1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the function verifier interface, that can be used for some
11 // sanity checking of input to the system.
12 //
13 // Note that this does not provide full `Java style' security and verifications,
14 // instead it just tries to ensure that code is well-formed.
15 //
16 // * Both of a binary operator's parameters are of the same type
17 // * Verify that the indices of mem access instructions match other operands
18 // * Verify that arithmetic and other things are only performed on first-class
19 // types. Verify that shifts & logicals only happen on integrals f.e.
20 // * All of the constants in a switch statement are of the correct type
21 // * The code is in valid SSA form
22 // * It should be illegal to put a label into any other type (like a structure)
23 // or to return one. [except constant arrays!]
24 // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
25 // * PHI nodes must have an entry for each predecessor, with no extras.
26 // * PHI nodes must be the first thing in a basic block, all grouped together
27 // * PHI nodes must have at least one entry
28 // * All basic blocks should only end with terminator insts, not contain them
29 // * The entry node to a function must not have predecessors
30 // * All Instructions must be embedded into a basic block
31 // * Functions cannot take a void-typed parameter
32 // * Verify that a function's argument list agrees with it's declared type.
33 // * It is illegal to specify a name for a void value.
34 // * It is illegal to have a internal global value with no initializer
35 // * It is illegal to have a ret instruction that returns a value that does not
36 // agree with the function return value type.
37 // * Function call argument types match the function prototype
38 // * A landing pad is defined by a landingpad instruction, and can be jumped to
39 // only by the unwind edge of an invoke instruction.
40 // * A landingpad instruction must be the first non-PHI instruction in the
41 // block.
42 // * All landingpad instructions must use the same personality function with
43 // the same function.
44 // * All other things that are tested by asserts spread about the code...
45 //
46 //===----------------------------------------------------------------------===//
47
48 #include "llvm/IR/Verifier.h"
49 #include "llvm/ADT/STLExtras.h"
50 #include "llvm/ADT/SetVector.h"
51 #include "llvm/ADT/SmallPtrSet.h"
52 #include "llvm/ADT/SmallVector.h"
53 #include "llvm/ADT/StringExtras.h"
54 #include "llvm/IR/CFG.h"
55 #include "llvm/IR/CallSite.h"
56 #include "llvm/IR/CallingConv.h"
57 #include "llvm/IR/ConstantRange.h"
58 #include "llvm/IR/Constants.h"
59 #include "llvm/IR/DataLayout.h"
60 #include "llvm/IR/DebugInfo.h"
61 #include "llvm/IR/DerivedTypes.h"
62 #include "llvm/IR/Dominators.h"
63 #include "llvm/IR/InlineAsm.h"
64 #include "llvm/IR/InstIterator.h"
65 #include "llvm/IR/InstVisitor.h"
66 #include "llvm/IR/IntrinsicInst.h"
67 #include "llvm/IR/LLVMContext.h"
68 #include "llvm/IR/Metadata.h"
69 #include "llvm/IR/Module.h"
70 #include "llvm/IR/PassManager.h"
71 #include "llvm/Pass.h"
72 #include "llvm/Support/CommandLine.h"
73 #include "llvm/Support/Debug.h"
74 #include "llvm/Support/ErrorHandling.h"
75 #include "llvm/Support/raw_ostream.h"
76 #include <algorithm>
77 #include <cstdarg>
78 using namespace llvm;
79
80 static cl::opt<bool> VerifyDebugInfo("verify-debug-info", cl::init(false));
81
82 namespace {
83 struct VerifierSupport {
84 raw_ostream &OS;
85 const Module *M;
86
87 /// \brief Track the brokenness of the module while recursively visiting.
88 bool Broken;
89
VerifierSupport__anona1764bdc0111::VerifierSupport90 explicit VerifierSupport(raw_ostream &OS)
91 : OS(OS), M(nullptr), Broken(false) {}
92
WriteValue__anona1764bdc0111::VerifierSupport93 void WriteValue(const Value *V) {
94 if (!V)
95 return;
96 if (isa<Instruction>(V)) {
97 OS << *V << '\n';
98 } else {
99 V->printAsOperand(OS, true, M);
100 OS << '\n';
101 }
102 }
103
WriteType__anona1764bdc0111::VerifierSupport104 void WriteType(Type *T) {
105 if (!T)
106 return;
107 OS << ' ' << *T;
108 }
109
WriteComdat__anona1764bdc0111::VerifierSupport110 void WriteComdat(const Comdat *C) {
111 if (!C)
112 return;
113 OS << *C;
114 }
115
116 // CheckFailed - A check failed, so print out the condition and the message
117 // that failed. This provides a nice place to put a breakpoint if you want
118 // to see why something is not correct.
CheckFailed__anona1764bdc0111::VerifierSupport119 void CheckFailed(const Twine &Message, const Value *V1 = nullptr,
120 const Value *V2 = nullptr, const Value *V3 = nullptr,
121 const Value *V4 = nullptr) {
122 OS << Message.str() << "\n";
123 WriteValue(V1);
124 WriteValue(V2);
125 WriteValue(V3);
126 WriteValue(V4);
127 Broken = true;
128 }
129
CheckFailed__anona1764bdc0111::VerifierSupport130 void CheckFailed(const Twine &Message, const Value *V1, Type *T2,
131 const Value *V3 = nullptr) {
132 OS << Message.str() << "\n";
133 WriteValue(V1);
134 WriteType(T2);
135 WriteValue(V3);
136 Broken = true;
137 }
138
CheckFailed__anona1764bdc0111::VerifierSupport139 void CheckFailed(const Twine &Message, Type *T1, Type *T2 = nullptr,
140 Type *T3 = nullptr) {
141 OS << Message.str() << "\n";
142 WriteType(T1);
143 WriteType(T2);
144 WriteType(T3);
145 Broken = true;
146 }
147
CheckFailed__anona1764bdc0111::VerifierSupport148 void CheckFailed(const Twine &Message, const Comdat *C) {
149 OS << Message.str() << "\n";
150 WriteComdat(C);
151 Broken = true;
152 }
153 };
154 class Verifier : public InstVisitor<Verifier>, VerifierSupport {
155 friend class InstVisitor<Verifier>;
156
157 LLVMContext *Context;
158 const DataLayout *DL;
159 DominatorTree DT;
160
161 /// \brief When verifying a basic block, keep track of all of the
162 /// instructions we have seen so far.
163 ///
164 /// This allows us to do efficient dominance checks for the case when an
165 /// instruction has an operand that is an instruction in the same block.
166 SmallPtrSet<Instruction *, 16> InstsInThisBlock;
167
168 /// \brief Keep track of the metadata nodes that have been checked already.
169 SmallPtrSet<MDNode *, 32> MDNodes;
170
171 /// \brief The personality function referenced by the LandingPadInsts.
172 /// All LandingPadInsts within the same function must use the same
173 /// personality function.
174 const Value *PersonalityFn;
175
176 public:
Verifier(raw_ostream & OS=dbgs ())177 explicit Verifier(raw_ostream &OS = dbgs())
178 : VerifierSupport(OS), Context(nullptr), DL(nullptr),
179 PersonalityFn(nullptr) {}
180
verify(const Function & F)181 bool verify(const Function &F) {
182 M = F.getParent();
183 Context = &M->getContext();
184
185 // First ensure the function is well-enough formed to compute dominance
186 // information.
187 if (F.empty()) {
188 OS << "Function '" << F.getName()
189 << "' does not contain an entry block!\n";
190 return false;
191 }
192 for (Function::const_iterator I = F.begin(), E = F.end(); I != E; ++I) {
193 if (I->empty() || !I->back().isTerminator()) {
194 OS << "Basic Block in function '" << F.getName()
195 << "' does not have terminator!\n";
196 I->printAsOperand(OS, true);
197 OS << "\n";
198 return false;
199 }
200 }
201
202 // Now directly compute a dominance tree. We don't rely on the pass
203 // manager to provide this as it isolates us from a potentially
204 // out-of-date dominator tree and makes it significantly more complex to
205 // run this code outside of a pass manager.
206 // FIXME: It's really gross that we have to cast away constness here.
207 DT.recalculate(const_cast<Function &>(F));
208
209 Broken = false;
210 // FIXME: We strip const here because the inst visitor strips const.
211 visit(const_cast<Function &>(F));
212 InstsInThisBlock.clear();
213 PersonalityFn = nullptr;
214
215 return !Broken;
216 }
217
verify(const Module & M)218 bool verify(const Module &M) {
219 this->M = &M;
220 Context = &M.getContext();
221 Broken = false;
222
223 // Scan through, checking all of the external function's linkage now...
224 for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
225 visitGlobalValue(*I);
226
227 // Check to make sure function prototypes are okay.
228 if (I->isDeclaration())
229 visitFunction(*I);
230 }
231
232 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
233 I != E; ++I)
234 visitGlobalVariable(*I);
235
236 for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
237 I != E; ++I)
238 visitGlobalAlias(*I);
239
240 for (Module::const_named_metadata_iterator I = M.named_metadata_begin(),
241 E = M.named_metadata_end();
242 I != E; ++I)
243 visitNamedMDNode(*I);
244
245 for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
246 visitComdat(SMEC.getValue());
247
248 visitModuleFlags(M);
249 visitModuleIdents(M);
250
251 return !Broken;
252 }
253
254 private:
255 // Verification methods...
256 void visitGlobalValue(const GlobalValue &GV);
257 void visitGlobalVariable(const GlobalVariable &GV);
258 void visitGlobalAlias(const GlobalAlias &GA);
259 void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
260 void visitAliaseeSubExpr(SmallPtrSet<const GlobalAlias *, 4> &Visited,
261 const GlobalAlias &A, const Constant &C);
262 void visitNamedMDNode(const NamedMDNode &NMD);
263 void visitMDNode(MDNode &MD, Function *F);
264 void visitComdat(const Comdat &C);
265 void visitModuleIdents(const Module &M);
266 void visitModuleFlags(const Module &M);
267 void visitModuleFlag(const MDNode *Op,
268 DenseMap<const MDString *, const MDNode *> &SeenIDs,
269 SmallVectorImpl<const MDNode *> &Requirements);
270 void visitFunction(const Function &F);
271 void visitBasicBlock(BasicBlock &BB);
272
273 // InstVisitor overrides...
274 using InstVisitor<Verifier>::visit;
275 void visit(Instruction &I);
276
277 void visitTruncInst(TruncInst &I);
278 void visitZExtInst(ZExtInst &I);
279 void visitSExtInst(SExtInst &I);
280 void visitFPTruncInst(FPTruncInst &I);
281 void visitFPExtInst(FPExtInst &I);
282 void visitFPToUIInst(FPToUIInst &I);
283 void visitFPToSIInst(FPToSIInst &I);
284 void visitUIToFPInst(UIToFPInst &I);
285 void visitSIToFPInst(SIToFPInst &I);
286 void visitIntToPtrInst(IntToPtrInst &I);
287 void visitPtrToIntInst(PtrToIntInst &I);
288 void visitBitCastInst(BitCastInst &I);
289 void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
290 void visitPHINode(PHINode &PN);
291 void visitBinaryOperator(BinaryOperator &B);
292 void visitICmpInst(ICmpInst &IC);
293 void visitFCmpInst(FCmpInst &FC);
294 void visitExtractElementInst(ExtractElementInst &EI);
295 void visitInsertElementInst(InsertElementInst &EI);
296 void visitShuffleVectorInst(ShuffleVectorInst &EI);
visitVAArgInst(VAArgInst & VAA)297 void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
298 void visitCallInst(CallInst &CI);
299 void visitInvokeInst(InvokeInst &II);
300 void visitGetElementPtrInst(GetElementPtrInst &GEP);
301 void visitLoadInst(LoadInst &LI);
302 void visitStoreInst(StoreInst &SI);
303 void verifyDominatesUse(Instruction &I, unsigned i);
304 void visitInstruction(Instruction &I);
305 void visitTerminatorInst(TerminatorInst &I);
306 void visitBranchInst(BranchInst &BI);
307 void visitReturnInst(ReturnInst &RI);
308 void visitSwitchInst(SwitchInst &SI);
309 void visitIndirectBrInst(IndirectBrInst &BI);
310 void visitSelectInst(SelectInst &SI);
311 void visitUserOp1(Instruction &I);
visitUserOp2(Instruction & I)312 void visitUserOp2(Instruction &I) { visitUserOp1(I); }
313 void visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI);
314 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
315 void visitAtomicRMWInst(AtomicRMWInst &RMWI);
316 void visitFenceInst(FenceInst &FI);
317 void visitAllocaInst(AllocaInst &AI);
318 void visitExtractValueInst(ExtractValueInst &EVI);
319 void visitInsertValueInst(InsertValueInst &IVI);
320 void visitLandingPadInst(LandingPadInst &LPI);
321
322 void VerifyCallSite(CallSite CS);
323 void verifyMustTailCall(CallInst &CI);
324 bool PerformTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT,
325 unsigned ArgNo, std::string &Suffix);
326 bool VerifyIntrinsicType(Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
327 SmallVectorImpl<Type *> &ArgTys);
328 bool VerifyIntrinsicIsVarArg(bool isVarArg,
329 ArrayRef<Intrinsic::IITDescriptor> &Infos);
330 bool VerifyAttributeCount(AttributeSet Attrs, unsigned Params);
331 void VerifyAttributeTypes(AttributeSet Attrs, unsigned Idx, bool isFunction,
332 const Value *V);
333 void VerifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty,
334 bool isReturnValue, const Value *V);
335 void VerifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs,
336 const Value *V);
337
338 void VerifyBitcastType(const Value *V, Type *DestTy, Type *SrcTy);
339 void VerifyConstantExprBitcastType(const ConstantExpr *CE);
340 };
341 class DebugInfoVerifier : public VerifierSupport {
342 public:
DebugInfoVerifier(raw_ostream & OS=dbgs ())343 explicit DebugInfoVerifier(raw_ostream &OS = dbgs()) : VerifierSupport(OS) {}
344
verify(const Module & M)345 bool verify(const Module &M) {
346 this->M = &M;
347 verifyDebugInfo();
348 return !Broken;
349 }
350
351 private:
352 void verifyDebugInfo();
353 void processInstructions(DebugInfoFinder &Finder);
354 void processCallInst(DebugInfoFinder &Finder, const CallInst &CI);
355 };
356 } // End anonymous namespace
357
358 // Assert - We know that cond should be true, if not print an error message.
359 #define Assert(C, M) \
360 do { if (!(C)) { CheckFailed(M); return; } } while (0)
361 #define Assert1(C, M, V1) \
362 do { if (!(C)) { CheckFailed(M, V1); return; } } while (0)
363 #define Assert2(C, M, V1, V2) \
364 do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0)
365 #define Assert3(C, M, V1, V2, V3) \
366 do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0)
367 #define Assert4(C, M, V1, V2, V3, V4) \
368 do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0)
369
visit(Instruction & I)370 void Verifier::visit(Instruction &I) {
371 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
372 Assert1(I.getOperand(i) != nullptr, "Operand is null", &I);
373 InstVisitor<Verifier>::visit(I);
374 }
375
376
visitGlobalValue(const GlobalValue & GV)377 void Verifier::visitGlobalValue(const GlobalValue &GV) {
378 Assert1(!GV.isDeclaration() || GV.isMaterializable() ||
379 GV.hasExternalLinkage() || GV.hasExternalWeakLinkage(),
380 "Global is external, but doesn't have external or weak linkage!",
381 &GV);
382
383 Assert1(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
384 "Only global variables can have appending linkage!", &GV);
385
386 if (GV.hasAppendingLinkage()) {
387 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
388 Assert1(GVar && GVar->getType()->getElementType()->isArrayTy(),
389 "Only global arrays can have appending linkage!", GVar);
390 }
391 }
392
visitGlobalVariable(const GlobalVariable & GV)393 void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
394 if (GV.hasInitializer()) {
395 Assert1(GV.getInitializer()->getType() == GV.getType()->getElementType(),
396 "Global variable initializer type does not match global "
397 "variable type!", &GV);
398
399 // If the global has common linkage, it must have a zero initializer and
400 // cannot be constant.
401 if (GV.hasCommonLinkage()) {
402 Assert1(GV.getInitializer()->isNullValue(),
403 "'common' global must have a zero initializer!", &GV);
404 Assert1(!GV.isConstant(), "'common' global may not be marked constant!",
405 &GV);
406 Assert1(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV);
407 }
408 } else {
409 Assert1(GV.hasExternalLinkage() || GV.hasExternalWeakLinkage(),
410 "invalid linkage type for global declaration", &GV);
411 }
412
413 if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
414 GV.getName() == "llvm.global_dtors")) {
415 Assert1(!GV.hasInitializer() || GV.hasAppendingLinkage(),
416 "invalid linkage for intrinsic global variable", &GV);
417 // Don't worry about emitting an error for it not being an array,
418 // visitGlobalValue will complain on appending non-array.
419 if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getType()->getElementType())) {
420 StructType *STy = dyn_cast<StructType>(ATy->getElementType());
421 PointerType *FuncPtrTy =
422 FunctionType::get(Type::getVoidTy(*Context), false)->getPointerTo();
423 // FIXME: Reject the 2-field form in LLVM 4.0.
424 Assert1(STy && (STy->getNumElements() == 2 ||
425 STy->getNumElements() == 3) &&
426 STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
427 STy->getTypeAtIndex(1) == FuncPtrTy,
428 "wrong type for intrinsic global variable", &GV);
429 if (STy->getNumElements() == 3) {
430 Type *ETy = STy->getTypeAtIndex(2);
431 Assert1(ETy->isPointerTy() &&
432 cast<PointerType>(ETy)->getElementType()->isIntegerTy(8),
433 "wrong type for intrinsic global variable", &GV);
434 }
435 }
436 }
437
438 if (GV.hasName() && (GV.getName() == "llvm.used" ||
439 GV.getName() == "llvm.compiler.used")) {
440 Assert1(!GV.hasInitializer() || GV.hasAppendingLinkage(),
441 "invalid linkage for intrinsic global variable", &GV);
442 Type *GVType = GV.getType()->getElementType();
443 if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
444 PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
445 Assert1(PTy, "wrong type for intrinsic global variable", &GV);
446 if (GV.hasInitializer()) {
447 const Constant *Init = GV.getInitializer();
448 const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
449 Assert1(InitArray, "wrong initalizer for intrinsic global variable",
450 Init);
451 for (unsigned i = 0, e = InitArray->getNumOperands(); i != e; ++i) {
452 Value *V = Init->getOperand(i)->stripPointerCastsNoFollowAliases();
453 Assert1(
454 isa<GlobalVariable>(V) || isa<Function>(V) || isa<GlobalAlias>(V),
455 "invalid llvm.used member", V);
456 Assert1(V->hasName(), "members of llvm.used must be named", V);
457 }
458 }
459 }
460 }
461
462 Assert1(!GV.hasDLLImportStorageClass() ||
463 (GV.isDeclaration() && GV.hasExternalLinkage()) ||
464 GV.hasAvailableExternallyLinkage(),
465 "Global is marked as dllimport, but not external", &GV);
466
467 if (!GV.hasInitializer()) {
468 visitGlobalValue(GV);
469 return;
470 }
471
472 // Walk any aggregate initializers looking for bitcasts between address spaces
473 SmallPtrSet<const Value *, 4> Visited;
474 SmallVector<const Value *, 4> WorkStack;
475 WorkStack.push_back(cast<Value>(GV.getInitializer()));
476
477 while (!WorkStack.empty()) {
478 const Value *V = WorkStack.pop_back_val();
479 if (!Visited.insert(V))
480 continue;
481
482 if (const User *U = dyn_cast<User>(V)) {
483 for (unsigned I = 0, N = U->getNumOperands(); I != N; ++I)
484 WorkStack.push_back(U->getOperand(I));
485 }
486
487 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
488 VerifyConstantExprBitcastType(CE);
489 if (Broken)
490 return;
491 }
492 }
493
494 visitGlobalValue(GV);
495 }
496
visitAliaseeSubExpr(const GlobalAlias & GA,const Constant & C)497 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
498 SmallPtrSet<const GlobalAlias*, 4> Visited;
499 Visited.insert(&GA);
500 visitAliaseeSubExpr(Visited, GA, C);
501 }
502
visitAliaseeSubExpr(SmallPtrSet<const GlobalAlias *,4> & Visited,const GlobalAlias & GA,const Constant & C)503 void Verifier::visitAliaseeSubExpr(SmallPtrSet<const GlobalAlias *, 4> &Visited,
504 const GlobalAlias &GA, const Constant &C) {
505 if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
506 Assert1(!GV->isDeclaration(), "Alias must point to a definition", &GA);
507
508 if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
509 Assert1(Visited.insert(GA2), "Aliases cannot form a cycle", &GA);
510
511 Assert1(!GA2->mayBeOverridden(), "Alias cannot point to a weak alias",
512 &GA);
513 } else {
514 // Only continue verifying subexpressions of GlobalAliases.
515 // Do not recurse into global initializers.
516 return;
517 }
518 }
519
520 if (const auto *CE = dyn_cast<ConstantExpr>(&C))
521 VerifyConstantExprBitcastType(CE);
522
523 for (const Use &U : C.operands()) {
524 Value *V = &*U;
525 if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
526 visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
527 else if (const auto *C2 = dyn_cast<Constant>(V))
528 visitAliaseeSubExpr(Visited, GA, *C2);
529 }
530 }
531
visitGlobalAlias(const GlobalAlias & GA)532 void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
533 Assert1(!GA.getName().empty(),
534 "Alias name cannot be empty!", &GA);
535 Assert1(GlobalAlias::isValidLinkage(GA.getLinkage()),
536 "Alias should have private, internal, linkonce, weak, linkonce_odr, "
537 "weak_odr, or external linkage!",
538 &GA);
539 const Constant *Aliasee = GA.getAliasee();
540 Assert1(Aliasee, "Aliasee cannot be NULL!", &GA);
541 Assert1(GA.getType() == Aliasee->getType(),
542 "Alias and aliasee types should match!", &GA);
543
544 Assert1(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),
545 "Aliasee should be either GlobalValue or ConstantExpr", &GA);
546
547 visitAliaseeSubExpr(GA, *Aliasee);
548
549 visitGlobalValue(GA);
550 }
551
visitNamedMDNode(const NamedMDNode & NMD)552 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
553 for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i) {
554 MDNode *MD = NMD.getOperand(i);
555 if (!MD)
556 continue;
557
558 Assert1(!MD->isFunctionLocal(),
559 "Named metadata operand cannot be function local!", MD);
560 visitMDNode(*MD, nullptr);
561 }
562 }
563
visitMDNode(MDNode & MD,Function * F)564 void Verifier::visitMDNode(MDNode &MD, Function *F) {
565 // Only visit each node once. Metadata can be mutually recursive, so this
566 // avoids infinite recursion here, as well as being an optimization.
567 if (!MDNodes.insert(&MD))
568 return;
569
570 for (unsigned i = 0, e = MD.getNumOperands(); i != e; ++i) {
571 Value *Op = MD.getOperand(i);
572 if (!Op)
573 continue;
574 if (isa<Constant>(Op) || isa<MDString>(Op))
575 continue;
576 if (MDNode *N = dyn_cast<MDNode>(Op)) {
577 Assert2(MD.isFunctionLocal() || !N->isFunctionLocal(),
578 "Global metadata operand cannot be function local!", &MD, N);
579 visitMDNode(*N, F);
580 continue;
581 }
582 Assert2(MD.isFunctionLocal(), "Invalid operand for global metadata!", &MD, Op);
583
584 // If this was an instruction, bb, or argument, verify that it is in the
585 // function that we expect.
586 Function *ActualF = nullptr;
587 if (Instruction *I = dyn_cast<Instruction>(Op))
588 ActualF = I->getParent()->getParent();
589 else if (BasicBlock *BB = dyn_cast<BasicBlock>(Op))
590 ActualF = BB->getParent();
591 else if (Argument *A = dyn_cast<Argument>(Op))
592 ActualF = A->getParent();
593 assert(ActualF && "Unimplemented function local metadata case!");
594
595 Assert2(ActualF == F, "function-local metadata used in wrong function",
596 &MD, Op);
597 }
598 }
599
visitComdat(const Comdat & C)600 void Verifier::visitComdat(const Comdat &C) {
601 // All Comdat::SelectionKind values other than Comdat::Any require a
602 // GlobalValue with the same name as the Comdat.
603 const GlobalValue *GV = M->getNamedValue(C.getName());
604 if (C.getSelectionKind() != Comdat::Any)
605 Assert1(GV,
606 "comdat selection kind requires a global value with the same name",
607 &C);
608 // The Module is invalid if the GlobalValue has local linkage. Allowing
609 // otherwise opens us up to seeing the underling global value get renamed if
610 // collisions occur.
611 if (GV)
612 Assert1(!GV->hasLocalLinkage(), "comdat global value has local linkage",
613 GV);
614 }
615
visitModuleIdents(const Module & M)616 void Verifier::visitModuleIdents(const Module &M) {
617 const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
618 if (!Idents)
619 return;
620
621 // llvm.ident takes a list of metadata entry. Each entry has only one string.
622 // Scan each llvm.ident entry and make sure that this requirement is met.
623 for (unsigned i = 0, e = Idents->getNumOperands(); i != e; ++i) {
624 const MDNode *N = Idents->getOperand(i);
625 Assert1(N->getNumOperands() == 1,
626 "incorrect number of operands in llvm.ident metadata", N);
627 Assert1(isa<MDString>(N->getOperand(0)),
628 ("invalid value for llvm.ident metadata entry operand"
629 "(the operand should be a string)"),
630 N->getOperand(0));
631 }
632 }
633
visitModuleFlags(const Module & M)634 void Verifier::visitModuleFlags(const Module &M) {
635 const NamedMDNode *Flags = M.getModuleFlagsMetadata();
636 if (!Flags) return;
637
638 // Scan each flag, and track the flags and requirements.
639 DenseMap<const MDString*, const MDNode*> SeenIDs;
640 SmallVector<const MDNode*, 16> Requirements;
641 for (unsigned I = 0, E = Flags->getNumOperands(); I != E; ++I) {
642 visitModuleFlag(Flags->getOperand(I), SeenIDs, Requirements);
643 }
644
645 // Validate that the requirements in the module are valid.
646 for (unsigned I = 0, E = Requirements.size(); I != E; ++I) {
647 const MDNode *Requirement = Requirements[I];
648 const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
649 const Value *ReqValue = Requirement->getOperand(1);
650
651 const MDNode *Op = SeenIDs.lookup(Flag);
652 if (!Op) {
653 CheckFailed("invalid requirement on flag, flag is not present in module",
654 Flag);
655 continue;
656 }
657
658 if (Op->getOperand(2) != ReqValue) {
659 CheckFailed(("invalid requirement on flag, "
660 "flag does not have the required value"),
661 Flag);
662 continue;
663 }
664 }
665 }
666
667 void
visitModuleFlag(const MDNode * Op,DenseMap<const MDString *,const MDNode * > & SeenIDs,SmallVectorImpl<const MDNode * > & Requirements)668 Verifier::visitModuleFlag(const MDNode *Op,
669 DenseMap<const MDString *, const MDNode *> &SeenIDs,
670 SmallVectorImpl<const MDNode *> &Requirements) {
671 // Each module flag should have three arguments, the merge behavior (a
672 // constant int), the flag ID (an MDString), and the value.
673 Assert1(Op->getNumOperands() == 3,
674 "incorrect number of operands in module flag", Op);
675 ConstantInt *Behavior = dyn_cast<ConstantInt>(Op->getOperand(0));
676 MDString *ID = dyn_cast<MDString>(Op->getOperand(1));
677 Assert1(Behavior,
678 "invalid behavior operand in module flag (expected constant integer)",
679 Op->getOperand(0));
680 unsigned BehaviorValue = Behavior->getZExtValue();
681 Assert1(ID,
682 "invalid ID operand in module flag (expected metadata string)",
683 Op->getOperand(1));
684
685 // Sanity check the values for behaviors with additional requirements.
686 switch (BehaviorValue) {
687 default:
688 Assert1(false,
689 "invalid behavior operand in module flag (unexpected constant)",
690 Op->getOperand(0));
691 break;
692
693 case Module::Error:
694 case Module::Warning:
695 case Module::Override:
696 // These behavior types accept any value.
697 break;
698
699 case Module::Require: {
700 // The value should itself be an MDNode with two operands, a flag ID (an
701 // MDString), and a value.
702 MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
703 Assert1(Value && Value->getNumOperands() == 2,
704 "invalid value for 'require' module flag (expected metadata pair)",
705 Op->getOperand(2));
706 Assert1(isa<MDString>(Value->getOperand(0)),
707 ("invalid value for 'require' module flag "
708 "(first value operand should be a string)"),
709 Value->getOperand(0));
710
711 // Append it to the list of requirements, to check once all module flags are
712 // scanned.
713 Requirements.push_back(Value);
714 break;
715 }
716
717 case Module::Append:
718 case Module::AppendUnique: {
719 // These behavior types require the operand be an MDNode.
720 Assert1(isa<MDNode>(Op->getOperand(2)),
721 "invalid value for 'append'-type module flag "
722 "(expected a metadata node)", Op->getOperand(2));
723 break;
724 }
725 }
726
727 // Unless this is a "requires" flag, check the ID is unique.
728 if (BehaviorValue != Module::Require) {
729 bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
730 Assert1(Inserted,
731 "module flag identifiers must be unique (or of 'require' type)",
732 ID);
733 }
734 }
735
VerifyAttributeTypes(AttributeSet Attrs,unsigned Idx,bool isFunction,const Value * V)736 void Verifier::VerifyAttributeTypes(AttributeSet Attrs, unsigned Idx,
737 bool isFunction, const Value *V) {
738 unsigned Slot = ~0U;
739 for (unsigned I = 0, E = Attrs.getNumSlots(); I != E; ++I)
740 if (Attrs.getSlotIndex(I) == Idx) {
741 Slot = I;
742 break;
743 }
744
745 assert(Slot != ~0U && "Attribute set inconsistency!");
746
747 for (AttributeSet::iterator I = Attrs.begin(Slot), E = Attrs.end(Slot);
748 I != E; ++I) {
749 if (I->isStringAttribute())
750 continue;
751
752 if (I->getKindAsEnum() == Attribute::NoReturn ||
753 I->getKindAsEnum() == Attribute::NoUnwind ||
754 I->getKindAsEnum() == Attribute::NoInline ||
755 I->getKindAsEnum() == Attribute::AlwaysInline ||
756 I->getKindAsEnum() == Attribute::OptimizeForSize ||
757 I->getKindAsEnum() == Attribute::StackProtect ||
758 I->getKindAsEnum() == Attribute::StackProtectReq ||
759 I->getKindAsEnum() == Attribute::StackProtectStrong ||
760 I->getKindAsEnum() == Attribute::NoRedZone ||
761 I->getKindAsEnum() == Attribute::NoImplicitFloat ||
762 I->getKindAsEnum() == Attribute::Naked ||
763 I->getKindAsEnum() == Attribute::InlineHint ||
764 I->getKindAsEnum() == Attribute::StackAlignment ||
765 I->getKindAsEnum() == Attribute::UWTable ||
766 I->getKindAsEnum() == Attribute::NonLazyBind ||
767 I->getKindAsEnum() == Attribute::ReturnsTwice ||
768 I->getKindAsEnum() == Attribute::SanitizeAddress ||
769 I->getKindAsEnum() == Attribute::SanitizeThread ||
770 I->getKindAsEnum() == Attribute::SanitizeMemory ||
771 I->getKindAsEnum() == Attribute::MinSize ||
772 I->getKindAsEnum() == Attribute::NoDuplicate ||
773 I->getKindAsEnum() == Attribute::Builtin ||
774 I->getKindAsEnum() == Attribute::NoBuiltin ||
775 I->getKindAsEnum() == Attribute::Cold ||
776 I->getKindAsEnum() == Attribute::OptimizeNone ||
777 I->getKindAsEnum() == Attribute::JumpTable) {
778 if (!isFunction) {
779 CheckFailed("Attribute '" + I->getAsString() +
780 "' only applies to functions!", V);
781 return;
782 }
783 } else if (I->getKindAsEnum() == Attribute::ReadOnly ||
784 I->getKindAsEnum() == Attribute::ReadNone) {
785 if (Idx == 0) {
786 CheckFailed("Attribute '" + I->getAsString() +
787 "' does not apply to function returns");
788 return;
789 }
790 } else if (isFunction) {
791 CheckFailed("Attribute '" + I->getAsString() +
792 "' does not apply to functions!", V);
793 return;
794 }
795 }
796 }
797
798 // VerifyParameterAttrs - Check the given attributes for an argument or return
799 // value of the specified type. The value V is printed in error messages.
VerifyParameterAttrs(AttributeSet Attrs,unsigned Idx,Type * Ty,bool isReturnValue,const Value * V)800 void Verifier::VerifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty,
801 bool isReturnValue, const Value *V) {
802 if (!Attrs.hasAttributes(Idx))
803 return;
804
805 VerifyAttributeTypes(Attrs, Idx, false, V);
806
807 if (isReturnValue)
808 Assert1(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
809 !Attrs.hasAttribute(Idx, Attribute::Nest) &&
810 !Attrs.hasAttribute(Idx, Attribute::StructRet) &&
811 !Attrs.hasAttribute(Idx, Attribute::NoCapture) &&
812 !Attrs.hasAttribute(Idx, Attribute::Returned) &&
813 !Attrs.hasAttribute(Idx, Attribute::InAlloca),
814 "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', and "
815 "'returned' do not apply to return values!", V);
816
817 // Check for mutually incompatible attributes. Only inreg is compatible with
818 // sret.
819 unsigned AttrCount = 0;
820 AttrCount += Attrs.hasAttribute(Idx, Attribute::ByVal);
821 AttrCount += Attrs.hasAttribute(Idx, Attribute::InAlloca);
822 AttrCount += Attrs.hasAttribute(Idx, Attribute::StructRet) ||
823 Attrs.hasAttribute(Idx, Attribute::InReg);
824 AttrCount += Attrs.hasAttribute(Idx, Attribute::Nest);
825 Assert1(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', "
826 "and 'sret' are incompatible!", V);
827
828 Assert1(!(Attrs.hasAttribute(Idx, Attribute::InAlloca) &&
829 Attrs.hasAttribute(Idx, Attribute::ReadOnly)), "Attributes "
830 "'inalloca and readonly' are incompatible!", V);
831
832 Assert1(!(Attrs.hasAttribute(Idx, Attribute::StructRet) &&
833 Attrs.hasAttribute(Idx, Attribute::Returned)), "Attributes "
834 "'sret and returned' are incompatible!", V);
835
836 Assert1(!(Attrs.hasAttribute(Idx, Attribute::ZExt) &&
837 Attrs.hasAttribute(Idx, Attribute::SExt)), "Attributes "
838 "'zeroext and signext' are incompatible!", V);
839
840 Assert1(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
841 Attrs.hasAttribute(Idx, Attribute::ReadOnly)), "Attributes "
842 "'readnone and readonly' are incompatible!", V);
843
844 Assert1(!(Attrs.hasAttribute(Idx, Attribute::NoInline) &&
845 Attrs.hasAttribute(Idx, Attribute::AlwaysInline)), "Attributes "
846 "'noinline and alwaysinline' are incompatible!", V);
847
848 Assert1(!AttrBuilder(Attrs, Idx).
849 hasAttributes(AttributeFuncs::typeIncompatible(Ty, Idx), Idx),
850 "Wrong types for attribute: " +
851 AttributeFuncs::typeIncompatible(Ty, Idx).getAsString(Idx), V);
852
853 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
854 if (!PTy->getElementType()->isSized()) {
855 Assert1(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
856 !Attrs.hasAttribute(Idx, Attribute::InAlloca),
857 "Attributes 'byval' and 'inalloca' do not support unsized types!",
858 V);
859 }
860 } else {
861 Assert1(!Attrs.hasAttribute(Idx, Attribute::ByVal),
862 "Attribute 'byval' only applies to parameters with pointer type!",
863 V);
864 }
865 }
866
867 // VerifyFunctionAttrs - Check parameter attributes against a function type.
868 // The value V is printed in error messages.
VerifyFunctionAttrs(FunctionType * FT,AttributeSet Attrs,const Value * V)869 void Verifier::VerifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs,
870 const Value *V) {
871 if (Attrs.isEmpty())
872 return;
873
874 bool SawNest = false;
875 bool SawReturned = false;
876 bool SawSRet = false;
877
878 for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
879 unsigned Idx = Attrs.getSlotIndex(i);
880
881 Type *Ty;
882 if (Idx == 0)
883 Ty = FT->getReturnType();
884 else if (Idx-1 < FT->getNumParams())
885 Ty = FT->getParamType(Idx-1);
886 else
887 break; // VarArgs attributes, verified elsewhere.
888
889 VerifyParameterAttrs(Attrs, Idx, Ty, Idx == 0, V);
890
891 if (Idx == 0)
892 continue;
893
894 if (Attrs.hasAttribute(Idx, Attribute::Nest)) {
895 Assert1(!SawNest, "More than one parameter has attribute nest!", V);
896 SawNest = true;
897 }
898
899 if (Attrs.hasAttribute(Idx, Attribute::Returned)) {
900 Assert1(!SawReturned, "More than one parameter has attribute returned!",
901 V);
902 Assert1(Ty->canLosslesslyBitCastTo(FT->getReturnType()), "Incompatible "
903 "argument and return types for 'returned' attribute", V);
904 SawReturned = true;
905 }
906
907 if (Attrs.hasAttribute(Idx, Attribute::StructRet)) {
908 Assert1(!SawSRet, "Cannot have multiple 'sret' parameters!", V);
909 Assert1(Idx == 1 || Idx == 2,
910 "Attribute 'sret' is not on first or second parameter!", V);
911 SawSRet = true;
912 }
913
914 if (Attrs.hasAttribute(Idx, Attribute::InAlloca)) {
915 Assert1(Idx == FT->getNumParams(),
916 "inalloca isn't on the last parameter!", V);
917 }
918 }
919
920 if (!Attrs.hasAttributes(AttributeSet::FunctionIndex))
921 return;
922
923 VerifyAttributeTypes(Attrs, AttributeSet::FunctionIndex, true, V);
924
925 Assert1(!(Attrs.hasAttribute(AttributeSet::FunctionIndex,
926 Attribute::ReadNone) &&
927 Attrs.hasAttribute(AttributeSet::FunctionIndex,
928 Attribute::ReadOnly)),
929 "Attributes 'readnone and readonly' are incompatible!", V);
930
931 Assert1(!(Attrs.hasAttribute(AttributeSet::FunctionIndex,
932 Attribute::NoInline) &&
933 Attrs.hasAttribute(AttributeSet::FunctionIndex,
934 Attribute::AlwaysInline)),
935 "Attributes 'noinline and alwaysinline' are incompatible!", V);
936
937 if (Attrs.hasAttribute(AttributeSet::FunctionIndex,
938 Attribute::OptimizeNone)) {
939 Assert1(Attrs.hasAttribute(AttributeSet::FunctionIndex,
940 Attribute::NoInline),
941 "Attribute 'optnone' requires 'noinline'!", V);
942
943 Assert1(!Attrs.hasAttribute(AttributeSet::FunctionIndex,
944 Attribute::OptimizeForSize),
945 "Attributes 'optsize and optnone' are incompatible!", V);
946
947 Assert1(!Attrs.hasAttribute(AttributeSet::FunctionIndex,
948 Attribute::MinSize),
949 "Attributes 'minsize and optnone' are incompatible!", V);
950 }
951
952 if (Attrs.hasAttribute(AttributeSet::FunctionIndex,
953 Attribute::JumpTable)) {
954 const GlobalValue *GV = cast<GlobalValue>(V);
955 Assert1(GV->hasUnnamedAddr(),
956 "Attribute 'jumptable' requires 'unnamed_addr'", V);
957
958 }
959 }
960
VerifyBitcastType(const Value * V,Type * DestTy,Type * SrcTy)961 void Verifier::VerifyBitcastType(const Value *V, Type *DestTy, Type *SrcTy) {
962 // Get the size of the types in bits, we'll need this later
963 unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
964 unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
965
966 // BitCast implies a no-op cast of type only. No bits change.
967 // However, you can't cast pointers to anything but pointers.
968 Assert1(SrcTy->isPointerTy() == DestTy->isPointerTy(),
969 "Bitcast requires both operands to be pointer or neither", V);
970 Assert1(SrcBitSize == DestBitSize,
971 "Bitcast requires types of same width", V);
972
973 // Disallow aggregates.
974 Assert1(!SrcTy->isAggregateType(),
975 "Bitcast operand must not be aggregate", V);
976 Assert1(!DestTy->isAggregateType(),
977 "Bitcast type must not be aggregate", V);
978
979 // Without datalayout, assume all address spaces are the same size.
980 // Don't check if both types are not pointers.
981 // Skip casts between scalars and vectors.
982 if (!DL ||
983 !SrcTy->isPtrOrPtrVectorTy() ||
984 !DestTy->isPtrOrPtrVectorTy() ||
985 SrcTy->isVectorTy() != DestTy->isVectorTy()) {
986 return;
987 }
988
989 unsigned SrcAS = SrcTy->getPointerAddressSpace();
990 unsigned DstAS = DestTy->getPointerAddressSpace();
991
992 Assert1(SrcAS == DstAS,
993 "Bitcasts between pointers of different address spaces is not legal."
994 "Use AddrSpaceCast instead.", V);
995 }
996
VerifyConstantExprBitcastType(const ConstantExpr * CE)997 void Verifier::VerifyConstantExprBitcastType(const ConstantExpr *CE) {
998 if (CE->getOpcode() == Instruction::BitCast) {
999 Type *SrcTy = CE->getOperand(0)->getType();
1000 Type *DstTy = CE->getType();
1001 VerifyBitcastType(CE, DstTy, SrcTy);
1002 }
1003 }
1004
VerifyAttributeCount(AttributeSet Attrs,unsigned Params)1005 bool Verifier::VerifyAttributeCount(AttributeSet Attrs, unsigned Params) {
1006 if (Attrs.getNumSlots() == 0)
1007 return true;
1008
1009 unsigned LastSlot = Attrs.getNumSlots() - 1;
1010 unsigned LastIndex = Attrs.getSlotIndex(LastSlot);
1011 if (LastIndex <= Params
1012 || (LastIndex == AttributeSet::FunctionIndex
1013 && (LastSlot == 0 || Attrs.getSlotIndex(LastSlot - 1) <= Params)))
1014 return true;
1015
1016 return false;
1017 }
1018
1019 // visitFunction - Verify that a function is ok.
1020 //
visitFunction(const Function & F)1021 void Verifier::visitFunction(const Function &F) {
1022 // Check function arguments.
1023 FunctionType *FT = F.getFunctionType();
1024 unsigned NumArgs = F.arg_size();
1025
1026 Assert1(Context == &F.getContext(),
1027 "Function context does not match Module context!", &F);
1028
1029 Assert1(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
1030 Assert2(FT->getNumParams() == NumArgs,
1031 "# formal arguments must match # of arguments for function type!",
1032 &F, FT);
1033 Assert1(F.getReturnType()->isFirstClassType() ||
1034 F.getReturnType()->isVoidTy() ||
1035 F.getReturnType()->isStructTy(),
1036 "Functions cannot return aggregate values!", &F);
1037
1038 Assert1(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
1039 "Invalid struct return type!", &F);
1040
1041 AttributeSet Attrs = F.getAttributes();
1042
1043 Assert1(VerifyAttributeCount(Attrs, FT->getNumParams()),
1044 "Attribute after last parameter!", &F);
1045
1046 // Check function attributes.
1047 VerifyFunctionAttrs(FT, Attrs, &F);
1048
1049 // On function declarations/definitions, we do not support the builtin
1050 // attribute. We do not check this in VerifyFunctionAttrs since that is
1051 // checking for Attributes that can/can not ever be on functions.
1052 Assert1(!Attrs.hasAttribute(AttributeSet::FunctionIndex,
1053 Attribute::Builtin),
1054 "Attribute 'builtin' can only be applied to a callsite.", &F);
1055
1056 // Check that this function meets the restrictions on this calling convention.
1057 switch (F.getCallingConv()) {
1058 default:
1059 break;
1060 case CallingConv::C:
1061 break;
1062 case CallingConv::Fast:
1063 case CallingConv::Cold:
1064 case CallingConv::X86_FastCall:
1065 case CallingConv::X86_ThisCall:
1066 case CallingConv::Intel_OCL_BI:
1067 case CallingConv::PTX_Kernel:
1068 case CallingConv::PTX_Device:
1069 Assert1(!F.isVarArg(),
1070 "Varargs functions must have C calling conventions!", &F);
1071 break;
1072 }
1073
1074 bool isLLVMdotName = F.getName().size() >= 5 &&
1075 F.getName().substr(0, 5) == "llvm.";
1076
1077 // Check that the argument values match the function type for this function...
1078 unsigned i = 0;
1079 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
1080 ++I, ++i) {
1081 Assert2(I->getType() == FT->getParamType(i),
1082 "Argument value does not match function argument type!",
1083 I, FT->getParamType(i));
1084 Assert1(I->getType()->isFirstClassType(),
1085 "Function arguments must have first-class types!", I);
1086 if (!isLLVMdotName)
1087 Assert2(!I->getType()->isMetadataTy(),
1088 "Function takes metadata but isn't an intrinsic", I, &F);
1089 }
1090
1091 if (F.isMaterializable()) {
1092 // Function has a body somewhere we can't see.
1093 } else if (F.isDeclaration()) {
1094 Assert1(F.hasExternalLinkage() || F.hasExternalWeakLinkage(),
1095 "invalid linkage type for function declaration", &F);
1096 } else {
1097 // Verify that this function (which has a body) is not named "llvm.*". It
1098 // is not legal to define intrinsics.
1099 Assert1(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F);
1100
1101 // Check the entry node
1102 const BasicBlock *Entry = &F.getEntryBlock();
1103 Assert1(pred_begin(Entry) == pred_end(Entry),
1104 "Entry block to function must not have predecessors!", Entry);
1105
1106 // The address of the entry block cannot be taken, unless it is dead.
1107 if (Entry->hasAddressTaken()) {
1108 Assert1(!BlockAddress::lookup(Entry)->isConstantUsed(),
1109 "blockaddress may not be used with the entry block!", Entry);
1110 }
1111 }
1112
1113 // If this function is actually an intrinsic, verify that it is only used in
1114 // direct call/invokes, never having its "address taken".
1115 if (F.getIntrinsicID()) {
1116 const User *U;
1117 if (F.hasAddressTaken(&U))
1118 Assert1(0, "Invalid user of intrinsic instruction!", U);
1119 }
1120
1121 Assert1(!F.hasDLLImportStorageClass() ||
1122 (F.isDeclaration() && F.hasExternalLinkage()) ||
1123 F.hasAvailableExternallyLinkage(),
1124 "Function is marked as dllimport, but not external.", &F);
1125 }
1126
1127 // verifyBasicBlock - Verify that a basic block is well formed...
1128 //
visitBasicBlock(BasicBlock & BB)1129 void Verifier::visitBasicBlock(BasicBlock &BB) {
1130 InstsInThisBlock.clear();
1131
1132 // Ensure that basic blocks have terminators!
1133 Assert1(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
1134
1135 // Check constraints that this basic block imposes on all of the PHI nodes in
1136 // it.
1137 if (isa<PHINode>(BB.front())) {
1138 SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
1139 SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
1140 std::sort(Preds.begin(), Preds.end());
1141 PHINode *PN;
1142 for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) {
1143 // Ensure that PHI nodes have at least one entry!
1144 Assert1(PN->getNumIncomingValues() != 0,
1145 "PHI nodes must have at least one entry. If the block is dead, "
1146 "the PHI should be removed!", PN);
1147 Assert1(PN->getNumIncomingValues() == Preds.size(),
1148 "PHINode should have one entry for each predecessor of its "
1149 "parent basic block!", PN);
1150
1151 // Get and sort all incoming values in the PHI node...
1152 Values.clear();
1153 Values.reserve(PN->getNumIncomingValues());
1154 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1155 Values.push_back(std::make_pair(PN->getIncomingBlock(i),
1156 PN->getIncomingValue(i)));
1157 std::sort(Values.begin(), Values.end());
1158
1159 for (unsigned i = 0, e = Values.size(); i != e; ++i) {
1160 // Check to make sure that if there is more than one entry for a
1161 // particular basic block in this PHI node, that the incoming values are
1162 // all identical.
1163 //
1164 Assert4(i == 0 || Values[i].first != Values[i-1].first ||
1165 Values[i].second == Values[i-1].second,
1166 "PHI node has multiple entries for the same basic block with "
1167 "different incoming values!", PN, Values[i].first,
1168 Values[i].second, Values[i-1].second);
1169
1170 // Check to make sure that the predecessors and PHI node entries are
1171 // matched up.
1172 Assert3(Values[i].first == Preds[i],
1173 "PHI node entries do not match predecessors!", PN,
1174 Values[i].first, Preds[i]);
1175 }
1176 }
1177 }
1178 }
1179
visitTerminatorInst(TerminatorInst & I)1180 void Verifier::visitTerminatorInst(TerminatorInst &I) {
1181 // Ensure that terminators only exist at the end of the basic block.
1182 Assert1(&I == I.getParent()->getTerminator(),
1183 "Terminator found in the middle of a basic block!", I.getParent());
1184 visitInstruction(I);
1185 }
1186
visitBranchInst(BranchInst & BI)1187 void Verifier::visitBranchInst(BranchInst &BI) {
1188 if (BI.isConditional()) {
1189 Assert2(BI.getCondition()->getType()->isIntegerTy(1),
1190 "Branch condition is not 'i1' type!", &BI, BI.getCondition());
1191 }
1192 visitTerminatorInst(BI);
1193 }
1194
visitReturnInst(ReturnInst & RI)1195 void Verifier::visitReturnInst(ReturnInst &RI) {
1196 Function *F = RI.getParent()->getParent();
1197 unsigned N = RI.getNumOperands();
1198 if (F->getReturnType()->isVoidTy())
1199 Assert2(N == 0,
1200 "Found return instr that returns non-void in Function of void "
1201 "return type!", &RI, F->getReturnType());
1202 else
1203 Assert2(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
1204 "Function return type does not match operand "
1205 "type of return inst!", &RI, F->getReturnType());
1206
1207 // Check to make sure that the return value has necessary properties for
1208 // terminators...
1209 visitTerminatorInst(RI);
1210 }
1211
visitSwitchInst(SwitchInst & SI)1212 void Verifier::visitSwitchInst(SwitchInst &SI) {
1213 // Check to make sure that all of the constants in the switch instruction
1214 // have the same type as the switched-on value.
1215 Type *SwitchTy = SI.getCondition()->getType();
1216 SmallPtrSet<ConstantInt*, 32> Constants;
1217 for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end(); i != e; ++i) {
1218 Assert1(i.getCaseValue()->getType() == SwitchTy,
1219 "Switch constants must all be same type as switch value!", &SI);
1220 Assert2(Constants.insert(i.getCaseValue()),
1221 "Duplicate integer as switch case", &SI, i.getCaseValue());
1222 }
1223
1224 visitTerminatorInst(SI);
1225 }
1226
visitIndirectBrInst(IndirectBrInst & BI)1227 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
1228 Assert1(BI.getAddress()->getType()->isPointerTy(),
1229 "Indirectbr operand must have pointer type!", &BI);
1230 for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
1231 Assert1(BI.getDestination(i)->getType()->isLabelTy(),
1232 "Indirectbr destinations must all have pointer type!", &BI);
1233
1234 visitTerminatorInst(BI);
1235 }
1236
visitSelectInst(SelectInst & SI)1237 void Verifier::visitSelectInst(SelectInst &SI) {
1238 Assert1(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
1239 SI.getOperand(2)),
1240 "Invalid operands for select instruction!", &SI);
1241
1242 Assert1(SI.getTrueValue()->getType() == SI.getType(),
1243 "Select values must have same type as select instruction!", &SI);
1244 visitInstruction(SI);
1245 }
1246
1247 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
1248 /// a pass, if any exist, it's an error.
1249 ///
visitUserOp1(Instruction & I)1250 void Verifier::visitUserOp1(Instruction &I) {
1251 Assert1(0, "User-defined operators should not live outside of a pass!", &I);
1252 }
1253
visitTruncInst(TruncInst & I)1254 void Verifier::visitTruncInst(TruncInst &I) {
1255 // Get the source and destination types
1256 Type *SrcTy = I.getOperand(0)->getType();
1257 Type *DestTy = I.getType();
1258
1259 // Get the size of the types in bits, we'll need this later
1260 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
1261 unsigned DestBitSize = DestTy->getScalarSizeInBits();
1262
1263 Assert1(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
1264 Assert1(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
1265 Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
1266 "trunc source and destination must both be a vector or neither", &I);
1267 Assert1(SrcBitSize > DestBitSize,"DestTy too big for Trunc", &I);
1268
1269 visitInstruction(I);
1270 }
1271
visitZExtInst(ZExtInst & I)1272 void Verifier::visitZExtInst(ZExtInst &I) {
1273 // Get the source and destination types
1274 Type *SrcTy = I.getOperand(0)->getType();
1275 Type *DestTy = I.getType();
1276
1277 // Get the size of the types in bits, we'll need this later
1278 Assert1(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
1279 Assert1(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
1280 Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
1281 "zext source and destination must both be a vector or neither", &I);
1282 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
1283 unsigned DestBitSize = DestTy->getScalarSizeInBits();
1284
1285 Assert1(SrcBitSize < DestBitSize,"Type too small for ZExt", &I);
1286
1287 visitInstruction(I);
1288 }
1289
visitSExtInst(SExtInst & I)1290 void Verifier::visitSExtInst(SExtInst &I) {
1291 // Get the source and destination types
1292 Type *SrcTy = I.getOperand(0)->getType();
1293 Type *DestTy = I.getType();
1294
1295 // Get the size of the types in bits, we'll need this later
1296 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
1297 unsigned DestBitSize = DestTy->getScalarSizeInBits();
1298
1299 Assert1(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
1300 Assert1(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
1301 Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
1302 "sext source and destination must both be a vector or neither", &I);
1303 Assert1(SrcBitSize < DestBitSize,"Type too small for SExt", &I);
1304
1305 visitInstruction(I);
1306 }
1307
visitFPTruncInst(FPTruncInst & I)1308 void Verifier::visitFPTruncInst(FPTruncInst &I) {
1309 // Get the source and destination types
1310 Type *SrcTy = I.getOperand(0)->getType();
1311 Type *DestTy = I.getType();
1312 // Get the size of the types in bits, we'll need this later
1313 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
1314 unsigned DestBitSize = DestTy->getScalarSizeInBits();
1315
1316 Assert1(SrcTy->isFPOrFPVectorTy(),"FPTrunc only operates on FP", &I);
1317 Assert1(DestTy->isFPOrFPVectorTy(),"FPTrunc only produces an FP", &I);
1318 Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
1319 "fptrunc source and destination must both be a vector or neither",&I);
1320 Assert1(SrcBitSize > DestBitSize,"DestTy too big for FPTrunc", &I);
1321
1322 visitInstruction(I);
1323 }
1324
visitFPExtInst(FPExtInst & I)1325 void Verifier::visitFPExtInst(FPExtInst &I) {
1326 // Get the source and destination types
1327 Type *SrcTy = I.getOperand(0)->getType();
1328 Type *DestTy = I.getType();
1329
1330 // Get the size of the types in bits, we'll need this later
1331 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
1332 unsigned DestBitSize = DestTy->getScalarSizeInBits();
1333
1334 Assert1(SrcTy->isFPOrFPVectorTy(),"FPExt only operates on FP", &I);
1335 Assert1(DestTy->isFPOrFPVectorTy(),"FPExt only produces an FP", &I);
1336 Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
1337 "fpext source and destination must both be a vector or neither", &I);
1338 Assert1(SrcBitSize < DestBitSize,"DestTy too small for FPExt", &I);
1339
1340 visitInstruction(I);
1341 }
1342
visitUIToFPInst(UIToFPInst & I)1343 void Verifier::visitUIToFPInst(UIToFPInst &I) {
1344 // Get the source and destination types
1345 Type *SrcTy = I.getOperand(0)->getType();
1346 Type *DestTy = I.getType();
1347
1348 bool SrcVec = SrcTy->isVectorTy();
1349 bool DstVec = DestTy->isVectorTy();
1350
1351 Assert1(SrcVec == DstVec,
1352 "UIToFP source and dest must both be vector or scalar", &I);
1353 Assert1(SrcTy->isIntOrIntVectorTy(),
1354 "UIToFP source must be integer or integer vector", &I);
1355 Assert1(DestTy->isFPOrFPVectorTy(),
1356 "UIToFP result must be FP or FP vector", &I);
1357
1358 if (SrcVec && DstVec)
1359 Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
1360 cast<VectorType>(DestTy)->getNumElements(),
1361 "UIToFP source and dest vector length mismatch", &I);
1362
1363 visitInstruction(I);
1364 }
1365
visitSIToFPInst(SIToFPInst & I)1366 void Verifier::visitSIToFPInst(SIToFPInst &I) {
1367 // Get the source and destination types
1368 Type *SrcTy = I.getOperand(0)->getType();
1369 Type *DestTy = I.getType();
1370
1371 bool SrcVec = SrcTy->isVectorTy();
1372 bool DstVec = DestTy->isVectorTy();
1373
1374 Assert1(SrcVec == DstVec,
1375 "SIToFP source and dest must both be vector or scalar", &I);
1376 Assert1(SrcTy->isIntOrIntVectorTy(),
1377 "SIToFP source must be integer or integer vector", &I);
1378 Assert1(DestTy->isFPOrFPVectorTy(),
1379 "SIToFP result must be FP or FP vector", &I);
1380
1381 if (SrcVec && DstVec)
1382 Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
1383 cast<VectorType>(DestTy)->getNumElements(),
1384 "SIToFP source and dest vector length mismatch", &I);
1385
1386 visitInstruction(I);
1387 }
1388
visitFPToUIInst(FPToUIInst & I)1389 void Verifier::visitFPToUIInst(FPToUIInst &I) {
1390 // Get the source and destination types
1391 Type *SrcTy = I.getOperand(0)->getType();
1392 Type *DestTy = I.getType();
1393
1394 bool SrcVec = SrcTy->isVectorTy();
1395 bool DstVec = DestTy->isVectorTy();
1396
1397 Assert1(SrcVec == DstVec,
1398 "FPToUI source and dest must both be vector or scalar", &I);
1399 Assert1(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
1400 &I);
1401 Assert1(DestTy->isIntOrIntVectorTy(),
1402 "FPToUI result must be integer or integer vector", &I);
1403
1404 if (SrcVec && DstVec)
1405 Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
1406 cast<VectorType>(DestTy)->getNumElements(),
1407 "FPToUI source and dest vector length mismatch", &I);
1408
1409 visitInstruction(I);
1410 }
1411
visitFPToSIInst(FPToSIInst & I)1412 void Verifier::visitFPToSIInst(FPToSIInst &I) {
1413 // Get the source and destination types
1414 Type *SrcTy = I.getOperand(0)->getType();
1415 Type *DestTy = I.getType();
1416
1417 bool SrcVec = SrcTy->isVectorTy();
1418 bool DstVec = DestTy->isVectorTy();
1419
1420 Assert1(SrcVec == DstVec,
1421 "FPToSI source and dest must both be vector or scalar", &I);
1422 Assert1(SrcTy->isFPOrFPVectorTy(),
1423 "FPToSI source must be FP or FP vector", &I);
1424 Assert1(DestTy->isIntOrIntVectorTy(),
1425 "FPToSI result must be integer or integer vector", &I);
1426
1427 if (SrcVec && DstVec)
1428 Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
1429 cast<VectorType>(DestTy)->getNumElements(),
1430 "FPToSI source and dest vector length mismatch", &I);
1431
1432 visitInstruction(I);
1433 }
1434
visitPtrToIntInst(PtrToIntInst & I)1435 void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
1436 // Get the source and destination types
1437 Type *SrcTy = I.getOperand(0)->getType();
1438 Type *DestTy = I.getType();
1439
1440 Assert1(SrcTy->getScalarType()->isPointerTy(),
1441 "PtrToInt source must be pointer", &I);
1442 Assert1(DestTy->getScalarType()->isIntegerTy(),
1443 "PtrToInt result must be integral", &I);
1444 Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
1445 "PtrToInt type mismatch", &I);
1446
1447 if (SrcTy->isVectorTy()) {
1448 VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
1449 VectorType *VDest = dyn_cast<VectorType>(DestTy);
1450 Assert1(VSrc->getNumElements() == VDest->getNumElements(),
1451 "PtrToInt Vector width mismatch", &I);
1452 }
1453
1454 visitInstruction(I);
1455 }
1456
visitIntToPtrInst(IntToPtrInst & I)1457 void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
1458 // Get the source and destination types
1459 Type *SrcTy = I.getOperand(0)->getType();
1460 Type *DestTy = I.getType();
1461
1462 Assert1(SrcTy->getScalarType()->isIntegerTy(),
1463 "IntToPtr source must be an integral", &I);
1464 Assert1(DestTy->getScalarType()->isPointerTy(),
1465 "IntToPtr result must be a pointer",&I);
1466 Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
1467 "IntToPtr type mismatch", &I);
1468 if (SrcTy->isVectorTy()) {
1469 VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
1470 VectorType *VDest = dyn_cast<VectorType>(DestTy);
1471 Assert1(VSrc->getNumElements() == VDest->getNumElements(),
1472 "IntToPtr Vector width mismatch", &I);
1473 }
1474 visitInstruction(I);
1475 }
1476
visitBitCastInst(BitCastInst & I)1477 void Verifier::visitBitCastInst(BitCastInst &I) {
1478 Type *SrcTy = I.getOperand(0)->getType();
1479 Type *DestTy = I.getType();
1480 VerifyBitcastType(&I, DestTy, SrcTy);
1481 visitInstruction(I);
1482 }
1483
visitAddrSpaceCastInst(AddrSpaceCastInst & I)1484 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
1485 Type *SrcTy = I.getOperand(0)->getType();
1486 Type *DestTy = I.getType();
1487
1488 Assert1(SrcTy->isPtrOrPtrVectorTy(),
1489 "AddrSpaceCast source must be a pointer", &I);
1490 Assert1(DestTy->isPtrOrPtrVectorTy(),
1491 "AddrSpaceCast result must be a pointer", &I);
1492 Assert1(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),
1493 "AddrSpaceCast must be between different address spaces", &I);
1494 if (SrcTy->isVectorTy())
1495 Assert1(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(),
1496 "AddrSpaceCast vector pointer number of elements mismatch", &I);
1497 visitInstruction(I);
1498 }
1499
1500 /// visitPHINode - Ensure that a PHI node is well formed.
1501 ///
visitPHINode(PHINode & PN)1502 void Verifier::visitPHINode(PHINode &PN) {
1503 // Ensure that the PHI nodes are all grouped together at the top of the block.
1504 // This can be tested by checking whether the instruction before this is
1505 // either nonexistent (because this is begin()) or is a PHI node. If not,
1506 // then there is some other instruction before a PHI.
1507 Assert2(&PN == &PN.getParent()->front() ||
1508 isa<PHINode>(--BasicBlock::iterator(&PN)),
1509 "PHI nodes not grouped at top of basic block!",
1510 &PN, PN.getParent());
1511
1512 // Check that all of the values of the PHI node have the same type as the
1513 // result, and that the incoming blocks are really basic blocks.
1514 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1515 Assert1(PN.getType() == PN.getIncomingValue(i)->getType(),
1516 "PHI node operands are not the same type as the result!", &PN);
1517 }
1518
1519 // All other PHI node constraints are checked in the visitBasicBlock method.
1520
1521 visitInstruction(PN);
1522 }
1523
VerifyCallSite(CallSite CS)1524 void Verifier::VerifyCallSite(CallSite CS) {
1525 Instruction *I = CS.getInstruction();
1526
1527 Assert1(CS.getCalledValue()->getType()->isPointerTy(),
1528 "Called function must be a pointer!", I);
1529 PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType());
1530
1531 Assert1(FPTy->getElementType()->isFunctionTy(),
1532 "Called function is not pointer to function type!", I);
1533 FunctionType *FTy = cast<FunctionType>(FPTy->getElementType());
1534
1535 // Verify that the correct number of arguments are being passed
1536 if (FTy->isVarArg())
1537 Assert1(CS.arg_size() >= FTy->getNumParams(),
1538 "Called function requires more parameters than were provided!",I);
1539 else
1540 Assert1(CS.arg_size() == FTy->getNumParams(),
1541 "Incorrect number of arguments passed to called function!", I);
1542
1543 // Verify that all arguments to the call match the function type.
1544 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1545 Assert3(CS.getArgument(i)->getType() == FTy->getParamType(i),
1546 "Call parameter type does not match function signature!",
1547 CS.getArgument(i), FTy->getParamType(i), I);
1548
1549 AttributeSet Attrs = CS.getAttributes();
1550
1551 Assert1(VerifyAttributeCount(Attrs, CS.arg_size()),
1552 "Attribute after last parameter!", I);
1553
1554 // Verify call attributes.
1555 VerifyFunctionAttrs(FTy, Attrs, I);
1556
1557 // Conservatively check the inalloca argument.
1558 // We have a bug if we can find that there is an underlying alloca without
1559 // inalloca.
1560 if (CS.hasInAllocaArgument()) {
1561 Value *InAllocaArg = CS.getArgument(FTy->getNumParams() - 1);
1562 if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
1563 Assert2(AI->isUsedWithInAlloca(),
1564 "inalloca argument for call has mismatched alloca", AI, I);
1565 }
1566
1567 if (FTy->isVarArg()) {
1568 // FIXME? is 'nest' even legal here?
1569 bool SawNest = false;
1570 bool SawReturned = false;
1571
1572 for (unsigned Idx = 1; Idx < 1 + FTy->getNumParams(); ++Idx) {
1573 if (Attrs.hasAttribute(Idx, Attribute::Nest))
1574 SawNest = true;
1575 if (Attrs.hasAttribute(Idx, Attribute::Returned))
1576 SawReturned = true;
1577 }
1578
1579 // Check attributes on the varargs part.
1580 for (unsigned Idx = 1 + FTy->getNumParams(); Idx <= CS.arg_size(); ++Idx) {
1581 Type *Ty = CS.getArgument(Idx-1)->getType();
1582 VerifyParameterAttrs(Attrs, Idx, Ty, false, I);
1583
1584 if (Attrs.hasAttribute(Idx, Attribute::Nest)) {
1585 Assert1(!SawNest, "More than one parameter has attribute nest!", I);
1586 SawNest = true;
1587 }
1588
1589 if (Attrs.hasAttribute(Idx, Attribute::Returned)) {
1590 Assert1(!SawReturned, "More than one parameter has attribute returned!",
1591 I);
1592 Assert1(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),
1593 "Incompatible argument and return types for 'returned' "
1594 "attribute", I);
1595 SawReturned = true;
1596 }
1597
1598 Assert1(!Attrs.hasAttribute(Idx, Attribute::StructRet),
1599 "Attribute 'sret' cannot be used for vararg call arguments!", I);
1600
1601 if (Attrs.hasAttribute(Idx, Attribute::InAlloca))
1602 Assert1(Idx == CS.arg_size(), "inalloca isn't on the last argument!",
1603 I);
1604 }
1605 }
1606
1607 // Verify that there's no metadata unless it's a direct call to an intrinsic.
1608 if (CS.getCalledFunction() == nullptr ||
1609 !CS.getCalledFunction()->getName().startswith("llvm.")) {
1610 for (FunctionType::param_iterator PI = FTy->param_begin(),
1611 PE = FTy->param_end(); PI != PE; ++PI)
1612 Assert1(!(*PI)->isMetadataTy(),
1613 "Function has metadata parameter but isn't an intrinsic", I);
1614 }
1615
1616 visitInstruction(*I);
1617 }
1618
1619 /// Two types are "congruent" if they are identical, or if they are both pointer
1620 /// types with different pointee types and the same address space.
isTypeCongruent(Type * L,Type * R)1621 static bool isTypeCongruent(Type *L, Type *R) {
1622 if (L == R)
1623 return true;
1624 PointerType *PL = dyn_cast<PointerType>(L);
1625 PointerType *PR = dyn_cast<PointerType>(R);
1626 if (!PL || !PR)
1627 return false;
1628 return PL->getAddressSpace() == PR->getAddressSpace();
1629 }
1630
getParameterABIAttributes(int I,AttributeSet Attrs)1631 static AttrBuilder getParameterABIAttributes(int I, AttributeSet Attrs) {
1632 static const Attribute::AttrKind ABIAttrs[] = {
1633 Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca,
1634 Attribute::InReg, Attribute::Returned};
1635 AttrBuilder Copy;
1636 for (auto AK : ABIAttrs) {
1637 if (Attrs.hasAttribute(I + 1, AK))
1638 Copy.addAttribute(AK);
1639 }
1640 if (Attrs.hasAttribute(I + 1, Attribute::Alignment))
1641 Copy.addAlignmentAttr(Attrs.getParamAlignment(I + 1));
1642 return Copy;
1643 }
1644
verifyMustTailCall(CallInst & CI)1645 void Verifier::verifyMustTailCall(CallInst &CI) {
1646 Assert1(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI);
1647
1648 // - The caller and callee prototypes must match. Pointer types of
1649 // parameters or return types may differ in pointee type, but not
1650 // address space.
1651 Function *F = CI.getParent()->getParent();
1652 auto GetFnTy = [](Value *V) {
1653 return cast<FunctionType>(
1654 cast<PointerType>(V->getType())->getElementType());
1655 };
1656 FunctionType *CallerTy = GetFnTy(F);
1657 FunctionType *CalleeTy = GetFnTy(CI.getCalledValue());
1658 Assert1(CallerTy->getNumParams() == CalleeTy->getNumParams(),
1659 "cannot guarantee tail call due to mismatched parameter counts", &CI);
1660 Assert1(CallerTy->isVarArg() == CalleeTy->isVarArg(),
1661 "cannot guarantee tail call due to mismatched varargs", &CI);
1662 Assert1(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),
1663 "cannot guarantee tail call due to mismatched return types", &CI);
1664 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
1665 Assert1(
1666 isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),
1667 "cannot guarantee tail call due to mismatched parameter types", &CI);
1668 }
1669
1670 // - The calling conventions of the caller and callee must match.
1671 Assert1(F->getCallingConv() == CI.getCallingConv(),
1672 "cannot guarantee tail call due to mismatched calling conv", &CI);
1673
1674 // - All ABI-impacting function attributes, such as sret, byval, inreg,
1675 // returned, and inalloca, must match.
1676 AttributeSet CallerAttrs = F->getAttributes();
1677 AttributeSet CalleeAttrs = CI.getAttributes();
1678 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
1679 AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs);
1680 AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs);
1681 Assert2(CallerABIAttrs == CalleeABIAttrs,
1682 "cannot guarantee tail call due to mismatched ABI impacting "
1683 "function attributes", &CI, CI.getOperand(I));
1684 }
1685
1686 // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
1687 // or a pointer bitcast followed by a ret instruction.
1688 // - The ret instruction must return the (possibly bitcasted) value
1689 // produced by the call or void.
1690 Value *RetVal = &CI;
1691 Instruction *Next = CI.getNextNode();
1692
1693 // Handle the optional bitcast.
1694 if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
1695 Assert1(BI->getOperand(0) == RetVal,
1696 "bitcast following musttail call must use the call", BI);
1697 RetVal = BI;
1698 Next = BI->getNextNode();
1699 }
1700
1701 // Check the return.
1702 ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
1703 Assert1(Ret, "musttail call must be precede a ret with an optional bitcast",
1704 &CI);
1705 Assert1(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal,
1706 "musttail call result must be returned", Ret);
1707 }
1708
visitCallInst(CallInst & CI)1709 void Verifier::visitCallInst(CallInst &CI) {
1710 VerifyCallSite(&CI);
1711
1712 if (CI.isMustTailCall())
1713 verifyMustTailCall(CI);
1714
1715 if (Function *F = CI.getCalledFunction())
1716 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
1717 visitIntrinsicFunctionCall(ID, CI);
1718 }
1719
visitInvokeInst(InvokeInst & II)1720 void Verifier::visitInvokeInst(InvokeInst &II) {
1721 VerifyCallSite(&II);
1722
1723 // Verify that there is a landingpad instruction as the first non-PHI
1724 // instruction of the 'unwind' destination.
1725 Assert1(II.getUnwindDest()->isLandingPad(),
1726 "The unwind destination does not have a landingpad instruction!",&II);
1727
1728 visitTerminatorInst(II);
1729 }
1730
1731 /// visitBinaryOperator - Check that both arguments to the binary operator are
1732 /// of the same type!
1733 ///
visitBinaryOperator(BinaryOperator & B)1734 void Verifier::visitBinaryOperator(BinaryOperator &B) {
1735 Assert1(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
1736 "Both operands to a binary operator are not of the same type!", &B);
1737
1738 switch (B.getOpcode()) {
1739 // Check that integer arithmetic operators are only used with
1740 // integral operands.
1741 case Instruction::Add:
1742 case Instruction::Sub:
1743 case Instruction::Mul:
1744 case Instruction::SDiv:
1745 case Instruction::UDiv:
1746 case Instruction::SRem:
1747 case Instruction::URem:
1748 Assert1(B.getType()->isIntOrIntVectorTy(),
1749 "Integer arithmetic operators only work with integral types!", &B);
1750 Assert1(B.getType() == B.getOperand(0)->getType(),
1751 "Integer arithmetic operators must have same type "
1752 "for operands and result!", &B);
1753 break;
1754 // Check that floating-point arithmetic operators are only used with
1755 // floating-point operands.
1756 case Instruction::FAdd:
1757 case Instruction::FSub:
1758 case Instruction::FMul:
1759 case Instruction::FDiv:
1760 case Instruction::FRem:
1761 Assert1(B.getType()->isFPOrFPVectorTy(),
1762 "Floating-point arithmetic operators only work with "
1763 "floating-point types!", &B);
1764 Assert1(B.getType() == B.getOperand(0)->getType(),
1765 "Floating-point arithmetic operators must have same type "
1766 "for operands and result!", &B);
1767 break;
1768 // Check that logical operators are only used with integral operands.
1769 case Instruction::And:
1770 case Instruction::Or:
1771 case Instruction::Xor:
1772 Assert1(B.getType()->isIntOrIntVectorTy(),
1773 "Logical operators only work with integral types!", &B);
1774 Assert1(B.getType() == B.getOperand(0)->getType(),
1775 "Logical operators must have same type for operands and result!",
1776 &B);
1777 break;
1778 case Instruction::Shl:
1779 case Instruction::LShr:
1780 case Instruction::AShr:
1781 Assert1(B.getType()->isIntOrIntVectorTy(),
1782 "Shifts only work with integral types!", &B);
1783 Assert1(B.getType() == B.getOperand(0)->getType(),
1784 "Shift return type must be same as operands!", &B);
1785 break;
1786 default:
1787 llvm_unreachable("Unknown BinaryOperator opcode!");
1788 }
1789
1790 visitInstruction(B);
1791 }
1792
visitICmpInst(ICmpInst & IC)1793 void Verifier::visitICmpInst(ICmpInst &IC) {
1794 // Check that the operands are the same type
1795 Type *Op0Ty = IC.getOperand(0)->getType();
1796 Type *Op1Ty = IC.getOperand(1)->getType();
1797 Assert1(Op0Ty == Op1Ty,
1798 "Both operands to ICmp instruction are not of the same type!", &IC);
1799 // Check that the operands are the right type
1800 Assert1(Op0Ty->isIntOrIntVectorTy() || Op0Ty->getScalarType()->isPointerTy(),
1801 "Invalid operand types for ICmp instruction", &IC);
1802 // Check that the predicate is valid.
1803 Assert1(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE &&
1804 IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE,
1805 "Invalid predicate in ICmp instruction!", &IC);
1806
1807 visitInstruction(IC);
1808 }
1809
visitFCmpInst(FCmpInst & FC)1810 void Verifier::visitFCmpInst(FCmpInst &FC) {
1811 // Check that the operands are the same type
1812 Type *Op0Ty = FC.getOperand(0)->getType();
1813 Type *Op1Ty = FC.getOperand(1)->getType();
1814 Assert1(Op0Ty == Op1Ty,
1815 "Both operands to FCmp instruction are not of the same type!", &FC);
1816 // Check that the operands are the right type
1817 Assert1(Op0Ty->isFPOrFPVectorTy(),
1818 "Invalid operand types for FCmp instruction", &FC);
1819 // Check that the predicate is valid.
1820 Assert1(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE &&
1821 FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE,
1822 "Invalid predicate in FCmp instruction!", &FC);
1823
1824 visitInstruction(FC);
1825 }
1826
visitExtractElementInst(ExtractElementInst & EI)1827 void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
1828 Assert1(ExtractElementInst::isValidOperands(EI.getOperand(0),
1829 EI.getOperand(1)),
1830 "Invalid extractelement operands!", &EI);
1831 visitInstruction(EI);
1832 }
1833
visitInsertElementInst(InsertElementInst & IE)1834 void Verifier::visitInsertElementInst(InsertElementInst &IE) {
1835 Assert1(InsertElementInst::isValidOperands(IE.getOperand(0),
1836 IE.getOperand(1),
1837 IE.getOperand(2)),
1838 "Invalid insertelement operands!", &IE);
1839 visitInstruction(IE);
1840 }
1841
visitShuffleVectorInst(ShuffleVectorInst & SV)1842 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
1843 Assert1(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
1844 SV.getOperand(2)),
1845 "Invalid shufflevector operands!", &SV);
1846 visitInstruction(SV);
1847 }
1848
visitGetElementPtrInst(GetElementPtrInst & GEP)1849 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
1850 Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
1851
1852 Assert1(isa<PointerType>(TargetTy),
1853 "GEP base pointer is not a vector or a vector of pointers", &GEP);
1854 Assert1(cast<PointerType>(TargetTy)->getElementType()->isSized(),
1855 "GEP into unsized type!", &GEP);
1856 Assert1(GEP.getPointerOperandType()->isVectorTy() ==
1857 GEP.getType()->isVectorTy(), "Vector GEP must return a vector value",
1858 &GEP);
1859
1860 SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
1861 Type *ElTy =
1862 GetElementPtrInst::getIndexedType(GEP.getPointerOperandType(), Idxs);
1863 Assert1(ElTy, "Invalid indices for GEP pointer type!", &GEP);
1864
1865 Assert2(GEP.getType()->getScalarType()->isPointerTy() &&
1866 cast<PointerType>(GEP.getType()->getScalarType())->getElementType()
1867 == ElTy, "GEP is not of right type for indices!", &GEP, ElTy);
1868
1869 if (GEP.getPointerOperandType()->isVectorTy()) {
1870 // Additional checks for vector GEPs.
1871 unsigned GepWidth = GEP.getPointerOperandType()->getVectorNumElements();
1872 Assert1(GepWidth == GEP.getType()->getVectorNumElements(),
1873 "Vector GEP result width doesn't match operand's", &GEP);
1874 for (unsigned i = 0, e = Idxs.size(); i != e; ++i) {
1875 Type *IndexTy = Idxs[i]->getType();
1876 Assert1(IndexTy->isVectorTy(),
1877 "Vector GEP must have vector indices!", &GEP);
1878 unsigned IndexWidth = IndexTy->getVectorNumElements();
1879 Assert1(IndexWidth == GepWidth, "Invalid GEP index vector width", &GEP);
1880 }
1881 }
1882 visitInstruction(GEP);
1883 }
1884
isContiguous(const ConstantRange & A,const ConstantRange & B)1885 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
1886 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
1887 }
1888
visitLoadInst(LoadInst & LI)1889 void Verifier::visitLoadInst(LoadInst &LI) {
1890 PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
1891 Assert1(PTy, "Load operand must be a pointer.", &LI);
1892 Type *ElTy = PTy->getElementType();
1893 Assert2(ElTy == LI.getType(),
1894 "Load result type does not match pointer operand type!", &LI, ElTy);
1895 if (LI.isAtomic()) {
1896 Assert1(LI.getOrdering() != Release && LI.getOrdering() != AcquireRelease,
1897 "Load cannot have Release ordering", &LI);
1898 Assert1(LI.getAlignment() != 0,
1899 "Atomic load must specify explicit alignment", &LI);
1900 if (!ElTy->isPointerTy()) {
1901 Assert2(ElTy->isIntegerTy(),
1902 "atomic load operand must have integer type!",
1903 &LI, ElTy);
1904 unsigned Size = ElTy->getPrimitiveSizeInBits();
1905 Assert2(Size >= 8 && !(Size & (Size - 1)),
1906 "atomic load operand must be power-of-two byte-sized integer",
1907 &LI, ElTy);
1908 }
1909 } else {
1910 Assert1(LI.getSynchScope() == CrossThread,
1911 "Non-atomic load cannot have SynchronizationScope specified", &LI);
1912 }
1913
1914 if (MDNode *Range = LI.getMetadata(LLVMContext::MD_range)) {
1915 unsigned NumOperands = Range->getNumOperands();
1916 Assert1(NumOperands % 2 == 0, "Unfinished range!", Range);
1917 unsigned NumRanges = NumOperands / 2;
1918 Assert1(NumRanges >= 1, "It should have at least one range!", Range);
1919
1920 ConstantRange LastRange(1); // Dummy initial value
1921 for (unsigned i = 0; i < NumRanges; ++i) {
1922 ConstantInt *Low = dyn_cast<ConstantInt>(Range->getOperand(2*i));
1923 Assert1(Low, "The lower limit must be an integer!", Low);
1924 ConstantInt *High = dyn_cast<ConstantInt>(Range->getOperand(2*i + 1));
1925 Assert1(High, "The upper limit must be an integer!", High);
1926 Assert1(High->getType() == Low->getType() &&
1927 High->getType() == ElTy, "Range types must match load type!",
1928 &LI);
1929
1930 APInt HighV = High->getValue();
1931 APInt LowV = Low->getValue();
1932 ConstantRange CurRange(LowV, HighV);
1933 Assert1(!CurRange.isEmptySet() && !CurRange.isFullSet(),
1934 "Range must not be empty!", Range);
1935 if (i != 0) {
1936 Assert1(CurRange.intersectWith(LastRange).isEmptySet(),
1937 "Intervals are overlapping", Range);
1938 Assert1(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
1939 Range);
1940 Assert1(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
1941 Range);
1942 }
1943 LastRange = ConstantRange(LowV, HighV);
1944 }
1945 if (NumRanges > 2) {
1946 APInt FirstLow =
1947 dyn_cast<ConstantInt>(Range->getOperand(0))->getValue();
1948 APInt FirstHigh =
1949 dyn_cast<ConstantInt>(Range->getOperand(1))->getValue();
1950 ConstantRange FirstRange(FirstLow, FirstHigh);
1951 Assert1(FirstRange.intersectWith(LastRange).isEmptySet(),
1952 "Intervals are overlapping", Range);
1953 Assert1(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
1954 Range);
1955 }
1956
1957
1958 }
1959
1960 visitInstruction(LI);
1961 }
1962
visitStoreInst(StoreInst & SI)1963 void Verifier::visitStoreInst(StoreInst &SI) {
1964 PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
1965 Assert1(PTy, "Store operand must be a pointer.", &SI);
1966 Type *ElTy = PTy->getElementType();
1967 Assert2(ElTy == SI.getOperand(0)->getType(),
1968 "Stored value type does not match pointer operand type!",
1969 &SI, ElTy);
1970 if (SI.isAtomic()) {
1971 Assert1(SI.getOrdering() != Acquire && SI.getOrdering() != AcquireRelease,
1972 "Store cannot have Acquire ordering", &SI);
1973 Assert1(SI.getAlignment() != 0,
1974 "Atomic store must specify explicit alignment", &SI);
1975 if (!ElTy->isPointerTy()) {
1976 Assert2(ElTy->isIntegerTy(),
1977 "atomic store operand must have integer type!",
1978 &SI, ElTy);
1979 unsigned Size = ElTy->getPrimitiveSizeInBits();
1980 Assert2(Size >= 8 && !(Size & (Size - 1)),
1981 "atomic store operand must be power-of-two byte-sized integer",
1982 &SI, ElTy);
1983 }
1984 } else {
1985 Assert1(SI.getSynchScope() == CrossThread,
1986 "Non-atomic store cannot have SynchronizationScope specified", &SI);
1987 }
1988 visitInstruction(SI);
1989 }
1990
visitAllocaInst(AllocaInst & AI)1991 void Verifier::visitAllocaInst(AllocaInst &AI) {
1992 SmallPtrSet<const Type*, 4> Visited;
1993 PointerType *PTy = AI.getType();
1994 Assert1(PTy->getAddressSpace() == 0,
1995 "Allocation instruction pointer not in the generic address space!",
1996 &AI);
1997 Assert1(PTy->getElementType()->isSized(&Visited), "Cannot allocate unsized type",
1998 &AI);
1999 Assert1(AI.getArraySize()->getType()->isIntegerTy(),
2000 "Alloca array size must have integer type", &AI);
2001
2002 visitInstruction(AI);
2003 }
2004
visitAtomicCmpXchgInst(AtomicCmpXchgInst & CXI)2005 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
2006
2007 // FIXME: more conditions???
2008 Assert1(CXI.getSuccessOrdering() != NotAtomic,
2009 "cmpxchg instructions must be atomic.", &CXI);
2010 Assert1(CXI.getFailureOrdering() != NotAtomic,
2011 "cmpxchg instructions must be atomic.", &CXI);
2012 Assert1(CXI.getSuccessOrdering() != Unordered,
2013 "cmpxchg instructions cannot be unordered.", &CXI);
2014 Assert1(CXI.getFailureOrdering() != Unordered,
2015 "cmpxchg instructions cannot be unordered.", &CXI);
2016 Assert1(CXI.getSuccessOrdering() >= CXI.getFailureOrdering(),
2017 "cmpxchg instructions be at least as constrained on success as fail",
2018 &CXI);
2019 Assert1(CXI.getFailureOrdering() != Release &&
2020 CXI.getFailureOrdering() != AcquireRelease,
2021 "cmpxchg failure ordering cannot include release semantics", &CXI);
2022
2023 PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
2024 Assert1(PTy, "First cmpxchg operand must be a pointer.", &CXI);
2025 Type *ElTy = PTy->getElementType();
2026 Assert2(ElTy->isIntegerTy(),
2027 "cmpxchg operand must have integer type!",
2028 &CXI, ElTy);
2029 unsigned Size = ElTy->getPrimitiveSizeInBits();
2030 Assert2(Size >= 8 && !(Size & (Size - 1)),
2031 "cmpxchg operand must be power-of-two byte-sized integer",
2032 &CXI, ElTy);
2033 Assert2(ElTy == CXI.getOperand(1)->getType(),
2034 "Expected value type does not match pointer operand type!",
2035 &CXI, ElTy);
2036 Assert2(ElTy == CXI.getOperand(2)->getType(),
2037 "Stored value type does not match pointer operand type!",
2038 &CXI, ElTy);
2039 visitInstruction(CXI);
2040 }
2041
visitAtomicRMWInst(AtomicRMWInst & RMWI)2042 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
2043 Assert1(RMWI.getOrdering() != NotAtomic,
2044 "atomicrmw instructions must be atomic.", &RMWI);
2045 Assert1(RMWI.getOrdering() != Unordered,
2046 "atomicrmw instructions cannot be unordered.", &RMWI);
2047 PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
2048 Assert1(PTy, "First atomicrmw operand must be a pointer.", &RMWI);
2049 Type *ElTy = PTy->getElementType();
2050 Assert2(ElTy->isIntegerTy(),
2051 "atomicrmw operand must have integer type!",
2052 &RMWI, ElTy);
2053 unsigned Size = ElTy->getPrimitiveSizeInBits();
2054 Assert2(Size >= 8 && !(Size & (Size - 1)),
2055 "atomicrmw operand must be power-of-two byte-sized integer",
2056 &RMWI, ElTy);
2057 Assert2(ElTy == RMWI.getOperand(1)->getType(),
2058 "Argument value type does not match pointer operand type!",
2059 &RMWI, ElTy);
2060 Assert1(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation() &&
2061 RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP,
2062 "Invalid binary operation!", &RMWI);
2063 visitInstruction(RMWI);
2064 }
2065
visitFenceInst(FenceInst & FI)2066 void Verifier::visitFenceInst(FenceInst &FI) {
2067 const AtomicOrdering Ordering = FI.getOrdering();
2068 Assert1(Ordering == Acquire || Ordering == Release ||
2069 Ordering == AcquireRelease || Ordering == SequentiallyConsistent,
2070 "fence instructions may only have "
2071 "acquire, release, acq_rel, or seq_cst ordering.", &FI);
2072 visitInstruction(FI);
2073 }
2074
visitExtractValueInst(ExtractValueInst & EVI)2075 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
2076 Assert1(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
2077 EVI.getIndices()) ==
2078 EVI.getType(),
2079 "Invalid ExtractValueInst operands!", &EVI);
2080
2081 visitInstruction(EVI);
2082 }
2083
visitInsertValueInst(InsertValueInst & IVI)2084 void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
2085 Assert1(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
2086 IVI.getIndices()) ==
2087 IVI.getOperand(1)->getType(),
2088 "Invalid InsertValueInst operands!", &IVI);
2089
2090 visitInstruction(IVI);
2091 }
2092
visitLandingPadInst(LandingPadInst & LPI)2093 void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
2094 BasicBlock *BB = LPI.getParent();
2095
2096 // The landingpad instruction is ill-formed if it doesn't have any clauses and
2097 // isn't a cleanup.
2098 Assert1(LPI.getNumClauses() > 0 || LPI.isCleanup(),
2099 "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
2100
2101 // The landingpad instruction defines its parent as a landing pad block. The
2102 // landing pad block may be branched to only by the unwind edge of an invoke.
2103 for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
2104 const InvokeInst *II = dyn_cast<InvokeInst>((*I)->getTerminator());
2105 Assert1(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
2106 "Block containing LandingPadInst must be jumped to "
2107 "only by the unwind edge of an invoke.", &LPI);
2108 }
2109
2110 // The landingpad instruction must be the first non-PHI instruction in the
2111 // block.
2112 Assert1(LPI.getParent()->getLandingPadInst() == &LPI,
2113 "LandingPadInst not the first non-PHI instruction in the block.",
2114 &LPI);
2115
2116 // The personality functions for all landingpad instructions within the same
2117 // function should match.
2118 if (PersonalityFn)
2119 Assert1(LPI.getPersonalityFn() == PersonalityFn,
2120 "Personality function doesn't match others in function", &LPI);
2121 PersonalityFn = LPI.getPersonalityFn();
2122
2123 // All operands must be constants.
2124 Assert1(isa<Constant>(PersonalityFn), "Personality function is not constant!",
2125 &LPI);
2126 for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
2127 Constant *Clause = LPI.getClause(i);
2128 if (LPI.isCatch(i)) {
2129 Assert1(isa<PointerType>(Clause->getType()),
2130 "Catch operand does not have pointer type!", &LPI);
2131 } else {
2132 Assert1(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
2133 Assert1(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
2134 "Filter operand is not an array of constants!", &LPI);
2135 }
2136 }
2137
2138 visitInstruction(LPI);
2139 }
2140
verifyDominatesUse(Instruction & I,unsigned i)2141 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
2142 Instruction *Op = cast<Instruction>(I.getOperand(i));
2143 // If the we have an invalid invoke, don't try to compute the dominance.
2144 // We already reject it in the invoke specific checks and the dominance
2145 // computation doesn't handle multiple edges.
2146 if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
2147 if (II->getNormalDest() == II->getUnwindDest())
2148 return;
2149 }
2150
2151 const Use &U = I.getOperandUse(i);
2152 Assert2(InstsInThisBlock.count(Op) || DT.dominates(Op, U),
2153 "Instruction does not dominate all uses!", Op, &I);
2154 }
2155
2156 /// verifyInstruction - Verify that an instruction is well formed.
2157 ///
visitInstruction(Instruction & I)2158 void Verifier::visitInstruction(Instruction &I) {
2159 BasicBlock *BB = I.getParent();
2160 Assert1(BB, "Instruction not embedded in basic block!", &I);
2161
2162 if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential
2163 for (User *U : I.users()) {
2164 Assert1(U != (User*)&I || !DT.isReachableFromEntry(BB),
2165 "Only PHI nodes may reference their own value!", &I);
2166 }
2167 }
2168
2169 // Check that void typed values don't have names
2170 Assert1(!I.getType()->isVoidTy() || !I.hasName(),
2171 "Instruction has a name, but provides a void value!", &I);
2172
2173 // Check that the return value of the instruction is either void or a legal
2174 // value type.
2175 Assert1(I.getType()->isVoidTy() ||
2176 I.getType()->isFirstClassType(),
2177 "Instruction returns a non-scalar type!", &I);
2178
2179 // Check that the instruction doesn't produce metadata. Calls are already
2180 // checked against the callee type.
2181 Assert1(!I.getType()->isMetadataTy() ||
2182 isa<CallInst>(I) || isa<InvokeInst>(I),
2183 "Invalid use of metadata!", &I);
2184
2185 // Check that all uses of the instruction, if they are instructions
2186 // themselves, actually have parent basic blocks. If the use is not an
2187 // instruction, it is an error!
2188 for (Use &U : I.uses()) {
2189 if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
2190 Assert2(Used->getParent() != nullptr, "Instruction referencing"
2191 " instruction not embedded in a basic block!", &I, Used);
2192 else {
2193 CheckFailed("Use of instruction is not an instruction!", U);
2194 return;
2195 }
2196 }
2197
2198 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
2199 Assert1(I.getOperand(i) != nullptr, "Instruction has null operand!", &I);
2200
2201 // Check to make sure that only first-class-values are operands to
2202 // instructions.
2203 if (!I.getOperand(i)->getType()->isFirstClassType()) {
2204 Assert1(0, "Instruction operands must be first-class values!", &I);
2205 }
2206
2207 if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
2208 // Check to make sure that the "address of" an intrinsic function is never
2209 // taken.
2210 Assert1(!F->isIntrinsic() || i == (isa<CallInst>(I) ? e-1 : 0),
2211 "Cannot take the address of an intrinsic!", &I);
2212 Assert1(!F->isIntrinsic() || isa<CallInst>(I) ||
2213 F->getIntrinsicID() == Intrinsic::donothing,
2214 "Cannot invoke an intrinsinc other than donothing", &I);
2215 Assert1(F->getParent() == M, "Referencing function in another module!",
2216 &I);
2217 } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
2218 Assert1(OpBB->getParent() == BB->getParent(),
2219 "Referring to a basic block in another function!", &I);
2220 } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
2221 Assert1(OpArg->getParent() == BB->getParent(),
2222 "Referring to an argument in another function!", &I);
2223 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
2224 Assert1(GV->getParent() == M, "Referencing global in another module!",
2225 &I);
2226 } else if (isa<Instruction>(I.getOperand(i))) {
2227 verifyDominatesUse(I, i);
2228 } else if (isa<InlineAsm>(I.getOperand(i))) {
2229 Assert1((i + 1 == e && isa<CallInst>(I)) ||
2230 (i + 3 == e && isa<InvokeInst>(I)),
2231 "Cannot take the address of an inline asm!", &I);
2232 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
2233 if (CE->getType()->isPtrOrPtrVectorTy()) {
2234 // If we have a ConstantExpr pointer, we need to see if it came from an
2235 // illegal bitcast (inttoptr <constant int> )
2236 SmallVector<const ConstantExpr *, 4> Stack;
2237 SmallPtrSet<const ConstantExpr *, 4> Visited;
2238 Stack.push_back(CE);
2239
2240 while (!Stack.empty()) {
2241 const ConstantExpr *V = Stack.pop_back_val();
2242 if (!Visited.insert(V))
2243 continue;
2244
2245 VerifyConstantExprBitcastType(V);
2246
2247 for (unsigned I = 0, N = V->getNumOperands(); I != N; ++I) {
2248 if (ConstantExpr *Op = dyn_cast<ConstantExpr>(V->getOperand(I)))
2249 Stack.push_back(Op);
2250 }
2251 }
2252 }
2253 }
2254 }
2255
2256 if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
2257 Assert1(I.getType()->isFPOrFPVectorTy(),
2258 "fpmath requires a floating point result!", &I);
2259 Assert1(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
2260 Value *Op0 = MD->getOperand(0);
2261 if (ConstantFP *CFP0 = dyn_cast_or_null<ConstantFP>(Op0)) {
2262 APFloat Accuracy = CFP0->getValueAPF();
2263 Assert1(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
2264 "fpmath accuracy not a positive number!", &I);
2265 } else {
2266 Assert1(false, "invalid fpmath accuracy!", &I);
2267 }
2268 }
2269
2270 MDNode *MD = I.getMetadata(LLVMContext::MD_range);
2271 Assert1(!MD || isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),
2272 "Ranges are only for loads, calls and invokes!", &I);
2273
2274 InstsInThisBlock.insert(&I);
2275 }
2276
2277 /// VerifyIntrinsicType - Verify that the specified type (which comes from an
2278 /// intrinsic argument or return value) matches the type constraints specified
2279 /// by the .td file (e.g. an "any integer" argument really is an integer).
2280 ///
2281 /// This return true on error but does not print a message.
VerifyIntrinsicType(Type * Ty,ArrayRef<Intrinsic::IITDescriptor> & Infos,SmallVectorImpl<Type * > & ArgTys)2282 bool Verifier::VerifyIntrinsicType(Type *Ty,
2283 ArrayRef<Intrinsic::IITDescriptor> &Infos,
2284 SmallVectorImpl<Type*> &ArgTys) {
2285 using namespace Intrinsic;
2286
2287 // If we ran out of descriptors, there are too many arguments.
2288 if (Infos.empty()) return true;
2289 IITDescriptor D = Infos.front();
2290 Infos = Infos.slice(1);
2291
2292 switch (D.Kind) {
2293 case IITDescriptor::Void: return !Ty->isVoidTy();
2294 case IITDescriptor::VarArg: return true;
2295 case IITDescriptor::MMX: return !Ty->isX86_MMXTy();
2296 case IITDescriptor::Metadata: return !Ty->isMetadataTy();
2297 case IITDescriptor::Half: return !Ty->isHalfTy();
2298 case IITDescriptor::Float: return !Ty->isFloatTy();
2299 case IITDescriptor::Double: return !Ty->isDoubleTy();
2300 case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
2301 case IITDescriptor::Vector: {
2302 VectorType *VT = dyn_cast<VectorType>(Ty);
2303 return !VT || VT->getNumElements() != D.Vector_Width ||
2304 VerifyIntrinsicType(VT->getElementType(), Infos, ArgTys);
2305 }
2306 case IITDescriptor::Pointer: {
2307 PointerType *PT = dyn_cast<PointerType>(Ty);
2308 return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace ||
2309 VerifyIntrinsicType(PT->getElementType(), Infos, ArgTys);
2310 }
2311
2312 case IITDescriptor::Struct: {
2313 StructType *ST = dyn_cast<StructType>(Ty);
2314 if (!ST || ST->getNumElements() != D.Struct_NumElements)
2315 return true;
2316
2317 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
2318 if (VerifyIntrinsicType(ST->getElementType(i), Infos, ArgTys))
2319 return true;
2320 return false;
2321 }
2322
2323 case IITDescriptor::Argument:
2324 // Two cases here - If this is the second occurrence of an argument, verify
2325 // that the later instance matches the previous instance.
2326 if (D.getArgumentNumber() < ArgTys.size())
2327 return Ty != ArgTys[D.getArgumentNumber()];
2328
2329 // Otherwise, if this is the first instance of an argument, record it and
2330 // verify the "Any" kind.
2331 assert(D.getArgumentNumber() == ArgTys.size() && "Table consistency error");
2332 ArgTys.push_back(Ty);
2333
2334 switch (D.getArgumentKind()) {
2335 case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
2336 case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy();
2337 case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty);
2338 case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
2339 }
2340 llvm_unreachable("all argument kinds not covered");
2341
2342 case IITDescriptor::ExtendArgument: {
2343 // This may only be used when referring to a previous vector argument.
2344 if (D.getArgumentNumber() >= ArgTys.size())
2345 return true;
2346
2347 Type *NewTy = ArgTys[D.getArgumentNumber()];
2348 if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
2349 NewTy = VectorType::getExtendedElementVectorType(VTy);
2350 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
2351 NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
2352 else
2353 return true;
2354
2355 return Ty != NewTy;
2356 }
2357 case IITDescriptor::TruncArgument: {
2358 // This may only be used when referring to a previous vector argument.
2359 if (D.getArgumentNumber() >= ArgTys.size())
2360 return true;
2361
2362 Type *NewTy = ArgTys[D.getArgumentNumber()];
2363 if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
2364 NewTy = VectorType::getTruncatedElementVectorType(VTy);
2365 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
2366 NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
2367 else
2368 return true;
2369
2370 return Ty != NewTy;
2371 }
2372 case IITDescriptor::HalfVecArgument:
2373 // This may only be used when referring to a previous vector argument.
2374 return D.getArgumentNumber() >= ArgTys.size() ||
2375 !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
2376 VectorType::getHalfElementsVectorType(
2377 cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
2378 }
2379 llvm_unreachable("unhandled");
2380 }
2381
2382 /// \brief Verify if the intrinsic has variable arguments.
2383 /// This method is intended to be called after all the fixed arguments have been
2384 /// verified first.
2385 ///
2386 /// This method returns true on error and does not print an error message.
2387 bool
VerifyIntrinsicIsVarArg(bool isVarArg,ArrayRef<Intrinsic::IITDescriptor> & Infos)2388 Verifier::VerifyIntrinsicIsVarArg(bool isVarArg,
2389 ArrayRef<Intrinsic::IITDescriptor> &Infos) {
2390 using namespace Intrinsic;
2391
2392 // If there are no descriptors left, then it can't be a vararg.
2393 if (Infos.empty())
2394 return isVarArg ? true : false;
2395
2396 // There should be only one descriptor remaining at this point.
2397 if (Infos.size() != 1)
2398 return true;
2399
2400 // Check and verify the descriptor.
2401 IITDescriptor D = Infos.front();
2402 Infos = Infos.slice(1);
2403 if (D.Kind == IITDescriptor::VarArg)
2404 return isVarArg ? false : true;
2405
2406 return true;
2407 }
2408
2409 /// visitIntrinsicFunction - Allow intrinsics to be verified in different ways.
2410 ///
visitIntrinsicFunctionCall(Intrinsic::ID ID,CallInst & CI)2411 void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) {
2412 Function *IF = CI.getCalledFunction();
2413 Assert1(IF->isDeclaration(), "Intrinsic functions should never be defined!",
2414 IF);
2415
2416 // Verify that the intrinsic prototype lines up with what the .td files
2417 // describe.
2418 FunctionType *IFTy = IF->getFunctionType();
2419 bool IsVarArg = IFTy->isVarArg();
2420
2421 SmallVector<Intrinsic::IITDescriptor, 8> Table;
2422 getIntrinsicInfoTableEntries(ID, Table);
2423 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
2424
2425 SmallVector<Type *, 4> ArgTys;
2426 Assert1(!VerifyIntrinsicType(IFTy->getReturnType(), TableRef, ArgTys),
2427 "Intrinsic has incorrect return type!", IF);
2428 for (unsigned i = 0, e = IFTy->getNumParams(); i != e; ++i)
2429 Assert1(!VerifyIntrinsicType(IFTy->getParamType(i), TableRef, ArgTys),
2430 "Intrinsic has incorrect argument type!", IF);
2431
2432 // Verify if the intrinsic call matches the vararg property.
2433 if (IsVarArg)
2434 Assert1(!VerifyIntrinsicIsVarArg(IsVarArg, TableRef),
2435 "Intrinsic was not defined with variable arguments!", IF);
2436 else
2437 Assert1(!VerifyIntrinsicIsVarArg(IsVarArg, TableRef),
2438 "Callsite was not defined with variable arguments!", IF);
2439
2440 // All descriptors should be absorbed by now.
2441 Assert1(TableRef.empty(), "Intrinsic has too few arguments!", IF);
2442
2443 // Now that we have the intrinsic ID and the actual argument types (and we
2444 // know they are legal for the intrinsic!) get the intrinsic name through the
2445 // usual means. This allows us to verify the mangling of argument types into
2446 // the name.
2447 const std::string ExpectedName = Intrinsic::getName(ID, ArgTys);
2448 Assert1(ExpectedName == IF->getName(),
2449 "Intrinsic name not mangled correctly for type arguments! "
2450 "Should be: " + ExpectedName, IF);
2451
2452 // If the intrinsic takes MDNode arguments, verify that they are either global
2453 // or are local to *this* function.
2454 for (unsigned i = 0, e = CI.getNumArgOperands(); i != e; ++i)
2455 if (MDNode *MD = dyn_cast<MDNode>(CI.getArgOperand(i)))
2456 visitMDNode(*MD, CI.getParent()->getParent());
2457
2458 switch (ID) {
2459 default:
2460 break;
2461 case Intrinsic::ctlz: // llvm.ctlz
2462 case Intrinsic::cttz: // llvm.cttz
2463 Assert1(isa<ConstantInt>(CI.getArgOperand(1)),
2464 "is_zero_undef argument of bit counting intrinsics must be a "
2465 "constant int", &CI);
2466 break;
2467 case Intrinsic::dbg_declare: { // llvm.dbg.declare
2468 Assert1(CI.getArgOperand(0) && isa<MDNode>(CI.getArgOperand(0)),
2469 "invalid llvm.dbg.declare intrinsic call 1", &CI);
2470 MDNode *MD = cast<MDNode>(CI.getArgOperand(0));
2471 Assert1(MD->getNumOperands() == 1,
2472 "invalid llvm.dbg.declare intrinsic call 2", &CI);
2473 } break;
2474 case Intrinsic::memcpy:
2475 case Intrinsic::memmove:
2476 case Intrinsic::memset:
2477 Assert1(isa<ConstantInt>(CI.getArgOperand(3)),
2478 "alignment argument of memory intrinsics must be a constant int",
2479 &CI);
2480 Assert1(isa<ConstantInt>(CI.getArgOperand(4)),
2481 "isvolatile argument of memory intrinsics must be a constant int",
2482 &CI);
2483 break;
2484 case Intrinsic::gcroot:
2485 case Intrinsic::gcwrite:
2486 case Intrinsic::gcread:
2487 if (ID == Intrinsic::gcroot) {
2488 AllocaInst *AI =
2489 dyn_cast<AllocaInst>(CI.getArgOperand(0)->stripPointerCasts());
2490 Assert1(AI, "llvm.gcroot parameter #1 must be an alloca.", &CI);
2491 Assert1(isa<Constant>(CI.getArgOperand(1)),
2492 "llvm.gcroot parameter #2 must be a constant.", &CI);
2493 if (!AI->getType()->getElementType()->isPointerTy()) {
2494 Assert1(!isa<ConstantPointerNull>(CI.getArgOperand(1)),
2495 "llvm.gcroot parameter #1 must either be a pointer alloca, "
2496 "or argument #2 must be a non-null constant.", &CI);
2497 }
2498 }
2499
2500 Assert1(CI.getParent()->getParent()->hasGC(),
2501 "Enclosing function does not use GC.", &CI);
2502 break;
2503 case Intrinsic::init_trampoline:
2504 Assert1(isa<Function>(CI.getArgOperand(1)->stripPointerCasts()),
2505 "llvm.init_trampoline parameter #2 must resolve to a function.",
2506 &CI);
2507 break;
2508 case Intrinsic::prefetch:
2509 Assert1(isa<ConstantInt>(CI.getArgOperand(1)) &&
2510 isa<ConstantInt>(CI.getArgOperand(2)) &&
2511 cast<ConstantInt>(CI.getArgOperand(1))->getZExtValue() < 2 &&
2512 cast<ConstantInt>(CI.getArgOperand(2))->getZExtValue() < 4,
2513 "invalid arguments to llvm.prefetch",
2514 &CI);
2515 break;
2516 case Intrinsic::stackprotector:
2517 Assert1(isa<AllocaInst>(CI.getArgOperand(1)->stripPointerCasts()),
2518 "llvm.stackprotector parameter #2 must resolve to an alloca.",
2519 &CI);
2520 break;
2521 case Intrinsic::lifetime_start:
2522 case Intrinsic::lifetime_end:
2523 case Intrinsic::invariant_start:
2524 Assert1(isa<ConstantInt>(CI.getArgOperand(0)),
2525 "size argument of memory use markers must be a constant integer",
2526 &CI);
2527 break;
2528 case Intrinsic::invariant_end:
2529 Assert1(isa<ConstantInt>(CI.getArgOperand(1)),
2530 "llvm.invariant.end parameter #2 must be a constant integer", &CI);
2531 break;
2532 }
2533 }
2534
verifyDebugInfo()2535 void DebugInfoVerifier::verifyDebugInfo() {
2536 if (!VerifyDebugInfo)
2537 return;
2538
2539 DebugInfoFinder Finder;
2540 Finder.processModule(*M);
2541 processInstructions(Finder);
2542
2543 // Verify Debug Info.
2544 //
2545 // NOTE: The loud braces are necessary for MSVC compatibility.
2546 for (DICompileUnit CU : Finder.compile_units()) {
2547 Assert1(CU.Verify(), "DICompileUnit does not Verify!", CU);
2548 }
2549 for (DISubprogram S : Finder.subprograms()) {
2550 Assert1(S.Verify(), "DISubprogram does not Verify!", S);
2551 }
2552 for (DIGlobalVariable GV : Finder.global_variables()) {
2553 Assert1(GV.Verify(), "DIGlobalVariable does not Verify!", GV);
2554 }
2555 for (DIType T : Finder.types()) {
2556 Assert1(T.Verify(), "DIType does not Verify!", T);
2557 }
2558 for (DIScope S : Finder.scopes()) {
2559 Assert1(S.Verify(), "DIScope does not Verify!", S);
2560 }
2561 }
2562
processInstructions(DebugInfoFinder & Finder)2563 void DebugInfoVerifier::processInstructions(DebugInfoFinder &Finder) {
2564 for (const Function &F : *M)
2565 for (auto I = inst_begin(&F), E = inst_end(&F); I != E; ++I) {
2566 if (MDNode *MD = I->getMetadata(LLVMContext::MD_dbg))
2567 Finder.processLocation(*M, DILocation(MD));
2568 if (const CallInst *CI = dyn_cast<CallInst>(&*I))
2569 processCallInst(Finder, *CI);
2570 }
2571 }
2572
processCallInst(DebugInfoFinder & Finder,const CallInst & CI)2573 void DebugInfoVerifier::processCallInst(DebugInfoFinder &Finder,
2574 const CallInst &CI) {
2575 if (Function *F = CI.getCalledFunction())
2576 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
2577 switch (ID) {
2578 case Intrinsic::dbg_declare:
2579 Finder.processDeclare(*M, cast<DbgDeclareInst>(&CI));
2580 break;
2581 case Intrinsic::dbg_value:
2582 Finder.processValue(*M, cast<DbgValueInst>(&CI));
2583 break;
2584 default:
2585 break;
2586 }
2587 }
2588
2589 //===----------------------------------------------------------------------===//
2590 // Implement the public interfaces to this file...
2591 //===----------------------------------------------------------------------===//
2592
verifyFunction(const Function & f,raw_ostream * OS)2593 bool llvm::verifyFunction(const Function &f, raw_ostream *OS) {
2594 Function &F = const_cast<Function &>(f);
2595 assert(!F.isDeclaration() && "Cannot verify external functions");
2596
2597 raw_null_ostream NullStr;
2598 Verifier V(OS ? *OS : NullStr);
2599
2600 // Note that this function's return value is inverted from what you would
2601 // expect of a function called "verify".
2602 return !V.verify(F);
2603 }
2604
verifyModule(const Module & M,raw_ostream * OS)2605 bool llvm::verifyModule(const Module &M, raw_ostream *OS) {
2606 raw_null_ostream NullStr;
2607 Verifier V(OS ? *OS : NullStr);
2608
2609 bool Broken = false;
2610 for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I)
2611 if (!I->isDeclaration())
2612 Broken |= !V.verify(*I);
2613
2614 // Note that this function's return value is inverted from what you would
2615 // expect of a function called "verify".
2616 DebugInfoVerifier DIV(OS ? *OS : NullStr);
2617 return !V.verify(M) || !DIV.verify(M) || Broken;
2618 }
2619
2620 namespace {
2621 struct VerifierLegacyPass : public FunctionPass {
2622 static char ID;
2623
2624 Verifier V;
2625 bool FatalErrors;
2626
VerifierLegacyPass__anona1764bdc0311::VerifierLegacyPass2627 VerifierLegacyPass() : FunctionPass(ID), FatalErrors(true) {
2628 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
2629 }
VerifierLegacyPass__anona1764bdc0311::VerifierLegacyPass2630 explicit VerifierLegacyPass(bool FatalErrors)
2631 : FunctionPass(ID), V(dbgs()), FatalErrors(FatalErrors) {
2632 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
2633 }
2634
runOnFunction__anona1764bdc0311::VerifierLegacyPass2635 bool runOnFunction(Function &F) override {
2636 if (!V.verify(F) && FatalErrors)
2637 report_fatal_error("Broken function found, compilation aborted!");
2638
2639 return false;
2640 }
2641
doFinalization__anona1764bdc0311::VerifierLegacyPass2642 bool doFinalization(Module &M) override {
2643 if (!V.verify(M) && FatalErrors)
2644 report_fatal_error("Broken module found, compilation aborted!");
2645
2646 return false;
2647 }
2648
getAnalysisUsage__anona1764bdc0311::VerifierLegacyPass2649 void getAnalysisUsage(AnalysisUsage &AU) const override {
2650 AU.setPreservesAll();
2651 }
2652 };
2653 struct DebugInfoVerifierLegacyPass : public ModulePass {
2654 static char ID;
2655
2656 DebugInfoVerifier V;
2657 bool FatalErrors;
2658
DebugInfoVerifierLegacyPass__anona1764bdc0311::DebugInfoVerifierLegacyPass2659 DebugInfoVerifierLegacyPass() : ModulePass(ID), FatalErrors(true) {
2660 initializeDebugInfoVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
2661 }
DebugInfoVerifierLegacyPass__anona1764bdc0311::DebugInfoVerifierLegacyPass2662 explicit DebugInfoVerifierLegacyPass(bool FatalErrors)
2663 : ModulePass(ID), V(dbgs()), FatalErrors(FatalErrors) {
2664 initializeDebugInfoVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
2665 }
2666
runOnModule__anona1764bdc0311::DebugInfoVerifierLegacyPass2667 bool runOnModule(Module &M) override {
2668 if (!V.verify(M) && FatalErrors)
2669 report_fatal_error("Broken debug info found, compilation aborted!");
2670
2671 return false;
2672 }
2673
getAnalysisUsage__anona1764bdc0311::DebugInfoVerifierLegacyPass2674 void getAnalysisUsage(AnalysisUsage &AU) const override {
2675 AU.setPreservesAll();
2676 }
2677 };
2678 }
2679
2680 char VerifierLegacyPass::ID = 0;
2681 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)
2682
2683 char DebugInfoVerifierLegacyPass::ID = 0;
2684 INITIALIZE_PASS(DebugInfoVerifierLegacyPass, "verify-di", "Debug Info Verifier",
2685 false, false)
2686
createVerifierPass(bool FatalErrors)2687 FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
2688 return new VerifierLegacyPass(FatalErrors);
2689 }
2690
createDebugInfoVerifierPass(bool FatalErrors)2691 ModulePass *llvm::createDebugInfoVerifierPass(bool FatalErrors) {
2692 return new DebugInfoVerifierLegacyPass(FatalErrors);
2693 }
2694
run(Module * M)2695 PreservedAnalyses VerifierPass::run(Module *M) {
2696 if (verifyModule(*M, &dbgs()) && FatalErrors)
2697 report_fatal_error("Broken module found, compilation aborted!");
2698
2699 return PreservedAnalyses::all();
2700 }
2701
run(Function * F)2702 PreservedAnalyses VerifierPass::run(Function *F) {
2703 if (verifyFunction(*F, &dbgs()) && FatalErrors)
2704 report_fatal_error("Broken function found, compilation aborted!");
2705
2706 return PreservedAnalyses::all();
2707 }
2708