vector registers don't attempt
2167 // vectorization.
2168 if (!TTI->getNumberOfRegisters(true))
2169 return false;
2170
2171 // Must have DataLayout. We can't require it because some tests run w/o
2172 // triple.
2173 if (!DL)
2174 return false;
2175
2176 // Don't vectorize when the attribute NoImplicitFloat is used.
2177 if (F.hasFnAttribute(Attribute::NoImplicitFloat))
2178 return false;
2179
2180 DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n");
2181
2182 // Use the bottom up slp vectorizer to construct chains that start with
2183 // store instructions.
2184 BoUpSLP R(&F, SE, DL, TTI, TLI, AA, LI, DT);
2185
2186 // Scan the blocks in the function in post order.
2187 for (po_iterator<BasicBlock*> it = po_begin(&F.getEntryBlock()),
2188 e = po_end(&F.getEntryBlock()); it != e; ++it) {
2189 BasicBlock *BB = *it;
2190 // Vectorize trees that end at stores.
2191 if (unsigned count = collectStores(BB, R)) {
2192 (void)count;
2193 DEBUG(dbgs() << "SLP: Found " << count << " stores to vectorize.\n");
2194 Changed |= vectorizeStoreChains(R);
2195 }
2196
2197 // Vectorize trees that end at reductions.
2198 Changed |= vectorizeChainsInBlock(BB, R);
2199 }
2200
2201 if (Changed) {
2202 R.optimizeGatherSequence();
2203 DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n");
2204 DEBUG(verifyFunction(F));
2205 }
2206 return Changed;
2207 }
2208
getAnalysisUsage__anon3797f89a0111::SLPVectorizer2209 void getAnalysisUsage(AnalysisUsage &AU) const override {
2210 FunctionPass::getAnalysisUsage(AU);
2211 AU.addRequired<ScalarEvolution>();
2212 AU.addRequired<AliasAnalysis>();
2213 AU.addRequired<TargetTransformInfo>();
2214 AU.addRequired<LoopInfo>();
2215 AU.addRequired<DominatorTreeWrapperPass>();
2216 AU.addPreserved<LoopInfo>();
2217 AU.addPreserved<DominatorTreeWrapperPass>();
2218 AU.setPreservesCFG();
2219 }
2220
2221 private:
2222
2223 /// \brief Collect memory references and sort them according to their base
2224 /// object. We sort the stores to their base objects to reduce the cost of the
2225 /// quadratic search on the stores. TODO: We can further reduce this cost
2226 /// if we flush the chain creation every time we run into a memory barrier.
2227 unsigned collectStores(BasicBlock *BB, BoUpSLP &R);
2228
2229 /// \brief Try to vectorize a chain that starts at two arithmetic instrs.
2230 bool tryToVectorizePair(Value *A, Value *B, BoUpSLP &R);
2231
2232 /// \brief Try to vectorize a list of operands.
2233 /// \@param BuildVector A list of users to ignore for the purpose of
2234 /// scheduling and that don't need extracting.
2235 /// \returns true if a value was vectorized.
2236 bool tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
2237 ArrayRef<Value *> BuildVector = None);
2238
2239 /// \brief Try to vectorize a chain that may start at the operands of \V;
2240 bool tryToVectorize(BinaryOperator *V, BoUpSLP &R);
2241
2242 /// \brief Vectorize the stores that were collected in StoreRefs.
2243 bool vectorizeStoreChains(BoUpSLP &R);
2244
2245 /// \brief Scan the basic block and look for patterns that are likely to start
2246 /// a vectorization chain.
2247 bool vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R);
2248
2249 bool vectorizeStoreChain(ArrayRef<Value *> Chain, int CostThreshold,
2250 BoUpSLP &R);
2251
2252 bool vectorizeStores(ArrayRef<StoreInst *> Stores, int costThreshold,
2253 BoUpSLP &R);
2254 private:
2255 StoreListMap StoreRefs;
2256 };
2257
2258 /// \brief Check that the Values in the slice in VL array are still existent in
2259 /// the WeakVH array.
2260 /// Vectorization of part of the VL array may cause later values in the VL array
2261 /// to become invalid. We track when this has happened in the WeakVH array.
hasValueBeenRAUWed(ArrayRef<Value * > & VL,SmallVectorImpl<WeakVH> & VH,unsigned SliceBegin,unsigned SliceSize)2262 static bool hasValueBeenRAUWed(ArrayRef<Value *> &VL,
2263 SmallVectorImpl<WeakVH> &VH,
2264 unsigned SliceBegin,
2265 unsigned SliceSize) {
2266 for (unsigned i = SliceBegin; i < SliceBegin + SliceSize; ++i)
2267 if (VH[i] != VL[i])
2268 return true;
2269
2270 return false;
2271 }
2272
vectorizeStoreChain(ArrayRef<Value * > Chain,int CostThreshold,BoUpSLP & R)2273 bool SLPVectorizer::vectorizeStoreChain(ArrayRef<Value *> Chain,
2274 int CostThreshold, BoUpSLP &R) {
2275 unsigned ChainLen = Chain.size();
2276 DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen
2277 << "\n");
2278 Type *StoreTy = cast<StoreInst>(Chain[0])->getValueOperand()->getType();
2279 unsigned Sz = DL->getTypeSizeInBits(StoreTy);
2280 unsigned VF = MinVecRegSize / Sz;
2281
2282 if (!isPowerOf2_32(Sz) || VF < 2)
2283 return false;
2284
2285 // Keep track of values that were deleted by vectorizing in the loop below.
2286 SmallVector<WeakVH, 8> TrackValues(Chain.begin(), Chain.end());
2287
2288 bool Changed = false;
2289 // Look for profitable vectorizable trees at all offsets, starting at zero.
2290 for (unsigned i = 0, e = ChainLen; i < e; ++i) {
2291 if (i + VF > e)
2292 break;
2293
2294 // Check that a previous iteration of this loop did not delete the Value.
2295 if (hasValueBeenRAUWed(Chain, TrackValues, i, VF))
2296 continue;
2297
2298 DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i
2299 << "\n");
2300 ArrayRef<Value *> Operands = Chain.slice(i, VF);
2301
2302 R.buildTree(Operands);
2303
2304 int Cost = R.getTreeCost();
2305
2306 DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n");
2307 if (Cost < CostThreshold) {
2308 DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n");
2309 R.vectorizeTree();
2310
2311 // Move to the next bundle.
2312 i += VF - 1;
2313 Changed = true;
2314 }
2315 }
2316
2317 return Changed;
2318 }
2319
vectorizeStores(ArrayRef<StoreInst * > Stores,int costThreshold,BoUpSLP & R)2320 bool SLPVectorizer::vectorizeStores(ArrayRef<StoreInst *> Stores,
2321 int costThreshold, BoUpSLP &R) {
2322 SetVector<Value *> Heads, Tails;
2323 SmallDenseMap<Value *, Value *> ConsecutiveChain;
2324
2325 // We may run into multiple chains that merge into a single chain. We mark the
2326 // stores that we vectorized so that we don't visit the same store twice.
2327 BoUpSLP::ValueSet VectorizedStores;
2328 bool Changed = false;
2329
2330 // Do a quadratic search on all of the given stores and find
2331 // all of the pairs of stores that follow each other.
2332 for (unsigned i = 0, e = Stores.size(); i < e; ++i) {
2333 for (unsigned j = 0; j < e; ++j) {
2334 if (i == j)
2335 continue;
2336
2337 if (R.isConsecutiveAccess(Stores[i], Stores[j])) {
2338 Tails.insert(Stores[j]);
2339 Heads.insert(Stores[i]);
2340 ConsecutiveChain[Stores[i]] = Stores[j];
2341 }
2342 }
2343 }
2344
2345 // For stores that start but don't end a link in the chain:
2346 for (SetVector<Value *>::iterator it = Heads.begin(), e = Heads.end();
2347 it != e; ++it) {
2348 if (Tails.count(*it))
2349 continue;
2350
2351 // We found a store instr that starts a chain. Now follow the chain and try
2352 // to vectorize it.
2353 BoUpSLP::ValueList Operands;
2354 Value *I = *it;
2355 // Collect the chain into a list.
2356 while (Tails.count(I) || Heads.count(I)) {
2357 if (VectorizedStores.count(I))
2358 break;
2359 Operands.push_back(I);
2360 // Move to the next value in the chain.
2361 I = ConsecutiveChain[I];
2362 }
2363
2364 bool Vectorized = vectorizeStoreChain(Operands, costThreshold, R);
2365
2366 // Mark the vectorized stores so that we don't vectorize them again.
2367 if (Vectorized)
2368 VectorizedStores.insert(Operands.begin(), Operands.end());
2369 Changed |= Vectorized;
2370 }
2371
2372 return Changed;
2373 }
2374
2375
collectStores(BasicBlock * BB,BoUpSLP & R)2376 unsigned SLPVectorizer::collectStores(BasicBlock *BB, BoUpSLP &R) {
2377 unsigned count = 0;
2378 StoreRefs.clear();
2379 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
2380 StoreInst *SI = dyn_cast<StoreInst>(it);
2381 if (!SI)
2382 continue;
2383
2384 // Don't touch volatile stores.
2385 if (!SI->isSimple())
2386 continue;
2387
2388 // Check that the pointer points to scalars.
2389 Type *Ty = SI->getValueOperand()->getType();
2390 if (Ty->isAggregateType() || Ty->isVectorTy())
2391 continue;
2392
2393 // Find the base pointer.
2394 Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), DL);
2395
2396 // Save the store locations.
2397 StoreRefs[Ptr].push_back(SI);
2398 count++;
2399 }
2400 return count;
2401 }
2402
tryToVectorizePair(Value * A,Value * B,BoUpSLP & R)2403 bool SLPVectorizer::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) {
2404 if (!A || !B)
2405 return false;
2406 Value *VL[] = { A, B };
2407 return tryToVectorizeList(VL, R);
2408 }
2409
tryToVectorizeList(ArrayRef<Value * > VL,BoUpSLP & R,ArrayRef<Value * > BuildVector)2410 bool SLPVectorizer::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
2411 ArrayRef<Value *> BuildVector) {
2412 if (VL.size() < 2)
2413 return false;
2414
2415 DEBUG(dbgs() << "SLP: Vectorizing a list of length = " << VL.size() << ".\n");
2416
2417 // Check that all of the parts are scalar instructions of the same type.
2418 Instruction *I0 = dyn_cast<Instruction>(VL[0]);
2419 if (!I0)
2420 return false;
2421
2422 unsigned Opcode0 = I0->getOpcode();
2423
2424 Type *Ty0 = I0->getType();
2425 unsigned Sz = DL->getTypeSizeInBits(Ty0);
2426 unsigned VF = MinVecRegSize / Sz;
2427
2428 for (int i = 0, e = VL.size(); i < e; ++i) {
2429 Type *Ty = VL[i]->getType();
2430 if (Ty->isAggregateType() || Ty->isVectorTy())
2431 return false;
2432 Instruction *Inst = dyn_cast<Instruction>(VL[i]);
2433 if (!Inst || Inst->getOpcode() != Opcode0)
2434 return false;
2435 }
2436
2437 bool Changed = false;
2438
2439 // Keep track of values that were deleted by vectorizing in the loop below.
2440 SmallVector<WeakVH, 8> TrackValues(VL.begin(), VL.end());
2441
2442 for (unsigned i = 0, e = VL.size(); i < e; ++i) {
2443 unsigned OpsWidth = 0;
2444
2445 if (i + VF > e)
2446 OpsWidth = e - i;
2447 else
2448 OpsWidth = VF;
2449
2450 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2)
2451 break;
2452
2453 // Check that a previous iteration of this loop did not delete the Value.
2454 if (hasValueBeenRAUWed(VL, TrackValues, i, OpsWidth))
2455 continue;
2456
2457 DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations "
2458 << "\n");
2459 ArrayRef<Value *> Ops = VL.slice(i, OpsWidth);
2460
2461 ArrayRef<Value *> BuildVectorSlice;
2462 if (!BuildVector.empty())
2463 BuildVectorSlice = BuildVector.slice(i, OpsWidth);
2464
2465 R.buildTree(Ops, BuildVectorSlice);
2466 int Cost = R.getTreeCost();
2467
2468 if (Cost < -SLPCostThreshold) {
2469 DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n");
2470 Value *VectorizedRoot = R.vectorizeTree();
2471
2472 // Reconstruct the build vector by extracting the vectorized root. This
2473 // way we handle the case where some elements of the vector are undefined.
2474 // (return (inserelt <4 xi32> (insertelt undef (opd0) 0) (opd1) 2))
2475 if (!BuildVectorSlice.empty()) {
2476 // The insert point is the last build vector instruction. The vectorized
2477 // root will precede it. This guarantees that we get an instruction. The
2478 // vectorized tree could have been constant folded.
2479 Instruction *InsertAfter = cast<Instruction>(BuildVectorSlice.back());
2480 unsigned VecIdx = 0;
2481 for (auto &V : BuildVectorSlice) {
2482 IRBuilder<true, NoFolder> Builder(
2483 ++BasicBlock::iterator(InsertAfter));
2484 InsertElementInst *IE = cast<InsertElementInst>(V);
2485 Instruction *Extract = cast<Instruction>(Builder.CreateExtractElement(
2486 VectorizedRoot, Builder.getInt32(VecIdx++)));
2487 IE->setOperand(1, Extract);
2488 IE->removeFromParent();
2489 IE->insertAfter(Extract);
2490 InsertAfter = IE;
2491 }
2492 }
2493 // Move to the next bundle.
2494 i += VF - 1;
2495 Changed = true;
2496 }
2497 }
2498
2499 return Changed;
2500 }
2501
tryToVectorize(BinaryOperator * V,BoUpSLP & R)2502 bool SLPVectorizer::tryToVectorize(BinaryOperator *V, BoUpSLP &R) {
2503 if (!V)
2504 return false;
2505
2506 // Try to vectorize V.
2507 if (tryToVectorizePair(V->getOperand(0), V->getOperand(1), R))
2508 return true;
2509
2510 BinaryOperator *A = dyn_cast<BinaryOperator>(V->getOperand(0));
2511 BinaryOperator *B = dyn_cast<BinaryOperator>(V->getOperand(1));
2512 // Try to skip B.
2513 if (B && B->hasOneUse()) {
2514 BinaryOperator *B0 = dyn_cast<BinaryOperator>(B->getOperand(0));
2515 BinaryOperator *B1 = dyn_cast<BinaryOperator>(B->getOperand(1));
2516 if (tryToVectorizePair(A, B0, R)) {
2517 B->moveBefore(V);
2518 return true;
2519 }
2520 if (tryToVectorizePair(A, B1, R)) {
2521 B->moveBefore(V);
2522 return true;
2523 }
2524 }
2525
2526 // Try to skip A.
2527 if (A && A->hasOneUse()) {
2528 BinaryOperator *A0 = dyn_cast<BinaryOperator>(A->getOperand(0));
2529 BinaryOperator *A1 = dyn_cast<BinaryOperator>(A->getOperand(1));
2530 if (tryToVectorizePair(A0, B, R)) {
2531 A->moveBefore(V);
2532 return true;
2533 }
2534 if (tryToVectorizePair(A1, B, R)) {
2535 A->moveBefore(V);
2536 return true;
2537 }
2538 }
2539 return 0;
2540 }
2541
2542 /// \brief Generate a shuffle mask to be used in a reduction tree.
2543 ///
2544 /// \param VecLen The length of the vector to be reduced.
2545 /// \param NumEltsToRdx The number of elements that should be reduced in the
2546 /// vector.
2547 /// \param IsPairwise Whether the reduction is a pairwise or splitting
2548 /// reduction. A pairwise reduction will generate a mask of
2549 /// <0,2,...> or <1,3,..> while a splitting reduction will generate
2550 /// <2,3, undef,undef> for a vector of 4 and NumElts = 2.
2551 /// \param IsLeft True will generate a mask of even elements, odd otherwise.
createRdxShuffleMask(unsigned VecLen,unsigned NumEltsToRdx,bool IsPairwise,bool IsLeft,IRBuilder<> & Builder)2552 static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx,
2553 bool IsPairwise, bool IsLeft,
2554 IRBuilder<> &Builder) {
2555 assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask");
2556
2557 SmallVector<Constant *, 32> ShuffleMask(
2558 VecLen, UndefValue::get(Builder.getInt32Ty()));
2559
2560 if (IsPairwise)
2561 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right).
2562 for (unsigned i = 0; i != NumEltsToRdx; ++i)
2563 ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft);
2564 else
2565 // Move the upper half of the vector to the lower half.
2566 for (unsigned i = 0; i != NumEltsToRdx; ++i)
2567 ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i);
2568
2569 return ConstantVector::get(ShuffleMask);
2570 }
2571
2572
2573 /// Model horizontal reductions.
2574 ///
2575 /// A horizontal reduction is a tree of reduction operations (currently add and
2576 /// fadd) that has operations that can be put into a vector as its leaf.
2577 /// For example, this tree:
2578 ///
2579 /// mul mul mul mul
2580 /// \ / \ /
2581 /// + +
2582 /// \ /
2583 /// +
2584 /// This tree has "mul" as its reduced values and "+" as its reduction
2585 /// operations. A reduction might be feeding into a store or a binary operation
2586 /// feeding a phi.
2587 /// ...
2588 /// \ /
2589 /// +
2590 /// |
2591 /// phi +=
2592 ///
2593 /// Or:
2594 /// ...
2595 /// \ /
2596 /// +
2597 /// |
2598 /// *p =
2599 ///
2600 class HorizontalReduction {
2601 SmallVector<Value *, 16> ReductionOps;
2602 SmallVector<Value *, 32> ReducedVals;
2603
2604 BinaryOperator *ReductionRoot;
2605 PHINode *ReductionPHI;
2606
2607 /// The opcode of the reduction.
2608 unsigned ReductionOpcode;
2609 /// The opcode of the values we perform a reduction on.
2610 unsigned ReducedValueOpcode;
2611 /// The width of one full horizontal reduction operation.
2612 unsigned ReduxWidth;
2613 /// Should we model this reduction as a pairwise reduction tree or a tree that
2614 /// splits the vector in halves and adds those halves.
2615 bool IsPairwiseReduction;
2616
2617 public:
HorizontalReduction()2618 HorizontalReduction()
2619 : ReductionRoot(nullptr), ReductionPHI(nullptr), ReductionOpcode(0),
2620 ReducedValueOpcode(0), ReduxWidth(0), IsPairwiseReduction(false) {}
2621
2622 /// \brief Try to find a reduction tree.
matchAssociativeReduction(PHINode * Phi,BinaryOperator * B,const DataLayout * DL)2623 bool matchAssociativeReduction(PHINode *Phi, BinaryOperator *B,
2624 const DataLayout *DL) {
2625 assert((!Phi ||
2626 std::find(Phi->op_begin(), Phi->op_end(), B) != Phi->op_end()) &&
2627 "Thi phi needs to use the binary operator");
2628
2629 // We could have a initial reductions that is not an add.
2630 // r *= v1 + v2 + v3 + v4
2631 // In such a case start looking for a tree rooted in the first '+'.
2632 if (Phi) {
2633 if (B->getOperand(0) == Phi) {
2634 Phi = nullptr;
2635 B = dyn_cast<BinaryOperator>(B->getOperand(1));
2636 } else if (B->getOperand(1) == Phi) {
2637 Phi = nullptr;
2638 B = dyn_cast<BinaryOperator>(B->getOperand(0));
2639 }
2640 }
2641
2642 if (!B)
2643 return false;
2644
2645 Type *Ty = B->getType();
2646 if (Ty->isVectorTy())
2647 return false;
2648
2649 ReductionOpcode = B->getOpcode();
2650 ReducedValueOpcode = 0;
2651 ReduxWidth = MinVecRegSize / DL->getTypeSizeInBits(Ty);
2652 ReductionRoot = B;
2653 ReductionPHI = Phi;
2654
2655 if (ReduxWidth < 4)
2656 return false;
2657
2658 // We currently only support adds.
2659 if (ReductionOpcode != Instruction::Add &&
2660 ReductionOpcode != Instruction::FAdd)
2661 return false;
2662
2663 // Post order traverse the reduction tree starting at B. We only handle true
2664 // trees containing only binary operators.
2665 SmallVector<std::pair<BinaryOperator *, unsigned>, 32> Stack;
2666 Stack.push_back(std::make_pair(B, 0));
2667 while (!Stack.empty()) {
2668 BinaryOperator *TreeN = Stack.back().first;
2669 unsigned EdgeToVist = Stack.back().second++;
2670 bool IsReducedValue = TreeN->getOpcode() != ReductionOpcode;
2671
2672 // Only handle trees in the current basic block.
2673 if (TreeN->getParent() != B->getParent())
2674 return false;
2675
2676 // Each tree node needs to have one user except for the ultimate
2677 // reduction.
2678 if (!TreeN->hasOneUse() && TreeN != B)
2679 return false;
2680
2681 // Postorder vist.
2682 if (EdgeToVist == 2 || IsReducedValue) {
2683 if (IsReducedValue) {
2684 // Make sure that the opcodes of the operations that we are going to
2685 // reduce match.
2686 if (!ReducedValueOpcode)
2687 ReducedValueOpcode = TreeN->getOpcode();
2688 else if (ReducedValueOpcode != TreeN->getOpcode())
2689 return false;
2690 ReducedVals.push_back(TreeN);
2691 } else {
2692 // We need to be able to reassociate the adds.
2693 if (!TreeN->isAssociative())
2694 return false;
2695 ReductionOps.push_back(TreeN);
2696 }
2697 // Retract.
2698 Stack.pop_back();
2699 continue;
2700 }
2701
2702 // Visit left or right.
2703 Value *NextV = TreeN->getOperand(EdgeToVist);
2704 BinaryOperator *Next = dyn_cast<BinaryOperator>(NextV);
2705 if (Next)
2706 Stack.push_back(std::make_pair(Next, 0));
2707 else if (NextV != Phi)
2708 return false;
2709 }
2710 return true;
2711 }
2712
2713 /// \brief Attempt to vectorize the tree found by
2714 /// matchAssociativeReduction.
tryToReduce(BoUpSLP & V,TargetTransformInfo * TTI)2715 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) {
2716 if (ReducedVals.empty())
2717 return false;
2718
2719 unsigned NumReducedVals = ReducedVals.size();
2720 if (NumReducedVals < ReduxWidth)
2721 return false;
2722
2723 Value *VectorizedTree = nullptr;
2724 IRBuilder<> Builder(ReductionRoot);
2725 FastMathFlags Unsafe;
2726 Unsafe.setUnsafeAlgebra();
2727 Builder.SetFastMathFlags(Unsafe);
2728 unsigned i = 0;
2729
2730 for (; i < NumReducedVals - ReduxWidth + 1; i += ReduxWidth) {
2731 ArrayRef<Value *> ValsToReduce(&ReducedVals[i], ReduxWidth);
2732 V.buildTree(ValsToReduce, ReductionOps);
2733
2734 // Estimate cost.
2735 int Cost = V.getTreeCost() + getReductionCost(TTI, ReducedVals[i]);
2736 if (Cost >= -SLPCostThreshold)
2737 break;
2738
2739 DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" << Cost
2740 << ". (HorRdx)\n");
2741
2742 // Vectorize a tree.
2743 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc();
2744 Value *VectorizedRoot = V.vectorizeTree();
2745
2746 // Emit a reduction.
2747 Value *ReducedSubTree = emitReduction(VectorizedRoot, Builder);
2748 if (VectorizedTree) {
2749 Builder.SetCurrentDebugLocation(Loc);
2750 VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree,
2751 ReducedSubTree, "bin.rdx");
2752 } else
2753 VectorizedTree = ReducedSubTree;
2754 }
2755
2756 if (VectorizedTree) {
2757 // Finish the reduction.
2758 for (; i < NumReducedVals; ++i) {
2759 Builder.SetCurrentDebugLocation(
2760 cast<Instruction>(ReducedVals[i])->getDebugLoc());
2761 VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree,
2762 ReducedVals[i]);
2763 }
2764 // Update users.
2765 if (ReductionPHI) {
2766 assert(ReductionRoot && "Need a reduction operation");
2767 ReductionRoot->setOperand(0, VectorizedTree);
2768 ReductionRoot->setOperand(1, ReductionPHI);
2769 } else
2770 ReductionRoot->replaceAllUsesWith(VectorizedTree);
2771 }
2772 return VectorizedTree != nullptr;
2773 }
2774
2775 private:
2776
2777 /// \brief Calcuate the cost of a reduction.
getReductionCost(TargetTransformInfo * TTI,Value * FirstReducedVal)2778 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal) {
2779 Type *ScalarTy = FirstReducedVal->getType();
2780 Type *VecTy = VectorType::get(ScalarTy, ReduxWidth);
2781
2782 int PairwiseRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, true);
2783 int SplittingRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, false);
2784
2785 IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost;
2786 int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost;
2787
2788 int ScalarReduxCost =
2789 ReduxWidth * TTI->getArithmeticInstrCost(ReductionOpcode, VecTy);
2790
2791 DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost
2792 << " for reduction that starts with " << *FirstReducedVal
2793 << " (It is a "
2794 << (IsPairwiseReduction ? "pairwise" : "splitting")
2795 << " reduction)\n");
2796
2797 return VecReduxCost - ScalarReduxCost;
2798 }
2799
createBinOp(IRBuilder<> & Builder,unsigned Opcode,Value * L,Value * R,const Twine & Name="")2800 static Value *createBinOp(IRBuilder<> &Builder, unsigned Opcode, Value *L,
2801 Value *R, const Twine &Name = "") {
2802 if (Opcode == Instruction::FAdd)
2803 return Builder.CreateFAdd(L, R, Name);
2804 return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, L, R, Name);
2805 }
2806
2807 /// \brief Emit a horizontal reduction of the vectorized value.
emitReduction(Value * VectorizedValue,IRBuilder<> & Builder)2808 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder) {
2809 assert(VectorizedValue && "Need to have a vectorized tree node");
2810 Instruction *ValToReduce = dyn_cast<Instruction>(VectorizedValue);
2811 assert(isPowerOf2_32(ReduxWidth) &&
2812 "We only handle power-of-two reductions for now");
2813
2814 Value *TmpVec = ValToReduce;
2815 for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) {
2816 if (IsPairwiseReduction) {
2817 Value *LeftMask =
2818 createRdxShuffleMask(ReduxWidth, i, true, true, Builder);
2819 Value *RightMask =
2820 createRdxShuffleMask(ReduxWidth, i, true, false, Builder);
2821
2822 Value *LeftShuf = Builder.CreateShuffleVector(
2823 TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l");
2824 Value *RightShuf = Builder.CreateShuffleVector(
2825 TmpVec, UndefValue::get(TmpVec->getType()), (RightMask),
2826 "rdx.shuf.r");
2827 TmpVec = createBinOp(Builder, ReductionOpcode, LeftShuf, RightShuf,
2828 "bin.rdx");
2829 } else {
2830 Value *UpperHalf =
2831 createRdxShuffleMask(ReduxWidth, i, false, false, Builder);
2832 Value *Shuf = Builder.CreateShuffleVector(
2833 TmpVec, UndefValue::get(TmpVec->getType()), UpperHalf, "rdx.shuf");
2834 TmpVec = createBinOp(Builder, ReductionOpcode, TmpVec, Shuf, "bin.rdx");
2835 }
2836 }
2837
2838 // The result is in the first element of the vector.
2839 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
2840 }
2841 };
2842
2843 /// \brief Recognize construction of vectors like
2844 /// %ra = insertelement <4 x float> undef, float %s0, i32 0
2845 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1
2846 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2
2847 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3
2848 ///
2849 /// Returns true if it matches
2850 ///
findBuildVector(InsertElementInst * FirstInsertElem,SmallVectorImpl<Value * > & BuildVector,SmallVectorImpl<Value * > & BuildVectorOpds)2851 static bool findBuildVector(InsertElementInst *FirstInsertElem,
2852 SmallVectorImpl<Value *> &BuildVector,
2853 SmallVectorImpl<Value *> &BuildVectorOpds) {
2854 if (!isa<UndefValue>(FirstInsertElem->getOperand(0)))
2855 return false;
2856
2857 InsertElementInst *IE = FirstInsertElem;
2858 while (true) {
2859 BuildVector.push_back(IE);
2860 BuildVectorOpds.push_back(IE->getOperand(1));
2861
2862 if (IE->use_empty())
2863 return false;
2864
2865 InsertElementInst *NextUse = dyn_cast<InsertElementInst>(IE->user_back());
2866 if (!NextUse)
2867 return true;
2868
2869 // If this isn't the final use, make sure the next insertelement is the only
2870 // use. It's OK if the final constructed vector is used multiple times
2871 if (!IE->hasOneUse())
2872 return false;
2873
2874 IE = NextUse;
2875 }
2876
2877 return false;
2878 }
2879
PhiTypeSorterFunc(Value * V,Value * V2)2880 static bool PhiTypeSorterFunc(Value *V, Value *V2) {
2881 return V->getType() < V2->getType();
2882 }
2883
vectorizeChainsInBlock(BasicBlock * BB,BoUpSLP & R)2884 bool SLPVectorizer::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
2885 bool Changed = false;
2886 SmallVector<Value *, 4> Incoming;
2887 SmallSet<Value *, 16> VisitedInstrs;
2888
2889 bool HaveVectorizedPhiNodes = true;
2890 while (HaveVectorizedPhiNodes) {
2891 HaveVectorizedPhiNodes = false;
2892
2893 // Collect the incoming values from the PHIs.
2894 Incoming.clear();
2895 for (BasicBlock::iterator instr = BB->begin(), ie = BB->end(); instr != ie;
2896 ++instr) {
2897 PHINode *P = dyn_cast<PHINode>(instr);
2898 if (!P)
2899 break;
2900
2901 if (!VisitedInstrs.count(P))
2902 Incoming.push_back(P);
2903 }
2904
2905 // Sort by type.
2906 std::stable_sort(Incoming.begin(), Incoming.end(), PhiTypeSorterFunc);
2907
2908 // Try to vectorize elements base on their type.
2909 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(),
2910 E = Incoming.end();
2911 IncIt != E;) {
2912
2913 // Look for the next elements with the same type.
2914 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt;
2915 while (SameTypeIt != E &&
2916 (*SameTypeIt)->getType() == (*IncIt)->getType()) {
2917 VisitedInstrs.insert(*SameTypeIt);
2918 ++SameTypeIt;
2919 }
2920
2921 // Try to vectorize them.
2922 unsigned NumElts = (SameTypeIt - IncIt);
2923 DEBUG(errs() << "SLP: Trying to vectorize starting at PHIs (" << NumElts << ")\n");
2924 if (NumElts > 1 &&
2925 tryToVectorizeList(ArrayRef<Value *>(IncIt, NumElts), R)) {
2926 // Success start over because instructions might have been changed.
2927 HaveVectorizedPhiNodes = true;
2928 Changed = true;
2929 break;
2930 }
2931
2932 // Start over at the next instruction of a different type (or the end).
2933 IncIt = SameTypeIt;
2934 }
2935 }
2936
2937 VisitedInstrs.clear();
2938
2939 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; it++) {
2940 // We may go through BB multiple times so skip the one we have checked.
2941 if (!VisitedInstrs.insert(it))
2942 continue;
2943
2944 if (isa<DbgInfoIntrinsic>(it))
2945 continue;
2946
2947 // Try to vectorize reductions that use PHINodes.
2948 if (PHINode *P = dyn_cast<PHINode>(it)) {
2949 // Check that the PHI is a reduction PHI.
2950 if (P->getNumIncomingValues() != 2)
2951 return Changed;
2952 Value *Rdx =
2953 (P->getIncomingBlock(0) == BB
2954 ? (P->getIncomingValue(0))
2955 : (P->getIncomingBlock(1) == BB ? P->getIncomingValue(1)
2956 : nullptr));
2957 // Check if this is a Binary Operator.
2958 BinaryOperator *BI = dyn_cast_or_null<BinaryOperator>(Rdx);
2959 if (!BI)
2960 continue;
2961
2962 // Try to match and vectorize a horizontal reduction.
2963 HorizontalReduction HorRdx;
2964 if (ShouldVectorizeHor &&
2965 HorRdx.matchAssociativeReduction(P, BI, DL) &&
2966 HorRdx.tryToReduce(R, TTI)) {
2967 Changed = true;
2968 it = BB->begin();
2969 e = BB->end();
2970 continue;
2971 }
2972
2973 Value *Inst = BI->getOperand(0);
2974 if (Inst == P)
2975 Inst = BI->getOperand(1);
2976
2977 if (tryToVectorize(dyn_cast<BinaryOperator>(Inst), R)) {
2978 // We would like to start over since some instructions are deleted
2979 // and the iterator may become invalid value.
2980 Changed = true;
2981 it = BB->begin();
2982 e = BB->end();
2983 continue;
2984 }
2985
2986 continue;
2987 }
2988
2989 // Try to vectorize horizontal reductions feeding into a store.
2990 if (ShouldStartVectorizeHorAtStore)
2991 if (StoreInst *SI = dyn_cast<StoreInst>(it))
2992 if (BinaryOperator *BinOp =
2993 dyn_cast<BinaryOperator>(SI->getValueOperand())) {
2994 HorizontalReduction HorRdx;
2995 if (((HorRdx.matchAssociativeReduction(nullptr, BinOp, DL) &&
2996 HorRdx.tryToReduce(R, TTI)) ||
2997 tryToVectorize(BinOp, R))) {
2998 Changed = true;
2999 it = BB->begin();
3000 e = BB->end();
3001 continue;
3002 }
3003 }
3004
3005 // Try to vectorize trees that start at compare instructions.
3006 if (CmpInst *CI = dyn_cast<CmpInst>(it)) {
3007 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) {
3008 Changed = true;
3009 // We would like to start over since some instructions are deleted
3010 // and the iterator may become invalid value.
3011 it = BB->begin();
3012 e = BB->end();
3013 continue;
3014 }
3015
3016 for (int i = 0; i < 2; ++i) {
3017 if (BinaryOperator *BI = dyn_cast<BinaryOperator>(CI->getOperand(i))) {
3018 if (tryToVectorizePair(BI->getOperand(0), BI->getOperand(1), R)) {
3019 Changed = true;
3020 // We would like to start over since some instructions are deleted
3021 // and the iterator may become invalid value.
3022 it = BB->begin();
3023 e = BB->end();
3024 }
3025 }
3026 }
3027 continue;
3028 }
3029
3030 // Try to vectorize trees that start at insertelement instructions.
3031 if (InsertElementInst *FirstInsertElem = dyn_cast<InsertElementInst>(it)) {
3032 SmallVector<Value *, 16> BuildVector;
3033 SmallVector<Value *, 16> BuildVectorOpds;
3034 if (!findBuildVector(FirstInsertElem, BuildVector, BuildVectorOpds))
3035 continue;
3036
3037 // Vectorize starting with the build vector operands ignoring the
3038 // BuildVector instructions for the purpose of scheduling and user
3039 // extraction.
3040 if (tryToVectorizeList(BuildVectorOpds, R, BuildVector)) {
3041 Changed = true;
3042 it = BB->begin();
3043 e = BB->end();
3044 }
3045
3046 continue;
3047 }
3048 }
3049
3050 return Changed;
3051 }
3052
vectorizeStoreChains(BoUpSLP & R)3053 bool SLPVectorizer::vectorizeStoreChains(BoUpSLP &R) {
3054 bool Changed = false;
3055 // Attempt to sort and vectorize each of the store-groups.
3056 for (StoreListMap::iterator it = StoreRefs.begin(), e = StoreRefs.end();
3057 it != e; ++it) {
3058 if (it->second.size() < 2)
3059 continue;
3060
3061 DEBUG(dbgs() << "SLP: Analyzing a store chain of length "
3062 << it->second.size() << ".\n");
3063
3064 // Process the stores in chunks of 16.
3065 for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI+=16) {
3066 unsigned Len = std::min<unsigned>(CE - CI, 16);
3067 ArrayRef<StoreInst *> Chunk(&it->second[CI], Len);
3068 Changed |= vectorizeStores(Chunk, -SLPCostThreshold, R);
3069 }
3070 }
3071 return Changed;
3072 }
3073
3074 } // end anonymous namespace
3075
3076 char SLPVectorizer::ID = 0;
3077 static const char lv_name[] = "SLP Vectorizer";
3078 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false)
3079 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
3080 INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
3081 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
3082 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
3083 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false)
3084
3085 namespace llvm {
createSLPVectorizerPass()3086 Pass *createSLPVectorizerPass() { return new SLPVectorizer(); }
3087 }
3088