• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// \file
11 /// \brief This file implements a class to represent arbitrary precision
12 /// integral constant values and operations on them.
13 ///
14 //===----------------------------------------------------------------------===//
15 
16 #ifndef LLVM_ADT_APINT_H
17 #define LLVM_ADT_APINT_H
18 
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/Support/Compiler.h"
21 #include "llvm/Support/MathExtras.h"
22 #include <cassert>
23 #include <climits>
24 #include <cstring>
25 #include <string>
26 
27 namespace llvm {
28 class Deserializer;
29 class FoldingSetNodeID;
30 class Serializer;
31 class StringRef;
32 class hash_code;
33 class raw_ostream;
34 
35 template <typename T> class SmallVectorImpl;
36 
37 // An unsigned host type used as a single part of a multi-part
38 // bignum.
39 typedef uint64_t integerPart;
40 
41 const unsigned int host_char_bit = 8;
42 const unsigned int integerPartWidth =
43     host_char_bit * static_cast<unsigned int>(sizeof(integerPart));
44 
45 //===----------------------------------------------------------------------===//
46 //                              APInt Class
47 //===----------------------------------------------------------------------===//
48 
49 /// \brief Class for arbitrary precision integers.
50 ///
51 /// APInt is a functional replacement for common case unsigned integer type like
52 /// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width
53 /// integer sizes and large integer value types such as 3-bits, 15-bits, or more
54 /// than 64-bits of precision. APInt provides a variety of arithmetic operators
55 /// and methods to manipulate integer values of any bit-width. It supports both
56 /// the typical integer arithmetic and comparison operations as well as bitwise
57 /// manipulation.
58 ///
59 /// The class has several invariants worth noting:
60 ///   * All bit, byte, and word positions are zero-based.
61 ///   * Once the bit width is set, it doesn't change except by the Truncate,
62 ///     SignExtend, or ZeroExtend operations.
63 ///   * All binary operators must be on APInt instances of the same bit width.
64 ///     Attempting to use these operators on instances with different bit
65 ///     widths will yield an assertion.
66 ///   * The value is stored canonically as an unsigned value. For operations
67 ///     where it makes a difference, there are both signed and unsigned variants
68 ///     of the operation. For example, sdiv and udiv. However, because the bit
69 ///     widths must be the same, operations such as Mul and Add produce the same
70 ///     results regardless of whether the values are interpreted as signed or
71 ///     not.
72 ///   * In general, the class tries to follow the style of computation that LLVM
73 ///     uses in its IR. This simplifies its use for LLVM.
74 ///
75 class APInt {
76   unsigned BitWidth; ///< The number of bits in this APInt.
77 
78   /// This union is used to store the integer value. When the
79   /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal.
80   union {
81     uint64_t VAL;   ///< Used to store the <= 64 bits integer value.
82     uint64_t *pVal; ///< Used to store the >64 bits integer value.
83   };
84 
85   /// This enum is used to hold the constants we needed for APInt.
86   enum {
87     /// Bits in a word
88     APINT_BITS_PER_WORD =
89         static_cast<unsigned int>(sizeof(uint64_t)) * CHAR_BIT,
90     /// Byte size of a word
91     APINT_WORD_SIZE = static_cast<unsigned int>(sizeof(uint64_t))
92   };
93 
94   /// \brief Fast internal constructor
95   ///
96   /// This constructor is used only internally for speed of construction of
97   /// temporaries. It is unsafe for general use so it is not public.
APInt(uint64_t * val,unsigned bits)98   APInt(uint64_t *val, unsigned bits) : BitWidth(bits), pVal(val) {}
99 
100   /// \brief Determine if this APInt just has one word to store value.
101   ///
102   /// \returns true if the number of bits <= 64, false otherwise.
isSingleWord()103   bool isSingleWord() const { return BitWidth <= APINT_BITS_PER_WORD; }
104 
105   /// \brief Determine which word a bit is in.
106   ///
107   /// \returns the word position for the specified bit position.
whichWord(unsigned bitPosition)108   static unsigned whichWord(unsigned bitPosition) {
109     return bitPosition / APINT_BITS_PER_WORD;
110   }
111 
112   /// \brief Determine which bit in a word a bit is in.
113   ///
114   /// \returns the bit position in a word for the specified bit position
115   /// in the APInt.
whichBit(unsigned bitPosition)116   static unsigned whichBit(unsigned bitPosition) {
117     return bitPosition % APINT_BITS_PER_WORD;
118   }
119 
120   /// \brief Get a single bit mask.
121   ///
122   /// \returns a uint64_t with only bit at "whichBit(bitPosition)" set
123   /// This method generates and returns a uint64_t (word) mask for a single
124   /// bit at a specific bit position. This is used to mask the bit in the
125   /// corresponding word.
maskBit(unsigned bitPosition)126   static uint64_t maskBit(unsigned bitPosition) {
127     return 1ULL << whichBit(bitPosition);
128   }
129 
130   /// \brief Clear unused high order bits
131   ///
132   /// This method is used internally to clear the to "N" bits in the high order
133   /// word that are not used by the APInt. This is needed after the most
134   /// significant word is assigned a value to ensure that those bits are
135   /// zero'd out.
clearUnusedBits()136   APInt &clearUnusedBits() {
137     // Compute how many bits are used in the final word
138     unsigned wordBits = BitWidth % APINT_BITS_PER_WORD;
139     if (wordBits == 0)
140       // If all bits are used, we want to leave the value alone. This also
141       // avoids the undefined behavior of >> when the shift is the same size as
142       // the word size (64).
143       return *this;
144 
145     // Mask out the high bits.
146     uint64_t mask = ~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - wordBits);
147     if (isSingleWord())
148       VAL &= mask;
149     else
150       pVal[getNumWords() - 1] &= mask;
151     return *this;
152   }
153 
154   /// \brief Get the word corresponding to a bit position
155   /// \returns the corresponding word for the specified bit position.
getWord(unsigned bitPosition)156   uint64_t getWord(unsigned bitPosition) const {
157     return isSingleWord() ? VAL : pVal[whichWord(bitPosition)];
158   }
159 
160   /// \brief Convert a char array into an APInt
161   ///
162   /// \param radix 2, 8, 10, 16, or 36
163   /// Converts a string into a number.  The string must be non-empty
164   /// and well-formed as a number of the given base. The bit-width
165   /// must be sufficient to hold the result.
166   ///
167   /// This is used by the constructors that take string arguments.
168   ///
169   /// StringRef::getAsInteger is superficially similar but (1) does
170   /// not assume that the string is well-formed and (2) grows the
171   /// result to hold the input.
172   void fromString(unsigned numBits, StringRef str, uint8_t radix);
173 
174   /// \brief An internal division function for dividing APInts.
175   ///
176   /// This is used by the toString method to divide by the radix. It simply
177   /// provides a more convenient form of divide for internal use since KnuthDiv
178   /// has specific constraints on its inputs. If those constraints are not met
179   /// then it provides a simpler form of divide.
180   static void divide(const APInt LHS, unsigned lhsWords, const APInt &RHS,
181                      unsigned rhsWords, APInt *Quotient, APInt *Remainder);
182 
183   /// out-of-line slow case for inline constructor
184   void initSlowCase(unsigned numBits, uint64_t val, bool isSigned);
185 
186   /// shared code between two array constructors
187   void initFromArray(ArrayRef<uint64_t> array);
188 
189   /// out-of-line slow case for inline copy constructor
190   void initSlowCase(const APInt &that);
191 
192   /// out-of-line slow case for shl
193   APInt shlSlowCase(unsigned shiftAmt) const;
194 
195   /// out-of-line slow case for operator&
196   APInt AndSlowCase(const APInt &RHS) const;
197 
198   /// out-of-line slow case for operator|
199   APInt OrSlowCase(const APInt &RHS) const;
200 
201   /// out-of-line slow case for operator^
202   APInt XorSlowCase(const APInt &RHS) const;
203 
204   /// out-of-line slow case for operator=
205   APInt &AssignSlowCase(const APInt &RHS);
206 
207   /// out-of-line slow case for operator==
208   bool EqualSlowCase(const APInt &RHS) const;
209 
210   /// out-of-line slow case for operator==
211   bool EqualSlowCase(uint64_t Val) const;
212 
213   /// out-of-line slow case for countLeadingZeros
214   unsigned countLeadingZerosSlowCase() const;
215 
216   /// out-of-line slow case for countTrailingOnes
217   unsigned countTrailingOnesSlowCase() const;
218 
219   /// out-of-line slow case for countPopulation
220   unsigned countPopulationSlowCase() const;
221 
222 public:
223   /// \name Constructors
224   /// @{
225 
226   /// \brief Create a new APInt of numBits width, initialized as val.
227   ///
228   /// If isSigned is true then val is treated as if it were a signed value
229   /// (i.e. as an int64_t) and the appropriate sign extension to the bit width
230   /// will be done. Otherwise, no sign extension occurs (high order bits beyond
231   /// the range of val are zero filled).
232   ///
233   /// \param numBits the bit width of the constructed APInt
234   /// \param val the initial value of the APInt
235   /// \param isSigned how to treat signedness of val
236   APInt(unsigned numBits, uint64_t val, bool isSigned = false)
BitWidth(numBits)237       : BitWidth(numBits), VAL(0) {
238     assert(BitWidth && "bitwidth too small");
239     if (isSingleWord())
240       VAL = val;
241     else
242       initSlowCase(numBits, val, isSigned);
243     clearUnusedBits();
244   }
245 
246   /// \brief Construct an APInt of numBits width, initialized as bigVal[].
247   ///
248   /// Note that bigVal.size() can be smaller or larger than the corresponding
249   /// bit width but any extraneous bits will be dropped.
250   ///
251   /// \param numBits the bit width of the constructed APInt
252   /// \param bigVal a sequence of words to form the initial value of the APInt
253   APInt(unsigned numBits, ArrayRef<uint64_t> bigVal);
254 
255   /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but
256   /// deprecated because this constructor is prone to ambiguity with the
257   /// APInt(unsigned, uint64_t, bool) constructor.
258   ///
259   /// If this overload is ever deleted, care should be taken to prevent calls
260   /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool)
261   /// constructor.
262   APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]);
263 
264   /// \brief Construct an APInt from a string representation.
265   ///
266   /// This constructor interprets the string \p str in the given radix. The
267   /// interpretation stops when the first character that is not suitable for the
268   /// radix is encountered, or the end of the string. Acceptable radix values
269   /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the
270   /// string to require more bits than numBits.
271   ///
272   /// \param numBits the bit width of the constructed APInt
273   /// \param str the string to be interpreted
274   /// \param radix the radix to use for the conversion
275   APInt(unsigned numBits, StringRef str, uint8_t radix);
276 
277   /// Simply makes *this a copy of that.
278   /// @brief Copy Constructor.
APInt(const APInt & that)279   APInt(const APInt &that) : BitWidth(that.BitWidth), VAL(0) {
280     assert(BitWidth && "bitwidth too small");
281     if (isSingleWord())
282       VAL = that.VAL;
283     else
284       initSlowCase(that);
285   }
286 
287   /// \brief Move Constructor.
APInt(APInt && that)288   APInt(APInt &&that) : BitWidth(that.BitWidth), VAL(that.VAL) {
289     that.BitWidth = 0;
290   }
291 
292   /// \brief Destructor.
~APInt()293   ~APInt() {
294     if (needsCleanup())
295       delete[] pVal;
296   }
297 
298   /// \brief Default constructor that creates an uninitialized APInt.
299   ///
300   /// This is useful for object deserialization (pair this with the static
301   ///  method Read).
APInt()302   explicit APInt() : BitWidth(1) {}
303 
304   /// \brief Returns whether this instance allocated memory.
needsCleanup()305   bool needsCleanup() const { return !isSingleWord(); }
306 
307   /// Used to insert APInt objects, or objects that contain APInt objects, into
308   ///  FoldingSets.
309   void Profile(FoldingSetNodeID &id) const;
310 
311   /// @}
312   /// \name Value Tests
313   /// @{
314 
315   /// \brief Determine sign of this APInt.
316   ///
317   /// This tests the high bit of this APInt to determine if it is set.
318   ///
319   /// \returns true if this APInt is negative, false otherwise
isNegative()320   bool isNegative() const { return (*this)[BitWidth - 1]; }
321 
322   /// \brief Determine if this APInt Value is non-negative (>= 0)
323   ///
324   /// This tests the high bit of the APInt to determine if it is unset.
isNonNegative()325   bool isNonNegative() const { return !isNegative(); }
326 
327   /// \brief Determine if this APInt Value is positive.
328   ///
329   /// This tests if the value of this APInt is positive (> 0). Note
330   /// that 0 is not a positive value.
331   ///
332   /// \returns true if this APInt is positive.
isStrictlyPositive()333   bool isStrictlyPositive() const { return isNonNegative() && !!*this; }
334 
335   /// \brief Determine if all bits are set
336   ///
337   /// This checks to see if the value has all bits of the APInt are set or not.
isAllOnesValue()338   bool isAllOnesValue() const {
339     if (isSingleWord())
340       return VAL == ~integerPart(0) >> (APINT_BITS_PER_WORD - BitWidth);
341     return countPopulationSlowCase() == BitWidth;
342   }
343 
344   /// \brief Determine if this is the largest unsigned value.
345   ///
346   /// This checks to see if the value of this APInt is the maximum unsigned
347   /// value for the APInt's bit width.
isMaxValue()348   bool isMaxValue() const { return isAllOnesValue(); }
349 
350   /// \brief Determine if this is the largest signed value.
351   ///
352   /// This checks to see if the value of this APInt is the maximum signed
353   /// value for the APInt's bit width.
isMaxSignedValue()354   bool isMaxSignedValue() const {
355     return BitWidth == 1 ? VAL == 0
356                          : !isNegative() && countPopulation() == BitWidth - 1;
357   }
358 
359   /// \brief Determine if this is the smallest unsigned value.
360   ///
361   /// This checks to see if the value of this APInt is the minimum unsigned
362   /// value for the APInt's bit width.
isMinValue()363   bool isMinValue() const { return !*this; }
364 
365   /// \brief Determine if this is the smallest signed value.
366   ///
367   /// This checks to see if the value of this APInt is the minimum signed
368   /// value for the APInt's bit width.
isMinSignedValue()369   bool isMinSignedValue() const {
370     return BitWidth == 1 ? VAL == 1 : isNegative() && isPowerOf2();
371   }
372 
373   /// \brief Check if this APInt has an N-bits unsigned integer value.
isIntN(unsigned N)374   bool isIntN(unsigned N) const {
375     assert(N && "N == 0 ???");
376     return getActiveBits() <= N;
377   }
378 
379   /// \brief Check if this APInt has an N-bits signed integer value.
isSignedIntN(unsigned N)380   bool isSignedIntN(unsigned N) const {
381     assert(N && "N == 0 ???");
382     return getMinSignedBits() <= N;
383   }
384 
385   /// \brief Check if this APInt's value is a power of two greater than zero.
386   ///
387   /// \returns true if the argument APInt value is a power of two > 0.
isPowerOf2()388   bool isPowerOf2() const {
389     if (isSingleWord())
390       return isPowerOf2_64(VAL);
391     return countPopulationSlowCase() == 1;
392   }
393 
394   /// \brief Check if the APInt's value is returned by getSignBit.
395   ///
396   /// \returns true if this is the value returned by getSignBit.
isSignBit()397   bool isSignBit() const { return isMinSignedValue(); }
398 
399   /// \brief Convert APInt to a boolean value.
400   ///
401   /// This converts the APInt to a boolean value as a test against zero.
getBoolValue()402   bool getBoolValue() const { return !!*this; }
403 
404   /// If this value is smaller than the specified limit, return it, otherwise
405   /// return the limit value.  This causes the value to saturate to the limit.
406   uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const {
407     return (getActiveBits() > 64 || getZExtValue() > Limit) ? Limit
408                                                             : getZExtValue();
409   }
410 
411   /// @}
412   /// \name Value Generators
413   /// @{
414 
415   /// \brief Gets maximum unsigned value of APInt for specific bit width.
getMaxValue(unsigned numBits)416   static APInt getMaxValue(unsigned numBits) {
417     return getAllOnesValue(numBits);
418   }
419 
420   /// \brief Gets maximum signed value of APInt for a specific bit width.
getSignedMaxValue(unsigned numBits)421   static APInt getSignedMaxValue(unsigned numBits) {
422     APInt API = getAllOnesValue(numBits);
423     API.clearBit(numBits - 1);
424     return API;
425   }
426 
427   /// \brief Gets minimum unsigned value of APInt for a specific bit width.
getMinValue(unsigned numBits)428   static APInt getMinValue(unsigned numBits) { return APInt(numBits, 0); }
429 
430   /// \brief Gets minimum signed value of APInt for a specific bit width.
getSignedMinValue(unsigned numBits)431   static APInt getSignedMinValue(unsigned numBits) {
432     APInt API(numBits, 0);
433     API.setBit(numBits - 1);
434     return API;
435   }
436 
437   /// \brief Get the SignBit for a specific bit width.
438   ///
439   /// This is just a wrapper function of getSignedMinValue(), and it helps code
440   /// readability when we want to get a SignBit.
getSignBit(unsigned BitWidth)441   static APInt getSignBit(unsigned BitWidth) {
442     return getSignedMinValue(BitWidth);
443   }
444 
445   /// \brief Get the all-ones value.
446   ///
447   /// \returns the all-ones value for an APInt of the specified bit-width.
getAllOnesValue(unsigned numBits)448   static APInt getAllOnesValue(unsigned numBits) {
449     return APInt(numBits, UINT64_MAX, true);
450   }
451 
452   /// \brief Get the '0' value.
453   ///
454   /// \returns the '0' value for an APInt of the specified bit-width.
getNullValue(unsigned numBits)455   static APInt getNullValue(unsigned numBits) { return APInt(numBits, 0); }
456 
457   /// \brief Compute an APInt containing numBits highbits from this APInt.
458   ///
459   /// Get an APInt with the same BitWidth as this APInt, just zero mask
460   /// the low bits and right shift to the least significant bit.
461   ///
462   /// \returns the high "numBits" bits of this APInt.
463   APInt getHiBits(unsigned numBits) const;
464 
465   /// \brief Compute an APInt containing numBits lowbits from this APInt.
466   ///
467   /// Get an APInt with the same BitWidth as this APInt, just zero mask
468   /// the high bits.
469   ///
470   /// \returns the low "numBits" bits of this APInt.
471   APInt getLoBits(unsigned numBits) const;
472 
473   /// \brief Return an APInt with exactly one bit set in the result.
getOneBitSet(unsigned numBits,unsigned BitNo)474   static APInt getOneBitSet(unsigned numBits, unsigned BitNo) {
475     APInt Res(numBits, 0);
476     Res.setBit(BitNo);
477     return Res;
478   }
479 
480   /// \brief Get a value with a block of bits set.
481   ///
482   /// Constructs an APInt value that has a contiguous range of bits set. The
483   /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other
484   /// bits will be zero. For example, with parameters(32, 0, 16) you would get
485   /// 0x0000FFFF. If hiBit is less than loBit then the set bits "wrap". For
486   /// example, with parameters (32, 28, 4), you would get 0xF000000F.
487   ///
488   /// \param numBits the intended bit width of the result
489   /// \param loBit the index of the lowest bit set.
490   /// \param hiBit the index of the highest bit set.
491   ///
492   /// \returns An APInt value with the requested bits set.
getBitsSet(unsigned numBits,unsigned loBit,unsigned hiBit)493   static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) {
494     assert(hiBit <= numBits && "hiBit out of range");
495     assert(loBit < numBits && "loBit out of range");
496     if (hiBit < loBit)
497       return getLowBitsSet(numBits, hiBit) |
498              getHighBitsSet(numBits, numBits - loBit);
499     return getLowBitsSet(numBits, hiBit - loBit).shl(loBit);
500   }
501 
502   /// \brief Get a value with high bits set
503   ///
504   /// Constructs an APInt value that has the top hiBitsSet bits set.
505   ///
506   /// \param numBits the bitwidth of the result
507   /// \param hiBitsSet the number of high-order bits set in the result.
getHighBitsSet(unsigned numBits,unsigned hiBitsSet)508   static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) {
509     assert(hiBitsSet <= numBits && "Too many bits to set!");
510     // Handle a degenerate case, to avoid shifting by word size
511     if (hiBitsSet == 0)
512       return APInt(numBits, 0);
513     unsigned shiftAmt = numBits - hiBitsSet;
514     // For small values, return quickly
515     if (numBits <= APINT_BITS_PER_WORD)
516       return APInt(numBits, ~0ULL << shiftAmt);
517     return getAllOnesValue(numBits).shl(shiftAmt);
518   }
519 
520   /// \brief Get a value with low bits set
521   ///
522   /// Constructs an APInt value that has the bottom loBitsSet bits set.
523   ///
524   /// \param numBits the bitwidth of the result
525   /// \param loBitsSet the number of low-order bits set in the result.
getLowBitsSet(unsigned numBits,unsigned loBitsSet)526   static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) {
527     assert(loBitsSet <= numBits && "Too many bits to set!");
528     // Handle a degenerate case, to avoid shifting by word size
529     if (loBitsSet == 0)
530       return APInt(numBits, 0);
531     if (loBitsSet == APINT_BITS_PER_WORD)
532       return APInt(numBits, UINT64_MAX);
533     // For small values, return quickly.
534     if (loBitsSet <= APINT_BITS_PER_WORD)
535       return APInt(numBits, UINT64_MAX >> (APINT_BITS_PER_WORD - loBitsSet));
536     return getAllOnesValue(numBits).lshr(numBits - loBitsSet);
537   }
538 
539   /// \brief Return a value containing V broadcasted over NewLen bits.
getSplat(unsigned NewLen,const APInt & V)540   static APInt getSplat(unsigned NewLen, const APInt &V) {
541     assert(NewLen >= V.getBitWidth() && "Can't splat to smaller bit width!");
542 
543     APInt Val = V.zextOrSelf(NewLen);
544     for (unsigned I = V.getBitWidth(); I < NewLen; I <<= 1)
545       Val |= Val << I;
546 
547     return Val;
548   }
549 
550   /// \brief Determine if two APInts have the same value, after zero-extending
551   /// one of them (if needed!) to ensure that the bit-widths match.
isSameValue(const APInt & I1,const APInt & I2)552   static bool isSameValue(const APInt &I1, const APInt &I2) {
553     if (I1.getBitWidth() == I2.getBitWidth())
554       return I1 == I2;
555 
556     if (I1.getBitWidth() > I2.getBitWidth())
557       return I1 == I2.zext(I1.getBitWidth());
558 
559     return I1.zext(I2.getBitWidth()) == I2;
560   }
561 
562   /// \brief Overload to compute a hash_code for an APInt value.
563   friend hash_code hash_value(const APInt &Arg);
564 
565   /// This function returns a pointer to the internal storage of the APInt.
566   /// This is useful for writing out the APInt in binary form without any
567   /// conversions.
getRawData()568   const uint64_t *getRawData() const {
569     if (isSingleWord())
570       return &VAL;
571     return &pVal[0];
572   }
573 
574   /// @}
575   /// \name Unary Operators
576   /// @{
577 
578   /// \brief Postfix increment operator.
579   ///
580   /// \returns a new APInt value representing *this incremented by one
581   const APInt operator++(int) {
582     APInt API(*this);
583     ++(*this);
584     return API;
585   }
586 
587   /// \brief Prefix increment operator.
588   ///
589   /// \returns *this incremented by one
590   APInt &operator++();
591 
592   /// \brief Postfix decrement operator.
593   ///
594   /// \returns a new APInt representing *this decremented by one.
595   const APInt operator--(int) {
596     APInt API(*this);
597     --(*this);
598     return API;
599   }
600 
601   /// \brief Prefix decrement operator.
602   ///
603   /// \returns *this decremented by one.
604   APInt &operator--();
605 
606   /// \brief Unary bitwise complement operator.
607   ///
608   /// Performs a bitwise complement operation on this APInt.
609   ///
610   /// \returns an APInt that is the bitwise complement of *this
611   APInt operator~() const {
612     APInt Result(*this);
613     Result.flipAllBits();
614     return Result;
615   }
616 
617   /// \brief Unary negation operator
618   ///
619   /// Negates *this using two's complement logic.
620   ///
621   /// \returns An APInt value representing the negation of *this.
622   APInt operator-() const { return APInt(BitWidth, 0) - (*this); }
623 
624   /// \brief Logical negation operator.
625   ///
626   /// Performs logical negation operation on this APInt.
627   ///
628   /// \returns true if *this is zero, false otherwise.
629   bool operator!() const {
630     if (isSingleWord())
631       return !VAL;
632 
633     for (unsigned i = 0; i != getNumWords(); ++i)
634       if (pVal[i])
635         return false;
636     return true;
637   }
638 
639   /// @}
640   /// \name Assignment Operators
641   /// @{
642 
643   /// \brief Copy assignment operator.
644   ///
645   /// \returns *this after assignment of RHS.
646   APInt &operator=(const APInt &RHS) {
647     // If the bitwidths are the same, we can avoid mucking with memory
648     if (isSingleWord() && RHS.isSingleWord()) {
649       VAL = RHS.VAL;
650       BitWidth = RHS.BitWidth;
651       return clearUnusedBits();
652     }
653 
654     return AssignSlowCase(RHS);
655   }
656 
657   /// @brief Move assignment operator.
658   APInt &operator=(APInt &&that) {
659     if (!isSingleWord())
660       delete[] pVal;
661 
662     BitWidth = that.BitWidth;
663     VAL = that.VAL;
664 
665     that.BitWidth = 0;
666 
667     return *this;
668   }
669 
670   /// \brief Assignment operator.
671   ///
672   /// The RHS value is assigned to *this. If the significant bits in RHS exceed
673   /// the bit width, the excess bits are truncated. If the bit width is larger
674   /// than 64, the value is zero filled in the unspecified high order bits.
675   ///
676   /// \returns *this after assignment of RHS value.
677   APInt &operator=(uint64_t RHS);
678 
679   /// \brief Bitwise AND assignment operator.
680   ///
681   /// Performs a bitwise AND operation on this APInt and RHS. The result is
682   /// assigned to *this.
683   ///
684   /// \returns *this after ANDing with RHS.
685   APInt &operator&=(const APInt &RHS);
686 
687   /// \brief Bitwise OR assignment operator.
688   ///
689   /// Performs a bitwise OR operation on this APInt and RHS. The result is
690   /// assigned *this;
691   ///
692   /// \returns *this after ORing with RHS.
693   APInt &operator|=(const APInt &RHS);
694 
695   /// \brief Bitwise OR assignment operator.
696   ///
697   /// Performs a bitwise OR operation on this APInt and RHS. RHS is
698   /// logically zero-extended or truncated to match the bit-width of
699   /// the LHS.
700   APInt &operator|=(uint64_t RHS) {
701     if (isSingleWord()) {
702       VAL |= RHS;
703       clearUnusedBits();
704     } else {
705       pVal[0] |= RHS;
706     }
707     return *this;
708   }
709 
710   /// \brief Bitwise XOR assignment operator.
711   ///
712   /// Performs a bitwise XOR operation on this APInt and RHS. The result is
713   /// assigned to *this.
714   ///
715   /// \returns *this after XORing with RHS.
716   APInt &operator^=(const APInt &RHS);
717 
718   /// \brief Multiplication assignment operator.
719   ///
720   /// Multiplies this APInt by RHS and assigns the result to *this.
721   ///
722   /// \returns *this
723   APInt &operator*=(const APInt &RHS);
724 
725   /// \brief Addition assignment operator.
726   ///
727   /// Adds RHS to *this and assigns the result to *this.
728   ///
729   /// \returns *this
730   APInt &operator+=(const APInt &RHS);
731 
732   /// \brief Subtraction assignment operator.
733   ///
734   /// Subtracts RHS from *this and assigns the result to *this.
735   ///
736   /// \returns *this
737   APInt &operator-=(const APInt &RHS);
738 
739   /// \brief Left-shift assignment function.
740   ///
741   /// Shifts *this left by shiftAmt and assigns the result to *this.
742   ///
743   /// \returns *this after shifting left by shiftAmt
744   APInt &operator<<=(unsigned shiftAmt) {
745     *this = shl(shiftAmt);
746     return *this;
747   }
748 
749   /// @}
750   /// \name Binary Operators
751   /// @{
752 
753   /// \brief Bitwise AND operator.
754   ///
755   /// Performs a bitwise AND operation on *this and RHS.
756   ///
757   /// \returns An APInt value representing the bitwise AND of *this and RHS.
758   APInt operator&(const APInt &RHS) const {
759     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
760     if (isSingleWord())
761       return APInt(getBitWidth(), VAL & RHS.VAL);
762     return AndSlowCase(RHS);
763   }
And(const APInt & RHS)764   APInt LLVM_ATTRIBUTE_UNUSED_RESULT And(const APInt &RHS) const {
765     return this->operator&(RHS);
766   }
767 
768   /// \brief Bitwise OR operator.
769   ///
770   /// Performs a bitwise OR operation on *this and RHS.
771   ///
772   /// \returns An APInt value representing the bitwise OR of *this and RHS.
773   APInt operator|(const APInt &RHS) const {
774     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
775     if (isSingleWord())
776       return APInt(getBitWidth(), VAL | RHS.VAL);
777     return OrSlowCase(RHS);
778   }
779 
780   /// \brief Bitwise OR function.
781   ///
782   /// Performs a bitwise or on *this and RHS. This is implemented bny simply
783   /// calling operator|.
784   ///
785   /// \returns An APInt value representing the bitwise OR of *this and RHS.
Or(const APInt & RHS)786   APInt LLVM_ATTRIBUTE_UNUSED_RESULT Or(const APInt &RHS) const {
787     return this->operator|(RHS);
788   }
789 
790   /// \brief Bitwise XOR operator.
791   ///
792   /// Performs a bitwise XOR operation on *this and RHS.
793   ///
794   /// \returns An APInt value representing the bitwise XOR of *this and RHS.
795   APInt operator^(const APInt &RHS) const {
796     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
797     if (isSingleWord())
798       return APInt(BitWidth, VAL ^ RHS.VAL);
799     return XorSlowCase(RHS);
800   }
801 
802   /// \brief Bitwise XOR function.
803   ///
804   /// Performs a bitwise XOR operation on *this and RHS. This is implemented
805   /// through the usage of operator^.
806   ///
807   /// \returns An APInt value representing the bitwise XOR of *this and RHS.
Xor(const APInt & RHS)808   APInt LLVM_ATTRIBUTE_UNUSED_RESULT Xor(const APInt &RHS) const {
809     return this->operator^(RHS);
810   }
811 
812   /// \brief Multiplication operator.
813   ///
814   /// Multiplies this APInt by RHS and returns the result.
815   APInt operator*(const APInt &RHS) const;
816 
817   /// \brief Addition operator.
818   ///
819   /// Adds RHS to this APInt and returns the result.
820   APInt operator+(const APInt &RHS) const;
821   APInt operator+(uint64_t RHS) const { return (*this) + APInt(BitWidth, RHS); }
822 
823   /// \brief Subtraction operator.
824   ///
825   /// Subtracts RHS from this APInt and returns the result.
826   APInt operator-(const APInt &RHS) const;
827   APInt operator-(uint64_t RHS) const { return (*this) - APInt(BitWidth, RHS); }
828 
829   /// \brief Left logical shift operator.
830   ///
831   /// Shifts this APInt left by \p Bits and returns the result.
832   APInt operator<<(unsigned Bits) const { return shl(Bits); }
833 
834   /// \brief Left logical shift operator.
835   ///
836   /// Shifts this APInt left by \p Bits and returns the result.
837   APInt operator<<(const APInt &Bits) const { return shl(Bits); }
838 
839   /// \brief Arithmetic right-shift function.
840   ///
841   /// Arithmetic right-shift this APInt by shiftAmt.
842   APInt LLVM_ATTRIBUTE_UNUSED_RESULT ashr(unsigned shiftAmt) const;
843 
844   /// \brief Logical right-shift function.
845   ///
846   /// Logical right-shift this APInt by shiftAmt.
847   APInt LLVM_ATTRIBUTE_UNUSED_RESULT lshr(unsigned shiftAmt) const;
848 
849   /// \brief Left-shift function.
850   ///
851   /// Left-shift this APInt by shiftAmt.
shl(unsigned shiftAmt)852   APInt LLVM_ATTRIBUTE_UNUSED_RESULT shl(unsigned shiftAmt) const {
853     assert(shiftAmt <= BitWidth && "Invalid shift amount");
854     if (isSingleWord()) {
855       if (shiftAmt >= BitWidth)
856         return APInt(BitWidth, 0); // avoid undefined shift results
857       return APInt(BitWidth, VAL << shiftAmt);
858     }
859     return shlSlowCase(shiftAmt);
860   }
861 
862   /// \brief Rotate left by rotateAmt.
863   APInt LLVM_ATTRIBUTE_UNUSED_RESULT rotl(unsigned rotateAmt) const;
864 
865   /// \brief Rotate right by rotateAmt.
866   APInt LLVM_ATTRIBUTE_UNUSED_RESULT rotr(unsigned rotateAmt) const;
867 
868   /// \brief Arithmetic right-shift function.
869   ///
870   /// Arithmetic right-shift this APInt by shiftAmt.
871   APInt LLVM_ATTRIBUTE_UNUSED_RESULT ashr(const APInt &shiftAmt) const;
872 
873   /// \brief Logical right-shift function.
874   ///
875   /// Logical right-shift this APInt by shiftAmt.
876   APInt LLVM_ATTRIBUTE_UNUSED_RESULT lshr(const APInt &shiftAmt) const;
877 
878   /// \brief Left-shift function.
879   ///
880   /// Left-shift this APInt by shiftAmt.
881   APInt LLVM_ATTRIBUTE_UNUSED_RESULT shl(const APInt &shiftAmt) const;
882 
883   /// \brief Rotate left by rotateAmt.
884   APInt LLVM_ATTRIBUTE_UNUSED_RESULT rotl(const APInt &rotateAmt) const;
885 
886   /// \brief Rotate right by rotateAmt.
887   APInt LLVM_ATTRIBUTE_UNUSED_RESULT rotr(const APInt &rotateAmt) const;
888 
889   /// \brief Unsigned division operation.
890   ///
891   /// Perform an unsigned divide operation on this APInt by RHS. Both this and
892   /// RHS are treated as unsigned quantities for purposes of this division.
893   ///
894   /// \returns a new APInt value containing the division result
895   APInt LLVM_ATTRIBUTE_UNUSED_RESULT udiv(const APInt &RHS) const;
896 
897   /// \brief Signed division function for APInt.
898   ///
899   /// Signed divide this APInt by APInt RHS.
900   APInt LLVM_ATTRIBUTE_UNUSED_RESULT sdiv(const APInt &RHS) const;
901 
902   /// \brief Unsigned remainder operation.
903   ///
904   /// Perform an unsigned remainder operation on this APInt with RHS being the
905   /// divisor. Both this and RHS are treated as unsigned quantities for purposes
906   /// of this operation. Note that this is a true remainder operation and not a
907   /// modulo operation because the sign follows the sign of the dividend which
908   /// is *this.
909   ///
910   /// \returns a new APInt value containing the remainder result
911   APInt LLVM_ATTRIBUTE_UNUSED_RESULT urem(const APInt &RHS) const;
912 
913   /// \brief Function for signed remainder operation.
914   ///
915   /// Signed remainder operation on APInt.
916   APInt LLVM_ATTRIBUTE_UNUSED_RESULT srem(const APInt &RHS) const;
917 
918   /// \brief Dual division/remainder interface.
919   ///
920   /// Sometimes it is convenient to divide two APInt values and obtain both the
921   /// quotient and remainder. This function does both operations in the same
922   /// computation making it a little more efficient. The pair of input arguments
923   /// may overlap with the pair of output arguments. It is safe to call
924   /// udivrem(X, Y, X, Y), for example.
925   static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
926                       APInt &Remainder);
927 
928   static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
929                       APInt &Remainder);
930 
931   // Operations that return overflow indicators.
932   APInt sadd_ov(const APInt &RHS, bool &Overflow) const;
933   APInt uadd_ov(const APInt &RHS, bool &Overflow) const;
934   APInt ssub_ov(const APInt &RHS, bool &Overflow) const;
935   APInt usub_ov(const APInt &RHS, bool &Overflow) const;
936   APInt sdiv_ov(const APInt &RHS, bool &Overflow) const;
937   APInt smul_ov(const APInt &RHS, bool &Overflow) const;
938   APInt umul_ov(const APInt &RHS, bool &Overflow) const;
939   APInt sshl_ov(unsigned Amt, bool &Overflow) const;
940 
941   /// \brief Array-indexing support.
942   ///
943   /// \returns the bit value at bitPosition
944   bool operator[](unsigned bitPosition) const {
945     assert(bitPosition < getBitWidth() && "Bit position out of bounds!");
946     return (maskBit(bitPosition) &
947             (isSingleWord() ? VAL : pVal[whichWord(bitPosition)])) !=
948            0;
949   }
950 
951   /// @}
952   /// \name Comparison Operators
953   /// @{
954 
955   /// \brief Equality operator.
956   ///
957   /// Compares this APInt with RHS for the validity of the equality
958   /// relationship.
959   bool operator==(const APInt &RHS) const {
960     assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths");
961     if (isSingleWord())
962       return VAL == RHS.VAL;
963     return EqualSlowCase(RHS);
964   }
965 
966   /// \brief Equality operator.
967   ///
968   /// Compares this APInt with a uint64_t for the validity of the equality
969   /// relationship.
970   ///
971   /// \returns true if *this == Val
972   bool operator==(uint64_t Val) const {
973     if (isSingleWord())
974       return VAL == Val;
975     return EqualSlowCase(Val);
976   }
977 
978   /// \brief Equality comparison.
979   ///
980   /// Compares this APInt with RHS for the validity of the equality
981   /// relationship.
982   ///
983   /// \returns true if *this == Val
eq(const APInt & RHS)984   bool eq(const APInt &RHS) const { return (*this) == RHS; }
985 
986   /// \brief Inequality operator.
987   ///
988   /// Compares this APInt with RHS for the validity of the inequality
989   /// relationship.
990   ///
991   /// \returns true if *this != Val
992   bool operator!=(const APInt &RHS) const { return !((*this) == RHS); }
993 
994   /// \brief Inequality operator.
995   ///
996   /// Compares this APInt with a uint64_t for the validity of the inequality
997   /// relationship.
998   ///
999   /// \returns true if *this != Val
1000   bool operator!=(uint64_t Val) const { return !((*this) == Val); }
1001 
1002   /// \brief Inequality comparison
1003   ///
1004   /// Compares this APInt with RHS for the validity of the inequality
1005   /// relationship.
1006   ///
1007   /// \returns true if *this != Val
ne(const APInt & RHS)1008   bool ne(const APInt &RHS) const { return !((*this) == RHS); }
1009 
1010   /// \brief Unsigned less than comparison
1011   ///
1012   /// Regards both *this and RHS as unsigned quantities and compares them for
1013   /// the validity of the less-than relationship.
1014   ///
1015   /// \returns true if *this < RHS when both are considered unsigned.
1016   bool ult(const APInt &RHS) const;
1017 
1018   /// \brief Unsigned less than comparison
1019   ///
1020   /// Regards both *this as an unsigned quantity and compares it with RHS for
1021   /// the validity of the less-than relationship.
1022   ///
1023   /// \returns true if *this < RHS when considered unsigned.
ult(uint64_t RHS)1024   bool ult(uint64_t RHS) const { return ult(APInt(getBitWidth(), RHS)); }
1025 
1026   /// \brief Signed less than comparison
1027   ///
1028   /// Regards both *this and RHS as signed quantities and compares them for
1029   /// validity of the less-than relationship.
1030   ///
1031   /// \returns true if *this < RHS when both are considered signed.
1032   bool slt(const APInt &RHS) const;
1033 
1034   /// \brief Signed less than comparison
1035   ///
1036   /// Regards both *this as a signed quantity and compares it with RHS for
1037   /// the validity of the less-than relationship.
1038   ///
1039   /// \returns true if *this < RHS when considered signed.
slt(uint64_t RHS)1040   bool slt(uint64_t RHS) const { return slt(APInt(getBitWidth(), RHS)); }
1041 
1042   /// \brief Unsigned less or equal comparison
1043   ///
1044   /// Regards both *this and RHS as unsigned quantities and compares them for
1045   /// validity of the less-or-equal relationship.
1046   ///
1047   /// \returns true if *this <= RHS when both are considered unsigned.
ule(const APInt & RHS)1048   bool ule(const APInt &RHS) const { return ult(RHS) || eq(RHS); }
1049 
1050   /// \brief Unsigned less or equal comparison
1051   ///
1052   /// Regards both *this as an unsigned quantity and compares it with RHS for
1053   /// the validity of the less-or-equal relationship.
1054   ///
1055   /// \returns true if *this <= RHS when considered unsigned.
ule(uint64_t RHS)1056   bool ule(uint64_t RHS) const { return ule(APInt(getBitWidth(), RHS)); }
1057 
1058   /// \brief Signed less or equal comparison
1059   ///
1060   /// Regards both *this and RHS as signed quantities and compares them for
1061   /// validity of the less-or-equal relationship.
1062   ///
1063   /// \returns true if *this <= RHS when both are considered signed.
sle(const APInt & RHS)1064   bool sle(const APInt &RHS) const { return slt(RHS) || eq(RHS); }
1065 
1066   /// \brief Signed less or equal comparison
1067   ///
1068   /// Regards both *this as a signed quantity and compares it with RHS for the
1069   /// validity of the less-or-equal relationship.
1070   ///
1071   /// \returns true if *this <= RHS when considered signed.
sle(uint64_t RHS)1072   bool sle(uint64_t RHS) const { return sle(APInt(getBitWidth(), RHS)); }
1073 
1074   /// \brief Unsigned greather than comparison
1075   ///
1076   /// Regards both *this and RHS as unsigned quantities and compares them for
1077   /// the validity of the greater-than relationship.
1078   ///
1079   /// \returns true if *this > RHS when both are considered unsigned.
ugt(const APInt & RHS)1080   bool ugt(const APInt &RHS) const { return !ult(RHS) && !eq(RHS); }
1081 
1082   /// \brief Unsigned greater than comparison
1083   ///
1084   /// Regards both *this as an unsigned quantity and compares it with RHS for
1085   /// the validity of the greater-than relationship.
1086   ///
1087   /// \returns true if *this > RHS when considered unsigned.
ugt(uint64_t RHS)1088   bool ugt(uint64_t RHS) const { return ugt(APInt(getBitWidth(), RHS)); }
1089 
1090   /// \brief Signed greather than comparison
1091   ///
1092   /// Regards both *this and RHS as signed quantities and compares them for the
1093   /// validity of the greater-than relationship.
1094   ///
1095   /// \returns true if *this > RHS when both are considered signed.
sgt(const APInt & RHS)1096   bool sgt(const APInt &RHS) const { return !slt(RHS) && !eq(RHS); }
1097 
1098   /// \brief Signed greater than comparison
1099   ///
1100   /// Regards both *this as a signed quantity and compares it with RHS for
1101   /// the validity of the greater-than relationship.
1102   ///
1103   /// \returns true if *this > RHS when considered signed.
sgt(uint64_t RHS)1104   bool sgt(uint64_t RHS) const { return sgt(APInt(getBitWidth(), RHS)); }
1105 
1106   /// \brief Unsigned greater or equal comparison
1107   ///
1108   /// Regards both *this and RHS as unsigned quantities and compares them for
1109   /// validity of the greater-or-equal relationship.
1110   ///
1111   /// \returns true if *this >= RHS when both are considered unsigned.
uge(const APInt & RHS)1112   bool uge(const APInt &RHS) const { return !ult(RHS); }
1113 
1114   /// \brief Unsigned greater or equal comparison
1115   ///
1116   /// Regards both *this as an unsigned quantity and compares it with RHS for
1117   /// the validity of the greater-or-equal relationship.
1118   ///
1119   /// \returns true if *this >= RHS when considered unsigned.
uge(uint64_t RHS)1120   bool uge(uint64_t RHS) const { return uge(APInt(getBitWidth(), RHS)); }
1121 
1122   /// \brief Signed greather or equal comparison
1123   ///
1124   /// Regards both *this and RHS as signed quantities and compares them for
1125   /// validity of the greater-or-equal relationship.
1126   ///
1127   /// \returns true if *this >= RHS when both are considered signed.
sge(const APInt & RHS)1128   bool sge(const APInt &RHS) const { return !slt(RHS); }
1129 
1130   /// \brief Signed greater or equal comparison
1131   ///
1132   /// Regards both *this as a signed quantity and compares it with RHS for
1133   /// the validity of the greater-or-equal relationship.
1134   ///
1135   /// \returns true if *this >= RHS when considered signed.
sge(uint64_t RHS)1136   bool sge(uint64_t RHS) const { return sge(APInt(getBitWidth(), RHS)); }
1137 
1138   /// This operation tests if there are any pairs of corresponding bits
1139   /// between this APInt and RHS that are both set.
intersects(const APInt & RHS)1140   bool intersects(const APInt &RHS) const { return (*this & RHS) != 0; }
1141 
1142   /// @}
1143   /// \name Resizing Operators
1144   /// @{
1145 
1146   /// \brief Truncate to new width.
1147   ///
1148   /// Truncate the APInt to a specified width. It is an error to specify a width
1149   /// that is greater than or equal to the current width.
1150   APInt LLVM_ATTRIBUTE_UNUSED_RESULT trunc(unsigned width) const;
1151 
1152   /// \brief Sign extend to a new width.
1153   ///
1154   /// This operation sign extends the APInt to a new width. If the high order
1155   /// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
1156   /// It is an error to specify a width that is less than or equal to the
1157   /// current width.
1158   APInt LLVM_ATTRIBUTE_UNUSED_RESULT sext(unsigned width) const;
1159 
1160   /// \brief Zero extend to a new width.
1161   ///
1162   /// This operation zero extends the APInt to a new width. The high order bits
1163   /// are filled with 0 bits.  It is an error to specify a width that is less
1164   /// than or equal to the current width.
1165   APInt LLVM_ATTRIBUTE_UNUSED_RESULT zext(unsigned width) const;
1166 
1167   /// \brief Sign extend or truncate to width
1168   ///
1169   /// Make this APInt have the bit width given by \p width. The value is sign
1170   /// extended, truncated, or left alone to make it that width.
1171   APInt LLVM_ATTRIBUTE_UNUSED_RESULT sextOrTrunc(unsigned width) const;
1172 
1173   /// \brief Zero extend or truncate to width
1174   ///
1175   /// Make this APInt have the bit width given by \p width. The value is zero
1176   /// extended, truncated, or left alone to make it that width.
1177   APInt LLVM_ATTRIBUTE_UNUSED_RESULT zextOrTrunc(unsigned width) const;
1178 
1179   /// \brief Sign extend or truncate to width
1180   ///
1181   /// Make this APInt have the bit width given by \p width. The value is sign
1182   /// extended, or left alone to make it that width.
1183   APInt LLVM_ATTRIBUTE_UNUSED_RESULT sextOrSelf(unsigned width) const;
1184 
1185   /// \brief Zero extend or truncate to width
1186   ///
1187   /// Make this APInt have the bit width given by \p width. The value is zero
1188   /// extended, or left alone to make it that width.
1189   APInt LLVM_ATTRIBUTE_UNUSED_RESULT zextOrSelf(unsigned width) const;
1190 
1191   /// @}
1192   /// \name Bit Manipulation Operators
1193   /// @{
1194 
1195   /// \brief Set every bit to 1.
setAllBits()1196   void setAllBits() {
1197     if (isSingleWord())
1198       VAL = UINT64_MAX;
1199     else {
1200       // Set all the bits in all the words.
1201       for (unsigned i = 0; i < getNumWords(); ++i)
1202         pVal[i] = UINT64_MAX;
1203     }
1204     // Clear the unused ones
1205     clearUnusedBits();
1206   }
1207 
1208   /// \brief Set a given bit to 1.
1209   ///
1210   /// Set the given bit to 1 whose position is given as "bitPosition".
1211   void setBit(unsigned bitPosition);
1212 
1213   /// \brief Set every bit to 0.
clearAllBits()1214   void clearAllBits() {
1215     if (isSingleWord())
1216       VAL = 0;
1217     else
1218       memset(pVal, 0, getNumWords() * APINT_WORD_SIZE);
1219   }
1220 
1221   /// \brief Set a given bit to 0.
1222   ///
1223   /// Set the given bit to 0 whose position is given as "bitPosition".
1224   void clearBit(unsigned bitPosition);
1225 
1226   /// \brief Toggle every bit to its opposite value.
flipAllBits()1227   void flipAllBits() {
1228     if (isSingleWord())
1229       VAL ^= UINT64_MAX;
1230     else {
1231       for (unsigned i = 0; i < getNumWords(); ++i)
1232         pVal[i] ^= UINT64_MAX;
1233     }
1234     clearUnusedBits();
1235   }
1236 
1237   /// \brief Toggles a given bit to its opposite value.
1238   ///
1239   /// Toggle a given bit to its opposite value whose position is given
1240   /// as "bitPosition".
1241   void flipBit(unsigned bitPosition);
1242 
1243   /// @}
1244   /// \name Value Characterization Functions
1245   /// @{
1246 
1247   /// \brief Return the number of bits in the APInt.
getBitWidth()1248   unsigned getBitWidth() const { return BitWidth; }
1249 
1250   /// \brief Get the number of words.
1251   ///
1252   /// Here one word's bitwidth equals to that of uint64_t.
1253   ///
1254   /// \returns the number of words to hold the integer value of this APInt.
getNumWords()1255   unsigned getNumWords() const { return getNumWords(BitWidth); }
1256 
1257   /// \brief Get the number of words.
1258   ///
1259   /// *NOTE* Here one word's bitwidth equals to that of uint64_t.
1260   ///
1261   /// \returns the number of words to hold the integer value with a given bit
1262   /// width.
getNumWords(unsigned BitWidth)1263   static unsigned getNumWords(unsigned BitWidth) {
1264     return ((uint64_t)BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
1265   }
1266 
1267   /// \brief Compute the number of active bits in the value
1268   ///
1269   /// This function returns the number of active bits which is defined as the
1270   /// bit width minus the number of leading zeros. This is used in several
1271   /// computations to see how "wide" the value is.
getActiveBits()1272   unsigned getActiveBits() const { return BitWidth - countLeadingZeros(); }
1273 
1274   /// \brief Compute the number of active words in the value of this APInt.
1275   ///
1276   /// This is used in conjunction with getActiveData to extract the raw value of
1277   /// the APInt.
getActiveWords()1278   unsigned getActiveWords() const {
1279     unsigned numActiveBits = getActiveBits();
1280     return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1;
1281   }
1282 
1283   /// \brief Get the minimum bit size for this signed APInt
1284   ///
1285   /// Computes the minimum bit width for this APInt while considering it to be a
1286   /// signed (and probably negative) value. If the value is not negative, this
1287   /// function returns the same value as getActiveBits()+1. Otherwise, it
1288   /// returns the smallest bit width that will retain the negative value. For
1289   /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
1290   /// for -1, this function will always return 1.
getMinSignedBits()1291   unsigned getMinSignedBits() const {
1292     if (isNegative())
1293       return BitWidth - countLeadingOnes() + 1;
1294     return getActiveBits() + 1;
1295   }
1296 
1297   /// \brief Get zero extended value
1298   ///
1299   /// This method attempts to return the value of this APInt as a zero extended
1300   /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
1301   /// uint64_t. Otherwise an assertion will result.
getZExtValue()1302   uint64_t getZExtValue() const {
1303     if (isSingleWord())
1304       return VAL;
1305     assert(getActiveBits() <= 64 && "Too many bits for uint64_t");
1306     return pVal[0];
1307   }
1308 
1309   /// \brief Get sign extended value
1310   ///
1311   /// This method attempts to return the value of this APInt as a sign extended
1312   /// int64_t. The bit width must be <= 64 or the value must fit within an
1313   /// int64_t. Otherwise an assertion will result.
getSExtValue()1314   int64_t getSExtValue() const {
1315     if (isSingleWord())
1316       return int64_t(VAL << (APINT_BITS_PER_WORD - BitWidth)) >>
1317              (APINT_BITS_PER_WORD - BitWidth);
1318     assert(getMinSignedBits() <= 64 && "Too many bits for int64_t");
1319     return int64_t(pVal[0]);
1320   }
1321 
1322   /// \brief Get bits required for string value.
1323   ///
1324   /// This method determines how many bits are required to hold the APInt
1325   /// equivalent of the string given by \p str.
1326   static unsigned getBitsNeeded(StringRef str, uint8_t radix);
1327 
1328   /// \brief The APInt version of the countLeadingZeros functions in
1329   ///   MathExtras.h.
1330   ///
1331   /// It counts the number of zeros from the most significant bit to the first
1332   /// one bit.
1333   ///
1334   /// \returns BitWidth if the value is zero, otherwise returns the number of
1335   ///   zeros from the most significant bit to the first one bits.
countLeadingZeros()1336   unsigned countLeadingZeros() const {
1337     if (isSingleWord()) {
1338       unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth;
1339       return llvm::countLeadingZeros(VAL) - unusedBits;
1340     }
1341     return countLeadingZerosSlowCase();
1342   }
1343 
1344   /// \brief Count the number of leading one bits.
1345   ///
1346   /// This function is an APInt version of the countLeadingOnes_{32,64}
1347   /// functions in MathExtras.h. It counts the number of ones from the most
1348   /// significant bit to the first zero bit.
1349   ///
1350   /// \returns 0 if the high order bit is not set, otherwise returns the number
1351   /// of 1 bits from the most significant to the least
1352   unsigned countLeadingOnes() const;
1353 
1354   /// Computes the number of leading bits of this APInt that are equal to its
1355   /// sign bit.
getNumSignBits()1356   unsigned getNumSignBits() const {
1357     return isNegative() ? countLeadingOnes() : countLeadingZeros();
1358   }
1359 
1360   /// \brief Count the number of trailing zero bits.
1361   ///
1362   /// This function is an APInt version of the countTrailingZeros_{32,64}
1363   /// functions in MathExtras.h. It counts the number of zeros from the least
1364   /// significant bit to the first set bit.
1365   ///
1366   /// \returns BitWidth if the value is zero, otherwise returns the number of
1367   /// zeros from the least significant bit to the first one bit.
1368   unsigned countTrailingZeros() const;
1369 
1370   /// \brief Count the number of trailing one bits.
1371   ///
1372   /// This function is an APInt version of the countTrailingOnes_{32,64}
1373   /// functions in MathExtras.h. It counts the number of ones from the least
1374   /// significant bit to the first zero bit.
1375   ///
1376   /// \returns BitWidth if the value is all ones, otherwise returns the number
1377   /// of ones from the least significant bit to the first zero bit.
countTrailingOnes()1378   unsigned countTrailingOnes() const {
1379     if (isSingleWord())
1380       return CountTrailingOnes_64(VAL);
1381     return countTrailingOnesSlowCase();
1382   }
1383 
1384   /// \brief Count the number of bits set.
1385   ///
1386   /// This function is an APInt version of the countPopulation_{32,64} functions
1387   /// in MathExtras.h. It counts the number of 1 bits in the APInt value.
1388   ///
1389   /// \returns 0 if the value is zero, otherwise returns the number of set bits.
countPopulation()1390   unsigned countPopulation() const {
1391     if (isSingleWord())
1392       return CountPopulation_64(VAL);
1393     return countPopulationSlowCase();
1394   }
1395 
1396   /// @}
1397   /// \name Conversion Functions
1398   /// @{
1399   void print(raw_ostream &OS, bool isSigned) const;
1400 
1401   /// Converts an APInt to a string and append it to Str.  Str is commonly a
1402   /// SmallString.
1403   void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed,
1404                 bool formatAsCLiteral = false) const;
1405 
1406   /// Considers the APInt to be unsigned and converts it into a string in the
1407   /// radix given. The radix can be 2, 8, 10 16, or 36.
1408   void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1409     toString(Str, Radix, false, false);
1410   }
1411 
1412   /// Considers the APInt to be signed and converts it into a string in the
1413   /// radix given. The radix can be 2, 8, 10, 16, or 36.
1414   void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1415     toString(Str, Radix, true, false);
1416   }
1417 
1418   /// \brief Return the APInt as a std::string.
1419   ///
1420   /// Note that this is an inefficient method.  It is better to pass in a
1421   /// SmallVector/SmallString to the methods above to avoid thrashing the heap
1422   /// for the string.
1423   std::string toString(unsigned Radix, bool Signed) const;
1424 
1425   /// \returns a byte-swapped representation of this APInt Value.
1426   APInt LLVM_ATTRIBUTE_UNUSED_RESULT byteSwap() const;
1427 
1428   /// \brief Converts this APInt to a double value.
1429   double roundToDouble(bool isSigned) const;
1430 
1431   /// \brief Converts this unsigned APInt to a double value.
roundToDouble()1432   double roundToDouble() const { return roundToDouble(false); }
1433 
1434   /// \brief Converts this signed APInt to a double value.
signedRoundToDouble()1435   double signedRoundToDouble() const { return roundToDouble(true); }
1436 
1437   /// \brief Converts APInt bits to a double
1438   ///
1439   /// The conversion does not do a translation from integer to double, it just
1440   /// re-interprets the bits as a double. Note that it is valid to do this on
1441   /// any bit width. Exactly 64 bits will be translated.
bitsToDouble()1442   double bitsToDouble() const {
1443     union {
1444       uint64_t I;
1445       double D;
1446     } T;
1447     T.I = (isSingleWord() ? VAL : pVal[0]);
1448     return T.D;
1449   }
1450 
1451   /// \brief Converts APInt bits to a double
1452   ///
1453   /// The conversion does not do a translation from integer to float, it just
1454   /// re-interprets the bits as a float. Note that it is valid to do this on
1455   /// any bit width. Exactly 32 bits will be translated.
bitsToFloat()1456   float bitsToFloat() const {
1457     union {
1458       unsigned I;
1459       float F;
1460     } T;
1461     T.I = unsigned((isSingleWord() ? VAL : pVal[0]));
1462     return T.F;
1463   }
1464 
1465   /// \brief Converts a double to APInt bits.
1466   ///
1467   /// The conversion does not do a translation from double to integer, it just
1468   /// re-interprets the bits of the double.
doubleToBits(double V)1469   static APInt LLVM_ATTRIBUTE_UNUSED_RESULT doubleToBits(double V) {
1470     union {
1471       uint64_t I;
1472       double D;
1473     } T;
1474     T.D = V;
1475     return APInt(sizeof T * CHAR_BIT, T.I);
1476   }
1477 
1478   /// \brief Converts a float to APInt bits.
1479   ///
1480   /// The conversion does not do a translation from float to integer, it just
1481   /// re-interprets the bits of the float.
floatToBits(float V)1482   static APInt LLVM_ATTRIBUTE_UNUSED_RESULT floatToBits(float V) {
1483     union {
1484       unsigned I;
1485       float F;
1486     } T;
1487     T.F = V;
1488     return APInt(sizeof T * CHAR_BIT, T.I);
1489   }
1490 
1491   /// @}
1492   /// \name Mathematics Operations
1493   /// @{
1494 
1495   /// \returns the floor log base 2 of this APInt.
logBase2()1496   unsigned logBase2() const { return BitWidth - 1 - countLeadingZeros(); }
1497 
1498   /// \returns the ceil log base 2 of this APInt.
ceilLogBase2()1499   unsigned ceilLogBase2() const {
1500     return BitWidth - (*this - 1).countLeadingZeros();
1501   }
1502 
1503   /// \returns the nearest log base 2 of this APInt. Ties round up.
1504   ///
1505   /// NOTE: When we have a BitWidth of 1, we define:
1506   ///
1507   ///   log2(0) = UINT32_MAX
1508   ///   log2(1) = 0
1509   ///
1510   /// to get around any mathematical concerns resulting from
1511   /// referencing 2 in a space where 2 does no exist.
nearestLogBase2()1512   unsigned nearestLogBase2() const {
1513     // Special case when we have a bitwidth of 1. If VAL is 1, then we
1514     // get 0. If VAL is 0, we get UINT64_MAX which gets truncated to
1515     // UINT32_MAX.
1516     if (BitWidth == 1)
1517       return VAL - 1;
1518 
1519     // Handle the zero case.
1520     if (!getBoolValue())
1521       return UINT32_MAX;
1522 
1523     // The non-zero case is handled by computing:
1524     //
1525     //   nearestLogBase2(x) = logBase2(x) + x[logBase2(x)-1].
1526     //
1527     // where x[i] is referring to the value of the ith bit of x.
1528     unsigned lg = logBase2();
1529     return lg + unsigned((*this)[lg - 1]);
1530   }
1531 
1532   /// \returns the log base 2 of this APInt if its an exact power of two, -1
1533   /// otherwise
exactLogBase2()1534   int32_t exactLogBase2() const {
1535     if (!isPowerOf2())
1536       return -1;
1537     return logBase2();
1538   }
1539 
1540   /// \brief Compute the square root
1541   APInt LLVM_ATTRIBUTE_UNUSED_RESULT sqrt() const;
1542 
1543   /// \brief Get the absolute value;
1544   ///
1545   /// If *this is < 0 then return -(*this), otherwise *this;
abs()1546   APInt LLVM_ATTRIBUTE_UNUSED_RESULT abs() const {
1547     if (isNegative())
1548       return -(*this);
1549     return *this;
1550   }
1551 
1552   /// \returns the multiplicative inverse for a given modulo.
1553   APInt multiplicativeInverse(const APInt &modulo) const;
1554 
1555   /// @}
1556   /// \name Support for division by constant
1557   /// @{
1558 
1559   /// Calculate the magic number for signed division by a constant.
1560   struct ms;
1561   ms magic() const;
1562 
1563   /// Calculate the magic number for unsigned division by a constant.
1564   struct mu;
1565   mu magicu(unsigned LeadingZeros = 0) const;
1566 
1567   /// @}
1568   /// \name Building-block Operations for APInt and APFloat
1569   /// @{
1570 
1571   // These building block operations operate on a representation of arbitrary
1572   // precision, two's-complement, bignum integer values. They should be
1573   // sufficient to implement APInt and APFloat bignum requirements. Inputs are
1574   // generally a pointer to the base of an array of integer parts, representing
1575   // an unsigned bignum, and a count of how many parts there are.
1576 
1577   /// Sets the least significant part of a bignum to the input value, and zeroes
1578   /// out higher parts.
1579   static void tcSet(integerPart *, integerPart, unsigned int);
1580 
1581   /// Assign one bignum to another.
1582   static void tcAssign(integerPart *, const integerPart *, unsigned int);
1583 
1584   /// Returns true if a bignum is zero, false otherwise.
1585   static bool tcIsZero(const integerPart *, unsigned int);
1586 
1587   /// Extract the given bit of a bignum; returns 0 or 1.  Zero-based.
1588   static int tcExtractBit(const integerPart *, unsigned int bit);
1589 
1590   /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to
1591   /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least
1592   /// significant bit of DST.  All high bits above srcBITS in DST are
1593   /// zero-filled.
1594   static void tcExtract(integerPart *, unsigned int dstCount,
1595                         const integerPart *, unsigned int srcBits,
1596                         unsigned int srcLSB);
1597 
1598   /// Set the given bit of a bignum.  Zero-based.
1599   static void tcSetBit(integerPart *, unsigned int bit);
1600 
1601   /// Clear the given bit of a bignum.  Zero-based.
1602   static void tcClearBit(integerPart *, unsigned int bit);
1603 
1604   /// Returns the bit number of the least or most significant set bit of a
1605   /// number.  If the input number has no bits set -1U is returned.
1606   static unsigned int tcLSB(const integerPart *, unsigned int);
1607   static unsigned int tcMSB(const integerPart *parts, unsigned int n);
1608 
1609   /// Negate a bignum in-place.
1610   static void tcNegate(integerPart *, unsigned int);
1611 
1612   /// DST += RHS + CARRY where CARRY is zero or one.  Returns the carry flag.
1613   static integerPart tcAdd(integerPart *, const integerPart *,
1614                            integerPart carry, unsigned);
1615 
1616   /// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag.
1617   static integerPart tcSubtract(integerPart *, const integerPart *,
1618                                 integerPart carry, unsigned);
1619 
1620   /// DST += SRC * MULTIPLIER + PART   if add is true
1621   /// DST  = SRC * MULTIPLIER + PART   if add is false
1622   ///
1623   /// Requires 0 <= DSTPARTS <= SRCPARTS + 1.  If DST overlaps SRC they must
1624   /// start at the same point, i.e. DST == SRC.
1625   ///
1626   /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned.
1627   /// Otherwise DST is filled with the least significant DSTPARTS parts of the
1628   /// result, and if all of the omitted higher parts were zero return zero,
1629   /// otherwise overflow occurred and return one.
1630   static int tcMultiplyPart(integerPart *dst, const integerPart *src,
1631                             integerPart multiplier, integerPart carry,
1632                             unsigned int srcParts, unsigned int dstParts,
1633                             bool add);
1634 
1635   /// DST = LHS * RHS, where DST has the same width as the operands and is
1636   /// filled with the least significant parts of the result.  Returns one if
1637   /// overflow occurred, otherwise zero.  DST must be disjoint from both
1638   /// operands.
1639   static int tcMultiply(integerPart *, const integerPart *, const integerPart *,
1640                         unsigned);
1641 
1642   /// DST = LHS * RHS, where DST has width the sum of the widths of the
1643   /// operands.  No overflow occurs.  DST must be disjoint from both
1644   /// operands. Returns the number of parts required to hold the result.
1645   static unsigned int tcFullMultiply(integerPart *, const integerPart *,
1646                                      const integerPart *, unsigned, unsigned);
1647 
1648   /// If RHS is zero LHS and REMAINDER are left unchanged, return one.
1649   /// Otherwise set LHS to LHS / RHS with the fractional part discarded, set
1650   /// REMAINDER to the remainder, return zero.  i.e.
1651   ///
1652   ///  OLD_LHS = RHS * LHS + REMAINDER
1653   ///
1654   /// SCRATCH is a bignum of the same size as the operands and result for use by
1655   /// the routine; its contents need not be initialized and are destroyed.  LHS,
1656   /// REMAINDER and SCRATCH must be distinct.
1657   static int tcDivide(integerPart *lhs, const integerPart *rhs,
1658                       integerPart *remainder, integerPart *scratch,
1659                       unsigned int parts);
1660 
1661   /// Shift a bignum left COUNT bits.  Shifted in bits are zero.  There are no
1662   /// restrictions on COUNT.
1663   static void tcShiftLeft(integerPart *, unsigned int parts,
1664                           unsigned int count);
1665 
1666   /// Shift a bignum right COUNT bits.  Shifted in bits are zero.  There are no
1667   /// restrictions on COUNT.
1668   static void tcShiftRight(integerPart *, unsigned int parts,
1669                            unsigned int count);
1670 
1671   /// The obvious AND, OR and XOR and complement operations.
1672   static void tcAnd(integerPart *, const integerPart *, unsigned int);
1673   static void tcOr(integerPart *, const integerPart *, unsigned int);
1674   static void tcXor(integerPart *, const integerPart *, unsigned int);
1675   static void tcComplement(integerPart *, unsigned int);
1676 
1677   /// Comparison (unsigned) of two bignums.
1678   static int tcCompare(const integerPart *, const integerPart *, unsigned int);
1679 
1680   /// Increment a bignum in-place.  Return the carry flag.
1681   static integerPart tcIncrement(integerPart *, unsigned int);
1682 
1683   /// Decrement a bignum in-place.  Return the borrow flag.
1684   static integerPart tcDecrement(integerPart *, unsigned int);
1685 
1686   /// Set the least significant BITS and clear the rest.
1687   static void tcSetLeastSignificantBits(integerPart *, unsigned int,
1688                                         unsigned int bits);
1689 
1690   /// \brief debug method
1691   void dump() const;
1692 
1693   /// @}
1694 };
1695 
1696 /// Magic data for optimising signed division by a constant.
1697 struct APInt::ms {
1698   APInt m;    ///< magic number
1699   unsigned s; ///< shift amount
1700 };
1701 
1702 /// Magic data for optimising unsigned division by a constant.
1703 struct APInt::mu {
1704   APInt m;    ///< magic number
1705   bool a;     ///< add indicator
1706   unsigned s; ///< shift amount
1707 };
1708 
1709 inline bool operator==(uint64_t V1, const APInt &V2) { return V2 == V1; }
1710 
1711 inline bool operator!=(uint64_t V1, const APInt &V2) { return V2 != V1; }
1712 
1713 inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) {
1714   I.print(OS, true);
1715   return OS;
1716 }
1717 
1718 namespace APIntOps {
1719 
1720 /// \brief Determine the smaller of two APInts considered to be signed.
smin(const APInt & A,const APInt & B)1721 inline APInt smin(const APInt &A, const APInt &B) { return A.slt(B) ? A : B; }
1722 
1723 /// \brief Determine the larger of two APInts considered to be signed.
smax(const APInt & A,const APInt & B)1724 inline APInt smax(const APInt &A, const APInt &B) { return A.sgt(B) ? A : B; }
1725 
1726 /// \brief Determine the smaller of two APInts considered to be signed.
umin(const APInt & A,const APInt & B)1727 inline APInt umin(const APInt &A, const APInt &B) { return A.ult(B) ? A : B; }
1728 
1729 /// \brief Determine the larger of two APInts considered to be unsigned.
umax(const APInt & A,const APInt & B)1730 inline APInt umax(const APInt &A, const APInt &B) { return A.ugt(B) ? A : B; }
1731 
1732 /// \brief Check if the specified APInt has a N-bits unsigned integer value.
isIntN(unsigned N,const APInt & APIVal)1733 inline bool isIntN(unsigned N, const APInt &APIVal) { return APIVal.isIntN(N); }
1734 
1735 /// \brief Check if the specified APInt has a N-bits signed integer value.
isSignedIntN(unsigned N,const APInt & APIVal)1736 inline bool isSignedIntN(unsigned N, const APInt &APIVal) {
1737   return APIVal.isSignedIntN(N);
1738 }
1739 
1740 /// \returns true if the argument APInt value is a sequence of ones starting at
1741 /// the least significant bit with the remainder zero.
isMask(unsigned numBits,const APInt & APIVal)1742 inline bool isMask(unsigned numBits, const APInt &APIVal) {
1743   return numBits <= APIVal.getBitWidth() &&
1744          APIVal == APInt::getLowBitsSet(APIVal.getBitWidth(), numBits);
1745 }
1746 
1747 /// \brief Return true if the argument APInt value contains a sequence of ones
1748 /// with the remainder zero.
isShiftedMask(unsigned numBits,const APInt & APIVal)1749 inline bool isShiftedMask(unsigned numBits, const APInt &APIVal) {
1750   return isMask(numBits, (APIVal - APInt(numBits, 1)) | APIVal);
1751 }
1752 
1753 /// \brief Returns a byte-swapped representation of the specified APInt Value.
byteSwap(const APInt & APIVal)1754 inline APInt byteSwap(const APInt &APIVal) { return APIVal.byteSwap(); }
1755 
1756 /// \brief Returns the floor log base 2 of the specified APInt value.
logBase2(const APInt & APIVal)1757 inline unsigned logBase2(const APInt &APIVal) { return APIVal.logBase2(); }
1758 
1759 /// \brief Compute GCD of two APInt values.
1760 ///
1761 /// This function returns the greatest common divisor of the two APInt values
1762 /// using Euclid's algorithm.
1763 ///
1764 /// \returns the greatest common divisor of Val1 and Val2
1765 APInt GreatestCommonDivisor(const APInt &Val1, const APInt &Val2);
1766 
1767 /// \brief Converts the given APInt to a double value.
1768 ///
1769 /// Treats the APInt as an unsigned value for conversion purposes.
RoundAPIntToDouble(const APInt & APIVal)1770 inline double RoundAPIntToDouble(const APInt &APIVal) {
1771   return APIVal.roundToDouble();
1772 }
1773 
1774 /// \brief Converts the given APInt to a double value.
1775 ///
1776 /// Treats the APInt as a signed value for conversion purposes.
RoundSignedAPIntToDouble(const APInt & APIVal)1777 inline double RoundSignedAPIntToDouble(const APInt &APIVal) {
1778   return APIVal.signedRoundToDouble();
1779 }
1780 
1781 /// \brief Converts the given APInt to a float vlalue.
RoundAPIntToFloat(const APInt & APIVal)1782 inline float RoundAPIntToFloat(const APInt &APIVal) {
1783   return float(RoundAPIntToDouble(APIVal));
1784 }
1785 
1786 /// \brief Converts the given APInt to a float value.
1787 ///
1788 /// Treast the APInt as a signed value for conversion purposes.
RoundSignedAPIntToFloat(const APInt & APIVal)1789 inline float RoundSignedAPIntToFloat(const APInt &APIVal) {
1790   return float(APIVal.signedRoundToDouble());
1791 }
1792 
1793 /// \brief Converts the given double value into a APInt.
1794 ///
1795 /// This function convert a double value to an APInt value.
1796 APInt RoundDoubleToAPInt(double Double, unsigned width);
1797 
1798 /// \brief Converts a float value into a APInt.
1799 ///
1800 /// Converts a float value into an APInt value.
RoundFloatToAPInt(float Float,unsigned width)1801 inline APInt RoundFloatToAPInt(float Float, unsigned width) {
1802   return RoundDoubleToAPInt(double(Float), width);
1803 }
1804 
1805 /// \brief Arithmetic right-shift function.
1806 ///
1807 /// Arithmetic right-shift the APInt by shiftAmt.
ashr(const APInt & LHS,unsigned shiftAmt)1808 inline APInt ashr(const APInt &LHS, unsigned shiftAmt) {
1809   return LHS.ashr(shiftAmt);
1810 }
1811 
1812 /// \brief Logical right-shift function.
1813 ///
1814 /// Logical right-shift the APInt by shiftAmt.
lshr(const APInt & LHS,unsigned shiftAmt)1815 inline APInt lshr(const APInt &LHS, unsigned shiftAmt) {
1816   return LHS.lshr(shiftAmt);
1817 }
1818 
1819 /// \brief Left-shift function.
1820 ///
1821 /// Left-shift the APInt by shiftAmt.
shl(const APInt & LHS,unsigned shiftAmt)1822 inline APInt shl(const APInt &LHS, unsigned shiftAmt) {
1823   return LHS.shl(shiftAmt);
1824 }
1825 
1826 /// \brief Signed division function for APInt.
1827 ///
1828 /// Signed divide APInt LHS by APInt RHS.
sdiv(const APInt & LHS,const APInt & RHS)1829 inline APInt sdiv(const APInt &LHS, const APInt &RHS) { return LHS.sdiv(RHS); }
1830 
1831 /// \brief Unsigned division function for APInt.
1832 ///
1833 /// Unsigned divide APInt LHS by APInt RHS.
udiv(const APInt & LHS,const APInt & RHS)1834 inline APInt udiv(const APInt &LHS, const APInt &RHS) { return LHS.udiv(RHS); }
1835 
1836 /// \brief Function for signed remainder operation.
1837 ///
1838 /// Signed remainder operation on APInt.
srem(const APInt & LHS,const APInt & RHS)1839 inline APInt srem(const APInt &LHS, const APInt &RHS) { return LHS.srem(RHS); }
1840 
1841 /// \brief Function for unsigned remainder operation.
1842 ///
1843 /// Unsigned remainder operation on APInt.
urem(const APInt & LHS,const APInt & RHS)1844 inline APInt urem(const APInt &LHS, const APInt &RHS) { return LHS.urem(RHS); }
1845 
1846 /// \brief Function for multiplication operation.
1847 ///
1848 /// Performs multiplication on APInt values.
mul(const APInt & LHS,const APInt & RHS)1849 inline APInt mul(const APInt &LHS, const APInt &RHS) { return LHS * RHS; }
1850 
1851 /// \brief Function for addition operation.
1852 ///
1853 /// Performs addition on APInt values.
add(const APInt & LHS,const APInt & RHS)1854 inline APInt add(const APInt &LHS, const APInt &RHS) { return LHS + RHS; }
1855 
1856 /// \brief Function for subtraction operation.
1857 ///
1858 /// Performs subtraction on APInt values.
sub(const APInt & LHS,const APInt & RHS)1859 inline APInt sub(const APInt &LHS, const APInt &RHS) { return LHS - RHS; }
1860 
1861 /// \brief Bitwise AND function for APInt.
1862 ///
1863 /// Performs bitwise AND operation on APInt LHS and
1864 /// APInt RHS.
And(const APInt & LHS,const APInt & RHS)1865 inline APInt And(const APInt &LHS, const APInt &RHS) { return LHS & RHS; }
1866 
1867 /// \brief Bitwise OR function for APInt.
1868 ///
1869 /// Performs bitwise OR operation on APInt LHS and APInt RHS.
Or(const APInt & LHS,const APInt & RHS)1870 inline APInt Or(const APInt &LHS, const APInt &RHS) { return LHS | RHS; }
1871 
1872 /// \brief Bitwise XOR function for APInt.
1873 ///
1874 /// Performs bitwise XOR operation on APInt.
Xor(const APInt & LHS,const APInt & RHS)1875 inline APInt Xor(const APInt &LHS, const APInt &RHS) { return LHS ^ RHS; }
1876 
1877 /// \brief Bitwise complement function.
1878 ///
1879 /// Performs a bitwise complement operation on APInt.
Not(const APInt & APIVal)1880 inline APInt Not(const APInt &APIVal) { return ~APIVal; }
1881 
1882 } // End of APIntOps namespace
1883 
1884 // See friend declaration above. This additional declaration is required in
1885 // order to compile LLVM with IBM xlC compiler.
1886 hash_code hash_value(const APInt &Arg);
1887 } // End of llvm namespace
1888 
1889 #endif
1890