1 /*
2 * Wrapper functions for OpenSSL libcrypto
3 * Copyright (c) 2004-2013, Jouni Malinen <j@w1.fi>
4 *
5 * This software may be distributed under the terms of the BSD license.
6 * See README for more details.
7 */
8
9 #include "includes.h"
10 #include <openssl/opensslv.h>
11 #include <openssl/err.h>
12 #include <openssl/des.h>
13 #include <openssl/aes.h>
14 #include <openssl/bn.h>
15 #include <openssl/evp.h>
16 #include <openssl/dh.h>
17 #include <openssl/hmac.h>
18 #include <openssl/rand.h>
19 #ifdef CONFIG_OPENSSL_CMAC
20 #include <openssl/cmac.h>
21 #endif /* CONFIG_OPENSSL_CMAC */
22 #ifdef CONFIG_ECC
23 #include <openssl/ec.h>
24 #endif /* CONFIG_ECC */
25
26 #include "common.h"
27 #include "wpabuf.h"
28 #include "dh_group5.h"
29 #include "sha1.h"
30 #include "sha256.h"
31 #include "crypto.h"
32
33 #if OPENSSL_VERSION_NUMBER < 0x00907000
34 #define DES_key_schedule des_key_schedule
35 #define DES_cblock des_cblock
36 #define DES_set_key(key, schedule) des_set_key((key), *(schedule))
37 #define DES_ecb_encrypt(input, output, ks, enc) \
38 des_ecb_encrypt((input), (output), *(ks), (enc))
39 #endif /* openssl < 0.9.7 */
40
get_group5_prime(void)41 static BIGNUM * get_group5_prime(void)
42 {
43 #if OPENSSL_VERSION_NUMBER < 0x00908000
44 static const unsigned char RFC3526_PRIME_1536[] = {
45 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xC9,0x0F,0xDA,0xA2,
46 0x21,0x68,0xC2,0x34,0xC4,0xC6,0x62,0x8B,0x80,0xDC,0x1C,0xD1,
47 0x29,0x02,0x4E,0x08,0x8A,0x67,0xCC,0x74,0x02,0x0B,0xBE,0xA6,
48 0x3B,0x13,0x9B,0x22,0x51,0x4A,0x08,0x79,0x8E,0x34,0x04,0xDD,
49 0xEF,0x95,0x19,0xB3,0xCD,0x3A,0x43,0x1B,0x30,0x2B,0x0A,0x6D,
50 0xF2,0x5F,0x14,0x37,0x4F,0xE1,0x35,0x6D,0x6D,0x51,0xC2,0x45,
51 0xE4,0x85,0xB5,0x76,0x62,0x5E,0x7E,0xC6,0xF4,0x4C,0x42,0xE9,
52 0xA6,0x37,0xED,0x6B,0x0B,0xFF,0x5C,0xB6,0xF4,0x06,0xB7,0xED,
53 0xEE,0x38,0x6B,0xFB,0x5A,0x89,0x9F,0xA5,0xAE,0x9F,0x24,0x11,
54 0x7C,0x4B,0x1F,0xE6,0x49,0x28,0x66,0x51,0xEC,0xE4,0x5B,0x3D,
55 0xC2,0x00,0x7C,0xB8,0xA1,0x63,0xBF,0x05,0x98,0xDA,0x48,0x36,
56 0x1C,0x55,0xD3,0x9A,0x69,0x16,0x3F,0xA8,0xFD,0x24,0xCF,0x5F,
57 0x83,0x65,0x5D,0x23,0xDC,0xA3,0xAD,0x96,0x1C,0x62,0xF3,0x56,
58 0x20,0x85,0x52,0xBB,0x9E,0xD5,0x29,0x07,0x70,0x96,0x96,0x6D,
59 0x67,0x0C,0x35,0x4E,0x4A,0xBC,0x98,0x04,0xF1,0x74,0x6C,0x08,
60 0xCA,0x23,0x73,0x27,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
61 };
62 return BN_bin2bn(RFC3526_PRIME_1536, sizeof(RFC3526_PRIME_1536), NULL);
63 #else /* openssl < 0.9.8 */
64 return get_rfc3526_prime_1536(NULL);
65 #endif /* openssl < 0.9.8 */
66 }
67
68 #if OPENSSL_VERSION_NUMBER < 0x00908000
69 #ifndef OPENSSL_NO_SHA256
70 #ifndef OPENSSL_FIPS
71 #define NO_SHA256_WRAPPER
72 #endif
73 #endif
74
75 #endif /* openssl < 0.9.8 */
76
77 #ifdef OPENSSL_NO_SHA256
78 #define NO_SHA256_WRAPPER
79 #endif
80
openssl_digest_vector(const EVP_MD * type,size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)81 static int openssl_digest_vector(const EVP_MD *type, size_t num_elem,
82 const u8 *addr[], const size_t *len, u8 *mac)
83 {
84 EVP_MD_CTX ctx;
85 size_t i;
86 unsigned int mac_len;
87
88 EVP_MD_CTX_init(&ctx);
89 if (!EVP_DigestInit_ex(&ctx, type, NULL)) {
90 wpa_printf(MSG_ERROR, "OpenSSL: EVP_DigestInit_ex failed: %s",
91 ERR_error_string(ERR_get_error(), NULL));
92 return -1;
93 }
94 for (i = 0; i < num_elem; i++) {
95 if (!EVP_DigestUpdate(&ctx, addr[i], len[i])) {
96 wpa_printf(MSG_ERROR, "OpenSSL: EVP_DigestUpdate "
97 "failed: %s",
98 ERR_error_string(ERR_get_error(), NULL));
99 return -1;
100 }
101 }
102 if (!EVP_DigestFinal(&ctx, mac, &mac_len)) {
103 wpa_printf(MSG_ERROR, "OpenSSL: EVP_DigestFinal failed: %s",
104 ERR_error_string(ERR_get_error(), NULL));
105 return -1;
106 }
107
108 return 0;
109 }
110
111
md4_vector(size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)112 int md4_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
113 {
114 return openssl_digest_vector(EVP_md4(), num_elem, addr, len, mac);
115 }
116
117
des_encrypt(const u8 * clear,const u8 * key,u8 * cypher)118 void des_encrypt(const u8 *clear, const u8 *key, u8 *cypher)
119 {
120 u8 pkey[8], next, tmp;
121 int i;
122 DES_key_schedule ks;
123
124 /* Add parity bits to the key */
125 next = 0;
126 for (i = 0; i < 7; i++) {
127 tmp = key[i];
128 pkey[i] = (tmp >> i) | next | 1;
129 next = tmp << (7 - i);
130 }
131 pkey[i] = next | 1;
132
133 DES_set_key(&pkey, &ks);
134 DES_ecb_encrypt((DES_cblock *) clear, (DES_cblock *) cypher, &ks,
135 DES_ENCRYPT);
136 }
137
138
rc4_skip(const u8 * key,size_t keylen,size_t skip,u8 * data,size_t data_len)139 int rc4_skip(const u8 *key, size_t keylen, size_t skip,
140 u8 *data, size_t data_len)
141 {
142 #ifdef OPENSSL_NO_RC4
143 return -1;
144 #else /* OPENSSL_NO_RC4 */
145 EVP_CIPHER_CTX ctx;
146 int outl;
147 int res = -1;
148 unsigned char skip_buf[16];
149
150 EVP_CIPHER_CTX_init(&ctx);
151 if (!EVP_CIPHER_CTX_set_padding(&ctx, 0) ||
152 !EVP_CipherInit_ex(&ctx, EVP_rc4(), NULL, NULL, NULL, 1) ||
153 !EVP_CIPHER_CTX_set_key_length(&ctx, keylen) ||
154 !EVP_CipherInit_ex(&ctx, NULL, NULL, key, NULL, 1))
155 goto out;
156
157 while (skip >= sizeof(skip_buf)) {
158 size_t len = skip;
159 if (len > sizeof(skip_buf))
160 len = sizeof(skip_buf);
161 if (!EVP_CipherUpdate(&ctx, skip_buf, &outl, skip_buf, len))
162 goto out;
163 skip -= len;
164 }
165
166 if (EVP_CipherUpdate(&ctx, data, &outl, data, data_len))
167 res = 0;
168
169 out:
170 EVP_CIPHER_CTX_cleanup(&ctx);
171 return res;
172 #endif /* OPENSSL_NO_RC4 */
173 }
174
175
md5_vector(size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)176 int md5_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
177 {
178 return openssl_digest_vector(EVP_md5(), num_elem, addr, len, mac);
179 }
180
181
sha1_vector(size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)182 int sha1_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
183 {
184 return openssl_digest_vector(EVP_sha1(), num_elem, addr, len, mac);
185 }
186
187
188 #ifndef NO_SHA256_WRAPPER
sha256_vector(size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)189 int sha256_vector(size_t num_elem, const u8 *addr[], const size_t *len,
190 u8 *mac)
191 {
192 return openssl_digest_vector(EVP_sha256(), num_elem, addr, len, mac);
193 }
194 #endif /* NO_SHA256_WRAPPER */
195
196
aes_get_evp_cipher(size_t keylen)197 static const EVP_CIPHER * aes_get_evp_cipher(size_t keylen)
198 {
199 switch (keylen) {
200 case 16:
201 return EVP_aes_128_ecb();
202 case 24:
203 return EVP_aes_192_ecb();
204 case 32:
205 return EVP_aes_256_ecb();
206 }
207
208 return NULL;
209 }
210
211
aes_encrypt_init(const u8 * key,size_t len)212 void * aes_encrypt_init(const u8 *key, size_t len)
213 {
214 EVP_CIPHER_CTX *ctx;
215 const EVP_CIPHER *type;
216
217 type = aes_get_evp_cipher(len);
218 if (type == NULL)
219 return NULL;
220
221 ctx = os_malloc(sizeof(*ctx));
222 if (ctx == NULL)
223 return NULL;
224 EVP_CIPHER_CTX_init(ctx);
225 if (EVP_EncryptInit_ex(ctx, type, NULL, key, NULL) != 1) {
226 os_free(ctx);
227 return NULL;
228 }
229 EVP_CIPHER_CTX_set_padding(ctx, 0);
230 return ctx;
231 }
232
233
aes_encrypt(void * ctx,const u8 * plain,u8 * crypt)234 void aes_encrypt(void *ctx, const u8 *plain, u8 *crypt)
235 {
236 EVP_CIPHER_CTX *c = ctx;
237 int clen = 16;
238 if (EVP_EncryptUpdate(c, crypt, &clen, plain, 16) != 1) {
239 wpa_printf(MSG_ERROR, "OpenSSL: EVP_EncryptUpdate failed: %s",
240 ERR_error_string(ERR_get_error(), NULL));
241 }
242 }
243
244
aes_encrypt_deinit(void * ctx)245 void aes_encrypt_deinit(void *ctx)
246 {
247 EVP_CIPHER_CTX *c = ctx;
248 u8 buf[16];
249 int len = sizeof(buf);
250 if (EVP_EncryptFinal_ex(c, buf, &len) != 1) {
251 wpa_printf(MSG_ERROR, "OpenSSL: EVP_EncryptFinal_ex failed: "
252 "%s", ERR_error_string(ERR_get_error(), NULL));
253 }
254 if (len != 0) {
255 wpa_printf(MSG_ERROR, "OpenSSL: Unexpected padding length %d "
256 "in AES encrypt", len);
257 }
258 EVP_CIPHER_CTX_cleanup(c);
259 os_free(c);
260 }
261
262
aes_decrypt_init(const u8 * key,size_t len)263 void * aes_decrypt_init(const u8 *key, size_t len)
264 {
265 EVP_CIPHER_CTX *ctx;
266 const EVP_CIPHER *type;
267
268 type = aes_get_evp_cipher(len);
269 if (type == NULL)
270 return NULL;
271
272 ctx = os_malloc(sizeof(*ctx));
273 if (ctx == NULL)
274 return NULL;
275 EVP_CIPHER_CTX_init(ctx);
276 if (EVP_DecryptInit_ex(ctx, type, NULL, key, NULL) != 1) {
277 os_free(ctx);
278 return NULL;
279 }
280 EVP_CIPHER_CTX_set_padding(ctx, 0);
281 return ctx;
282 }
283
284
aes_decrypt(void * ctx,const u8 * crypt,u8 * plain)285 void aes_decrypt(void *ctx, const u8 *crypt, u8 *plain)
286 {
287 EVP_CIPHER_CTX *c = ctx;
288 int plen = 16;
289 if (EVP_DecryptUpdate(c, plain, &plen, crypt, 16) != 1) {
290 wpa_printf(MSG_ERROR, "OpenSSL: EVP_DecryptUpdate failed: %s",
291 ERR_error_string(ERR_get_error(), NULL));
292 }
293 }
294
295
aes_decrypt_deinit(void * ctx)296 void aes_decrypt_deinit(void *ctx)
297 {
298 EVP_CIPHER_CTX *c = ctx;
299 u8 buf[16];
300 int len = sizeof(buf);
301 if (EVP_DecryptFinal_ex(c, buf, &len) != 1) {
302 wpa_printf(MSG_ERROR, "OpenSSL: EVP_DecryptFinal_ex failed: "
303 "%s", ERR_error_string(ERR_get_error(), NULL));
304 }
305 if (len != 0) {
306 wpa_printf(MSG_ERROR, "OpenSSL: Unexpected padding length %d "
307 "in AES decrypt", len);
308 }
309 EVP_CIPHER_CTX_cleanup(c);
310 os_free(ctx);
311 }
312
313
crypto_mod_exp(const u8 * base,size_t base_len,const u8 * power,size_t power_len,const u8 * modulus,size_t modulus_len,u8 * result,size_t * result_len)314 int crypto_mod_exp(const u8 *base, size_t base_len,
315 const u8 *power, size_t power_len,
316 const u8 *modulus, size_t modulus_len,
317 u8 *result, size_t *result_len)
318 {
319 BIGNUM *bn_base, *bn_exp, *bn_modulus, *bn_result;
320 int ret = -1;
321 BN_CTX *ctx;
322
323 ctx = BN_CTX_new();
324 if (ctx == NULL)
325 return -1;
326
327 bn_base = BN_bin2bn(base, base_len, NULL);
328 bn_exp = BN_bin2bn(power, power_len, NULL);
329 bn_modulus = BN_bin2bn(modulus, modulus_len, NULL);
330 bn_result = BN_new();
331
332 if (bn_base == NULL || bn_exp == NULL || bn_modulus == NULL ||
333 bn_result == NULL)
334 goto error;
335
336 if (BN_mod_exp(bn_result, bn_base, bn_exp, bn_modulus, ctx) != 1)
337 goto error;
338
339 *result_len = BN_bn2bin(bn_result, result);
340 ret = 0;
341
342 error:
343 BN_clear_free(bn_base);
344 BN_clear_free(bn_exp);
345 BN_clear_free(bn_modulus);
346 BN_clear_free(bn_result);
347 BN_CTX_free(ctx);
348 return ret;
349 }
350
351
352 struct crypto_cipher {
353 EVP_CIPHER_CTX enc;
354 EVP_CIPHER_CTX dec;
355 };
356
357
crypto_cipher_init(enum crypto_cipher_alg alg,const u8 * iv,const u8 * key,size_t key_len)358 struct crypto_cipher * crypto_cipher_init(enum crypto_cipher_alg alg,
359 const u8 *iv, const u8 *key,
360 size_t key_len)
361 {
362 struct crypto_cipher *ctx;
363 const EVP_CIPHER *cipher;
364
365 ctx = os_zalloc(sizeof(*ctx));
366 if (ctx == NULL)
367 return NULL;
368
369 switch (alg) {
370 #ifndef OPENSSL_NO_RC4
371 case CRYPTO_CIPHER_ALG_RC4:
372 cipher = EVP_rc4();
373 break;
374 #endif /* OPENSSL_NO_RC4 */
375 #ifndef OPENSSL_NO_AES
376 case CRYPTO_CIPHER_ALG_AES:
377 switch (key_len) {
378 case 16:
379 cipher = EVP_aes_128_cbc();
380 break;
381 case 24:
382 cipher = EVP_aes_192_cbc();
383 break;
384 case 32:
385 cipher = EVP_aes_256_cbc();
386 break;
387 default:
388 os_free(ctx);
389 return NULL;
390 }
391 break;
392 #endif /* OPENSSL_NO_AES */
393 #ifndef OPENSSL_NO_DES
394 case CRYPTO_CIPHER_ALG_3DES:
395 cipher = EVP_des_ede3_cbc();
396 break;
397 case CRYPTO_CIPHER_ALG_DES:
398 cipher = EVP_des_cbc();
399 break;
400 #endif /* OPENSSL_NO_DES */
401 #ifndef OPENSSL_NO_RC2
402 case CRYPTO_CIPHER_ALG_RC2:
403 cipher = EVP_rc2_ecb();
404 break;
405 #endif /* OPENSSL_NO_RC2 */
406 default:
407 os_free(ctx);
408 return NULL;
409 }
410
411 EVP_CIPHER_CTX_init(&ctx->enc);
412 EVP_CIPHER_CTX_set_padding(&ctx->enc, 0);
413 if (!EVP_EncryptInit_ex(&ctx->enc, cipher, NULL, NULL, NULL) ||
414 !EVP_CIPHER_CTX_set_key_length(&ctx->enc, key_len) ||
415 !EVP_EncryptInit_ex(&ctx->enc, NULL, NULL, key, iv)) {
416 EVP_CIPHER_CTX_cleanup(&ctx->enc);
417 os_free(ctx);
418 return NULL;
419 }
420
421 EVP_CIPHER_CTX_init(&ctx->dec);
422 EVP_CIPHER_CTX_set_padding(&ctx->dec, 0);
423 if (!EVP_DecryptInit_ex(&ctx->dec, cipher, NULL, NULL, NULL) ||
424 !EVP_CIPHER_CTX_set_key_length(&ctx->dec, key_len) ||
425 !EVP_DecryptInit_ex(&ctx->dec, NULL, NULL, key, iv)) {
426 EVP_CIPHER_CTX_cleanup(&ctx->enc);
427 EVP_CIPHER_CTX_cleanup(&ctx->dec);
428 os_free(ctx);
429 return NULL;
430 }
431
432 return ctx;
433 }
434
435
crypto_cipher_encrypt(struct crypto_cipher * ctx,const u8 * plain,u8 * crypt,size_t len)436 int crypto_cipher_encrypt(struct crypto_cipher *ctx, const u8 *plain,
437 u8 *crypt, size_t len)
438 {
439 int outl;
440 if (!EVP_EncryptUpdate(&ctx->enc, crypt, &outl, plain, len))
441 return -1;
442 return 0;
443 }
444
445
crypto_cipher_decrypt(struct crypto_cipher * ctx,const u8 * crypt,u8 * plain,size_t len)446 int crypto_cipher_decrypt(struct crypto_cipher *ctx, const u8 *crypt,
447 u8 *plain, size_t len)
448 {
449 int outl;
450 outl = len;
451 if (!EVP_DecryptUpdate(&ctx->dec, plain, &outl, crypt, len))
452 return -1;
453 return 0;
454 }
455
456
crypto_cipher_deinit(struct crypto_cipher * ctx)457 void crypto_cipher_deinit(struct crypto_cipher *ctx)
458 {
459 EVP_CIPHER_CTX_cleanup(&ctx->enc);
460 EVP_CIPHER_CTX_cleanup(&ctx->dec);
461 os_free(ctx);
462 }
463
464
dh5_init(struct wpabuf ** priv,struct wpabuf ** publ)465 void * dh5_init(struct wpabuf **priv, struct wpabuf **publ)
466 {
467 DH *dh;
468 struct wpabuf *pubkey = NULL, *privkey = NULL;
469 size_t publen, privlen;
470
471 *priv = NULL;
472 *publ = NULL;
473
474 dh = DH_new();
475 if (dh == NULL)
476 return NULL;
477
478 dh->g = BN_new();
479 if (dh->g == NULL || BN_set_word(dh->g, 2) != 1)
480 goto err;
481
482 dh->p = get_group5_prime();
483 if (dh->p == NULL)
484 goto err;
485
486 if (DH_generate_key(dh) != 1)
487 goto err;
488
489 publen = BN_num_bytes(dh->pub_key);
490 pubkey = wpabuf_alloc(publen);
491 if (pubkey == NULL)
492 goto err;
493 privlen = BN_num_bytes(dh->priv_key);
494 privkey = wpabuf_alloc(privlen);
495 if (privkey == NULL)
496 goto err;
497
498 BN_bn2bin(dh->pub_key, wpabuf_put(pubkey, publen));
499 BN_bn2bin(dh->priv_key, wpabuf_put(privkey, privlen));
500
501 *priv = privkey;
502 *publ = pubkey;
503 return dh;
504
505 err:
506 wpabuf_free(pubkey);
507 wpabuf_free(privkey);
508 DH_free(dh);
509 return NULL;
510 }
511
512
dh5_init_fixed(const struct wpabuf * priv,const struct wpabuf * publ)513 void * dh5_init_fixed(const struct wpabuf *priv, const struct wpabuf *publ)
514 {
515 DH *dh;
516
517 dh = DH_new();
518 if (dh == NULL)
519 return NULL;
520
521 dh->g = BN_new();
522 if (dh->g == NULL || BN_set_word(dh->g, 2) != 1)
523 goto err;
524
525 dh->p = get_group5_prime();
526 if (dh->p == NULL)
527 goto err;
528
529 dh->priv_key = BN_bin2bn(wpabuf_head(priv), wpabuf_len(priv), NULL);
530 if (dh->priv_key == NULL)
531 goto err;
532
533 dh->pub_key = BN_bin2bn(wpabuf_head(publ), wpabuf_len(publ), NULL);
534 if (dh->pub_key == NULL)
535 goto err;
536
537 if (DH_generate_key(dh) != 1)
538 goto err;
539
540 return dh;
541
542 err:
543 DH_free(dh);
544 return NULL;
545 }
546
547
dh5_derive_shared(void * ctx,const struct wpabuf * peer_public,const struct wpabuf * own_private)548 struct wpabuf * dh5_derive_shared(void *ctx, const struct wpabuf *peer_public,
549 const struct wpabuf *own_private)
550 {
551 BIGNUM *pub_key;
552 struct wpabuf *res = NULL;
553 size_t rlen;
554 DH *dh = ctx;
555 int keylen;
556
557 if (ctx == NULL)
558 return NULL;
559
560 pub_key = BN_bin2bn(wpabuf_head(peer_public), wpabuf_len(peer_public),
561 NULL);
562 if (pub_key == NULL)
563 return NULL;
564
565 rlen = DH_size(dh);
566 res = wpabuf_alloc(rlen);
567 if (res == NULL)
568 goto err;
569
570 keylen = DH_compute_key(wpabuf_mhead(res), pub_key, dh);
571 if (keylen < 0)
572 goto err;
573 wpabuf_put(res, keylen);
574 BN_clear_free(pub_key);
575
576 return res;
577
578 err:
579 BN_clear_free(pub_key);
580 wpabuf_free(res);
581 return NULL;
582 }
583
584
dh5_free(void * ctx)585 void dh5_free(void *ctx)
586 {
587 DH *dh;
588 if (ctx == NULL)
589 return;
590 dh = ctx;
591 DH_free(dh);
592 }
593
594
595 struct crypto_hash {
596 HMAC_CTX ctx;
597 };
598
599
crypto_hash_init(enum crypto_hash_alg alg,const u8 * key,size_t key_len)600 struct crypto_hash * crypto_hash_init(enum crypto_hash_alg alg, const u8 *key,
601 size_t key_len)
602 {
603 struct crypto_hash *ctx;
604 const EVP_MD *md;
605
606 switch (alg) {
607 #ifndef OPENSSL_NO_MD5
608 case CRYPTO_HASH_ALG_HMAC_MD5:
609 md = EVP_md5();
610 break;
611 #endif /* OPENSSL_NO_MD5 */
612 #ifndef OPENSSL_NO_SHA
613 case CRYPTO_HASH_ALG_HMAC_SHA1:
614 md = EVP_sha1();
615 break;
616 #endif /* OPENSSL_NO_SHA */
617 #ifndef OPENSSL_NO_SHA256
618 #ifdef CONFIG_SHA256
619 case CRYPTO_HASH_ALG_HMAC_SHA256:
620 md = EVP_sha256();
621 break;
622 #endif /* CONFIG_SHA256 */
623 #endif /* OPENSSL_NO_SHA256 */
624 default:
625 return NULL;
626 }
627
628 ctx = os_zalloc(sizeof(*ctx));
629 if (ctx == NULL)
630 return NULL;
631 HMAC_CTX_init(&ctx->ctx);
632
633 #if OPENSSL_VERSION_NUMBER < 0x00909000
634 HMAC_Init_ex(&ctx->ctx, key, key_len, md, NULL);
635 #else /* openssl < 0.9.9 */
636 if (HMAC_Init_ex(&ctx->ctx, key, key_len, md, NULL) != 1) {
637 os_free(ctx);
638 return NULL;
639 }
640 #endif /* openssl < 0.9.9 */
641
642 return ctx;
643 }
644
645
crypto_hash_update(struct crypto_hash * ctx,const u8 * data,size_t len)646 void crypto_hash_update(struct crypto_hash *ctx, const u8 *data, size_t len)
647 {
648 if (ctx == NULL)
649 return;
650 HMAC_Update(&ctx->ctx, data, len);
651 }
652
653
crypto_hash_finish(struct crypto_hash * ctx,u8 * mac,size_t * len)654 int crypto_hash_finish(struct crypto_hash *ctx, u8 *mac, size_t *len)
655 {
656 unsigned int mdlen;
657 int res;
658
659 if (ctx == NULL)
660 return -2;
661
662 if (mac == NULL || len == NULL) {
663 os_free(ctx);
664 return 0;
665 }
666
667 mdlen = *len;
668 #if OPENSSL_VERSION_NUMBER < 0x00909000
669 HMAC_Final(&ctx->ctx, mac, &mdlen);
670 res = 1;
671 #else /* openssl < 0.9.9 */
672 res = HMAC_Final(&ctx->ctx, mac, &mdlen);
673 #endif /* openssl < 0.9.9 */
674 HMAC_CTX_cleanup(&ctx->ctx);
675 os_free(ctx);
676
677 if (res == 1) {
678 *len = mdlen;
679 return 0;
680 }
681
682 return -1;
683 }
684
685
pbkdf2_sha1(const char * passphrase,const u8 * ssid,size_t ssid_len,int iterations,u8 * buf,size_t buflen)686 int pbkdf2_sha1(const char *passphrase, const u8 *ssid, size_t ssid_len,
687 int iterations, u8 *buf, size_t buflen)
688 {
689 #if OPENSSL_VERSION_NUMBER < 0x00908000
690 if (PKCS5_PBKDF2_HMAC_SHA1(passphrase, os_strlen(passphrase),
691 (unsigned char *) ssid,
692 ssid_len, 4096, buflen, buf) != 1)
693 return -1;
694 #else /* openssl < 0.9.8 */
695 if (PKCS5_PBKDF2_HMAC_SHA1(passphrase, os_strlen(passphrase), ssid,
696 ssid_len, 4096, buflen, buf) != 1)
697 return -1;
698 #endif /* openssl < 0.9.8 */
699 return 0;
700 }
701
702
hmac_sha1_vector(const u8 * key,size_t key_len,size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)703 int hmac_sha1_vector(const u8 *key, size_t key_len, size_t num_elem,
704 const u8 *addr[], const size_t *len, u8 *mac)
705 {
706 HMAC_CTX ctx;
707 size_t i;
708 unsigned int mdlen;
709 int res;
710
711 HMAC_CTX_init(&ctx);
712 #if OPENSSL_VERSION_NUMBER < 0x00909000
713 HMAC_Init_ex(&ctx, key, key_len, EVP_sha1(), NULL);
714 #else /* openssl < 0.9.9 */
715 if (HMAC_Init_ex(&ctx, key, key_len, EVP_sha1(), NULL) != 1)
716 return -1;
717 #endif /* openssl < 0.9.9 */
718
719 for (i = 0; i < num_elem; i++)
720 HMAC_Update(&ctx, addr[i], len[i]);
721
722 mdlen = 20;
723 #if OPENSSL_VERSION_NUMBER < 0x00909000
724 HMAC_Final(&ctx, mac, &mdlen);
725 res = 1;
726 #else /* openssl < 0.9.9 */
727 res = HMAC_Final(&ctx, mac, &mdlen);
728 #endif /* openssl < 0.9.9 */
729 HMAC_CTX_cleanup(&ctx);
730
731 return res == 1 ? 0 : -1;
732 }
733
734
hmac_sha1(const u8 * key,size_t key_len,const u8 * data,size_t data_len,u8 * mac)735 int hmac_sha1(const u8 *key, size_t key_len, const u8 *data, size_t data_len,
736 u8 *mac)
737 {
738 return hmac_sha1_vector(key, key_len, 1, &data, &data_len, mac);
739 }
740
741
742 #ifdef CONFIG_SHA256
743
hmac_sha256_vector(const u8 * key,size_t key_len,size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)744 int hmac_sha256_vector(const u8 *key, size_t key_len, size_t num_elem,
745 const u8 *addr[], const size_t *len, u8 *mac)
746 {
747 HMAC_CTX ctx;
748 size_t i;
749 unsigned int mdlen;
750 int res;
751
752 HMAC_CTX_init(&ctx);
753 #if OPENSSL_VERSION_NUMBER < 0x00909000
754 HMAC_Init_ex(&ctx, key, key_len, EVP_sha256(), NULL);
755 #else /* openssl < 0.9.9 */
756 if (HMAC_Init_ex(&ctx, key, key_len, EVP_sha256(), NULL) != 1)
757 return -1;
758 #endif /* openssl < 0.9.9 */
759
760 for (i = 0; i < num_elem; i++)
761 HMAC_Update(&ctx, addr[i], len[i]);
762
763 mdlen = 32;
764 #if OPENSSL_VERSION_NUMBER < 0x00909000
765 HMAC_Final(&ctx, mac, &mdlen);
766 res = 1;
767 #else /* openssl < 0.9.9 */
768 res = HMAC_Final(&ctx, mac, &mdlen);
769 #endif /* openssl < 0.9.9 */
770 HMAC_CTX_cleanup(&ctx);
771
772 return res == 1 ? 0 : -1;
773 }
774
775
hmac_sha256(const u8 * key,size_t key_len,const u8 * data,size_t data_len,u8 * mac)776 int hmac_sha256(const u8 *key, size_t key_len, const u8 *data,
777 size_t data_len, u8 *mac)
778 {
779 return hmac_sha256_vector(key, key_len, 1, &data, &data_len, mac);
780 }
781
782 #endif /* CONFIG_SHA256 */
783
784
crypto_get_random(void * buf,size_t len)785 int crypto_get_random(void *buf, size_t len)
786 {
787 if (RAND_bytes(buf, len) != 1)
788 return -1;
789 return 0;
790 }
791
792
793 #ifdef CONFIG_OPENSSL_CMAC
omac1_aes_128_vector(const u8 * key,size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)794 int omac1_aes_128_vector(const u8 *key, size_t num_elem,
795 const u8 *addr[], const size_t *len, u8 *mac)
796 {
797 CMAC_CTX *ctx;
798 int ret = -1;
799 size_t outlen, i;
800
801 ctx = CMAC_CTX_new();
802 if (ctx == NULL)
803 return -1;
804
805 if (!CMAC_Init(ctx, key, 16, EVP_aes_128_cbc(), NULL))
806 goto fail;
807 for (i = 0; i < num_elem; i++) {
808 if (!CMAC_Update(ctx, addr[i], len[i]))
809 goto fail;
810 }
811 if (!CMAC_Final(ctx, mac, &outlen) || outlen != 16)
812 goto fail;
813
814 ret = 0;
815 fail:
816 CMAC_CTX_free(ctx);
817 return ret;
818 }
819
820
omac1_aes_128(const u8 * key,const u8 * data,size_t data_len,u8 * mac)821 int omac1_aes_128(const u8 *key, const u8 *data, size_t data_len, u8 *mac)
822 {
823 return omac1_aes_128_vector(key, 1, &data, &data_len, mac);
824 }
825 #endif /* CONFIG_OPENSSL_CMAC */
826
827
crypto_bignum_init(void)828 struct crypto_bignum * crypto_bignum_init(void)
829 {
830 return (struct crypto_bignum *) BN_new();
831 }
832
833
crypto_bignum_init_set(const u8 * buf,size_t len)834 struct crypto_bignum * crypto_bignum_init_set(const u8 *buf, size_t len)
835 {
836 BIGNUM *bn = BN_bin2bn(buf, len, NULL);
837 return (struct crypto_bignum *) bn;
838 }
839
840
crypto_bignum_deinit(struct crypto_bignum * n,int clear)841 void crypto_bignum_deinit(struct crypto_bignum *n, int clear)
842 {
843 if (clear)
844 BN_clear_free((BIGNUM *) n);
845 else
846 BN_free((BIGNUM *) n);
847 }
848
849
crypto_bignum_to_bin(const struct crypto_bignum * a,u8 * buf,size_t buflen,size_t padlen)850 int crypto_bignum_to_bin(const struct crypto_bignum *a,
851 u8 *buf, size_t buflen, size_t padlen)
852 {
853 int num_bytes, offset;
854
855 if (padlen > buflen)
856 return -1;
857
858 num_bytes = BN_num_bytes((const BIGNUM *) a);
859 if ((size_t) num_bytes > buflen)
860 return -1;
861 if (padlen > (size_t) num_bytes)
862 offset = padlen - num_bytes;
863 else
864 offset = 0;
865
866 os_memset(buf, 0, offset);
867 BN_bn2bin((const BIGNUM *) a, buf + offset);
868
869 return num_bytes + offset;
870 }
871
872
crypto_bignum_add(const struct crypto_bignum * a,const struct crypto_bignum * b,struct crypto_bignum * c)873 int crypto_bignum_add(const struct crypto_bignum *a,
874 const struct crypto_bignum *b,
875 struct crypto_bignum *c)
876 {
877 return BN_add((BIGNUM *) c, (const BIGNUM *) a, (const BIGNUM *) b) ?
878 0 : -1;
879 }
880
881
crypto_bignum_mod(const struct crypto_bignum * a,const struct crypto_bignum * b,struct crypto_bignum * c)882 int crypto_bignum_mod(const struct crypto_bignum *a,
883 const struct crypto_bignum *b,
884 struct crypto_bignum *c)
885 {
886 int res;
887 BN_CTX *bnctx;
888
889 bnctx = BN_CTX_new();
890 if (bnctx == NULL)
891 return -1;
892 res = BN_mod((BIGNUM *) c, (const BIGNUM *) a, (const BIGNUM *) b,
893 bnctx);
894 BN_CTX_free(bnctx);
895
896 return res ? 0 : -1;
897 }
898
899
crypto_bignum_exptmod(const struct crypto_bignum * a,const struct crypto_bignum * b,const struct crypto_bignum * c,struct crypto_bignum * d)900 int crypto_bignum_exptmod(const struct crypto_bignum *a,
901 const struct crypto_bignum *b,
902 const struct crypto_bignum *c,
903 struct crypto_bignum *d)
904 {
905 int res;
906 BN_CTX *bnctx;
907
908 bnctx = BN_CTX_new();
909 if (bnctx == NULL)
910 return -1;
911 res = BN_mod_exp((BIGNUM *) d, (const BIGNUM *) a, (const BIGNUM *) b,
912 (const BIGNUM *) c, bnctx);
913 BN_CTX_free(bnctx);
914
915 return res ? 0 : -1;
916 }
917
918
crypto_bignum_inverse(const struct crypto_bignum * a,const struct crypto_bignum * b,struct crypto_bignum * c)919 int crypto_bignum_inverse(const struct crypto_bignum *a,
920 const struct crypto_bignum *b,
921 struct crypto_bignum *c)
922 {
923 BIGNUM *res;
924 BN_CTX *bnctx;
925
926 bnctx = BN_CTX_new();
927 if (bnctx == NULL)
928 return -1;
929 res = BN_mod_inverse((BIGNUM *) c, (const BIGNUM *) a,
930 (const BIGNUM *) b, bnctx);
931 BN_CTX_free(bnctx);
932
933 return res ? 0 : -1;
934 }
935
936
crypto_bignum_sub(const struct crypto_bignum * a,const struct crypto_bignum * b,struct crypto_bignum * c)937 int crypto_bignum_sub(const struct crypto_bignum *a,
938 const struct crypto_bignum *b,
939 struct crypto_bignum *c)
940 {
941 return BN_sub((BIGNUM *) c, (const BIGNUM *) a, (const BIGNUM *) b) ?
942 0 : -1;
943 }
944
945
crypto_bignum_div(const struct crypto_bignum * a,const struct crypto_bignum * b,struct crypto_bignum * c)946 int crypto_bignum_div(const struct crypto_bignum *a,
947 const struct crypto_bignum *b,
948 struct crypto_bignum *c)
949 {
950 int res;
951
952 BN_CTX *bnctx;
953
954 bnctx = BN_CTX_new();
955 if (bnctx == NULL)
956 return -1;
957 res = BN_div((BIGNUM *) c, NULL, (const BIGNUM *) a,
958 (const BIGNUM *) b, bnctx);
959 BN_CTX_free(bnctx);
960
961 return res ? 0 : -1;
962 }
963
964
crypto_bignum_mulmod(const struct crypto_bignum * a,const struct crypto_bignum * b,const struct crypto_bignum * c,struct crypto_bignum * d)965 int crypto_bignum_mulmod(const struct crypto_bignum *a,
966 const struct crypto_bignum *b,
967 const struct crypto_bignum *c,
968 struct crypto_bignum *d)
969 {
970 int res;
971
972 BN_CTX *bnctx;
973
974 bnctx = BN_CTX_new();
975 if (bnctx == NULL)
976 return -1;
977 res = BN_mod_mul((BIGNUM *) d, (const BIGNUM *) a, (const BIGNUM *) b,
978 (const BIGNUM *) c, bnctx);
979 BN_CTX_free(bnctx);
980
981 return res ? 0 : -1;
982 }
983
984
crypto_bignum_cmp(const struct crypto_bignum * a,const struct crypto_bignum * b)985 int crypto_bignum_cmp(const struct crypto_bignum *a,
986 const struct crypto_bignum *b)
987 {
988 return BN_cmp((const BIGNUM *) a, (const BIGNUM *) b);
989 }
990
991
crypto_bignum_bits(const struct crypto_bignum * a)992 int crypto_bignum_bits(const struct crypto_bignum *a)
993 {
994 return BN_num_bits((const BIGNUM *) a);
995 }
996
997
crypto_bignum_is_zero(const struct crypto_bignum * a)998 int crypto_bignum_is_zero(const struct crypto_bignum *a)
999 {
1000 return BN_is_zero((const BIGNUM *) a);
1001 }
1002
1003
crypto_bignum_is_one(const struct crypto_bignum * a)1004 int crypto_bignum_is_one(const struct crypto_bignum *a)
1005 {
1006 return BN_is_one((const BIGNUM *) a);
1007 }
1008
1009
1010 #ifdef CONFIG_ECC
1011
1012 struct crypto_ec {
1013 EC_GROUP *group;
1014 BN_CTX *bnctx;
1015 BIGNUM *prime;
1016 BIGNUM *order;
1017 };
1018
crypto_ec_init(int group)1019 struct crypto_ec * crypto_ec_init(int group)
1020 {
1021 struct crypto_ec *e;
1022 int nid;
1023
1024 /* Map from IANA registry for IKE D-H groups to OpenSSL NID */
1025 switch (group) {
1026 case 19:
1027 nid = NID_X9_62_prime256v1;
1028 break;
1029 case 20:
1030 nid = NID_secp384r1;
1031 break;
1032 case 21:
1033 nid = NID_secp521r1;
1034 break;
1035 case 25:
1036 nid = NID_X9_62_prime192v1;
1037 break;
1038 case 26:
1039 nid = NID_secp224r1;
1040 break;
1041 default:
1042 return NULL;
1043 }
1044
1045 e = os_zalloc(sizeof(*e));
1046 if (e == NULL)
1047 return NULL;
1048
1049 e->bnctx = BN_CTX_new();
1050 e->group = EC_GROUP_new_by_curve_name(nid);
1051 e->prime = BN_new();
1052 e->order = BN_new();
1053 if (e->group == NULL || e->bnctx == NULL || e->prime == NULL ||
1054 e->order == NULL ||
1055 !EC_GROUP_get_curve_GFp(e->group, e->prime, NULL, NULL, e->bnctx) ||
1056 !EC_GROUP_get_order(e->group, e->order, e->bnctx)) {
1057 crypto_ec_deinit(e);
1058 e = NULL;
1059 }
1060
1061 return e;
1062 }
1063
1064
crypto_ec_deinit(struct crypto_ec * e)1065 void crypto_ec_deinit(struct crypto_ec *e)
1066 {
1067 if (e == NULL)
1068 return;
1069 BN_clear_free(e->order);
1070 EC_GROUP_free(e->group);
1071 BN_CTX_free(e->bnctx);
1072 os_free(e);
1073 }
1074
1075
crypto_ec_point_init(struct crypto_ec * e)1076 struct crypto_ec_point * crypto_ec_point_init(struct crypto_ec *e)
1077 {
1078 if (e == NULL)
1079 return NULL;
1080 return (struct crypto_ec_point *) EC_POINT_new(e->group);
1081 }
1082
1083
crypto_ec_prime_len(struct crypto_ec * e)1084 size_t crypto_ec_prime_len(struct crypto_ec *e)
1085 {
1086 return BN_num_bytes(e->prime);
1087 }
1088
1089
crypto_ec_prime_len_bits(struct crypto_ec * e)1090 size_t crypto_ec_prime_len_bits(struct crypto_ec *e)
1091 {
1092 return BN_num_bits(e->prime);
1093 }
1094
1095
crypto_ec_get_prime(struct crypto_ec * e)1096 const struct crypto_bignum * crypto_ec_get_prime(struct crypto_ec *e)
1097 {
1098 return (const struct crypto_bignum *) e->prime;
1099 }
1100
1101
crypto_ec_get_order(struct crypto_ec * e)1102 const struct crypto_bignum * crypto_ec_get_order(struct crypto_ec *e)
1103 {
1104 return (const struct crypto_bignum *) e->order;
1105 }
1106
1107
crypto_ec_point_deinit(struct crypto_ec_point * p,int clear)1108 void crypto_ec_point_deinit(struct crypto_ec_point *p, int clear)
1109 {
1110 if (clear)
1111 EC_POINT_clear_free((EC_POINT *) p);
1112 else
1113 EC_POINT_free((EC_POINT *) p);
1114 }
1115
1116
crypto_ec_point_to_bin(struct crypto_ec * e,const struct crypto_ec_point * point,u8 * x,u8 * y)1117 int crypto_ec_point_to_bin(struct crypto_ec *e,
1118 const struct crypto_ec_point *point, u8 *x, u8 *y)
1119 {
1120 BIGNUM *x_bn, *y_bn;
1121 int ret = -1;
1122 int len = BN_num_bytes(e->prime);
1123
1124 x_bn = BN_new();
1125 y_bn = BN_new();
1126
1127 if (x_bn && y_bn &&
1128 EC_POINT_get_affine_coordinates_GFp(e->group, (EC_POINT *) point,
1129 x_bn, y_bn, e->bnctx)) {
1130 if (x) {
1131 crypto_bignum_to_bin((struct crypto_bignum *) x_bn,
1132 x, len, len);
1133 }
1134 if (y) {
1135 crypto_bignum_to_bin((struct crypto_bignum *) y_bn,
1136 y, len, len);
1137 }
1138 ret = 0;
1139 }
1140
1141 BN_clear_free(x_bn);
1142 BN_clear_free(y_bn);
1143 return ret;
1144 }
1145
1146
crypto_ec_point_from_bin(struct crypto_ec * e,const u8 * val)1147 struct crypto_ec_point * crypto_ec_point_from_bin(struct crypto_ec *e,
1148 const u8 *val)
1149 {
1150 BIGNUM *x, *y;
1151 EC_POINT *elem;
1152 int len = BN_num_bytes(e->prime);
1153
1154 x = BN_bin2bn(val, len, NULL);
1155 y = BN_bin2bn(val + len, len, NULL);
1156 elem = EC_POINT_new(e->group);
1157 if (x == NULL || y == NULL || elem == NULL) {
1158 BN_clear_free(x);
1159 BN_clear_free(y);
1160 EC_POINT_clear_free(elem);
1161 return NULL;
1162 }
1163
1164 if (!EC_POINT_set_affine_coordinates_GFp(e->group, elem, x, y,
1165 e->bnctx)) {
1166 EC_POINT_clear_free(elem);
1167 elem = NULL;
1168 }
1169
1170 BN_clear_free(x);
1171 BN_clear_free(y);
1172
1173 return (struct crypto_ec_point *) elem;
1174 }
1175
1176
crypto_ec_point_add(struct crypto_ec * e,const struct crypto_ec_point * a,const struct crypto_ec_point * b,struct crypto_ec_point * c)1177 int crypto_ec_point_add(struct crypto_ec *e, const struct crypto_ec_point *a,
1178 const struct crypto_ec_point *b,
1179 struct crypto_ec_point *c)
1180 {
1181 return EC_POINT_add(e->group, (EC_POINT *) c, (const EC_POINT *) a,
1182 (const EC_POINT *) b, e->bnctx) ? 0 : -1;
1183 }
1184
1185
crypto_ec_point_mul(struct crypto_ec * e,const struct crypto_ec_point * p,const struct crypto_bignum * b,struct crypto_ec_point * res)1186 int crypto_ec_point_mul(struct crypto_ec *e, const struct crypto_ec_point *p,
1187 const struct crypto_bignum *b,
1188 struct crypto_ec_point *res)
1189 {
1190 return EC_POINT_mul(e->group, (EC_POINT *) res, NULL,
1191 (const EC_POINT *) p, (const BIGNUM *) b, e->bnctx)
1192 ? 0 : -1;
1193 }
1194
1195
crypto_ec_point_invert(struct crypto_ec * e,struct crypto_ec_point * p)1196 int crypto_ec_point_invert(struct crypto_ec *e, struct crypto_ec_point *p)
1197 {
1198 return EC_POINT_invert(e->group, (EC_POINT *) p, e->bnctx) ? 0 : -1;
1199 }
1200
1201
crypto_ec_point_solve_y_coord(struct crypto_ec * e,struct crypto_ec_point * p,const struct crypto_bignum * x,int y_bit)1202 int crypto_ec_point_solve_y_coord(struct crypto_ec *e,
1203 struct crypto_ec_point *p,
1204 const struct crypto_bignum *x, int y_bit)
1205 {
1206 if (!EC_POINT_set_compressed_coordinates_GFp(e->group, (EC_POINT *) p,
1207 (const BIGNUM *) x, y_bit,
1208 e->bnctx) ||
1209 !EC_POINT_is_on_curve(e->group, (EC_POINT *) p, e->bnctx))
1210 return -1;
1211 return 0;
1212 }
1213
1214
crypto_ec_point_is_at_infinity(struct crypto_ec * e,const struct crypto_ec_point * p)1215 int crypto_ec_point_is_at_infinity(struct crypto_ec *e,
1216 const struct crypto_ec_point *p)
1217 {
1218 return EC_POINT_is_at_infinity(e->group, (const EC_POINT *) p);
1219 }
1220
1221
crypto_ec_point_is_on_curve(struct crypto_ec * e,const struct crypto_ec_point * p)1222 int crypto_ec_point_is_on_curve(struct crypto_ec *e,
1223 const struct crypto_ec_point *p)
1224 {
1225 return EC_POINT_is_on_curve(e->group, (const EC_POINT *) p, e->bnctx);
1226 }
1227
1228 #endif /* CONFIG_ECC */
1229