1 //===- llvm/ADT/DepthFirstIterator.h - Depth First iterator -----*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file builds on the ADT/GraphTraits.h file to build generic depth
11 // first graph iterator. This file exposes the following functions/types:
12 //
13 // df_begin/df_end/df_iterator
14 // * Normal depth-first iteration - visit a node and then all of its children.
15 //
16 // idf_begin/idf_end/idf_iterator
17 // * Depth-first iteration on the 'inverse' graph.
18 //
19 // df_ext_begin/df_ext_end/df_ext_iterator
20 // * Normal depth-first iteration - visit a node and then all of its children.
21 // This iterator stores the 'visited' set in an external set, which allows
22 // it to be more efficient, and allows external clients to use the set for
23 // other purposes.
24 //
25 // idf_ext_begin/idf_ext_end/idf_ext_iterator
26 // * Depth-first iteration on the 'inverse' graph.
27 // This iterator stores the 'visited' set in an external set, which allows
28 // it to be more efficient, and allows external clients to use the set for
29 // other purposes.
30 //
31 //===----------------------------------------------------------------------===//
32
33 #ifndef LLVM_ADT_DEPTHFIRSTITERATOR_H
34 #define LLVM_ADT_DEPTHFIRSTITERATOR_H
35
36 #include "llvm/ADT/iterator_range.h"
37 #include "llvm/ADT/GraphTraits.h"
38 #include "llvm/ADT/PointerIntPair.h"
39 #include "llvm/ADT/SmallPtrSet.h"
40 #include <set>
41 #include <vector>
42
43 namespace llvm {
44
45 // df_iterator_storage - A private class which is used to figure out where to
46 // store the visited set.
47 template<class SetType, bool External> // Non-external set
48 class df_iterator_storage {
49 public:
50 SetType Visited;
51 };
52
53 template<class SetType>
54 class df_iterator_storage<SetType, true> {
55 public:
df_iterator_storage(SetType & VSet)56 df_iterator_storage(SetType &VSet) : Visited(VSet) {}
df_iterator_storage(const df_iterator_storage & S)57 df_iterator_storage(const df_iterator_storage &S) : Visited(S.Visited) {}
58 SetType &Visited;
59 };
60
61
62 // Generic Depth First Iterator
63 template<class GraphT,
64 class SetType = llvm::SmallPtrSet<typename GraphTraits<GraphT>::NodeType*, 8>,
65 bool ExtStorage = false, class GT = GraphTraits<GraphT> >
66 class df_iterator : public std::iterator<std::forward_iterator_tag,
67 typename GT::NodeType, ptrdiff_t>,
68 public df_iterator_storage<SetType, ExtStorage> {
69 typedef std::iterator<std::forward_iterator_tag,
70 typename GT::NodeType, ptrdiff_t> super;
71
72 typedef typename GT::NodeType NodeType;
73 typedef typename GT::ChildIteratorType ChildItTy;
74 typedef PointerIntPair<NodeType*, 1> PointerIntTy;
75
76 // VisitStack - Used to maintain the ordering. Top = current block
77 // First element is node pointer, second is the 'next child' to visit
78 // if the int in PointerIntTy is 0, the 'next child' to visit is invalid
79 std::vector<std::pair<PointerIntTy, ChildItTy> > VisitStack;
80 private:
df_iterator(NodeType * Node)81 inline df_iterator(NodeType *Node) {
82 this->Visited.insert(Node);
83 VisitStack.push_back(std::make_pair(PointerIntTy(Node, 0),
84 GT::child_begin(Node)));
85 }
df_iterator()86 inline df_iterator() {
87 // End is when stack is empty
88 }
df_iterator(NodeType * Node,SetType & S)89 inline df_iterator(NodeType *Node, SetType &S)
90 : df_iterator_storage<SetType, ExtStorage>(S) {
91 if (!S.count(Node)) {
92 VisitStack.push_back(std::make_pair(PointerIntTy(Node, 0),
93 GT::child_begin(Node)));
94 this->Visited.insert(Node);
95 }
96 }
df_iterator(SetType & S)97 inline df_iterator(SetType &S)
98 : df_iterator_storage<SetType, ExtStorage>(S) {
99 // End is when stack is empty
100 }
101
toNext()102 inline void toNext() {
103 do {
104 std::pair<PointerIntTy, ChildItTy> &Top = VisitStack.back();
105 NodeType *Node = Top.first.getPointer();
106 ChildItTy &It = Top.second;
107 if (!Top.first.getInt()) {
108 // now retrieve the real begin of the children before we dive in
109 It = GT::child_begin(Node);
110 Top.first.setInt(1);
111 }
112
113 while (It != GT::child_end(Node)) {
114 NodeType *Next = *It++;
115 // Has our next sibling been visited?
116 if (Next && !this->Visited.count(Next)) {
117 // No, do it now.
118 this->Visited.insert(Next);
119 VisitStack.push_back(std::make_pair(PointerIntTy(Next, 0),
120 GT::child_begin(Next)));
121 return;
122 }
123 }
124
125 // Oops, ran out of successors... go up a level on the stack.
126 VisitStack.pop_back();
127 } while (!VisitStack.empty());
128 }
129
130 public:
131 typedef typename super::pointer pointer;
132 typedef df_iterator<GraphT, SetType, ExtStorage, GT> _Self;
133
134 // Provide static begin and end methods as our public "constructors"
begin(const GraphT & G)135 static inline _Self begin(const GraphT& G) {
136 return _Self(GT::getEntryNode(G));
137 }
end(const GraphT & G)138 static inline _Self end(const GraphT& G) { return _Self(); }
139
140 // Static begin and end methods as our public ctors for external iterators
begin(const GraphT & G,SetType & S)141 static inline _Self begin(const GraphT& G, SetType &S) {
142 return _Self(GT::getEntryNode(G), S);
143 }
end(const GraphT & G,SetType & S)144 static inline _Self end(const GraphT& G, SetType &S) { return _Self(S); }
145
146 inline bool operator==(const _Self& x) const {
147 return VisitStack == x.VisitStack;
148 }
149 inline bool operator!=(const _Self& x) const { return !operator==(x); }
150
151 inline pointer operator*() const {
152 return VisitStack.back().first.getPointer();
153 }
154
155 // This is a nonstandard operator-> that dereferences the pointer an extra
156 // time... so that you can actually call methods ON the Node, because
157 // the contained type is a pointer. This allows BBIt->getTerminator() f.e.
158 //
159 inline NodeType *operator->() const { return operator*(); }
160
161 inline _Self& operator++() { // Preincrement
162 toNext();
163 return *this;
164 }
165
166 // skips all children of the current node and traverses to next node
167 //
skipChildren()168 inline _Self& skipChildren() {
169 VisitStack.pop_back();
170 if (!VisitStack.empty())
171 toNext();
172 return *this;
173 }
174
175 inline _Self operator++(int) { // Postincrement
176 _Self tmp = *this; ++*this; return tmp;
177 }
178
179 // nodeVisited - return true if this iterator has already visited the
180 // specified node. This is public, and will probably be used to iterate over
181 // nodes that a depth first iteration did not find: ie unreachable nodes.
182 //
nodeVisited(NodeType * Node)183 inline bool nodeVisited(NodeType *Node) const {
184 return this->Visited.count(Node) != 0;
185 }
186
187 /// getPathLength - Return the length of the path from the entry node to the
188 /// current node, counting both nodes.
getPathLength()189 unsigned getPathLength() const { return VisitStack.size(); }
190
191 /// getPath - Return the n'th node in the path from the entry node to the
192 /// current node.
getPath(unsigned n)193 NodeType *getPath(unsigned n) const {
194 return VisitStack[n].first.getPointer();
195 }
196 };
197
198
199 // Provide global constructors that automatically figure out correct types...
200 //
201 template <class T>
df_begin(const T & G)202 df_iterator<T> df_begin(const T& G) {
203 return df_iterator<T>::begin(G);
204 }
205
206 template <class T>
df_end(const T & G)207 df_iterator<T> df_end(const T& G) {
208 return df_iterator<T>::end(G);
209 }
210
211 // Provide an accessor method to use them in range-based patterns.
212 template <class T>
depth_first(const T & G)213 iterator_range<df_iterator<T>> depth_first(const T& G) {
214 return iterator_range<df_iterator<T>>(df_begin(G), df_end(G));
215 }
216
217 // Provide global definitions of external depth first iterators...
218 template <class T, class SetTy = std::set<typename GraphTraits<T>::NodeType*> >
219 struct df_ext_iterator : public df_iterator<T, SetTy, true> {
df_ext_iteratordf_ext_iterator220 df_ext_iterator(const df_iterator<T, SetTy, true> &V)
221 : df_iterator<T, SetTy, true>(V) {}
222 };
223
224 template <class T, class SetTy>
df_ext_begin(const T & G,SetTy & S)225 df_ext_iterator<T, SetTy> df_ext_begin(const T& G, SetTy &S) {
226 return df_ext_iterator<T, SetTy>::begin(G, S);
227 }
228
229 template <class T, class SetTy>
df_ext_end(const T & G,SetTy & S)230 df_ext_iterator<T, SetTy> df_ext_end(const T& G, SetTy &S) {
231 return df_ext_iterator<T, SetTy>::end(G, S);
232 }
233
234
235 // Provide global definitions of inverse depth first iterators...
236 template <class T,
237 class SetTy = llvm::SmallPtrSet<typename GraphTraits<T>::NodeType*, 8>,
238 bool External = false>
239 struct idf_iterator : public df_iterator<Inverse<T>, SetTy, External> {
idf_iteratoridf_iterator240 idf_iterator(const df_iterator<Inverse<T>, SetTy, External> &V)
241 : df_iterator<Inverse<T>, SetTy, External>(V) {}
242 };
243
244 template <class T>
idf_begin(const T & G)245 idf_iterator<T> idf_begin(const T& G) {
246 return idf_iterator<T>::begin(Inverse<T>(G));
247 }
248
249 template <class T>
idf_end(const T & G)250 idf_iterator<T> idf_end(const T& G){
251 return idf_iterator<T>::end(Inverse<T>(G));
252 }
253
254 // Provide an accessor method to use them in range-based patterns.
255 template <class T>
inverse_depth_first(const T & G)256 iterator_range<idf_iterator<T>> inverse_depth_first(const T& G) {
257 return iterator_range<idf_iterator<T>>(idf_begin(G), idf_end(G));
258 }
259
260 // Provide global definitions of external inverse depth first iterators...
261 template <class T, class SetTy = std::set<typename GraphTraits<T>::NodeType*> >
262 struct idf_ext_iterator : public idf_iterator<T, SetTy, true> {
idf_ext_iteratoridf_ext_iterator263 idf_ext_iterator(const idf_iterator<T, SetTy, true> &V)
264 : idf_iterator<T, SetTy, true>(V) {}
idf_ext_iteratoridf_ext_iterator265 idf_ext_iterator(const df_iterator<Inverse<T>, SetTy, true> &V)
266 : idf_iterator<T, SetTy, true>(V) {}
267 };
268
269 template <class T, class SetTy>
idf_ext_begin(const T & G,SetTy & S)270 idf_ext_iterator<T, SetTy> idf_ext_begin(const T& G, SetTy &S) {
271 return idf_ext_iterator<T, SetTy>::begin(Inverse<T>(G), S);
272 }
273
274 template <class T, class SetTy>
idf_ext_end(const T & G,SetTy & S)275 idf_ext_iterator<T, SetTy> idf_ext_end(const T& G, SetTy &S) {
276 return idf_ext_iterator<T, SetTy>::end(Inverse<T>(G), S);
277 }
278
279 } // End llvm namespace
280
281 #endif
282