1 //===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// \file
11 /// \brief This file implements a class to represent arbitrary precision
12 /// integral constant values and operations on them.
13 ///
14 //===----------------------------------------------------------------------===//
15
16 #ifndef LLVM_ADT_APINT_H
17 #define LLVM_ADT_APINT_H
18
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/Support/Compiler.h"
21 #include "llvm/Support/MathExtras.h"
22 #include <cassert>
23 #include <climits>
24 #include <cstring>
25 #include <string>
26
27 namespace llvm {
28 class Deserializer;
29 class FoldingSetNodeID;
30 class Serializer;
31 class StringRef;
32 class hash_code;
33 class raw_ostream;
34
35 template <typename T> class SmallVectorImpl;
36
37 // An unsigned host type used as a single part of a multi-part
38 // bignum.
39 typedef uint64_t integerPart;
40
41 const unsigned int host_char_bit = 8;
42 const unsigned int integerPartWidth =
43 host_char_bit * static_cast<unsigned int>(sizeof(integerPart));
44
45 //===----------------------------------------------------------------------===//
46 // APInt Class
47 //===----------------------------------------------------------------------===//
48
49 /// \brief Class for arbitrary precision integers.
50 ///
51 /// APInt is a functional replacement for common case unsigned integer type like
52 /// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width
53 /// integer sizes and large integer value types such as 3-bits, 15-bits, or more
54 /// than 64-bits of precision. APInt provides a variety of arithmetic operators
55 /// and methods to manipulate integer values of any bit-width. It supports both
56 /// the typical integer arithmetic and comparison operations as well as bitwise
57 /// manipulation.
58 ///
59 /// The class has several invariants worth noting:
60 /// * All bit, byte, and word positions are zero-based.
61 /// * Once the bit width is set, it doesn't change except by the Truncate,
62 /// SignExtend, or ZeroExtend operations.
63 /// * All binary operators must be on APInt instances of the same bit width.
64 /// Attempting to use these operators on instances with different bit
65 /// widths will yield an assertion.
66 /// * The value is stored canonically as an unsigned value. For operations
67 /// where it makes a difference, there are both signed and unsigned variants
68 /// of the operation. For example, sdiv and udiv. However, because the bit
69 /// widths must be the same, operations such as Mul and Add produce the same
70 /// results regardless of whether the values are interpreted as signed or
71 /// not.
72 /// * In general, the class tries to follow the style of computation that LLVM
73 /// uses in its IR. This simplifies its use for LLVM.
74 ///
75 class APInt {
76 unsigned BitWidth; ///< The number of bits in this APInt.
77
78 /// This union is used to store the integer value. When the
79 /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal.
80 union {
81 uint64_t VAL; ///< Used to store the <= 64 bits integer value.
82 uint64_t *pVal; ///< Used to store the >64 bits integer value.
83 };
84
85 /// This enum is used to hold the constants we needed for APInt.
86 enum {
87 /// Bits in a word
88 APINT_BITS_PER_WORD =
89 static_cast<unsigned int>(sizeof(uint64_t)) * CHAR_BIT,
90 /// Byte size of a word
91 APINT_WORD_SIZE = static_cast<unsigned int>(sizeof(uint64_t))
92 };
93
94 /// \brief Fast internal constructor
95 ///
96 /// This constructor is used only internally for speed of construction of
97 /// temporaries. It is unsafe for general use so it is not public.
APInt(uint64_t * val,unsigned bits)98 APInt(uint64_t *val, unsigned bits) : BitWidth(bits), pVal(val) {}
99
100 /// \brief Determine if this APInt just has one word to store value.
101 ///
102 /// \returns true if the number of bits <= 64, false otherwise.
isSingleWord()103 bool isSingleWord() const { return BitWidth <= APINT_BITS_PER_WORD; }
104
105 /// \brief Determine which word a bit is in.
106 ///
107 /// \returns the word position for the specified bit position.
whichWord(unsigned bitPosition)108 static unsigned whichWord(unsigned bitPosition) {
109 return bitPosition / APINT_BITS_PER_WORD;
110 }
111
112 /// \brief Determine which bit in a word a bit is in.
113 ///
114 /// \returns the bit position in a word for the specified bit position
115 /// in the APInt.
whichBit(unsigned bitPosition)116 static unsigned whichBit(unsigned bitPosition) {
117 return bitPosition % APINT_BITS_PER_WORD;
118 }
119
120 /// \brief Get a single bit mask.
121 ///
122 /// \returns a uint64_t with only bit at "whichBit(bitPosition)" set
123 /// This method generates and returns a uint64_t (word) mask for a single
124 /// bit at a specific bit position. This is used to mask the bit in the
125 /// corresponding word.
maskBit(unsigned bitPosition)126 static uint64_t maskBit(unsigned bitPosition) {
127 return 1ULL << whichBit(bitPosition);
128 }
129
130 /// \brief Clear unused high order bits
131 ///
132 /// This method is used internally to clear the to "N" bits in the high order
133 /// word that are not used by the APInt. This is needed after the most
134 /// significant word is assigned a value to ensure that those bits are
135 /// zero'd out.
clearUnusedBits()136 APInt &clearUnusedBits() {
137 // Compute how many bits are used in the final word
138 unsigned wordBits = BitWidth % APINT_BITS_PER_WORD;
139 if (wordBits == 0)
140 // If all bits are used, we want to leave the value alone. This also
141 // avoids the undefined behavior of >> when the shift is the same size as
142 // the word size (64).
143 return *this;
144
145 // Mask out the high bits.
146 uint64_t mask = ~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - wordBits);
147 if (isSingleWord())
148 VAL &= mask;
149 else
150 pVal[getNumWords() - 1] &= mask;
151 return *this;
152 }
153
154 /// \brief Get the word corresponding to a bit position
155 /// \returns the corresponding word for the specified bit position.
getWord(unsigned bitPosition)156 uint64_t getWord(unsigned bitPosition) const {
157 return isSingleWord() ? VAL : pVal[whichWord(bitPosition)];
158 }
159
160 /// \brief Convert a char array into an APInt
161 ///
162 /// \param radix 2, 8, 10, 16, or 36
163 /// Converts a string into a number. The string must be non-empty
164 /// and well-formed as a number of the given base. The bit-width
165 /// must be sufficient to hold the result.
166 ///
167 /// This is used by the constructors that take string arguments.
168 ///
169 /// StringRef::getAsInteger is superficially similar but (1) does
170 /// not assume that the string is well-formed and (2) grows the
171 /// result to hold the input.
172 void fromString(unsigned numBits, StringRef str, uint8_t radix);
173
174 /// \brief An internal division function for dividing APInts.
175 ///
176 /// This is used by the toString method to divide by the radix. It simply
177 /// provides a more convenient form of divide for internal use since KnuthDiv
178 /// has specific constraints on its inputs. If those constraints are not met
179 /// then it provides a simpler form of divide.
180 static void divide(const APInt LHS, unsigned lhsWords, const APInt &RHS,
181 unsigned rhsWords, APInt *Quotient, APInt *Remainder);
182
183 /// out-of-line slow case for inline constructor
184 void initSlowCase(unsigned numBits, uint64_t val, bool isSigned);
185
186 /// shared code between two array constructors
187 void initFromArray(ArrayRef<uint64_t> array);
188
189 /// out-of-line slow case for inline copy constructor
190 void initSlowCase(const APInt &that);
191
192 /// out-of-line slow case for shl
193 APInt shlSlowCase(unsigned shiftAmt) const;
194
195 /// out-of-line slow case for operator&
196 APInt AndSlowCase(const APInt &RHS) const;
197
198 /// out-of-line slow case for operator|
199 APInt OrSlowCase(const APInt &RHS) const;
200
201 /// out-of-line slow case for operator^
202 APInt XorSlowCase(const APInt &RHS) const;
203
204 /// out-of-line slow case for operator=
205 APInt &AssignSlowCase(const APInt &RHS);
206
207 /// out-of-line slow case for operator==
208 bool EqualSlowCase(const APInt &RHS) const;
209
210 /// out-of-line slow case for operator==
211 bool EqualSlowCase(uint64_t Val) const;
212
213 /// out-of-line slow case for countLeadingZeros
214 unsigned countLeadingZerosSlowCase() const;
215
216 /// out-of-line slow case for countTrailingOnes
217 unsigned countTrailingOnesSlowCase() const;
218
219 /// out-of-line slow case for countPopulation
220 unsigned countPopulationSlowCase() const;
221
222 public:
223 /// \name Constructors
224 /// @{
225
226 /// \brief Create a new APInt of numBits width, initialized as val.
227 ///
228 /// If isSigned is true then val is treated as if it were a signed value
229 /// (i.e. as an int64_t) and the appropriate sign extension to the bit width
230 /// will be done. Otherwise, no sign extension occurs (high order bits beyond
231 /// the range of val are zero filled).
232 ///
233 /// \param numBits the bit width of the constructed APInt
234 /// \param val the initial value of the APInt
235 /// \param isSigned how to treat signedness of val
236 APInt(unsigned numBits, uint64_t val, bool isSigned = false)
BitWidth(numBits)237 : BitWidth(numBits), VAL(0) {
238 assert(BitWidth && "bitwidth too small");
239 if (isSingleWord())
240 VAL = val;
241 else
242 initSlowCase(numBits, val, isSigned);
243 clearUnusedBits();
244 }
245
246 /// \brief Construct an APInt of numBits width, initialized as bigVal[].
247 ///
248 /// Note that bigVal.size() can be smaller or larger than the corresponding
249 /// bit width but any extraneous bits will be dropped.
250 ///
251 /// \param numBits the bit width of the constructed APInt
252 /// \param bigVal a sequence of words to form the initial value of the APInt
253 APInt(unsigned numBits, ArrayRef<uint64_t> bigVal);
254
255 /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but
256 /// deprecated because this constructor is prone to ambiguity with the
257 /// APInt(unsigned, uint64_t, bool) constructor.
258 ///
259 /// If this overload is ever deleted, care should be taken to prevent calls
260 /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool)
261 /// constructor.
262 APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]);
263
264 /// \brief Construct an APInt from a string representation.
265 ///
266 /// This constructor interprets the string \p str in the given radix. The
267 /// interpretation stops when the first character that is not suitable for the
268 /// radix is encountered, or the end of the string. Acceptable radix values
269 /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the
270 /// string to require more bits than numBits.
271 ///
272 /// \param numBits the bit width of the constructed APInt
273 /// \param str the string to be interpreted
274 /// \param radix the radix to use for the conversion
275 APInt(unsigned numBits, StringRef str, uint8_t radix);
276
277 /// Simply makes *this a copy of that.
278 /// @brief Copy Constructor.
APInt(const APInt & that)279 APInt(const APInt &that) : BitWidth(that.BitWidth), VAL(0) {
280 assert(BitWidth && "bitwidth too small");
281 if (isSingleWord())
282 VAL = that.VAL;
283 else
284 initSlowCase(that);
285 }
286
287 /// \brief Move Constructor.
APInt(APInt && that)288 APInt(APInt &&that) : BitWidth(that.BitWidth), VAL(that.VAL) {
289 that.BitWidth = 0;
290 }
291
292 /// \brief Destructor.
~APInt()293 ~APInt() {
294 if (needsCleanup())
295 delete[] pVal;
296 }
297
298 /// \brief Default constructor that creates an uninitialized APInt.
299 ///
300 /// This is useful for object deserialization (pair this with the static
301 /// method Read).
APInt()302 explicit APInt() : BitWidth(1) {}
303
304 /// \brief Returns whether this instance allocated memory.
needsCleanup()305 bool needsCleanup() const { return !isSingleWord(); }
306
307 /// Used to insert APInt objects, or objects that contain APInt objects, into
308 /// FoldingSets.
309 void Profile(FoldingSetNodeID &id) const;
310
311 /// @}
312 /// \name Value Tests
313 /// @{
314
315 /// \brief Determine sign of this APInt.
316 ///
317 /// This tests the high bit of this APInt to determine if it is set.
318 ///
319 /// \returns true if this APInt is negative, false otherwise
isNegative()320 bool isNegative() const { return (*this)[BitWidth - 1]; }
321
322 /// \brief Determine if this APInt Value is non-negative (>= 0)
323 ///
324 /// This tests the high bit of the APInt to determine if it is unset.
isNonNegative()325 bool isNonNegative() const { return !isNegative(); }
326
327 /// \brief Determine if this APInt Value is positive.
328 ///
329 /// This tests if the value of this APInt is positive (> 0). Note
330 /// that 0 is not a positive value.
331 ///
332 /// \returns true if this APInt is positive.
isStrictlyPositive()333 bool isStrictlyPositive() const { return isNonNegative() && !!*this; }
334
335 /// \brief Determine if all bits are set
336 ///
337 /// This checks to see if the value has all bits of the APInt are set or not.
isAllOnesValue()338 bool isAllOnesValue() const {
339 if (isSingleWord())
340 return VAL == ~integerPart(0) >> (APINT_BITS_PER_WORD - BitWidth);
341 return countPopulationSlowCase() == BitWidth;
342 }
343
344 /// \brief Determine if this is the largest unsigned value.
345 ///
346 /// This checks to see if the value of this APInt is the maximum unsigned
347 /// value for the APInt's bit width.
isMaxValue()348 bool isMaxValue() const { return isAllOnesValue(); }
349
350 /// \brief Determine if this is the largest signed value.
351 ///
352 /// This checks to see if the value of this APInt is the maximum signed
353 /// value for the APInt's bit width.
isMaxSignedValue()354 bool isMaxSignedValue() const {
355 return BitWidth == 1 ? VAL == 0
356 : !isNegative() && countPopulation() == BitWidth - 1;
357 }
358
359 /// \brief Determine if this is the smallest unsigned value.
360 ///
361 /// This checks to see if the value of this APInt is the minimum unsigned
362 /// value for the APInt's bit width.
isMinValue()363 bool isMinValue() const { return !*this; }
364
365 /// \brief Determine if this is the smallest signed value.
366 ///
367 /// This checks to see if the value of this APInt is the minimum signed
368 /// value for the APInt's bit width.
isMinSignedValue()369 bool isMinSignedValue() const {
370 return BitWidth == 1 ? VAL == 1 : isNegative() && isPowerOf2();
371 }
372
373 /// \brief Check if this APInt has an N-bits unsigned integer value.
isIntN(unsigned N)374 bool isIntN(unsigned N) const {
375 assert(N && "N == 0 ???");
376 return getActiveBits() <= N;
377 }
378
379 /// \brief Check if this APInt has an N-bits signed integer value.
isSignedIntN(unsigned N)380 bool isSignedIntN(unsigned N) const {
381 assert(N && "N == 0 ???");
382 return getMinSignedBits() <= N;
383 }
384
385 /// \brief Check if this APInt's value is a power of two greater than zero.
386 ///
387 /// \returns true if the argument APInt value is a power of two > 0.
isPowerOf2()388 bool isPowerOf2() const {
389 if (isSingleWord())
390 return isPowerOf2_64(VAL);
391 return countPopulationSlowCase() == 1;
392 }
393
394 /// \brief Check if the APInt's value is returned by getSignBit.
395 ///
396 /// \returns true if this is the value returned by getSignBit.
isSignBit()397 bool isSignBit() const { return isMinSignedValue(); }
398
399 /// \brief Convert APInt to a boolean value.
400 ///
401 /// This converts the APInt to a boolean value as a test against zero.
getBoolValue()402 bool getBoolValue() const { return !!*this; }
403
404 /// If this value is smaller than the specified limit, return it, otherwise
405 /// return the limit value. This causes the value to saturate to the limit.
406 uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const {
407 return (getActiveBits() > 64 || getZExtValue() > Limit) ? Limit
408 : getZExtValue();
409 }
410
411 /// @}
412 /// \name Value Generators
413 /// @{
414
415 /// \brief Gets maximum unsigned value of APInt for specific bit width.
getMaxValue(unsigned numBits)416 static APInt getMaxValue(unsigned numBits) {
417 return getAllOnesValue(numBits);
418 }
419
420 /// \brief Gets maximum signed value of APInt for a specific bit width.
getSignedMaxValue(unsigned numBits)421 static APInt getSignedMaxValue(unsigned numBits) {
422 APInt API = getAllOnesValue(numBits);
423 API.clearBit(numBits - 1);
424 return API;
425 }
426
427 /// \brief Gets minimum unsigned value of APInt for a specific bit width.
getMinValue(unsigned numBits)428 static APInt getMinValue(unsigned numBits) { return APInt(numBits, 0); }
429
430 /// \brief Gets minimum signed value of APInt for a specific bit width.
getSignedMinValue(unsigned numBits)431 static APInt getSignedMinValue(unsigned numBits) {
432 APInt API(numBits, 0);
433 API.setBit(numBits - 1);
434 return API;
435 }
436
437 /// \brief Get the SignBit for a specific bit width.
438 ///
439 /// This is just a wrapper function of getSignedMinValue(), and it helps code
440 /// readability when we want to get a SignBit.
getSignBit(unsigned BitWidth)441 static APInt getSignBit(unsigned BitWidth) {
442 return getSignedMinValue(BitWidth);
443 }
444
445 /// \brief Get the all-ones value.
446 ///
447 /// \returns the all-ones value for an APInt of the specified bit-width.
getAllOnesValue(unsigned numBits)448 static APInt getAllOnesValue(unsigned numBits) {
449 return APInt(numBits, UINT64_MAX, true);
450 }
451
452 /// \brief Get the '0' value.
453 ///
454 /// \returns the '0' value for an APInt of the specified bit-width.
getNullValue(unsigned numBits)455 static APInt getNullValue(unsigned numBits) { return APInt(numBits, 0); }
456
457 /// \brief Compute an APInt containing numBits highbits from this APInt.
458 ///
459 /// Get an APInt with the same BitWidth as this APInt, just zero mask
460 /// the low bits and right shift to the least significant bit.
461 ///
462 /// \returns the high "numBits" bits of this APInt.
463 APInt getHiBits(unsigned numBits) const;
464
465 /// \brief Compute an APInt containing numBits lowbits from this APInt.
466 ///
467 /// Get an APInt with the same BitWidth as this APInt, just zero mask
468 /// the high bits.
469 ///
470 /// \returns the low "numBits" bits of this APInt.
471 APInt getLoBits(unsigned numBits) const;
472
473 /// \brief Return an APInt with exactly one bit set in the result.
getOneBitSet(unsigned numBits,unsigned BitNo)474 static APInt getOneBitSet(unsigned numBits, unsigned BitNo) {
475 APInt Res(numBits, 0);
476 Res.setBit(BitNo);
477 return Res;
478 }
479
480 /// \brief Get a value with a block of bits set.
481 ///
482 /// Constructs an APInt value that has a contiguous range of bits set. The
483 /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other
484 /// bits will be zero. For example, with parameters(32, 0, 16) you would get
485 /// 0x0000FFFF. If hiBit is less than loBit then the set bits "wrap". For
486 /// example, with parameters (32, 28, 4), you would get 0xF000000F.
487 ///
488 /// \param numBits the intended bit width of the result
489 /// \param loBit the index of the lowest bit set.
490 /// \param hiBit the index of the highest bit set.
491 ///
492 /// \returns An APInt value with the requested bits set.
getBitsSet(unsigned numBits,unsigned loBit,unsigned hiBit)493 static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) {
494 assert(hiBit <= numBits && "hiBit out of range");
495 assert(loBit < numBits && "loBit out of range");
496 if (hiBit < loBit)
497 return getLowBitsSet(numBits, hiBit) |
498 getHighBitsSet(numBits, numBits - loBit);
499 return getLowBitsSet(numBits, hiBit - loBit).shl(loBit);
500 }
501
502 /// \brief Get a value with high bits set
503 ///
504 /// Constructs an APInt value that has the top hiBitsSet bits set.
505 ///
506 /// \param numBits the bitwidth of the result
507 /// \param hiBitsSet the number of high-order bits set in the result.
getHighBitsSet(unsigned numBits,unsigned hiBitsSet)508 static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) {
509 assert(hiBitsSet <= numBits && "Too many bits to set!");
510 // Handle a degenerate case, to avoid shifting by word size
511 if (hiBitsSet == 0)
512 return APInt(numBits, 0);
513 unsigned shiftAmt = numBits - hiBitsSet;
514 // For small values, return quickly
515 if (numBits <= APINT_BITS_PER_WORD)
516 return APInt(numBits, ~0ULL << shiftAmt);
517 return getAllOnesValue(numBits).shl(shiftAmt);
518 }
519
520 /// \brief Get a value with low bits set
521 ///
522 /// Constructs an APInt value that has the bottom loBitsSet bits set.
523 ///
524 /// \param numBits the bitwidth of the result
525 /// \param loBitsSet the number of low-order bits set in the result.
getLowBitsSet(unsigned numBits,unsigned loBitsSet)526 static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) {
527 assert(loBitsSet <= numBits && "Too many bits to set!");
528 // Handle a degenerate case, to avoid shifting by word size
529 if (loBitsSet == 0)
530 return APInt(numBits, 0);
531 if (loBitsSet == APINT_BITS_PER_WORD)
532 return APInt(numBits, UINT64_MAX);
533 // For small values, return quickly.
534 if (loBitsSet <= APINT_BITS_PER_WORD)
535 return APInt(numBits, UINT64_MAX >> (APINT_BITS_PER_WORD - loBitsSet));
536 return getAllOnesValue(numBits).lshr(numBits - loBitsSet);
537 }
538
539 /// \brief Return a value containing V broadcasted over NewLen bits.
getSplat(unsigned NewLen,const APInt & V)540 static APInt getSplat(unsigned NewLen, const APInt &V) {
541 assert(NewLen >= V.getBitWidth() && "Can't splat to smaller bit width!");
542
543 APInt Val = V.zextOrSelf(NewLen);
544 for (unsigned I = V.getBitWidth(); I < NewLen; I <<= 1)
545 Val |= Val << I;
546
547 return Val;
548 }
549
550 /// \brief Determine if two APInts have the same value, after zero-extending
551 /// one of them (if needed!) to ensure that the bit-widths match.
isSameValue(const APInt & I1,const APInt & I2)552 static bool isSameValue(const APInt &I1, const APInt &I2) {
553 if (I1.getBitWidth() == I2.getBitWidth())
554 return I1 == I2;
555
556 if (I1.getBitWidth() > I2.getBitWidth())
557 return I1 == I2.zext(I1.getBitWidth());
558
559 return I1.zext(I2.getBitWidth()) == I2;
560 }
561
562 /// \brief Overload to compute a hash_code for an APInt value.
563 friend hash_code hash_value(const APInt &Arg);
564
565 /// This function returns a pointer to the internal storage of the APInt.
566 /// This is useful for writing out the APInt in binary form without any
567 /// conversions.
getRawData()568 const uint64_t *getRawData() const {
569 if (isSingleWord())
570 return &VAL;
571 return &pVal[0];
572 }
573
574 /// @}
575 /// \name Unary Operators
576 /// @{
577
578 /// \brief Postfix increment operator.
579 ///
580 /// \returns a new APInt value representing *this incremented by one
581 const APInt operator++(int) {
582 APInt API(*this);
583 ++(*this);
584 return API;
585 }
586
587 /// \brief Prefix increment operator.
588 ///
589 /// \returns *this incremented by one
590 APInt &operator++();
591
592 /// \brief Postfix decrement operator.
593 ///
594 /// \returns a new APInt representing *this decremented by one.
595 const APInt operator--(int) {
596 APInt API(*this);
597 --(*this);
598 return API;
599 }
600
601 /// \brief Prefix decrement operator.
602 ///
603 /// \returns *this decremented by one.
604 APInt &operator--();
605
606 /// \brief Unary bitwise complement operator.
607 ///
608 /// Performs a bitwise complement operation on this APInt.
609 ///
610 /// \returns an APInt that is the bitwise complement of *this
611 APInt operator~() const {
612 APInt Result(*this);
613 Result.flipAllBits();
614 return Result;
615 }
616
617 /// \brief Unary negation operator
618 ///
619 /// Negates *this using two's complement logic.
620 ///
621 /// \returns An APInt value representing the negation of *this.
622 APInt operator-() const { return APInt(BitWidth, 0) - (*this); }
623
624 /// \brief Logical negation operator.
625 ///
626 /// Performs logical negation operation on this APInt.
627 ///
628 /// \returns true if *this is zero, false otherwise.
629 bool operator!() const {
630 if (isSingleWord())
631 return !VAL;
632
633 for (unsigned i = 0; i != getNumWords(); ++i)
634 if (pVal[i])
635 return false;
636 return true;
637 }
638
639 /// @}
640 /// \name Assignment Operators
641 /// @{
642
643 /// \brief Copy assignment operator.
644 ///
645 /// \returns *this after assignment of RHS.
646 APInt &operator=(const APInt &RHS) {
647 // If the bitwidths are the same, we can avoid mucking with memory
648 if (isSingleWord() && RHS.isSingleWord()) {
649 VAL = RHS.VAL;
650 BitWidth = RHS.BitWidth;
651 return clearUnusedBits();
652 }
653
654 return AssignSlowCase(RHS);
655 }
656
657 /// @brief Move assignment operator.
658 APInt &operator=(APInt &&that) {
659 if (!isSingleWord())
660 delete[] pVal;
661
662 BitWidth = that.BitWidth;
663 VAL = that.VAL;
664
665 that.BitWidth = 0;
666
667 return *this;
668 }
669
670 /// \brief Assignment operator.
671 ///
672 /// The RHS value is assigned to *this. If the significant bits in RHS exceed
673 /// the bit width, the excess bits are truncated. If the bit width is larger
674 /// than 64, the value is zero filled in the unspecified high order bits.
675 ///
676 /// \returns *this after assignment of RHS value.
677 APInt &operator=(uint64_t RHS);
678
679 /// \brief Bitwise AND assignment operator.
680 ///
681 /// Performs a bitwise AND operation on this APInt and RHS. The result is
682 /// assigned to *this.
683 ///
684 /// \returns *this after ANDing with RHS.
685 APInt &operator&=(const APInt &RHS);
686
687 /// \brief Bitwise OR assignment operator.
688 ///
689 /// Performs a bitwise OR operation on this APInt and RHS. The result is
690 /// assigned *this;
691 ///
692 /// \returns *this after ORing with RHS.
693 APInt &operator|=(const APInt &RHS);
694
695 /// \brief Bitwise OR assignment operator.
696 ///
697 /// Performs a bitwise OR operation on this APInt and RHS. RHS is
698 /// logically zero-extended or truncated to match the bit-width of
699 /// the LHS.
700 APInt &operator|=(uint64_t RHS) {
701 if (isSingleWord()) {
702 VAL |= RHS;
703 clearUnusedBits();
704 } else {
705 pVal[0] |= RHS;
706 }
707 return *this;
708 }
709
710 /// \brief Bitwise XOR assignment operator.
711 ///
712 /// Performs a bitwise XOR operation on this APInt and RHS. The result is
713 /// assigned to *this.
714 ///
715 /// \returns *this after XORing with RHS.
716 APInt &operator^=(const APInt &RHS);
717
718 /// \brief Multiplication assignment operator.
719 ///
720 /// Multiplies this APInt by RHS and assigns the result to *this.
721 ///
722 /// \returns *this
723 APInt &operator*=(const APInt &RHS);
724
725 /// \brief Addition assignment operator.
726 ///
727 /// Adds RHS to *this and assigns the result to *this.
728 ///
729 /// \returns *this
730 APInt &operator+=(const APInt &RHS);
731
732 /// \brief Subtraction assignment operator.
733 ///
734 /// Subtracts RHS from *this and assigns the result to *this.
735 ///
736 /// \returns *this
737 APInt &operator-=(const APInt &RHS);
738
739 /// \brief Left-shift assignment function.
740 ///
741 /// Shifts *this left by shiftAmt and assigns the result to *this.
742 ///
743 /// \returns *this after shifting left by shiftAmt
744 APInt &operator<<=(unsigned shiftAmt) {
745 *this = shl(shiftAmt);
746 return *this;
747 }
748
749 /// @}
750 /// \name Binary Operators
751 /// @{
752
753 /// \brief Bitwise AND operator.
754 ///
755 /// Performs a bitwise AND operation on *this and RHS.
756 ///
757 /// \returns An APInt value representing the bitwise AND of *this and RHS.
758 APInt operator&(const APInt &RHS) const {
759 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
760 if (isSingleWord())
761 return APInt(getBitWidth(), VAL & RHS.VAL);
762 return AndSlowCase(RHS);
763 }
And(const APInt & RHS)764 APInt LLVM_ATTRIBUTE_UNUSED_RESULT And(const APInt &RHS) const {
765 return this->operator&(RHS);
766 }
767
768 /// \brief Bitwise OR operator.
769 ///
770 /// Performs a bitwise OR operation on *this and RHS.
771 ///
772 /// \returns An APInt value representing the bitwise OR of *this and RHS.
773 APInt operator|(const APInt &RHS) const {
774 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
775 if (isSingleWord())
776 return APInt(getBitWidth(), VAL | RHS.VAL);
777 return OrSlowCase(RHS);
778 }
779
780 /// \brief Bitwise OR function.
781 ///
782 /// Performs a bitwise or on *this and RHS. This is implemented bny simply
783 /// calling operator|.
784 ///
785 /// \returns An APInt value representing the bitwise OR of *this and RHS.
Or(const APInt & RHS)786 APInt LLVM_ATTRIBUTE_UNUSED_RESULT Or(const APInt &RHS) const {
787 return this->operator|(RHS);
788 }
789
790 /// \brief Bitwise XOR operator.
791 ///
792 /// Performs a bitwise XOR operation on *this and RHS.
793 ///
794 /// \returns An APInt value representing the bitwise XOR of *this and RHS.
795 APInt operator^(const APInt &RHS) const {
796 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
797 if (isSingleWord())
798 return APInt(BitWidth, VAL ^ RHS.VAL);
799 return XorSlowCase(RHS);
800 }
801
802 /// \brief Bitwise XOR function.
803 ///
804 /// Performs a bitwise XOR operation on *this and RHS. This is implemented
805 /// through the usage of operator^.
806 ///
807 /// \returns An APInt value representing the bitwise XOR of *this and RHS.
Xor(const APInt & RHS)808 APInt LLVM_ATTRIBUTE_UNUSED_RESULT Xor(const APInt &RHS) const {
809 return this->operator^(RHS);
810 }
811
812 /// \brief Multiplication operator.
813 ///
814 /// Multiplies this APInt by RHS and returns the result.
815 APInt operator*(const APInt &RHS) const;
816
817 /// \brief Addition operator.
818 ///
819 /// Adds RHS to this APInt and returns the result.
820 APInt operator+(const APInt &RHS) const;
821 APInt operator+(uint64_t RHS) const { return (*this) + APInt(BitWidth, RHS); }
822
823 /// \brief Subtraction operator.
824 ///
825 /// Subtracts RHS from this APInt and returns the result.
826 APInt operator-(const APInt &RHS) const;
827 APInt operator-(uint64_t RHS) const { return (*this) - APInt(BitWidth, RHS); }
828
829 /// \brief Left logical shift operator.
830 ///
831 /// Shifts this APInt left by \p Bits and returns the result.
832 APInt operator<<(unsigned Bits) const { return shl(Bits); }
833
834 /// \brief Left logical shift operator.
835 ///
836 /// Shifts this APInt left by \p Bits and returns the result.
837 APInt operator<<(const APInt &Bits) const { return shl(Bits); }
838
839 /// \brief Arithmetic right-shift function.
840 ///
841 /// Arithmetic right-shift this APInt by shiftAmt.
842 APInt LLVM_ATTRIBUTE_UNUSED_RESULT ashr(unsigned shiftAmt) const;
843
844 /// \brief Logical right-shift function.
845 ///
846 /// Logical right-shift this APInt by shiftAmt.
847 APInt LLVM_ATTRIBUTE_UNUSED_RESULT lshr(unsigned shiftAmt) const;
848
849 /// \brief Left-shift function.
850 ///
851 /// Left-shift this APInt by shiftAmt.
shl(unsigned shiftAmt)852 APInt LLVM_ATTRIBUTE_UNUSED_RESULT shl(unsigned shiftAmt) const {
853 assert(shiftAmt <= BitWidth && "Invalid shift amount");
854 if (isSingleWord()) {
855 if (shiftAmt >= BitWidth)
856 return APInt(BitWidth, 0); // avoid undefined shift results
857 return APInt(BitWidth, VAL << shiftAmt);
858 }
859 return shlSlowCase(shiftAmt);
860 }
861
862 /// \brief Rotate left by rotateAmt.
863 APInt LLVM_ATTRIBUTE_UNUSED_RESULT rotl(unsigned rotateAmt) const;
864
865 /// \brief Rotate right by rotateAmt.
866 APInt LLVM_ATTRIBUTE_UNUSED_RESULT rotr(unsigned rotateAmt) const;
867
868 /// \brief Arithmetic right-shift function.
869 ///
870 /// Arithmetic right-shift this APInt by shiftAmt.
871 APInt LLVM_ATTRIBUTE_UNUSED_RESULT ashr(const APInt &shiftAmt) const;
872
873 /// \brief Logical right-shift function.
874 ///
875 /// Logical right-shift this APInt by shiftAmt.
876 APInt LLVM_ATTRIBUTE_UNUSED_RESULT lshr(const APInt &shiftAmt) const;
877
878 /// \brief Left-shift function.
879 ///
880 /// Left-shift this APInt by shiftAmt.
881 APInt LLVM_ATTRIBUTE_UNUSED_RESULT shl(const APInt &shiftAmt) const;
882
883 /// \brief Rotate left by rotateAmt.
884 APInt LLVM_ATTRIBUTE_UNUSED_RESULT rotl(const APInt &rotateAmt) const;
885
886 /// \brief Rotate right by rotateAmt.
887 APInt LLVM_ATTRIBUTE_UNUSED_RESULT rotr(const APInt &rotateAmt) const;
888
889 /// \brief Unsigned division operation.
890 ///
891 /// Perform an unsigned divide operation on this APInt by RHS. Both this and
892 /// RHS are treated as unsigned quantities for purposes of this division.
893 ///
894 /// \returns a new APInt value containing the division result
895 APInt LLVM_ATTRIBUTE_UNUSED_RESULT udiv(const APInt &RHS) const;
896
897 /// \brief Signed division function for APInt.
898 ///
899 /// Signed divide this APInt by APInt RHS.
900 APInt LLVM_ATTRIBUTE_UNUSED_RESULT sdiv(const APInt &RHS) const;
901
902 /// \brief Unsigned remainder operation.
903 ///
904 /// Perform an unsigned remainder operation on this APInt with RHS being the
905 /// divisor. Both this and RHS are treated as unsigned quantities for purposes
906 /// of this operation. Note that this is a true remainder operation and not a
907 /// modulo operation because the sign follows the sign of the dividend which
908 /// is *this.
909 ///
910 /// \returns a new APInt value containing the remainder result
911 APInt LLVM_ATTRIBUTE_UNUSED_RESULT urem(const APInt &RHS) const;
912
913 /// \brief Function for signed remainder operation.
914 ///
915 /// Signed remainder operation on APInt.
916 APInt LLVM_ATTRIBUTE_UNUSED_RESULT srem(const APInt &RHS) const;
917
918 /// \brief Dual division/remainder interface.
919 ///
920 /// Sometimes it is convenient to divide two APInt values and obtain both the
921 /// quotient and remainder. This function does both operations in the same
922 /// computation making it a little more efficient. The pair of input arguments
923 /// may overlap with the pair of output arguments. It is safe to call
924 /// udivrem(X, Y, X, Y), for example.
925 static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
926 APInt &Remainder);
927
928 static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
929 APInt &Remainder);
930
931 // Operations that return overflow indicators.
932 APInt sadd_ov(const APInt &RHS, bool &Overflow) const;
933 APInt uadd_ov(const APInt &RHS, bool &Overflow) const;
934 APInt ssub_ov(const APInt &RHS, bool &Overflow) const;
935 APInt usub_ov(const APInt &RHS, bool &Overflow) const;
936 APInt sdiv_ov(const APInt &RHS, bool &Overflow) const;
937 APInt smul_ov(const APInt &RHS, bool &Overflow) const;
938 APInt umul_ov(const APInt &RHS, bool &Overflow) const;
939 APInt sshl_ov(unsigned Amt, bool &Overflow) const;
940
941 /// \brief Array-indexing support.
942 ///
943 /// \returns the bit value at bitPosition
944 bool operator[](unsigned bitPosition) const {
945 assert(bitPosition < getBitWidth() && "Bit position out of bounds!");
946 return (maskBit(bitPosition) &
947 (isSingleWord() ? VAL : pVal[whichWord(bitPosition)])) !=
948 0;
949 }
950
951 /// @}
952 /// \name Comparison Operators
953 /// @{
954
955 /// \brief Equality operator.
956 ///
957 /// Compares this APInt with RHS for the validity of the equality
958 /// relationship.
959 bool operator==(const APInt &RHS) const {
960 assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths");
961 if (isSingleWord())
962 return VAL == RHS.VAL;
963 return EqualSlowCase(RHS);
964 }
965
966 /// \brief Equality operator.
967 ///
968 /// Compares this APInt with a uint64_t for the validity of the equality
969 /// relationship.
970 ///
971 /// \returns true if *this == Val
972 bool operator==(uint64_t Val) const {
973 if (isSingleWord())
974 return VAL == Val;
975 return EqualSlowCase(Val);
976 }
977
978 /// \brief Equality comparison.
979 ///
980 /// Compares this APInt with RHS for the validity of the equality
981 /// relationship.
982 ///
983 /// \returns true if *this == Val
eq(const APInt & RHS)984 bool eq(const APInt &RHS) const { return (*this) == RHS; }
985
986 /// \brief Inequality operator.
987 ///
988 /// Compares this APInt with RHS for the validity of the inequality
989 /// relationship.
990 ///
991 /// \returns true if *this != Val
992 bool operator!=(const APInt &RHS) const { return !((*this) == RHS); }
993
994 /// \brief Inequality operator.
995 ///
996 /// Compares this APInt with a uint64_t for the validity of the inequality
997 /// relationship.
998 ///
999 /// \returns true if *this != Val
1000 bool operator!=(uint64_t Val) const { return !((*this) == Val); }
1001
1002 /// \brief Inequality comparison
1003 ///
1004 /// Compares this APInt with RHS for the validity of the inequality
1005 /// relationship.
1006 ///
1007 /// \returns true if *this != Val
ne(const APInt & RHS)1008 bool ne(const APInt &RHS) const { return !((*this) == RHS); }
1009
1010 /// \brief Unsigned less than comparison
1011 ///
1012 /// Regards both *this and RHS as unsigned quantities and compares them for
1013 /// the validity of the less-than relationship.
1014 ///
1015 /// \returns true if *this < RHS when both are considered unsigned.
1016 bool ult(const APInt &RHS) const;
1017
1018 /// \brief Unsigned less than comparison
1019 ///
1020 /// Regards both *this as an unsigned quantity and compares it with RHS for
1021 /// the validity of the less-than relationship.
1022 ///
1023 /// \returns true if *this < RHS when considered unsigned.
ult(uint64_t RHS)1024 bool ult(uint64_t RHS) const { return ult(APInt(getBitWidth(), RHS)); }
1025
1026 /// \brief Signed less than comparison
1027 ///
1028 /// Regards both *this and RHS as signed quantities and compares them for
1029 /// validity of the less-than relationship.
1030 ///
1031 /// \returns true if *this < RHS when both are considered signed.
1032 bool slt(const APInt &RHS) const;
1033
1034 /// \brief Signed less than comparison
1035 ///
1036 /// Regards both *this as a signed quantity and compares it with RHS for
1037 /// the validity of the less-than relationship.
1038 ///
1039 /// \returns true if *this < RHS when considered signed.
slt(uint64_t RHS)1040 bool slt(uint64_t RHS) const { return slt(APInt(getBitWidth(), RHS)); }
1041
1042 /// \brief Unsigned less or equal comparison
1043 ///
1044 /// Regards both *this and RHS as unsigned quantities and compares them for
1045 /// validity of the less-or-equal relationship.
1046 ///
1047 /// \returns true if *this <= RHS when both are considered unsigned.
ule(const APInt & RHS)1048 bool ule(const APInt &RHS) const { return ult(RHS) || eq(RHS); }
1049
1050 /// \brief Unsigned less or equal comparison
1051 ///
1052 /// Regards both *this as an unsigned quantity and compares it with RHS for
1053 /// the validity of the less-or-equal relationship.
1054 ///
1055 /// \returns true if *this <= RHS when considered unsigned.
ule(uint64_t RHS)1056 bool ule(uint64_t RHS) const { return ule(APInt(getBitWidth(), RHS)); }
1057
1058 /// \brief Signed less or equal comparison
1059 ///
1060 /// Regards both *this and RHS as signed quantities and compares them for
1061 /// validity of the less-or-equal relationship.
1062 ///
1063 /// \returns true if *this <= RHS when both are considered signed.
sle(const APInt & RHS)1064 bool sle(const APInt &RHS) const { return slt(RHS) || eq(RHS); }
1065
1066 /// \brief Signed less or equal comparison
1067 ///
1068 /// Regards both *this as a signed quantity and compares it with RHS for the
1069 /// validity of the less-or-equal relationship.
1070 ///
1071 /// \returns true if *this <= RHS when considered signed.
sle(uint64_t RHS)1072 bool sle(uint64_t RHS) const { return sle(APInt(getBitWidth(), RHS)); }
1073
1074 /// \brief Unsigned greather than comparison
1075 ///
1076 /// Regards both *this and RHS as unsigned quantities and compares them for
1077 /// the validity of the greater-than relationship.
1078 ///
1079 /// \returns true if *this > RHS when both are considered unsigned.
ugt(const APInt & RHS)1080 bool ugt(const APInt &RHS) const { return !ult(RHS) && !eq(RHS); }
1081
1082 /// \brief Unsigned greater than comparison
1083 ///
1084 /// Regards both *this as an unsigned quantity and compares it with RHS for
1085 /// the validity of the greater-than relationship.
1086 ///
1087 /// \returns true if *this > RHS when considered unsigned.
ugt(uint64_t RHS)1088 bool ugt(uint64_t RHS) const { return ugt(APInt(getBitWidth(), RHS)); }
1089
1090 /// \brief Signed greather than comparison
1091 ///
1092 /// Regards both *this and RHS as signed quantities and compares them for the
1093 /// validity of the greater-than relationship.
1094 ///
1095 /// \returns true if *this > RHS when both are considered signed.
sgt(const APInt & RHS)1096 bool sgt(const APInt &RHS) const { return !slt(RHS) && !eq(RHS); }
1097
1098 /// \brief Signed greater than comparison
1099 ///
1100 /// Regards both *this as a signed quantity and compares it with RHS for
1101 /// the validity of the greater-than relationship.
1102 ///
1103 /// \returns true if *this > RHS when considered signed.
sgt(uint64_t RHS)1104 bool sgt(uint64_t RHS) const { return sgt(APInt(getBitWidth(), RHS)); }
1105
1106 /// \brief Unsigned greater or equal comparison
1107 ///
1108 /// Regards both *this and RHS as unsigned quantities and compares them for
1109 /// validity of the greater-or-equal relationship.
1110 ///
1111 /// \returns true if *this >= RHS when both are considered unsigned.
uge(const APInt & RHS)1112 bool uge(const APInt &RHS) const { return !ult(RHS); }
1113
1114 /// \brief Unsigned greater or equal comparison
1115 ///
1116 /// Regards both *this as an unsigned quantity and compares it with RHS for
1117 /// the validity of the greater-or-equal relationship.
1118 ///
1119 /// \returns true if *this >= RHS when considered unsigned.
uge(uint64_t RHS)1120 bool uge(uint64_t RHS) const { return uge(APInt(getBitWidth(), RHS)); }
1121
1122 /// \brief Signed greather or equal comparison
1123 ///
1124 /// Regards both *this and RHS as signed quantities and compares them for
1125 /// validity of the greater-or-equal relationship.
1126 ///
1127 /// \returns true if *this >= RHS when both are considered signed.
sge(const APInt & RHS)1128 bool sge(const APInt &RHS) const { return !slt(RHS); }
1129
1130 /// \brief Signed greater or equal comparison
1131 ///
1132 /// Regards both *this as a signed quantity and compares it with RHS for
1133 /// the validity of the greater-or-equal relationship.
1134 ///
1135 /// \returns true if *this >= RHS when considered signed.
sge(uint64_t RHS)1136 bool sge(uint64_t RHS) const { return sge(APInt(getBitWidth(), RHS)); }
1137
1138 /// This operation tests if there are any pairs of corresponding bits
1139 /// between this APInt and RHS that are both set.
intersects(const APInt & RHS)1140 bool intersects(const APInt &RHS) const { return (*this & RHS) != 0; }
1141
1142 /// @}
1143 /// \name Resizing Operators
1144 /// @{
1145
1146 /// \brief Truncate to new width.
1147 ///
1148 /// Truncate the APInt to a specified width. It is an error to specify a width
1149 /// that is greater than or equal to the current width.
1150 APInt LLVM_ATTRIBUTE_UNUSED_RESULT trunc(unsigned width) const;
1151
1152 /// \brief Sign extend to a new width.
1153 ///
1154 /// This operation sign extends the APInt to a new width. If the high order
1155 /// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
1156 /// It is an error to specify a width that is less than or equal to the
1157 /// current width.
1158 APInt LLVM_ATTRIBUTE_UNUSED_RESULT sext(unsigned width) const;
1159
1160 /// \brief Zero extend to a new width.
1161 ///
1162 /// This operation zero extends the APInt to a new width. The high order bits
1163 /// are filled with 0 bits. It is an error to specify a width that is less
1164 /// than or equal to the current width.
1165 APInt LLVM_ATTRIBUTE_UNUSED_RESULT zext(unsigned width) const;
1166
1167 /// \brief Sign extend or truncate to width
1168 ///
1169 /// Make this APInt have the bit width given by \p width. The value is sign
1170 /// extended, truncated, or left alone to make it that width.
1171 APInt LLVM_ATTRIBUTE_UNUSED_RESULT sextOrTrunc(unsigned width) const;
1172
1173 /// \brief Zero extend or truncate to width
1174 ///
1175 /// Make this APInt have the bit width given by \p width. The value is zero
1176 /// extended, truncated, or left alone to make it that width.
1177 APInt LLVM_ATTRIBUTE_UNUSED_RESULT zextOrTrunc(unsigned width) const;
1178
1179 /// \brief Sign extend or truncate to width
1180 ///
1181 /// Make this APInt have the bit width given by \p width. The value is sign
1182 /// extended, or left alone to make it that width.
1183 APInt LLVM_ATTRIBUTE_UNUSED_RESULT sextOrSelf(unsigned width) const;
1184
1185 /// \brief Zero extend or truncate to width
1186 ///
1187 /// Make this APInt have the bit width given by \p width. The value is zero
1188 /// extended, or left alone to make it that width.
1189 APInt LLVM_ATTRIBUTE_UNUSED_RESULT zextOrSelf(unsigned width) const;
1190
1191 /// @}
1192 /// \name Bit Manipulation Operators
1193 /// @{
1194
1195 /// \brief Set every bit to 1.
setAllBits()1196 void setAllBits() {
1197 if (isSingleWord())
1198 VAL = UINT64_MAX;
1199 else {
1200 // Set all the bits in all the words.
1201 for (unsigned i = 0; i < getNumWords(); ++i)
1202 pVal[i] = UINT64_MAX;
1203 }
1204 // Clear the unused ones
1205 clearUnusedBits();
1206 }
1207
1208 /// \brief Set a given bit to 1.
1209 ///
1210 /// Set the given bit to 1 whose position is given as "bitPosition".
1211 void setBit(unsigned bitPosition);
1212
1213 /// \brief Set every bit to 0.
clearAllBits()1214 void clearAllBits() {
1215 if (isSingleWord())
1216 VAL = 0;
1217 else
1218 memset(pVal, 0, getNumWords() * APINT_WORD_SIZE);
1219 }
1220
1221 /// \brief Set a given bit to 0.
1222 ///
1223 /// Set the given bit to 0 whose position is given as "bitPosition".
1224 void clearBit(unsigned bitPosition);
1225
1226 /// \brief Toggle every bit to its opposite value.
flipAllBits()1227 void flipAllBits() {
1228 if (isSingleWord())
1229 VAL ^= UINT64_MAX;
1230 else {
1231 for (unsigned i = 0; i < getNumWords(); ++i)
1232 pVal[i] ^= UINT64_MAX;
1233 }
1234 clearUnusedBits();
1235 }
1236
1237 /// \brief Toggles a given bit to its opposite value.
1238 ///
1239 /// Toggle a given bit to its opposite value whose position is given
1240 /// as "bitPosition".
1241 void flipBit(unsigned bitPosition);
1242
1243 /// @}
1244 /// \name Value Characterization Functions
1245 /// @{
1246
1247 /// \brief Return the number of bits in the APInt.
getBitWidth()1248 unsigned getBitWidth() const { return BitWidth; }
1249
1250 /// \brief Get the number of words.
1251 ///
1252 /// Here one word's bitwidth equals to that of uint64_t.
1253 ///
1254 /// \returns the number of words to hold the integer value of this APInt.
getNumWords()1255 unsigned getNumWords() const { return getNumWords(BitWidth); }
1256
1257 /// \brief Get the number of words.
1258 ///
1259 /// *NOTE* Here one word's bitwidth equals to that of uint64_t.
1260 ///
1261 /// \returns the number of words to hold the integer value with a given bit
1262 /// width.
getNumWords(unsigned BitWidth)1263 static unsigned getNumWords(unsigned BitWidth) {
1264 return ((uint64_t)BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
1265 }
1266
1267 /// \brief Compute the number of active bits in the value
1268 ///
1269 /// This function returns the number of active bits which is defined as the
1270 /// bit width minus the number of leading zeros. This is used in several
1271 /// computations to see how "wide" the value is.
getActiveBits()1272 unsigned getActiveBits() const { return BitWidth - countLeadingZeros(); }
1273
1274 /// \brief Compute the number of active words in the value of this APInt.
1275 ///
1276 /// This is used in conjunction with getActiveData to extract the raw value of
1277 /// the APInt.
getActiveWords()1278 unsigned getActiveWords() const {
1279 unsigned numActiveBits = getActiveBits();
1280 return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1;
1281 }
1282
1283 /// \brief Get the minimum bit size for this signed APInt
1284 ///
1285 /// Computes the minimum bit width for this APInt while considering it to be a
1286 /// signed (and probably negative) value. If the value is not negative, this
1287 /// function returns the same value as getActiveBits()+1. Otherwise, it
1288 /// returns the smallest bit width that will retain the negative value. For
1289 /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
1290 /// for -1, this function will always return 1.
getMinSignedBits()1291 unsigned getMinSignedBits() const {
1292 if (isNegative())
1293 return BitWidth - countLeadingOnes() + 1;
1294 return getActiveBits() + 1;
1295 }
1296
1297 /// \brief Get zero extended value
1298 ///
1299 /// This method attempts to return the value of this APInt as a zero extended
1300 /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
1301 /// uint64_t. Otherwise an assertion will result.
getZExtValue()1302 uint64_t getZExtValue() const {
1303 if (isSingleWord())
1304 return VAL;
1305 assert(getActiveBits() <= 64 && "Too many bits for uint64_t");
1306 return pVal[0];
1307 }
1308
1309 /// \brief Get sign extended value
1310 ///
1311 /// This method attempts to return the value of this APInt as a sign extended
1312 /// int64_t. The bit width must be <= 64 or the value must fit within an
1313 /// int64_t. Otherwise an assertion will result.
getSExtValue()1314 int64_t getSExtValue() const {
1315 if (isSingleWord())
1316 return int64_t(VAL << (APINT_BITS_PER_WORD - BitWidth)) >>
1317 (APINT_BITS_PER_WORD - BitWidth);
1318 assert(getMinSignedBits() <= 64 && "Too many bits for int64_t");
1319 return int64_t(pVal[0]);
1320 }
1321
1322 /// \brief Get bits required for string value.
1323 ///
1324 /// This method determines how many bits are required to hold the APInt
1325 /// equivalent of the string given by \p str.
1326 static unsigned getBitsNeeded(StringRef str, uint8_t radix);
1327
1328 /// \brief The APInt version of the countLeadingZeros functions in
1329 /// MathExtras.h.
1330 ///
1331 /// It counts the number of zeros from the most significant bit to the first
1332 /// one bit.
1333 ///
1334 /// \returns BitWidth if the value is zero, otherwise returns the number of
1335 /// zeros from the most significant bit to the first one bits.
countLeadingZeros()1336 unsigned countLeadingZeros() const {
1337 if (isSingleWord()) {
1338 unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth;
1339 return llvm::countLeadingZeros(VAL) - unusedBits;
1340 }
1341 return countLeadingZerosSlowCase();
1342 }
1343
1344 /// \brief Count the number of leading one bits.
1345 ///
1346 /// This function is an APInt version of the countLeadingOnes_{32,64}
1347 /// functions in MathExtras.h. It counts the number of ones from the most
1348 /// significant bit to the first zero bit.
1349 ///
1350 /// \returns 0 if the high order bit is not set, otherwise returns the number
1351 /// of 1 bits from the most significant to the least
1352 unsigned countLeadingOnes() const;
1353
1354 /// Computes the number of leading bits of this APInt that are equal to its
1355 /// sign bit.
getNumSignBits()1356 unsigned getNumSignBits() const {
1357 return isNegative() ? countLeadingOnes() : countLeadingZeros();
1358 }
1359
1360 /// \brief Count the number of trailing zero bits.
1361 ///
1362 /// This function is an APInt version of the countTrailingZeros_{32,64}
1363 /// functions in MathExtras.h. It counts the number of zeros from the least
1364 /// significant bit to the first set bit.
1365 ///
1366 /// \returns BitWidth if the value is zero, otherwise returns the number of
1367 /// zeros from the least significant bit to the first one bit.
1368 unsigned countTrailingZeros() const;
1369
1370 /// \brief Count the number of trailing one bits.
1371 ///
1372 /// This function is an APInt version of the countTrailingOnes_{32,64}
1373 /// functions in MathExtras.h. It counts the number of ones from the least
1374 /// significant bit to the first zero bit.
1375 ///
1376 /// \returns BitWidth if the value is all ones, otherwise returns the number
1377 /// of ones from the least significant bit to the first zero bit.
countTrailingOnes()1378 unsigned countTrailingOnes() const {
1379 if (isSingleWord())
1380 return CountTrailingOnes_64(VAL);
1381 return countTrailingOnesSlowCase();
1382 }
1383
1384 /// \brief Count the number of bits set.
1385 ///
1386 /// This function is an APInt version of the countPopulation_{32,64} functions
1387 /// in MathExtras.h. It counts the number of 1 bits in the APInt value.
1388 ///
1389 /// \returns 0 if the value is zero, otherwise returns the number of set bits.
countPopulation()1390 unsigned countPopulation() const {
1391 if (isSingleWord())
1392 return CountPopulation_64(VAL);
1393 return countPopulationSlowCase();
1394 }
1395
1396 /// @}
1397 /// \name Conversion Functions
1398 /// @{
1399 void print(raw_ostream &OS, bool isSigned) const;
1400
1401 /// Converts an APInt to a string and append it to Str. Str is commonly a
1402 /// SmallString.
1403 void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed,
1404 bool formatAsCLiteral = false) const;
1405
1406 /// Considers the APInt to be unsigned and converts it into a string in the
1407 /// radix given. The radix can be 2, 8, 10 16, or 36.
1408 void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1409 toString(Str, Radix, false, false);
1410 }
1411
1412 /// Considers the APInt to be signed and converts it into a string in the
1413 /// radix given. The radix can be 2, 8, 10, 16, or 36.
1414 void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1415 toString(Str, Radix, true, false);
1416 }
1417
1418 /// \brief Return the APInt as a std::string.
1419 ///
1420 /// Note that this is an inefficient method. It is better to pass in a
1421 /// SmallVector/SmallString to the methods above to avoid thrashing the heap
1422 /// for the string.
1423 std::string toString(unsigned Radix, bool Signed) const;
1424
1425 /// \returns a byte-swapped representation of this APInt Value.
1426 APInt LLVM_ATTRIBUTE_UNUSED_RESULT byteSwap() const;
1427
1428 /// \brief Converts this APInt to a double value.
1429 double roundToDouble(bool isSigned) const;
1430
1431 /// \brief Converts this unsigned APInt to a double value.
roundToDouble()1432 double roundToDouble() const { return roundToDouble(false); }
1433
1434 /// \brief Converts this signed APInt to a double value.
signedRoundToDouble()1435 double signedRoundToDouble() const { return roundToDouble(true); }
1436
1437 /// \brief Converts APInt bits to a double
1438 ///
1439 /// The conversion does not do a translation from integer to double, it just
1440 /// re-interprets the bits as a double. Note that it is valid to do this on
1441 /// any bit width. Exactly 64 bits will be translated.
bitsToDouble()1442 double bitsToDouble() const {
1443 union {
1444 uint64_t I;
1445 double D;
1446 } T;
1447 T.I = (isSingleWord() ? VAL : pVal[0]);
1448 return T.D;
1449 }
1450
1451 /// \brief Converts APInt bits to a double
1452 ///
1453 /// The conversion does not do a translation from integer to float, it just
1454 /// re-interprets the bits as a float. Note that it is valid to do this on
1455 /// any bit width. Exactly 32 bits will be translated.
bitsToFloat()1456 float bitsToFloat() const {
1457 union {
1458 unsigned I;
1459 float F;
1460 } T;
1461 T.I = unsigned((isSingleWord() ? VAL : pVal[0]));
1462 return T.F;
1463 }
1464
1465 /// \brief Converts a double to APInt bits.
1466 ///
1467 /// The conversion does not do a translation from double to integer, it just
1468 /// re-interprets the bits of the double.
doubleToBits(double V)1469 static APInt LLVM_ATTRIBUTE_UNUSED_RESULT doubleToBits(double V) {
1470 union {
1471 uint64_t I;
1472 double D;
1473 } T;
1474 T.D = V;
1475 return APInt(sizeof T * CHAR_BIT, T.I);
1476 }
1477
1478 /// \brief Converts a float to APInt bits.
1479 ///
1480 /// The conversion does not do a translation from float to integer, it just
1481 /// re-interprets the bits of the float.
floatToBits(float V)1482 static APInt LLVM_ATTRIBUTE_UNUSED_RESULT floatToBits(float V) {
1483 union {
1484 unsigned I;
1485 float F;
1486 } T;
1487 T.F = V;
1488 return APInt(sizeof T * CHAR_BIT, T.I);
1489 }
1490
1491 /// @}
1492 /// \name Mathematics Operations
1493 /// @{
1494
1495 /// \returns the floor log base 2 of this APInt.
logBase2()1496 unsigned logBase2() const { return BitWidth - 1 - countLeadingZeros(); }
1497
1498 /// \returns the ceil log base 2 of this APInt.
ceilLogBase2()1499 unsigned ceilLogBase2() const {
1500 return BitWidth - (*this - 1).countLeadingZeros();
1501 }
1502
1503 /// \returns the nearest log base 2 of this APInt. Ties round up.
1504 ///
1505 /// NOTE: When we have a BitWidth of 1, we define:
1506 ///
1507 /// log2(0) = UINT32_MAX
1508 /// log2(1) = 0
1509 ///
1510 /// to get around any mathematical concerns resulting from
1511 /// referencing 2 in a space where 2 does no exist.
nearestLogBase2()1512 unsigned nearestLogBase2() const {
1513 // Special case when we have a bitwidth of 1. If VAL is 1, then we
1514 // get 0. If VAL is 0, we get UINT64_MAX which gets truncated to
1515 // UINT32_MAX.
1516 if (BitWidth == 1)
1517 return VAL - 1;
1518
1519 // Handle the zero case.
1520 if (!getBoolValue())
1521 return UINT32_MAX;
1522
1523 // The non-zero case is handled by computing:
1524 //
1525 // nearestLogBase2(x) = logBase2(x) + x[logBase2(x)-1].
1526 //
1527 // where x[i] is referring to the value of the ith bit of x.
1528 unsigned lg = logBase2();
1529 return lg + unsigned((*this)[lg - 1]);
1530 }
1531
1532 /// \returns the log base 2 of this APInt if its an exact power of two, -1
1533 /// otherwise
exactLogBase2()1534 int32_t exactLogBase2() const {
1535 if (!isPowerOf2())
1536 return -1;
1537 return logBase2();
1538 }
1539
1540 /// \brief Compute the square root
1541 APInt LLVM_ATTRIBUTE_UNUSED_RESULT sqrt() const;
1542
1543 /// \brief Get the absolute value;
1544 ///
1545 /// If *this is < 0 then return -(*this), otherwise *this;
abs()1546 APInt LLVM_ATTRIBUTE_UNUSED_RESULT abs() const {
1547 if (isNegative())
1548 return -(*this);
1549 return *this;
1550 }
1551
1552 /// \returns the multiplicative inverse for a given modulo.
1553 APInt multiplicativeInverse(const APInt &modulo) const;
1554
1555 /// @}
1556 /// \name Support for division by constant
1557 /// @{
1558
1559 /// Calculate the magic number for signed division by a constant.
1560 struct ms;
1561 ms magic() const;
1562
1563 /// Calculate the magic number for unsigned division by a constant.
1564 struct mu;
1565 mu magicu(unsigned LeadingZeros = 0) const;
1566
1567 /// @}
1568 /// \name Building-block Operations for APInt and APFloat
1569 /// @{
1570
1571 // These building block operations operate on a representation of arbitrary
1572 // precision, two's-complement, bignum integer values. They should be
1573 // sufficient to implement APInt and APFloat bignum requirements. Inputs are
1574 // generally a pointer to the base of an array of integer parts, representing
1575 // an unsigned bignum, and a count of how many parts there are.
1576
1577 /// Sets the least significant part of a bignum to the input value, and zeroes
1578 /// out higher parts.
1579 static void tcSet(integerPart *, integerPart, unsigned int);
1580
1581 /// Assign one bignum to another.
1582 static void tcAssign(integerPart *, const integerPart *, unsigned int);
1583
1584 /// Returns true if a bignum is zero, false otherwise.
1585 static bool tcIsZero(const integerPart *, unsigned int);
1586
1587 /// Extract the given bit of a bignum; returns 0 or 1. Zero-based.
1588 static int tcExtractBit(const integerPart *, unsigned int bit);
1589
1590 /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to
1591 /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least
1592 /// significant bit of DST. All high bits above srcBITS in DST are
1593 /// zero-filled.
1594 static void tcExtract(integerPart *, unsigned int dstCount,
1595 const integerPart *, unsigned int srcBits,
1596 unsigned int srcLSB);
1597
1598 /// Set the given bit of a bignum. Zero-based.
1599 static void tcSetBit(integerPart *, unsigned int bit);
1600
1601 /// Clear the given bit of a bignum. Zero-based.
1602 static void tcClearBit(integerPart *, unsigned int bit);
1603
1604 /// Returns the bit number of the least or most significant set bit of a
1605 /// number. If the input number has no bits set -1U is returned.
1606 static unsigned int tcLSB(const integerPart *, unsigned int);
1607 static unsigned int tcMSB(const integerPart *parts, unsigned int n);
1608
1609 /// Negate a bignum in-place.
1610 static void tcNegate(integerPart *, unsigned int);
1611
1612 /// DST += RHS + CARRY where CARRY is zero or one. Returns the carry flag.
1613 static integerPart tcAdd(integerPart *, const integerPart *,
1614 integerPart carry, unsigned);
1615
1616 /// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag.
1617 static integerPart tcSubtract(integerPart *, const integerPart *,
1618 integerPart carry, unsigned);
1619
1620 /// DST += SRC * MULTIPLIER + PART if add is true
1621 /// DST = SRC * MULTIPLIER + PART if add is false
1622 ///
1623 /// Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC they must
1624 /// start at the same point, i.e. DST == SRC.
1625 ///
1626 /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned.
1627 /// Otherwise DST is filled with the least significant DSTPARTS parts of the
1628 /// result, and if all of the omitted higher parts were zero return zero,
1629 /// otherwise overflow occurred and return one.
1630 static int tcMultiplyPart(integerPart *dst, const integerPart *src,
1631 integerPart multiplier, integerPart carry,
1632 unsigned int srcParts, unsigned int dstParts,
1633 bool add);
1634
1635 /// DST = LHS * RHS, where DST has the same width as the operands and is
1636 /// filled with the least significant parts of the result. Returns one if
1637 /// overflow occurred, otherwise zero. DST must be disjoint from both
1638 /// operands.
1639 static int tcMultiply(integerPart *, const integerPart *, const integerPart *,
1640 unsigned);
1641
1642 /// DST = LHS * RHS, where DST has width the sum of the widths of the
1643 /// operands. No overflow occurs. DST must be disjoint from both
1644 /// operands. Returns the number of parts required to hold the result.
1645 static unsigned int tcFullMultiply(integerPart *, const integerPart *,
1646 const integerPart *, unsigned, unsigned);
1647
1648 /// If RHS is zero LHS and REMAINDER are left unchanged, return one.
1649 /// Otherwise set LHS to LHS / RHS with the fractional part discarded, set
1650 /// REMAINDER to the remainder, return zero. i.e.
1651 ///
1652 /// OLD_LHS = RHS * LHS + REMAINDER
1653 ///
1654 /// SCRATCH is a bignum of the same size as the operands and result for use by
1655 /// the routine; its contents need not be initialized and are destroyed. LHS,
1656 /// REMAINDER and SCRATCH must be distinct.
1657 static int tcDivide(integerPart *lhs, const integerPart *rhs,
1658 integerPart *remainder, integerPart *scratch,
1659 unsigned int parts);
1660
1661 /// Shift a bignum left COUNT bits. Shifted in bits are zero. There are no
1662 /// restrictions on COUNT.
1663 static void tcShiftLeft(integerPart *, unsigned int parts,
1664 unsigned int count);
1665
1666 /// Shift a bignum right COUNT bits. Shifted in bits are zero. There are no
1667 /// restrictions on COUNT.
1668 static void tcShiftRight(integerPart *, unsigned int parts,
1669 unsigned int count);
1670
1671 /// The obvious AND, OR and XOR and complement operations.
1672 static void tcAnd(integerPart *, const integerPart *, unsigned int);
1673 static void tcOr(integerPart *, const integerPart *, unsigned int);
1674 static void tcXor(integerPart *, const integerPart *, unsigned int);
1675 static void tcComplement(integerPart *, unsigned int);
1676
1677 /// Comparison (unsigned) of two bignums.
1678 static int tcCompare(const integerPart *, const integerPart *, unsigned int);
1679
1680 /// Increment a bignum in-place. Return the carry flag.
1681 static integerPart tcIncrement(integerPart *, unsigned int);
1682
1683 /// Decrement a bignum in-place. Return the borrow flag.
1684 static integerPart tcDecrement(integerPart *, unsigned int);
1685
1686 /// Set the least significant BITS and clear the rest.
1687 static void tcSetLeastSignificantBits(integerPart *, unsigned int,
1688 unsigned int bits);
1689
1690 /// \brief debug method
1691 void dump() const;
1692
1693 /// @}
1694 };
1695
1696 /// Magic data for optimising signed division by a constant.
1697 struct APInt::ms {
1698 APInt m; ///< magic number
1699 unsigned s; ///< shift amount
1700 };
1701
1702 /// Magic data for optimising unsigned division by a constant.
1703 struct APInt::mu {
1704 APInt m; ///< magic number
1705 bool a; ///< add indicator
1706 unsigned s; ///< shift amount
1707 };
1708
1709 inline bool operator==(uint64_t V1, const APInt &V2) { return V2 == V1; }
1710
1711 inline bool operator!=(uint64_t V1, const APInt &V2) { return V2 != V1; }
1712
1713 inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) {
1714 I.print(OS, true);
1715 return OS;
1716 }
1717
1718 namespace APIntOps {
1719
1720 /// \brief Determine the smaller of two APInts considered to be signed.
smin(const APInt & A,const APInt & B)1721 inline APInt smin(const APInt &A, const APInt &B) { return A.slt(B) ? A : B; }
1722
1723 /// \brief Determine the larger of two APInts considered to be signed.
smax(const APInt & A,const APInt & B)1724 inline APInt smax(const APInt &A, const APInt &B) { return A.sgt(B) ? A : B; }
1725
1726 /// \brief Determine the smaller of two APInts considered to be signed.
umin(const APInt & A,const APInt & B)1727 inline APInt umin(const APInt &A, const APInt &B) { return A.ult(B) ? A : B; }
1728
1729 /// \brief Determine the larger of two APInts considered to be unsigned.
umax(const APInt & A,const APInt & B)1730 inline APInt umax(const APInt &A, const APInt &B) { return A.ugt(B) ? A : B; }
1731
1732 /// \brief Check if the specified APInt has a N-bits unsigned integer value.
isIntN(unsigned N,const APInt & APIVal)1733 inline bool isIntN(unsigned N, const APInt &APIVal) { return APIVal.isIntN(N); }
1734
1735 /// \brief Check if the specified APInt has a N-bits signed integer value.
isSignedIntN(unsigned N,const APInt & APIVal)1736 inline bool isSignedIntN(unsigned N, const APInt &APIVal) {
1737 return APIVal.isSignedIntN(N);
1738 }
1739
1740 /// \returns true if the argument APInt value is a sequence of ones starting at
1741 /// the least significant bit with the remainder zero.
isMask(unsigned numBits,const APInt & APIVal)1742 inline bool isMask(unsigned numBits, const APInt &APIVal) {
1743 return numBits <= APIVal.getBitWidth() &&
1744 APIVal == APInt::getLowBitsSet(APIVal.getBitWidth(), numBits);
1745 }
1746
1747 /// \brief Return true if the argument APInt value contains a sequence of ones
1748 /// with the remainder zero.
isShiftedMask(unsigned numBits,const APInt & APIVal)1749 inline bool isShiftedMask(unsigned numBits, const APInt &APIVal) {
1750 return isMask(numBits, (APIVal - APInt(numBits, 1)) | APIVal);
1751 }
1752
1753 /// \brief Returns a byte-swapped representation of the specified APInt Value.
byteSwap(const APInt & APIVal)1754 inline APInt byteSwap(const APInt &APIVal) { return APIVal.byteSwap(); }
1755
1756 /// \brief Returns the floor log base 2 of the specified APInt value.
logBase2(const APInt & APIVal)1757 inline unsigned logBase2(const APInt &APIVal) { return APIVal.logBase2(); }
1758
1759 /// \brief Compute GCD of two APInt values.
1760 ///
1761 /// This function returns the greatest common divisor of the two APInt values
1762 /// using Euclid's algorithm.
1763 ///
1764 /// \returns the greatest common divisor of Val1 and Val2
1765 APInt GreatestCommonDivisor(const APInt &Val1, const APInt &Val2);
1766
1767 /// \brief Converts the given APInt to a double value.
1768 ///
1769 /// Treats the APInt as an unsigned value for conversion purposes.
RoundAPIntToDouble(const APInt & APIVal)1770 inline double RoundAPIntToDouble(const APInt &APIVal) {
1771 return APIVal.roundToDouble();
1772 }
1773
1774 /// \brief Converts the given APInt to a double value.
1775 ///
1776 /// Treats the APInt as a signed value for conversion purposes.
RoundSignedAPIntToDouble(const APInt & APIVal)1777 inline double RoundSignedAPIntToDouble(const APInt &APIVal) {
1778 return APIVal.signedRoundToDouble();
1779 }
1780
1781 /// \brief Converts the given APInt to a float vlalue.
RoundAPIntToFloat(const APInt & APIVal)1782 inline float RoundAPIntToFloat(const APInt &APIVal) {
1783 return float(RoundAPIntToDouble(APIVal));
1784 }
1785
1786 /// \brief Converts the given APInt to a float value.
1787 ///
1788 /// Treast the APInt as a signed value for conversion purposes.
RoundSignedAPIntToFloat(const APInt & APIVal)1789 inline float RoundSignedAPIntToFloat(const APInt &APIVal) {
1790 return float(APIVal.signedRoundToDouble());
1791 }
1792
1793 /// \brief Converts the given double value into a APInt.
1794 ///
1795 /// This function convert a double value to an APInt value.
1796 APInt RoundDoubleToAPInt(double Double, unsigned width);
1797
1798 /// \brief Converts a float value into a APInt.
1799 ///
1800 /// Converts a float value into an APInt value.
RoundFloatToAPInt(float Float,unsigned width)1801 inline APInt RoundFloatToAPInt(float Float, unsigned width) {
1802 return RoundDoubleToAPInt(double(Float), width);
1803 }
1804
1805 /// \brief Arithmetic right-shift function.
1806 ///
1807 /// Arithmetic right-shift the APInt by shiftAmt.
ashr(const APInt & LHS,unsigned shiftAmt)1808 inline APInt ashr(const APInt &LHS, unsigned shiftAmt) {
1809 return LHS.ashr(shiftAmt);
1810 }
1811
1812 /// \brief Logical right-shift function.
1813 ///
1814 /// Logical right-shift the APInt by shiftAmt.
lshr(const APInt & LHS,unsigned shiftAmt)1815 inline APInt lshr(const APInt &LHS, unsigned shiftAmt) {
1816 return LHS.lshr(shiftAmt);
1817 }
1818
1819 /// \brief Left-shift function.
1820 ///
1821 /// Left-shift the APInt by shiftAmt.
shl(const APInt & LHS,unsigned shiftAmt)1822 inline APInt shl(const APInt &LHS, unsigned shiftAmt) {
1823 return LHS.shl(shiftAmt);
1824 }
1825
1826 /// \brief Signed division function for APInt.
1827 ///
1828 /// Signed divide APInt LHS by APInt RHS.
sdiv(const APInt & LHS,const APInt & RHS)1829 inline APInt sdiv(const APInt &LHS, const APInt &RHS) { return LHS.sdiv(RHS); }
1830
1831 /// \brief Unsigned division function for APInt.
1832 ///
1833 /// Unsigned divide APInt LHS by APInt RHS.
udiv(const APInt & LHS,const APInt & RHS)1834 inline APInt udiv(const APInt &LHS, const APInt &RHS) { return LHS.udiv(RHS); }
1835
1836 /// \brief Function for signed remainder operation.
1837 ///
1838 /// Signed remainder operation on APInt.
srem(const APInt & LHS,const APInt & RHS)1839 inline APInt srem(const APInt &LHS, const APInt &RHS) { return LHS.srem(RHS); }
1840
1841 /// \brief Function for unsigned remainder operation.
1842 ///
1843 /// Unsigned remainder operation on APInt.
urem(const APInt & LHS,const APInt & RHS)1844 inline APInt urem(const APInt &LHS, const APInt &RHS) { return LHS.urem(RHS); }
1845
1846 /// \brief Function for multiplication operation.
1847 ///
1848 /// Performs multiplication on APInt values.
mul(const APInt & LHS,const APInt & RHS)1849 inline APInt mul(const APInt &LHS, const APInt &RHS) { return LHS * RHS; }
1850
1851 /// \brief Function for addition operation.
1852 ///
1853 /// Performs addition on APInt values.
add(const APInt & LHS,const APInt & RHS)1854 inline APInt add(const APInt &LHS, const APInt &RHS) { return LHS + RHS; }
1855
1856 /// \brief Function for subtraction operation.
1857 ///
1858 /// Performs subtraction on APInt values.
sub(const APInt & LHS,const APInt & RHS)1859 inline APInt sub(const APInt &LHS, const APInt &RHS) { return LHS - RHS; }
1860
1861 /// \brief Bitwise AND function for APInt.
1862 ///
1863 /// Performs bitwise AND operation on APInt LHS and
1864 /// APInt RHS.
And(const APInt & LHS,const APInt & RHS)1865 inline APInt And(const APInt &LHS, const APInt &RHS) { return LHS & RHS; }
1866
1867 /// \brief Bitwise OR function for APInt.
1868 ///
1869 /// Performs bitwise OR operation on APInt LHS and APInt RHS.
Or(const APInt & LHS,const APInt & RHS)1870 inline APInt Or(const APInt &LHS, const APInt &RHS) { return LHS | RHS; }
1871
1872 /// \brief Bitwise XOR function for APInt.
1873 ///
1874 /// Performs bitwise XOR operation on APInt.
Xor(const APInt & LHS,const APInt & RHS)1875 inline APInt Xor(const APInt &LHS, const APInt &RHS) { return LHS ^ RHS; }
1876
1877 /// \brief Bitwise complement function.
1878 ///
1879 /// Performs a bitwise complement operation on APInt.
Not(const APInt & APIVal)1880 inline APInt Not(const APInt &APIVal) { return ~APIVal; }
1881
1882 } // End of APIntOps namespace
1883
1884 // See friend declaration above. This additional declaration is required in
1885 // order to compile LLVM with IBM xlC compiler.
1886 hash_code hash_value(const APInt &Arg);
1887 } // End of llvm namespace
1888
1889 #endif
1890