• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*M///////////////////////////////////////////////////////////////////////////////////////
2 //
3 //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4 //
5 //  By downloading, copying, installing or using the software you agree to this license.
6 //  If you do not agree to this license, do not download, install,
7 //  copy or use the software.
8 //
9 //
10 //                        Intel License Agreement
11 //                For Open Source Computer Vision Library
12 //
13 // Copyright (C) 2000, Intel Corporation, all rights reserved.
14 // Third party copyrights are property of their respective owners.
15 //
16 // Redistribution and use in source and binary forms, with or without modification,
17 // are permitted provided that the following conditions are met:
18 //
19 //   * Redistribution's of source code must retain the above copyright notice,
20 //     this list of conditions and the following disclaimer.
21 //
22 //   * Redistribution's in binary form must reproduce the above copyright notice,
23 //     this list of conditions and the following disclaimer in the documentation
24 //     and/or other materials provided with the distribution.
25 //
26 //   * The name of Intel Corporation may not be used to endorse or promote products
27 //     derived from this software without specific prior written permission.
28 //
29 // This software is provided by the copyright holders and contributors "as is" and
30 // any express or implied warranties, including, but not limited to, the implied
31 // warranties of merchantability and fitness for a particular purpose are disclaimed.
32 // In no event shall the Intel Corporation or contributors be liable for any direct,
33 // indirect, incidental, special, exemplary, or consequential damages
34 // (including, but not limited to, procurement of substitute goods or services;
35 // loss of use, data, or profits; or business interruption) however caused
36 // and on any theory of liability, whether in contract, strict liability,
37 // or tort (including negligence or otherwise) arising in any way out of
38 // the use of this software, even if advised of the possibility of such damage.
39 //
40 //M*/
41 
42 #include "_cv.h"
43 
44 static int
icvSklansky_32s(CvPoint ** array,int start,int end,int * stack,int nsign,int sign2)45 icvSklansky_32s( CvPoint** array, int start, int end, int* stack, int nsign, int sign2 )
46 {
47     int incr = end > start ? 1 : -1;
48     /* prepare first triangle */
49     int pprev = start, pcur = pprev + incr, pnext = pcur + incr;
50     int stacksize = 3;
51 
52     if( start == end ||
53         (array[start]->x == array[end]->x &&
54          array[start]->y == array[end]->y) )
55     {
56         stack[0] = start;
57         return 1;
58     }
59 
60     stack[0] = pprev;
61     stack[1] = pcur;
62     stack[2] = pnext;
63 
64     end += incr; /* make end = afterend */
65 
66     while( pnext != end )
67     {
68         /* check the angle p1,p2,p3 */
69         int cury = array[pcur]->y;
70         int nexty = array[pnext]->y;
71         int by = nexty - cury;
72 
73         if( CV_SIGN(by) != nsign )
74         {
75             int ax = array[pcur]->x - array[pprev]->x;
76             int bx = array[pnext]->x - array[pcur]->x;
77             int ay = cury - array[pprev]->y;
78             int convexity = ay*bx - ax*by;/* if >0 then convex angle */
79 
80             if( CV_SIGN(convexity) == sign2 && (ax != 0 || ay != 0) )
81             {
82                 pprev = pcur;
83                 pcur = pnext;
84                 pnext += incr;
85                 stack[stacksize] = pnext;
86                 stacksize++;
87             }
88             else
89             {
90                 if( pprev == start )
91                 {
92                     pcur = pnext;
93                     stack[1] = pcur;
94                     pnext += incr;
95                     stack[2] = pnext;
96                 }
97                 else
98                 {
99                     stack[stacksize-2] = pnext;
100                     pcur = pprev;
101                     pprev = stack[stacksize-4];
102                     stacksize--;
103                 }
104             }
105         }
106         else
107         {
108             pnext += incr;
109             stack[stacksize-1] = pnext;
110         }
111     }
112 
113     return --stacksize;
114 }
115 
116 
117 static int
icvSklansky_32f(CvPoint2D32f ** array,int start,int end,int * stack,int nsign,int sign2)118 icvSklansky_32f( CvPoint2D32f** array, int start, int end, int* stack, int nsign, int sign2 )
119 {
120     int incr = end > start ? 1 : -1;
121     /* prepare first triangle */
122     int pprev = start, pcur = pprev + incr, pnext = pcur + incr;
123     int stacksize = 3;
124 
125     if( start == end ||
126         (array[start]->x == array[end]->x &&
127          array[start]->y == array[end]->y) )
128     {
129         stack[0] = start;
130         return 1;
131     }
132 
133     stack[0] = pprev;
134     stack[1] = pcur;
135     stack[2] = pnext;
136 
137     end += incr; /* make end = afterend */
138 
139     while( pnext != end )
140     {
141         /* check the angle p1,p2,p3 */
142         float cury = array[pcur]->y;
143         float nexty = array[pnext]->y;
144         float by = nexty - cury;
145 
146         if( CV_SIGN( by ) != nsign )
147         {
148             float ax = array[pcur]->x - array[pprev]->x;
149             float bx = array[pnext]->x - array[pcur]->x;
150             float ay = cury - array[pprev]->y;
151             float convexity = ay*bx - ax*by;/* if >0 then convex angle */
152 
153             if( CV_SIGN( convexity ) == sign2 && (ax != 0 || ay != 0) )
154             {
155                 pprev = pcur;
156                 pcur = pnext;
157                 pnext += incr;
158                 stack[stacksize] = pnext;
159                 stacksize++;
160             }
161             else
162             {
163                 if( pprev == start )
164                 {
165                     pcur = pnext;
166                     stack[1] = pcur;
167                     pnext += incr;
168                     stack[2] = pnext;
169 
170                 }
171                 else
172                 {
173                     stack[stacksize-2] = pnext;
174                     pcur = pprev;
175                     pprev = stack[stacksize-4];
176                     stacksize--;
177                 }
178             }
179         }
180         else
181         {
182             pnext += incr;
183             stack[stacksize-1] = pnext;
184         }
185     }
186 
187     return --stacksize;
188 }
189 
190 typedef int (*sklansky_func)( CvPoint** points, int start, int end,
191                               int* stack, int sign, int sign2 );
192 
193 #define cmp_pts( pt1, pt2 )  \
194     ((pt1)->x < (pt2)->x || ((pt1)->x <= (pt2)->x && (pt1)->y < (pt2)->y))
CV_IMPLEMENT_QSORT(icvSortPointsByPointers_32s,CvPoint *,cmp_pts)195 static CV_IMPLEMENT_QSORT( icvSortPointsByPointers_32s, CvPoint*, cmp_pts )
196 static CV_IMPLEMENT_QSORT( icvSortPointsByPointers_32f, CvPoint2D32f*, cmp_pts )
197 
198 static void
199 icvCalcAndWritePtIndices( CvPoint** pointer, int* stack, int start, int end,
200                           CvSeq* ptseq, CvSeqWriter* writer )
201 {
202     CV_FUNCNAME( "icvCalcAndWritePtIndices" );
203 
204     __BEGIN__;
205 
206     int i, incr = start < end ? 1 : -1;
207     int idx, first_idx = ptseq->first->start_index;
208 
209     for( i = start; i != end; i += incr )
210     {
211         CvPoint* ptr = (CvPoint*)pointer[stack[i]];
212         CvSeqBlock* block = ptseq->first;
213         while( (unsigned)(idx = (int)(ptr - (CvPoint*)block->data)) >= (unsigned)block->count )
214         {
215             block = block->next;
216             if( block == ptseq->first )
217                 CV_ERROR( CV_StsError, "Internal error" );
218         }
219         idx += block->start_index - first_idx;
220         CV_WRITE_SEQ_ELEM( idx, *writer );
221     }
222 
223     __END__;
224 }
225 
226 
227 CV_IMPL CvSeq*
cvConvexHull2(const CvArr * array,void * hull_storage,int orientation,int return_points)228 cvConvexHull2( const CvArr* array, void* hull_storage,
229                int orientation, int return_points )
230 {
231     union { CvContour* c; CvSeq* s; } hull;
232     CvPoint** pointer = 0;
233     CvPoint2D32f** pointerf = 0;
234     int* stack = 0;
235 
236     CV_FUNCNAME( "cvConvexHull2" );
237 
238     hull.s = 0;
239 
240     __BEGIN__;
241 
242     CvMat* mat = 0;
243     CvSeqReader reader;
244     CvSeqWriter writer;
245     CvContour contour_header;
246     union { CvContour c; CvSeq s; } hull_header;
247     CvSeqBlock block, hullblock;
248     CvSeq* ptseq = 0;
249     CvSeq* hullseq = 0;
250     int is_float;
251     int* t_stack;
252     int t_count;
253     int i, miny_ind = 0, maxy_ind = 0, total;
254     int hulltype;
255     int stop_idx;
256     sklansky_func sklansky;
257 
258     if( CV_IS_SEQ( array ))
259     {
260         ptseq = (CvSeq*)array;
261         if( !CV_IS_SEQ_POINT_SET( ptseq ))
262             CV_ERROR( CV_StsBadArg, "Unsupported sequence type" );
263         if( hull_storage == 0 )
264             hull_storage = ptseq->storage;
265     }
266     else
267     {
268         CV_CALL( ptseq = cvPointSeqFromMat(
269             CV_SEQ_KIND_GENERIC, array, &contour_header, &block ));
270     }
271 
272     if( CV_IS_STORAGE( hull_storage ))
273     {
274         if( return_points )
275         {
276             CV_CALL( hullseq = cvCreateSeq(
277                 CV_SEQ_KIND_CURVE|CV_SEQ_ELTYPE(ptseq)|
278                 CV_SEQ_FLAG_CLOSED|CV_SEQ_FLAG_CONVEX,
279                 sizeof(CvContour), sizeof(CvPoint),(CvMemStorage*)hull_storage ));
280         }
281         else
282         {
283             CV_CALL( hullseq = cvCreateSeq(
284                 CV_SEQ_KIND_CURVE|CV_SEQ_ELTYPE_PPOINT|
285                 CV_SEQ_FLAG_CLOSED|CV_SEQ_FLAG_CONVEX,
286                 sizeof(CvContour), sizeof(CvPoint*), (CvMemStorage*)hull_storage ));
287         }
288     }
289     else
290     {
291         if( !CV_IS_MAT( hull_storage ))
292             CV_ERROR(CV_StsBadArg, "Destination must be valid memory storage or matrix");
293 
294         mat = (CvMat*)hull_storage;
295 
296         if( (mat->cols != 1 && mat->rows != 1) || !CV_IS_MAT_CONT(mat->type))
297             CV_ERROR( CV_StsBadArg,
298             "The hull matrix should be continuous and have a single row or a single column" );
299 
300         if( mat->cols + mat->rows - 1 < ptseq->total )
301             CV_ERROR( CV_StsBadSize, "The hull matrix size might be not enough to fit the hull" );
302 
303         if( CV_MAT_TYPE(mat->type) != CV_SEQ_ELTYPE(ptseq) &&
304             CV_MAT_TYPE(mat->type) != CV_32SC1 )
305             CV_ERROR( CV_StsUnsupportedFormat,
306             "The hull matrix must have the same type as input or 32sC1 (integers)" );
307 
308         CV_CALL( hullseq = cvMakeSeqHeaderForArray(
309             CV_SEQ_KIND_CURVE|CV_MAT_TYPE(mat->type)|CV_SEQ_FLAG_CLOSED,
310             sizeof(contour_header), CV_ELEM_SIZE(mat->type), mat->data.ptr,
311             mat->cols + mat->rows - 1, &hull_header.s, &hullblock ));
312 
313         cvClearSeq( hullseq );
314     }
315 
316     total = ptseq->total;
317     if( total == 0 )
318     {
319         if( mat )
320             CV_ERROR( CV_StsBadSize,
321             "Point sequence can not be empty if the output is matrix" );
322         EXIT;
323     }
324 
325     cvStartAppendToSeq( hullseq, &writer );
326 
327     is_float = CV_SEQ_ELTYPE(ptseq) == CV_32FC2;
328     hulltype = CV_SEQ_ELTYPE(hullseq);
329     sklansky = !is_float ? (sklansky_func)icvSklansky_32s :
330                            (sklansky_func)icvSklansky_32f;
331 
332     CV_CALL( pointer = (CvPoint**)cvAlloc( ptseq->total*sizeof(pointer[0]) ));
333     CV_CALL( stack = (int*)cvAlloc( (ptseq->total + 2)*sizeof(stack[0]) ));
334     pointerf = (CvPoint2D32f**)pointer;
335 
336     cvStartReadSeq( ptseq, &reader );
337 
338     for( i = 0; i < total; i++ )
339     {
340         pointer[i] = (CvPoint*)reader.ptr;
341         CV_NEXT_SEQ_ELEM( ptseq->elem_size, reader );
342     }
343 
344     // sort the point set by x-coordinate, find min and max y
345     if( !is_float )
346     {
347         icvSortPointsByPointers_32s( pointer, total, 0 );
348         for( i = 1; i < total; i++ )
349         {
350             int y = pointer[i]->y;
351             if( pointer[miny_ind]->y > y )
352                 miny_ind = i;
353             if( pointer[maxy_ind]->y < y )
354                 maxy_ind = i;
355         }
356     }
357     else
358     {
359         icvSortPointsByPointers_32f( pointerf, total, 0 );
360         for( i = 1; i < total; i++ )
361         {
362             float y = pointerf[i]->y;
363             if( pointerf[miny_ind]->y > y )
364                 miny_ind = i;
365             if( pointerf[maxy_ind]->y < y )
366                 maxy_ind = i;
367         }
368     }
369 
370     if( pointer[0]->x == pointer[total-1]->x &&
371         pointer[0]->y == pointer[total-1]->y )
372     {
373         if( hulltype == CV_SEQ_ELTYPE_PPOINT )
374         {
375             CV_WRITE_SEQ_ELEM( pointer[0], writer );
376         }
377         else if( hulltype == CV_SEQ_ELTYPE_INDEX )
378         {
379             int index = 0;
380             CV_WRITE_SEQ_ELEM( index, writer );
381         }
382         else
383         {
384             CvPoint pt = pointer[0][0];
385             CV_WRITE_SEQ_ELEM( pt, writer );
386         }
387         goto finish_hull;
388     }
389 
390     /*upper half */
391     {
392         int *tl_stack = stack;
393         int tl_count = sklansky( pointer, 0, maxy_ind, tl_stack, -1, 1 );
394         int *tr_stack = tl_stack + tl_count;
395         int tr_count = sklansky( pointer, ptseq->total - 1, maxy_ind, tr_stack, -1, -1 );
396 
397         /* gather upper part of convex hull to output */
398         if( orientation == CV_COUNTER_CLOCKWISE )
399         {
400             CV_SWAP( tl_stack, tr_stack, t_stack );
401             CV_SWAP( tl_count, tr_count, t_count );
402         }
403 
404         if( hulltype == CV_SEQ_ELTYPE_PPOINT )
405         {
406             for( i = 0; i < tl_count - 1; i++ )
407                 CV_WRITE_SEQ_ELEM( pointer[tl_stack[i]], writer );
408 
409             for( i = tr_count - 1; i > 0; i-- )
410                 CV_WRITE_SEQ_ELEM( pointer[tr_stack[i]], writer );
411         }
412         else if( hulltype == CV_SEQ_ELTYPE_INDEX )
413         {
414             CV_CALL( icvCalcAndWritePtIndices( pointer, tl_stack,
415                                                0, tl_count-1, ptseq, &writer ));
416             CV_CALL( icvCalcAndWritePtIndices( pointer, tr_stack,
417                                                tr_count-1, 0, ptseq, &writer ));
418         }
419         else
420         {
421             for( i = 0; i < tl_count - 1; i++ )
422                 CV_WRITE_SEQ_ELEM( pointer[tl_stack[i]][0], writer );
423 
424             for( i = tr_count - 1; i > 0; i-- )
425                 CV_WRITE_SEQ_ELEM( pointer[tr_stack[i]][0], writer );
426         }
427         stop_idx = tr_count > 2 ? tr_stack[1] : tl_count > 2 ? tl_stack[tl_count - 2] : -1;
428     }
429 
430     /* lower half */
431     {
432         int *bl_stack = stack;
433         int bl_count = sklansky( pointer, 0, miny_ind, bl_stack, 1, -1 );
434         int *br_stack = stack + bl_count;
435         int br_count = sklansky( pointer, ptseq->total - 1, miny_ind, br_stack, 1, 1 );
436 
437         if( orientation != CV_COUNTER_CLOCKWISE )
438         {
439             CV_SWAP( bl_stack, br_stack, t_stack );
440             CV_SWAP( bl_count, br_count, t_count );
441         }
442 
443         if( stop_idx >= 0 )
444         {
445             int check_idx = bl_count > 2 ? bl_stack[1] :
446                             bl_count + br_count > 2 ? br_stack[2-bl_count] : -1;
447             if( check_idx == stop_idx || (check_idx >= 0 &&
448                 pointer[check_idx]->x == pointer[stop_idx]->x &&
449                 pointer[check_idx]->y == pointer[stop_idx]->y) )
450             {
451                 /* if all the points lie on the same line, then
452                    the bottom part of the convex hull is the mirrored top part
453                    (except the exteme points).*/
454                 bl_count = MIN( bl_count, 2 );
455                 br_count = MIN( br_count, 2 );
456             }
457         }
458 
459         if( hulltype == CV_SEQ_ELTYPE_PPOINT )
460         {
461             for( i = 0; i < bl_count - 1; i++ )
462                 CV_WRITE_SEQ_ELEM( pointer[bl_stack[i]], writer );
463 
464             for( i = br_count - 1; i > 0; i-- )
465                 CV_WRITE_SEQ_ELEM( pointer[br_stack[i]], writer );
466         }
467         else if( hulltype == CV_SEQ_ELTYPE_INDEX )
468         {
469             CV_CALL( icvCalcAndWritePtIndices( pointer, bl_stack,
470                                                0, bl_count-1, ptseq, &writer ));
471             CV_CALL( icvCalcAndWritePtIndices( pointer, br_stack,
472                                                br_count-1, 0, ptseq, &writer ));
473         }
474         else
475         {
476             for( i = 0; i < bl_count - 1; i++ )
477                 CV_WRITE_SEQ_ELEM( pointer[bl_stack[i]][0], writer );
478 
479             for( i = br_count - 1; i > 0; i-- )
480                 CV_WRITE_SEQ_ELEM( pointer[br_stack[i]][0], writer );
481         }
482     }
483 
484 finish_hull:
485     CV_CALL( cvEndWriteSeq( &writer ));
486 
487     if( mat )
488     {
489         if( mat->rows > mat->cols )
490             mat->rows = hullseq->total;
491         else
492             mat->cols = hullseq->total;
493     }
494     else
495     {
496         hull.s = hullseq;
497         hull.c->rect = cvBoundingRect( ptseq,
498             ptseq->header_size < (int)sizeof(CvContour) ||
499             &ptseq->flags == &contour_header.flags );
500 
501         /*if( ptseq != (CvSeq*)&contour_header )
502             hullseq->v_prev = ptseq;*/
503     }
504 
505     __END__;
506 
507     cvFree( &pointer );
508     cvFree( &stack );
509 
510     return hull.s;
511 }
512 
513 
514 /* contour must be a simple polygon */
515 /* it must have more than 3 points  */
516 CV_IMPL CvSeq*
cvConvexityDefects(const CvArr * array,const CvArr * hullarray,CvMemStorage * storage)517 cvConvexityDefects( const CvArr* array,
518                     const CvArr* hullarray,
519                     CvMemStorage* storage )
520 {
521     CvSeq* defects = 0;
522 
523     CV_FUNCNAME( "cvConvexityDefects" );
524 
525     __BEGIN__;
526 
527     int i, index;
528     CvPoint* hull_cur;
529 
530     /* is orientation of hull different from contour one */
531     int rev_orientation;
532 
533     CvContour contour_header;
534     union { CvContour c; CvSeq s; } hull_header;
535     CvSeqBlock block, hullblock;
536     CvSeq *ptseq = (CvSeq*)array, *hull = (CvSeq*)hullarray;
537 
538     CvSeqReader hull_reader;
539     CvSeqReader ptseq_reader;
540     CvSeqWriter writer;
541     int is_index;
542 
543     if( CV_IS_SEQ( ptseq ))
544     {
545         if( !CV_IS_SEQ_POINT_SET( ptseq ))
546             CV_ERROR( CV_StsUnsupportedFormat,
547                 "Input sequence is not a sequence of points" );
548         if( !storage )
549             storage = ptseq->storage;
550     }
551     else
552     {
553         CV_CALL( ptseq = cvPointSeqFromMat(
554             CV_SEQ_KIND_GENERIC, array, &contour_header, &block ));
555     }
556 
557     if( CV_SEQ_ELTYPE( ptseq ) != CV_32SC2 )
558         CV_ERROR( CV_StsUnsupportedFormat,
559             "Floating-point coordinates are not supported here" );
560 
561     if( CV_IS_SEQ( hull ))
562     {
563         int hulltype = CV_SEQ_ELTYPE( hull );
564         if( hulltype != CV_SEQ_ELTYPE_PPOINT && hulltype != CV_SEQ_ELTYPE_INDEX )
565             CV_ERROR( CV_StsUnsupportedFormat,
566                 "Convex hull must represented as a sequence "
567                 "of indices or sequence of pointers" );
568         if( !storage )
569             storage = hull->storage;
570     }
571     else
572     {
573         CvMat* mat = (CvMat*)hull;
574 
575         if( !CV_IS_MAT( hull ))
576             CV_ERROR(CV_StsBadArg, "Convex hull is neither sequence nor matrix");
577 
578         if( (mat->cols != 1 && mat->rows != 1) ||
579             !CV_IS_MAT_CONT(mat->type) || CV_MAT_TYPE(mat->type) != CV_32SC1 )
580             CV_ERROR( CV_StsBadArg,
581             "The matrix should be 1-dimensional and continuous array of int's" );
582 
583         if( mat->cols + mat->rows - 1 > ptseq->total )
584             CV_ERROR( CV_StsBadSize, "Convex hull is larger than the point sequence" );
585 
586         CV_CALL( hull = cvMakeSeqHeaderForArray(
587             CV_SEQ_KIND_CURVE|CV_MAT_TYPE(mat->type)|CV_SEQ_FLAG_CLOSED,
588             sizeof(CvContour), CV_ELEM_SIZE(mat->type), mat->data.ptr,
589             mat->cols + mat->rows - 1, &hull_header.s, &hullblock ));
590     }
591 
592     is_index = CV_SEQ_ELTYPE(hull) == CV_SEQ_ELTYPE_INDEX;
593 
594     if( !storage )
595         CV_ERROR( CV_StsNullPtr, "NULL storage pointer" );
596 
597     CV_CALL( defects = cvCreateSeq( CV_SEQ_KIND_GENERIC, sizeof(CvSeq),
598                                     sizeof(CvConvexityDefect), storage ));
599 
600     if( ptseq->total < 4 || hull->total < 3)
601     {
602         //CV_ERROR( CV_StsBadSize,
603         //    "point seq size must be >= 4, convex hull size must be >= 3" );
604         EXIT;
605     }
606 
607     /* recognize co-orientation of ptseq and its hull */
608     {
609         int sign = 0;
610         int index1, index2, index3;
611 
612         if( !is_index )
613         {
614             CvPoint* pos = *CV_SEQ_ELEM( hull, CvPoint*, 0 );
615             CV_CALL( index1 = cvSeqElemIdx( ptseq, pos ));
616 
617             pos = *CV_SEQ_ELEM( hull, CvPoint*, 1 );
618             CV_CALL( index2 = cvSeqElemIdx( ptseq, pos ));
619 
620             pos = *CV_SEQ_ELEM( hull, CvPoint*, 2 );
621             CV_CALL( index3 = cvSeqElemIdx( ptseq, pos ));
622         }
623         else
624         {
625             index1 = *CV_SEQ_ELEM( hull, int, 0 );
626             index2 = *CV_SEQ_ELEM( hull, int, 1 );
627             index3 = *CV_SEQ_ELEM( hull, int, 2 );
628         }
629 
630         sign += (index2 > index1) ? 1 : 0;
631         sign += (index3 > index2) ? 1 : 0;
632         sign += (index1 > index3) ? 1 : 0;
633 
634         rev_orientation = (sign == 2) ? 0 : 1;
635     }
636 
637     cvStartReadSeq( ptseq, &ptseq_reader, 0 );
638     cvStartReadSeq( hull, &hull_reader, rev_orientation );
639 
640     if( !is_index )
641     {
642         hull_cur = *(CvPoint**)hull_reader.prev_elem;
643         index = cvSeqElemIdx( ptseq, (char*)hull_cur, 0 );
644     }
645     else
646     {
647         index = *(int*)hull_reader.prev_elem;
648         hull_cur = CV_GET_SEQ_ELEM( CvPoint, ptseq, index );
649     }
650     cvSetSeqReaderPos( &ptseq_reader, index );
651     cvStartAppendToSeq( defects, &writer );
652 
653     /* cycle through ptseq and hull with computing defects */
654     for( i = 0; i < hull->total; i++ )
655     {
656         CvConvexityDefect defect;
657         int is_defect = 0;
658         double dx0, dy0;
659         double depth = 0, scale;
660         CvPoint* hull_next;
661 
662         if( !is_index )
663             hull_next = *(CvPoint**)hull_reader.ptr;
664         else
665         {
666             int t = *(int*)hull_reader.ptr;
667             hull_next = CV_GET_SEQ_ELEM( CvPoint, ptseq, t );
668         }
669 
670         dx0 = (double)hull_next->x - (double)hull_cur->x;
671         dy0 = (double)hull_next->y - (double)hull_cur->y;
672         assert( dx0 != 0 || dy0 != 0 );
673         scale = 1./sqrt(dx0*dx0 + dy0*dy0);
674 
675         defect.start = hull_cur;
676         defect.end = hull_next;
677 
678         for(;;)
679         {
680             /* go through ptseq to achieve next hull point */
681             CV_NEXT_SEQ_ELEM( sizeof(CvPoint), ptseq_reader );
682 
683             if( ptseq_reader.ptr == (schar*)hull_next )
684                 break;
685             else
686             {
687                 CvPoint* cur = (CvPoint*)ptseq_reader.ptr;
688 
689                 /* compute distance from current point to hull edge */
690                 double dx = (double)cur->x - (double)hull_cur->x;
691                 double dy = (double)cur->y - (double)hull_cur->y;
692 
693                 /* compute depth */
694                 double dist = fabs(-dy0*dx + dx0*dy) * scale;
695 
696                 if( dist > depth )
697                 {
698                     depth = dist;
699                     defect.depth_point = cur;
700                     defect.depth = (float)depth;
701                     is_defect = 1;
702                 }
703             }
704         }
705         if( is_defect )
706         {
707             CV_WRITE_SEQ_ELEM( defect, writer );
708         }
709 
710         hull_cur = hull_next;
711         if( rev_orientation )
712         {
713             CV_PREV_SEQ_ELEM( hull->elem_size, hull_reader );
714         }
715         else
716         {
717             CV_NEXT_SEQ_ELEM( hull->elem_size, hull_reader );
718         }
719     }
720 
721     defects = cvEndWriteSeq( &writer );
722 
723     __END__;
724 
725     return defects;
726 }
727 
728 
729 CV_IMPL int
cvCheckContourConvexity(const CvArr * array)730 cvCheckContourConvexity( const CvArr* array )
731 {
732     int flag = -1;
733 
734     CV_FUNCNAME( "cvCheckContourConvexity" );
735 
736     __BEGIN__;
737 
738     int i;
739     int orientation = 0;
740     CvSeqReader reader;
741     CvContour contour_header;
742     CvSeqBlock block;
743     CvSeq* contour = (CvSeq*)array;
744 
745     if( CV_IS_SEQ(contour) )
746     {
747         if( !CV_IS_SEQ_POLYGON(contour))
748             CV_ERROR( CV_StsUnsupportedFormat,
749                 "Input sequence must be polygon (closed 2d curve)" );
750     }
751     else
752     {
753         CV_CALL( contour = cvPointSeqFromMat(
754             CV_SEQ_KIND_CURVE|CV_SEQ_FLAG_CLOSED, array, &contour_header, &block ));
755     }
756 
757     if( contour->total == 0 )
758         EXIT;
759 
760     cvStartReadSeq( contour, &reader, 0 );
761 
762     flag = 1;
763 
764     if( CV_SEQ_ELTYPE( contour ) == CV_32SC2 )
765     {
766         CvPoint *prev_pt = (CvPoint*)reader.prev_elem;
767         CvPoint *cur_pt = (CvPoint*)reader.ptr;
768 
769         int dx0 = cur_pt->x - prev_pt->x;
770         int dy0 = cur_pt->y - prev_pt->y;
771 
772         for( i = 0; i < contour->total; i++ )
773         {
774             int dxdy0, dydx0;
775             int dx, dy;
776 
777             /*int orient; */
778             CV_NEXT_SEQ_ELEM( sizeof(CvPoint), reader );
779             prev_pt = cur_pt;
780             cur_pt = (CvPoint *) reader.ptr;
781 
782             dx = cur_pt->x - prev_pt->x;
783             dy = cur_pt->y - prev_pt->y;
784             dxdy0 = dx * dy0;
785             dydx0 = dy * dx0;
786 
787             /* find orientation */
788             /*orient = -dy0 * dx + dx0 * dy;
789                orientation |= (orient > 0) ? 1 : 2;
790              */
791             orientation |= (dydx0 > dxdy0) ? 1 : ((dydx0 < dxdy0) ? 2 : 3);
792 
793             if( orientation == 3 )
794             {
795                 flag = 0;
796                 break;
797             }
798 
799             dx0 = dx;
800             dy0 = dy;
801         }
802     }
803     else
804     {
805         assert( CV_SEQ_ELTYPE(contour) == CV_32FC2 );
806 
807         CvPoint2D32f *prev_pt = (CvPoint2D32f*)reader.prev_elem;
808         CvPoint2D32f *cur_pt = (CvPoint2D32f*)reader.ptr;
809 
810         float dx0 = cur_pt->x - prev_pt->x;
811         float dy0 = cur_pt->y - prev_pt->y;
812 
813         for( i = 0; i < contour->total; i++ )
814         {
815             float dxdy0, dydx0;
816             float dx, dy;
817 
818             /*int orient; */
819             CV_NEXT_SEQ_ELEM( sizeof(CvPoint2D32f), reader );
820             prev_pt = cur_pt;
821             cur_pt = (CvPoint2D32f*) reader.ptr;
822 
823             dx = cur_pt->x - prev_pt->x;
824             dy = cur_pt->y - prev_pt->y;
825             dxdy0 = dx * dy0;
826             dydx0 = dy * dx0;
827 
828             /* find orientation */
829             /*orient = -dy0 * dx + dx0 * dy;
830                orientation |= (orient > 0) ? 1 : 2;
831              */
832             orientation |= (dydx0 > dxdy0) ? 1 : ((dydx0 < dxdy0) ? 2 : 3);
833 
834             if( orientation == 3 )
835             {
836                 flag = 0;
837                 break;
838             }
839 
840             dx0 = dx;
841             dy0 = dy;
842         }
843     }
844 
845     __END__;
846 
847     return flag;
848 }
849 
850 
851 /* End of file. */
852