• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef V8_HEAP_H_
6 #define V8_HEAP_H_
7 
8 #include <cmath>
9 
10 #include "src/allocation.h"
11 #include "src/assert-scope.h"
12 #include "src/counters.h"
13 #include "src/globals.h"
14 #include "src/incremental-marking.h"
15 #include "src/list.h"
16 #include "src/mark-compact.h"
17 #include "src/objects-visiting.h"
18 #include "src/spaces.h"
19 #include "src/splay-tree-inl.h"
20 #include "src/store-buffer.h"
21 
22 namespace v8 {
23 namespace internal {
24 
25 // Defines all the roots in Heap.
26 #define STRONG_ROOT_LIST(V)                                                    \
27   V(Map, byte_array_map, ByteArrayMap)                                         \
28   V(Map, free_space_map, FreeSpaceMap)                                         \
29   V(Map, one_pointer_filler_map, OnePointerFillerMap)                          \
30   V(Map, two_pointer_filler_map, TwoPointerFillerMap)                          \
31   /* Cluster the most popular ones in a few cache lines here at the top.    */ \
32   V(Smi, store_buffer_top, StoreBufferTop)                                     \
33   V(Oddball, undefined_value, UndefinedValue)                                  \
34   V(Oddball, the_hole_value, TheHoleValue)                                     \
35   V(Oddball, null_value, NullValue)                                            \
36   V(Oddball, true_value, TrueValue)                                            \
37   V(Oddball, false_value, FalseValue)                                          \
38   V(Oddball, uninitialized_value, UninitializedValue)                          \
39   V(Oddball, exception, Exception)                                             \
40   V(Map, cell_map, CellMap)                                                    \
41   V(Map, global_property_cell_map, GlobalPropertyCellMap)                      \
42   V(Map, shared_function_info_map, SharedFunctionInfoMap)                      \
43   V(Map, meta_map, MetaMap)                                                    \
44   V(Map, heap_number_map, HeapNumberMap)                                       \
45   V(Map, native_context_map, NativeContextMap)                                 \
46   V(Map, fixed_array_map, FixedArrayMap)                                       \
47   V(Map, code_map, CodeMap)                                                    \
48   V(Map, scope_info_map, ScopeInfoMap)                                         \
49   V(Map, fixed_cow_array_map, FixedCOWArrayMap)                                \
50   V(Map, fixed_double_array_map, FixedDoubleArrayMap)                          \
51   V(Map, constant_pool_array_map, ConstantPoolArrayMap)                        \
52   V(Oddball, no_interceptor_result_sentinel, NoInterceptorResultSentinel)      \
53   V(Map, hash_table_map, HashTableMap)                                         \
54   V(Map, ordered_hash_table_map, OrderedHashTableMap)                          \
55   V(FixedArray, empty_fixed_array, EmptyFixedArray)                            \
56   V(ByteArray, empty_byte_array, EmptyByteArray)                               \
57   V(DescriptorArray, empty_descriptor_array, EmptyDescriptorArray)             \
58   V(ConstantPoolArray, empty_constant_pool_array, EmptyConstantPoolArray)      \
59   V(Oddball, arguments_marker, ArgumentsMarker)                                \
60   /* The roots above this line should be boring from a GC point of view.    */ \
61   /* This means they are never in new space and never on a page that is     */ \
62   /* being compacted.                                                       */ \
63   V(FixedArray, number_string_cache, NumberStringCache)                        \
64   V(Object, instanceof_cache_function, InstanceofCacheFunction)                \
65   V(Object, instanceof_cache_map, InstanceofCacheMap)                          \
66   V(Object, instanceof_cache_answer, InstanceofCacheAnswer)                    \
67   V(FixedArray, single_character_string_cache, SingleCharacterStringCache)     \
68   V(FixedArray, string_split_cache, StringSplitCache)                          \
69   V(FixedArray, regexp_multiple_cache, RegExpMultipleCache)                    \
70   V(Oddball, termination_exception, TerminationException)                      \
71   V(Smi, hash_seed, HashSeed)                                                  \
72   V(Map, symbol_map, SymbolMap)                                                \
73   V(Map, string_map, StringMap)                                                \
74   V(Map, ascii_string_map, AsciiStringMap)                                     \
75   V(Map, cons_string_map, ConsStringMap)                                       \
76   V(Map, cons_ascii_string_map, ConsAsciiStringMap)                            \
77   V(Map, sliced_string_map, SlicedStringMap)                                   \
78   V(Map, sliced_ascii_string_map, SlicedAsciiStringMap)                        \
79   V(Map, external_string_map, ExternalStringMap)                               \
80   V(Map,                                                                       \
81     external_string_with_one_byte_data_map,                                    \
82     ExternalStringWithOneByteDataMap)                                          \
83   V(Map, external_ascii_string_map, ExternalAsciiStringMap)                    \
84   V(Map, short_external_string_map, ShortExternalStringMap)                    \
85   V(Map,                                                                       \
86     short_external_string_with_one_byte_data_map,                              \
87     ShortExternalStringWithOneByteDataMap)                                     \
88   V(Map, internalized_string_map, InternalizedStringMap)                       \
89   V(Map, ascii_internalized_string_map, AsciiInternalizedStringMap)            \
90   V(Map,                                                                       \
91     external_internalized_string_map,                                          \
92     ExternalInternalizedStringMap)                                             \
93   V(Map,                                                                       \
94     external_internalized_string_with_one_byte_data_map,                       \
95     ExternalInternalizedStringWithOneByteDataMap)                              \
96   V(Map,                                                                       \
97     external_ascii_internalized_string_map,                                    \
98     ExternalAsciiInternalizedStringMap)                                        \
99   V(Map,                                                                       \
100     short_external_internalized_string_map,                                    \
101     ShortExternalInternalizedStringMap)                                        \
102   V(Map,                                                                       \
103     short_external_internalized_string_with_one_byte_data_map,                 \
104     ShortExternalInternalizedStringWithOneByteDataMap)                         \
105   V(Map,                                                                       \
106     short_external_ascii_internalized_string_map,                              \
107     ShortExternalAsciiInternalizedStringMap)                                   \
108   V(Map, short_external_ascii_string_map, ShortExternalAsciiStringMap)         \
109   V(Map, undetectable_string_map, UndetectableStringMap)                       \
110   V(Map, undetectable_ascii_string_map, UndetectableAsciiStringMap)            \
111   V(Map, external_int8_array_map, ExternalInt8ArrayMap)                        \
112   V(Map, external_uint8_array_map, ExternalUint8ArrayMap)                      \
113   V(Map, external_int16_array_map, ExternalInt16ArrayMap)                      \
114   V(Map, external_uint16_array_map, ExternalUint16ArrayMap)                    \
115   V(Map, external_int32_array_map, ExternalInt32ArrayMap)                      \
116   V(Map, external_uint32_array_map, ExternalUint32ArrayMap)                    \
117   V(Map, external_float32_array_map, ExternalFloat32ArrayMap)                  \
118   V(Map, external_float64_array_map, ExternalFloat64ArrayMap)                  \
119   V(Map, external_uint8_clamped_array_map, ExternalUint8ClampedArrayMap)       \
120   V(ExternalArray, empty_external_int8_array,                                  \
121       EmptyExternalInt8Array)                                                  \
122   V(ExternalArray, empty_external_uint8_array,                                 \
123       EmptyExternalUint8Array)                                                 \
124   V(ExternalArray, empty_external_int16_array, EmptyExternalInt16Array)        \
125   V(ExternalArray, empty_external_uint16_array,                                \
126       EmptyExternalUint16Array)                                                \
127   V(ExternalArray, empty_external_int32_array, EmptyExternalInt32Array)        \
128   V(ExternalArray, empty_external_uint32_array,                                \
129       EmptyExternalUint32Array)                                                \
130   V(ExternalArray, empty_external_float32_array, EmptyExternalFloat32Array)    \
131   V(ExternalArray, empty_external_float64_array, EmptyExternalFloat64Array)    \
132   V(ExternalArray, empty_external_uint8_clamped_array,                         \
133       EmptyExternalUint8ClampedArray)                                          \
134   V(Map, fixed_uint8_array_map, FixedUint8ArrayMap)                            \
135   V(Map, fixed_int8_array_map, FixedInt8ArrayMap)                              \
136   V(Map, fixed_uint16_array_map, FixedUint16ArrayMap)                          \
137   V(Map, fixed_int16_array_map, FixedInt16ArrayMap)                            \
138   V(Map, fixed_uint32_array_map, FixedUint32ArrayMap)                          \
139   V(Map, fixed_int32_array_map, FixedInt32ArrayMap)                            \
140   V(Map, fixed_float32_array_map, FixedFloat32ArrayMap)                        \
141   V(Map, fixed_float64_array_map, FixedFloat64ArrayMap)                        \
142   V(Map, fixed_uint8_clamped_array_map, FixedUint8ClampedArrayMap)             \
143   V(FixedTypedArrayBase, empty_fixed_uint8_array, EmptyFixedUint8Array)        \
144   V(FixedTypedArrayBase, empty_fixed_int8_array, EmptyFixedInt8Array)          \
145   V(FixedTypedArrayBase, empty_fixed_uint16_array, EmptyFixedUint16Array)      \
146   V(FixedTypedArrayBase, empty_fixed_int16_array, EmptyFixedInt16Array)        \
147   V(FixedTypedArrayBase, empty_fixed_uint32_array, EmptyFixedUint32Array)      \
148   V(FixedTypedArrayBase, empty_fixed_int32_array, EmptyFixedInt32Array)        \
149   V(FixedTypedArrayBase, empty_fixed_float32_array, EmptyFixedFloat32Array)    \
150   V(FixedTypedArrayBase, empty_fixed_float64_array, EmptyFixedFloat64Array)    \
151   V(FixedTypedArrayBase, empty_fixed_uint8_clamped_array,                      \
152       EmptyFixedUint8ClampedArray)                                             \
153   V(Map, sloppy_arguments_elements_map, SloppyArgumentsElementsMap)            \
154   V(Map, function_context_map, FunctionContextMap)                             \
155   V(Map, catch_context_map, CatchContextMap)                                   \
156   V(Map, with_context_map, WithContextMap)                                     \
157   V(Map, block_context_map, BlockContextMap)                                   \
158   V(Map, module_context_map, ModuleContextMap)                                 \
159   V(Map, global_context_map, GlobalContextMap)                                 \
160   V(Map, undefined_map, UndefinedMap)                                          \
161   V(Map, the_hole_map, TheHoleMap)                                             \
162   V(Map, null_map, NullMap)                                                    \
163   V(Map, boolean_map, BooleanMap)                                              \
164   V(Map, uninitialized_map, UninitializedMap)                                  \
165   V(Map, arguments_marker_map, ArgumentsMarkerMap)                             \
166   V(Map, no_interceptor_result_sentinel_map, NoInterceptorResultSentinelMap)   \
167   V(Map, exception_map, ExceptionMap)                                          \
168   V(Map, termination_exception_map, TerminationExceptionMap)                   \
169   V(Map, message_object_map, JSMessageObjectMap)                               \
170   V(Map, foreign_map, ForeignMap)                                              \
171   V(HeapNumber, nan_value, NanValue)                                           \
172   V(HeapNumber, infinity_value, InfinityValue)                                 \
173   V(HeapNumber, minus_zero_value, MinusZeroValue)                              \
174   V(Map, neander_map, NeanderMap)                                              \
175   V(JSObject, message_listeners, MessageListeners)                             \
176   V(UnseededNumberDictionary, code_stubs, CodeStubs)                           \
177   V(UnseededNumberDictionary, non_monomorphic_cache, NonMonomorphicCache)      \
178   V(PolymorphicCodeCache, polymorphic_code_cache, PolymorphicCodeCache)        \
179   V(Code, js_entry_code, JsEntryCode)                                          \
180   V(Code, js_construct_entry_code, JsConstructEntryCode)                       \
181   V(FixedArray, natives_source_cache, NativesSourceCache)                      \
182   V(Script, empty_script, EmptyScript)                                         \
183   V(NameDictionary, intrinsic_function_names, IntrinsicFunctionNames)          \
184   V(Cell, undefined_cell, UndefineCell)                                        \
185   V(JSObject, observation_state, ObservationState)                             \
186   V(Map, external_map, ExternalMap)                                            \
187   V(Object, symbol_registry, SymbolRegistry)                                   \
188   V(Symbol, frozen_symbol, FrozenSymbol)                                       \
189   V(Symbol, nonexistent_symbol, NonExistentSymbol)                             \
190   V(Symbol, elements_transition_symbol, ElementsTransitionSymbol)              \
191   V(SeededNumberDictionary, empty_slow_element_dictionary,                     \
192       EmptySlowElementDictionary)                                              \
193   V(Symbol, observed_symbol, ObservedSymbol)                                   \
194   V(Symbol, uninitialized_symbol, UninitializedSymbol)                         \
195   V(Symbol, megamorphic_symbol, MegamorphicSymbol)                             \
196   V(FixedArray, materialized_objects, MaterializedObjects)                     \
197   V(FixedArray, allocation_sites_scratchpad, AllocationSitesScratchpad)        \
198   V(FixedArray, microtask_queue, MicrotaskQueue)
199 
200 // Entries in this list are limited to Smis and are not visited during GC.
201 #define SMI_ROOT_LIST(V)                                                       \
202   V(Smi, stack_limit, StackLimit)                                              \
203   V(Smi, real_stack_limit, RealStackLimit)                                     \
204   V(Smi, last_script_id, LastScriptId)                                         \
205   V(Smi, arguments_adaptor_deopt_pc_offset, ArgumentsAdaptorDeoptPCOffset)     \
206   V(Smi, construct_stub_deopt_pc_offset, ConstructStubDeoptPCOffset)           \
207   V(Smi, getter_stub_deopt_pc_offset, GetterStubDeoptPCOffset)                 \
208   V(Smi, setter_stub_deopt_pc_offset, SetterStubDeoptPCOffset)
209 
210 #define ROOT_LIST(V)                                  \
211   STRONG_ROOT_LIST(V)                                 \
212   SMI_ROOT_LIST(V)                                    \
213   V(StringTable, string_table, StringTable)
214 
215 // Heap roots that are known to be immortal immovable, for which we can safely
216 // skip write barriers.
217 #define IMMORTAL_IMMOVABLE_ROOT_LIST(V)   \
218   V(byte_array_map)                       \
219   V(free_space_map)                       \
220   V(one_pointer_filler_map)               \
221   V(two_pointer_filler_map)               \
222   V(undefined_value)                      \
223   V(the_hole_value)                       \
224   V(null_value)                           \
225   V(true_value)                           \
226   V(false_value)                          \
227   V(uninitialized_value)                  \
228   V(cell_map)                             \
229   V(global_property_cell_map)             \
230   V(shared_function_info_map)             \
231   V(meta_map)                             \
232   V(heap_number_map)                      \
233   V(native_context_map)                   \
234   V(fixed_array_map)                      \
235   V(code_map)                             \
236   V(scope_info_map)                       \
237   V(fixed_cow_array_map)                  \
238   V(fixed_double_array_map)               \
239   V(constant_pool_array_map)              \
240   V(no_interceptor_result_sentinel)       \
241   V(hash_table_map)                       \
242   V(ordered_hash_table_map)               \
243   V(empty_fixed_array)                    \
244   V(empty_byte_array)                     \
245   V(empty_descriptor_array)               \
246   V(empty_constant_pool_array)            \
247   V(arguments_marker)                     \
248   V(symbol_map)                           \
249   V(sloppy_arguments_elements_map)        \
250   V(function_context_map)                 \
251   V(catch_context_map)                    \
252   V(with_context_map)                     \
253   V(block_context_map)                    \
254   V(module_context_map)                   \
255   V(global_context_map)                   \
256   V(undefined_map)                        \
257   V(the_hole_map)                         \
258   V(null_map)                             \
259   V(boolean_map)                          \
260   V(uninitialized_map)                    \
261   V(message_object_map)                   \
262   V(foreign_map)                          \
263   V(neander_map)
264 
265 #define INTERNALIZED_STRING_LIST(V)                                      \
266   V(Array_string, "Array")                                               \
267   V(Object_string, "Object")                                             \
268   V(proto_string, "__proto__")                                           \
269   V(arguments_string, "arguments")                                       \
270   V(Arguments_string, "Arguments")                                       \
271   V(call_string, "call")                                                 \
272   V(apply_string, "apply")                                               \
273   V(caller_string, "caller")                                             \
274   V(boolean_string, "boolean")                                           \
275   V(Boolean_string, "Boolean")                                           \
276   V(callee_string, "callee")                                             \
277   V(constructor_string, "constructor")                                   \
278   V(dot_result_string, ".result")                                        \
279   V(dot_for_string, ".for.")                                             \
280   V(dot_iterable_string, ".iterable")                                    \
281   V(dot_iterator_string, ".iterator")                                    \
282   V(dot_generator_object_string, ".generator_object")                    \
283   V(eval_string, "eval")                                                 \
284   V(empty_string, "")                                                    \
285   V(function_string, "function")                                         \
286   V(length_string, "length")                                             \
287   V(module_string, "module")                                             \
288   V(name_string, "name")                                                 \
289   V(native_string, "native")                                             \
290   V(null_string, "null")                                                 \
291   V(number_string, "number")                                             \
292   V(Number_string, "Number")                                             \
293   V(nan_string, "NaN")                                                   \
294   V(RegExp_string, "RegExp")                                             \
295   V(source_string, "source")                                             \
296   V(global_string, "global")                                             \
297   V(ignore_case_string, "ignoreCase")                                    \
298   V(multiline_string, "multiline")                                       \
299   V(input_string, "input")                                               \
300   V(index_string, "index")                                               \
301   V(last_index_string, "lastIndex")                                      \
302   V(object_string, "object")                                             \
303   V(literals_string, "literals")                                         \
304   V(prototype_string, "prototype")                                       \
305   V(string_string, "string")                                             \
306   V(String_string, "String")                                             \
307   V(symbol_string, "symbol")                                             \
308   V(Symbol_string, "Symbol")                                             \
309   V(for_string, "for")                                                   \
310   V(for_api_string, "for_api")                                           \
311   V(for_intern_string, "for_intern")                                     \
312   V(private_api_string, "private_api")                                   \
313   V(private_intern_string, "private_intern")                             \
314   V(Date_string, "Date")                                                 \
315   V(this_string, "this")                                                 \
316   V(to_string_string, "toString")                                        \
317   V(char_at_string, "CharAt")                                            \
318   V(undefined_string, "undefined")                                       \
319   V(value_of_string, "valueOf")                                          \
320   V(stack_string, "stack")                                               \
321   V(toJSON_string, "toJSON")                                             \
322   V(InitializeVarGlobal_string, "InitializeVarGlobal")                   \
323   V(InitializeConstGlobal_string, "InitializeConstGlobal")               \
324   V(KeyedLoadElementMonomorphic_string,                                  \
325     "KeyedLoadElementMonomorphic")                                       \
326   V(KeyedStoreElementMonomorphic_string,                                 \
327     "KeyedStoreElementMonomorphic")                                      \
328   V(stack_overflow_string, "kStackOverflowBoilerplate")                  \
329   V(illegal_access_string, "illegal access")                             \
330   V(get_string, "get")                                                   \
331   V(set_string, "set")                                                   \
332   V(map_field_string, "%map")                                            \
333   V(elements_field_string, "%elements")                                  \
334   V(length_field_string, "%length")                                      \
335   V(cell_value_string, "%cell_value")                                    \
336   V(function_class_string, "Function")                                   \
337   V(illegal_argument_string, "illegal argument")                         \
338   V(MakeReferenceError_string, "MakeReferenceError")                     \
339   V(MakeSyntaxError_string, "MakeSyntaxError")                           \
340   V(MakeTypeError_string, "MakeTypeError")                               \
341   V(unknown_label_string, "unknown_label")                               \
342   V(space_string, " ")                                                   \
343   V(exec_string, "exec")                                                 \
344   V(zero_string, "0")                                                    \
345   V(global_eval_string, "GlobalEval")                                    \
346   V(identity_hash_string, "v8::IdentityHash")                            \
347   V(closure_string, "(closure)")                                         \
348   V(use_strict_string, "use strict")                                     \
349   V(dot_string, ".")                                                     \
350   V(anonymous_function_string, "(anonymous function)")                   \
351   V(compare_ic_string, "==")                                             \
352   V(strict_compare_ic_string, "===")                                     \
353   V(infinity_string, "Infinity")                                         \
354   V(minus_infinity_string, "-Infinity")                                  \
355   V(hidden_stack_trace_string, "v8::hidden_stack_trace")                 \
356   V(query_colon_string, "(?:)")                                          \
357   V(Generator_string, "Generator")                                       \
358   V(throw_string, "throw")                                               \
359   V(done_string, "done")                                                 \
360   V(value_string, "value")                                               \
361   V(next_string, "next")                                                 \
362   V(byte_length_string, "byteLength")                                    \
363   V(byte_offset_string, "byteOffset")                                    \
364   V(buffer_string, "buffer")                                             \
365   V(intl_initialized_marker_string, "v8::intl_initialized_marker")       \
366   V(intl_impl_object_string, "v8::intl_object")
367 
368 // Forward declarations.
369 class GCTracer;
370 class HeapStats;
371 class Isolate;
372 class WeakObjectRetainer;
373 
374 
375 typedef String* (*ExternalStringTableUpdaterCallback)(Heap* heap,
376                                                       Object** pointer);
377 
378 class StoreBufferRebuilder {
379  public:
StoreBufferRebuilder(StoreBuffer * store_buffer)380   explicit StoreBufferRebuilder(StoreBuffer* store_buffer)
381       : store_buffer_(store_buffer) {
382   }
383 
384   void Callback(MemoryChunk* page, StoreBufferEvent event);
385 
386  private:
387   StoreBuffer* store_buffer_;
388 
389   // We record in this variable how full the store buffer was when we started
390   // iterating over the current page, finding pointers to new space.  If the
391   // store buffer overflows again we can exempt the page from the store buffer
392   // by rewinding to this point instead of having to search the store buffer.
393   Object*** start_of_current_page_;
394   // The current page we are scanning in the store buffer iterator.
395   MemoryChunk* current_page_;
396 };
397 
398 
399 
400 // A queue of objects promoted during scavenge. Each object is accompanied
401 // by it's size to avoid dereferencing a map pointer for scanning.
402 class PromotionQueue {
403  public:
PromotionQueue(Heap * heap)404   explicit PromotionQueue(Heap* heap)
405       : front_(NULL),
406         rear_(NULL),
407         limit_(NULL),
408         emergency_stack_(0),
409         heap_(heap) { }
410 
411   void Initialize();
412 
Destroy()413   void Destroy() {
414     ASSERT(is_empty());
415     delete emergency_stack_;
416     emergency_stack_ = NULL;
417   }
418 
419   inline void ActivateGuardIfOnTheSamePage();
420 
GetHeadPage()421   Page* GetHeadPage() {
422     return Page::FromAllocationTop(reinterpret_cast<Address>(rear_));
423   }
424 
SetNewLimit(Address limit)425   void SetNewLimit(Address limit) {
426     if (!guard_) {
427       return;
428     }
429 
430     ASSERT(GetHeadPage() == Page::FromAllocationTop(limit));
431     limit_ = reinterpret_cast<intptr_t*>(limit);
432 
433     if (limit_ <= rear_) {
434       return;
435     }
436 
437     RelocateQueueHead();
438   }
439 
is_empty()440   bool is_empty() {
441     return (front_ == rear_) &&
442         (emergency_stack_ == NULL || emergency_stack_->length() == 0);
443   }
444 
445   inline void insert(HeapObject* target, int size);
446 
remove(HeapObject ** target,int * size)447   void remove(HeapObject** target, int* size) {
448     ASSERT(!is_empty());
449     if (front_ == rear_) {
450       Entry e = emergency_stack_->RemoveLast();
451       *target = e.obj_;
452       *size = e.size_;
453       return;
454     }
455 
456     if (NewSpacePage::IsAtStart(reinterpret_cast<Address>(front_))) {
457       NewSpacePage* front_page =
458           NewSpacePage::FromAddress(reinterpret_cast<Address>(front_));
459       ASSERT(!front_page->prev_page()->is_anchor());
460       front_ =
461           reinterpret_cast<intptr_t*>(front_page->prev_page()->area_end());
462     }
463     *target = reinterpret_cast<HeapObject*>(*(--front_));
464     *size = static_cast<int>(*(--front_));
465     // Assert no underflow.
466     SemiSpace::AssertValidRange(reinterpret_cast<Address>(rear_),
467                                 reinterpret_cast<Address>(front_));
468   }
469 
470  private:
471   // The front of the queue is higher in the memory page chain than the rear.
472   intptr_t* front_;
473   intptr_t* rear_;
474   intptr_t* limit_;
475 
476   bool guard_;
477 
478   static const int kEntrySizeInWords = 2;
479 
480   struct Entry {
EntryEntry481     Entry(HeapObject* obj, int size) : obj_(obj), size_(size) { }
482 
483     HeapObject* obj_;
484     int size_;
485   };
486   List<Entry>* emergency_stack_;
487 
488   Heap* heap_;
489 
490   void RelocateQueueHead();
491 
492   DISALLOW_COPY_AND_ASSIGN(PromotionQueue);
493 };
494 
495 
496 typedef void (*ScavengingCallback)(Map* map,
497                                    HeapObject** slot,
498                                    HeapObject* object);
499 
500 
501 // External strings table is a place where all external strings are
502 // registered.  We need to keep track of such strings to properly
503 // finalize them.
504 class ExternalStringTable {
505  public:
506   // Registers an external string.
507   inline void AddString(String* string);
508 
509   inline void Iterate(ObjectVisitor* v);
510 
511   // Restores internal invariant and gets rid of collected strings.
512   // Must be called after each Iterate() that modified the strings.
513   void CleanUp();
514 
515   // Destroys all allocated memory.
516   void TearDown();
517 
518  private:
ExternalStringTable(Heap * heap)519   explicit ExternalStringTable(Heap* heap) : heap_(heap) { }
520 
521   friend class Heap;
522 
523   inline void Verify();
524 
525   inline void AddOldString(String* string);
526 
527   // Notifies the table that only a prefix of the new list is valid.
528   inline void ShrinkNewStrings(int position);
529 
530   // To speed up scavenge collections new space string are kept
531   // separate from old space strings.
532   List<Object*> new_space_strings_;
533   List<Object*> old_space_strings_;
534 
535   Heap* heap_;
536 
537   DISALLOW_COPY_AND_ASSIGN(ExternalStringTable);
538 };
539 
540 
541 enum ArrayStorageAllocationMode {
542   DONT_INITIALIZE_ARRAY_ELEMENTS,
543   INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE
544 };
545 
546 
547 class Heap {
548  public:
549   // Configure heap size in MB before setup. Return false if the heap has been
550   // set up already.
551   bool ConfigureHeap(int max_semi_space_size,
552                      int max_old_space_size,
553                      int max_executable_size,
554                      size_t code_range_size);
555   bool ConfigureHeapDefault();
556 
557   // Prepares the heap, setting up memory areas that are needed in the isolate
558   // without actually creating any objects.
559   bool SetUp();
560 
561   // Bootstraps the object heap with the core set of objects required to run.
562   // Returns whether it succeeded.
563   bool CreateHeapObjects();
564 
565   // Destroys all memory allocated by the heap.
566   void TearDown();
567 
568   // Set the stack limit in the roots_ array.  Some architectures generate
569   // code that looks here, because it is faster than loading from the static
570   // jslimit_/real_jslimit_ variable in the StackGuard.
571   void SetStackLimits();
572 
573   // Returns whether SetUp has been called.
574   bool HasBeenSetUp();
575 
576   // Returns the maximum amount of memory reserved for the heap.  For
577   // the young generation, we reserve 4 times the amount needed for a
578   // semi space.  The young generation consists of two semi spaces and
579   // we reserve twice the amount needed for those in order to ensure
580   // that new space can be aligned to its size.
MaxReserved()581   intptr_t MaxReserved() {
582     return 4 * reserved_semispace_size_ + max_old_generation_size_;
583   }
MaxSemiSpaceSize()584   int MaxSemiSpaceSize() { return max_semi_space_size_; }
ReservedSemiSpaceSize()585   int ReservedSemiSpaceSize() { return reserved_semispace_size_; }
InitialSemiSpaceSize()586   int InitialSemiSpaceSize() { return initial_semispace_size_; }
MaxOldGenerationSize()587   intptr_t MaxOldGenerationSize() { return max_old_generation_size_; }
MaxExecutableSize()588   intptr_t MaxExecutableSize() { return max_executable_size_; }
589 
590   // Returns the capacity of the heap in bytes w/o growing. Heap grows when
591   // more spaces are needed until it reaches the limit.
592   intptr_t Capacity();
593 
594   // Returns the amount of memory currently committed for the heap.
595   intptr_t CommittedMemory();
596 
597   // Returns the amount of executable memory currently committed for the heap.
598   intptr_t CommittedMemoryExecutable();
599 
600   // Returns the amount of phyical memory currently committed for the heap.
601   size_t CommittedPhysicalMemory();
602 
603   // Returns the maximum amount of memory ever committed for the heap.
MaximumCommittedMemory()604   intptr_t MaximumCommittedMemory() { return maximum_committed_; }
605 
606   // Updates the maximum committed memory for the heap. Should be called
607   // whenever a space grows.
608   void UpdateMaximumCommitted();
609 
610   // Returns the available bytes in space w/o growing.
611   // Heap doesn't guarantee that it can allocate an object that requires
612   // all available bytes. Check MaxHeapObjectSize() instead.
613   intptr_t Available();
614 
615   // Returns of size of all objects residing in the heap.
616   intptr_t SizeOfObjects();
617 
618   // Return the starting address and a mask for the new space.  And-masking an
619   // address with the mask will result in the start address of the new space
620   // for all addresses in either semispace.
NewSpaceStart()621   Address NewSpaceStart() { return new_space_.start(); }
NewSpaceMask()622   uintptr_t NewSpaceMask() { return new_space_.mask(); }
NewSpaceTop()623   Address NewSpaceTop() { return new_space_.top(); }
624 
new_space()625   NewSpace* new_space() { return &new_space_; }
old_pointer_space()626   OldSpace* old_pointer_space() { return old_pointer_space_; }
old_data_space()627   OldSpace* old_data_space() { return old_data_space_; }
code_space()628   OldSpace* code_space() { return code_space_; }
map_space()629   MapSpace* map_space() { return map_space_; }
cell_space()630   CellSpace* cell_space() { return cell_space_; }
property_cell_space()631   PropertyCellSpace* property_cell_space() {
632     return property_cell_space_;
633   }
lo_space()634   LargeObjectSpace* lo_space() { return lo_space_; }
paged_space(int idx)635   PagedSpace* paged_space(int idx) {
636     switch (idx) {
637       case OLD_POINTER_SPACE:
638         return old_pointer_space();
639       case OLD_DATA_SPACE:
640         return old_data_space();
641       case MAP_SPACE:
642         return map_space();
643       case CELL_SPACE:
644         return cell_space();
645       case PROPERTY_CELL_SPACE:
646         return property_cell_space();
647       case CODE_SPACE:
648         return code_space();
649       case NEW_SPACE:
650       case LO_SPACE:
651         UNREACHABLE();
652     }
653     return NULL;
654   }
655 
always_allocate()656   bool always_allocate() { return always_allocate_scope_depth_ != 0; }
always_allocate_scope_depth_address()657   Address always_allocate_scope_depth_address() {
658     return reinterpret_cast<Address>(&always_allocate_scope_depth_);
659   }
linear_allocation()660   bool linear_allocation() {
661     return linear_allocation_scope_depth_ != 0;
662   }
663 
NewSpaceAllocationTopAddress()664   Address* NewSpaceAllocationTopAddress() {
665     return new_space_.allocation_top_address();
666   }
NewSpaceAllocationLimitAddress()667   Address* NewSpaceAllocationLimitAddress() {
668     return new_space_.allocation_limit_address();
669   }
670 
OldPointerSpaceAllocationTopAddress()671   Address* OldPointerSpaceAllocationTopAddress() {
672     return old_pointer_space_->allocation_top_address();
673   }
OldPointerSpaceAllocationLimitAddress()674   Address* OldPointerSpaceAllocationLimitAddress() {
675     return old_pointer_space_->allocation_limit_address();
676   }
677 
OldDataSpaceAllocationTopAddress()678   Address* OldDataSpaceAllocationTopAddress() {
679     return old_data_space_->allocation_top_address();
680   }
OldDataSpaceAllocationLimitAddress()681   Address* OldDataSpaceAllocationLimitAddress() {
682     return old_data_space_->allocation_limit_address();
683   }
684 
685   // Returns a deep copy of the JavaScript object.
686   // Properties and elements are copied too.
687   // Optionally takes an AllocationSite to be appended in an AllocationMemento.
688   MUST_USE_RESULT AllocationResult CopyJSObject(JSObject* source,
689                                                 AllocationSite* site = NULL);
690 
691   // Clear the Instanceof cache (used when a prototype changes).
692   inline void ClearInstanceofCache();
693 
694   // Iterates the whole code space to clear all ICs of the given kind.
695   void ClearAllICsByKind(Code::Kind kind);
696 
697   // For use during bootup.
698   void RepairFreeListsAfterBoot();
699 
700   template<typename T>
701   static inline bool IsOneByte(T t, int chars);
702 
703   // Move len elements within a given array from src_index index to dst_index
704   // index.
705   void MoveElements(FixedArray* array, int dst_index, int src_index, int len);
706 
707   // Sloppy mode arguments object size.
708   static const int kSloppyArgumentsObjectSize =
709       JSObject::kHeaderSize + 2 * kPointerSize;
710   // Strict mode arguments has no callee so it is smaller.
711   static const int kStrictArgumentsObjectSize =
712       JSObject::kHeaderSize + 1 * kPointerSize;
713   // Indicies for direct access into argument objects.
714   static const int kArgumentsLengthIndex = 0;
715   // callee is only valid in sloppy mode.
716   static const int kArgumentsCalleeIndex = 1;
717 
718   // Finalizes an external string by deleting the associated external
719   // data and clearing the resource pointer.
720   inline void FinalizeExternalString(String* string);
721 
722   // Initialize a filler object to keep the ability to iterate over the heap
723   // when shortening objects.
724   void CreateFillerObjectAt(Address addr, int size);
725 
726   bool CanMoveObjectStart(HeapObject* object);
727 
728   enum InvocationMode { FROM_GC, FROM_MUTATOR };
729 
730   // Maintain marking consistency for IncrementalMarking.
731   void AdjustLiveBytes(Address address, int by, InvocationMode mode);
732 
733   // Converts the given boolean condition to JavaScript boolean value.
734   inline Object* ToBoolean(bool condition);
735 
736   // Performs garbage collection operation.
737   // Returns whether there is a chance that another major GC could
738   // collect more garbage.
739   inline bool CollectGarbage(
740       AllocationSpace space,
741       const char* gc_reason = NULL,
742       const GCCallbackFlags gc_callback_flags = kNoGCCallbackFlags);
743 
744   static const int kNoGCFlags = 0;
745   static const int kSweepPreciselyMask = 1;
746   static const int kReduceMemoryFootprintMask = 2;
747   static const int kAbortIncrementalMarkingMask = 4;
748 
749   // Making the heap iterable requires us to sweep precisely and abort any
750   // incremental marking as well.
751   static const int kMakeHeapIterableMask =
752       kSweepPreciselyMask | kAbortIncrementalMarkingMask;
753 
754   // Performs a full garbage collection.  If (flags & kMakeHeapIterableMask) is
755   // non-zero, then the slower precise sweeper is used, which leaves the heap
756   // in a state where we can iterate over the heap visiting all objects.
757   void CollectAllGarbage(
758       int flags,
759       const char* gc_reason = NULL,
760       const GCCallbackFlags gc_callback_flags = kNoGCCallbackFlags);
761 
762   // Last hope GC, should try to squeeze as much as possible.
763   void CollectAllAvailableGarbage(const char* gc_reason = NULL);
764 
765   // Check whether the heap is currently iterable.
766   bool IsHeapIterable();
767 
768   // Notify the heap that a context has been disposed.
769   int NotifyContextDisposed();
770 
increment_scan_on_scavenge_pages()771   inline void increment_scan_on_scavenge_pages() {
772     scan_on_scavenge_pages_++;
773     if (FLAG_gc_verbose) {
774       PrintF("Scan-on-scavenge pages: %d\n", scan_on_scavenge_pages_);
775     }
776   }
777 
decrement_scan_on_scavenge_pages()778   inline void decrement_scan_on_scavenge_pages() {
779     scan_on_scavenge_pages_--;
780     if (FLAG_gc_verbose) {
781       PrintF("Scan-on-scavenge pages: %d\n", scan_on_scavenge_pages_);
782     }
783   }
784 
promotion_queue()785   PromotionQueue* promotion_queue() { return &promotion_queue_; }
786 
787   void AddGCPrologueCallback(v8::Isolate::GCPrologueCallback callback,
788                              GCType gc_type_filter,
789                              bool pass_isolate = true);
790   void RemoveGCPrologueCallback(v8::Isolate::GCPrologueCallback callback);
791 
792   void AddGCEpilogueCallback(v8::Isolate::GCEpilogueCallback callback,
793                              GCType gc_type_filter,
794                              bool pass_isolate = true);
795   void RemoveGCEpilogueCallback(v8::Isolate::GCEpilogueCallback callback);
796 
797   // Heap root getters.  We have versions with and without type::cast() here.
798   // You can't use type::cast during GC because the assert fails.
799   // TODO(1490): Try removing the unchecked accessors, now that GC marking does
800   // not corrupt the map.
801 #define ROOT_ACCESSOR(type, name, camel_name)                                  \
802   type* name() {                                                               \
803     return type::cast(roots_[k##camel_name##RootIndex]);                       \
804   }                                                                            \
805   type* raw_unchecked_##name() {                                               \
806     return reinterpret_cast<type*>(roots_[k##camel_name##RootIndex]);          \
807   }
808   ROOT_LIST(ROOT_ACCESSOR)
809 #undef ROOT_ACCESSOR
810 
811 // Utility type maps
812 #define STRUCT_MAP_ACCESSOR(NAME, Name, name)                                  \
813     Map* name##_map() {                                                        \
814       return Map::cast(roots_[k##Name##MapRootIndex]);                         \
815     }
STRUCT_LIST(STRUCT_MAP_ACCESSOR)816   STRUCT_LIST(STRUCT_MAP_ACCESSOR)
817 #undef STRUCT_MAP_ACCESSOR
818 
819 #define STRING_ACCESSOR(name, str) String* name() {                            \
820     return String::cast(roots_[k##name##RootIndex]);                           \
821   }
822   INTERNALIZED_STRING_LIST(STRING_ACCESSOR)
823 #undef STRING_ACCESSOR
824 
825   // The hidden_string is special because it is the empty string, but does
826   // not match the empty string.
827   String* hidden_string() { return hidden_string_; }
828 
set_native_contexts_list(Object * object)829   void set_native_contexts_list(Object* object) {
830     native_contexts_list_ = object;
831   }
native_contexts_list()832   Object* native_contexts_list() const { return native_contexts_list_; }
833 
set_array_buffers_list(Object * object)834   void set_array_buffers_list(Object* object) {
835     array_buffers_list_ = object;
836   }
array_buffers_list()837   Object* array_buffers_list() const { return array_buffers_list_; }
838 
set_allocation_sites_list(Object * object)839   void set_allocation_sites_list(Object* object) {
840     allocation_sites_list_ = object;
841   }
allocation_sites_list()842   Object* allocation_sites_list() { return allocation_sites_list_; }
843 
844   // Used in CreateAllocationSiteStub and the (de)serializer.
allocation_sites_list_address()845   Object** allocation_sites_list_address() { return &allocation_sites_list_; }
846 
weak_object_to_code_table()847   Object* weak_object_to_code_table() { return weak_object_to_code_table_; }
848 
set_encountered_weak_collections(Object * weak_collection)849   void set_encountered_weak_collections(Object* weak_collection) {
850     encountered_weak_collections_ = weak_collection;
851   }
encountered_weak_collections()852   Object* encountered_weak_collections() const {
853     return encountered_weak_collections_;
854   }
855 
856   // Number of mark-sweeps.
ms_count()857   unsigned int ms_count() { return ms_count_; }
858 
859   // Iterates over all roots in the heap.
860   void IterateRoots(ObjectVisitor* v, VisitMode mode);
861   // Iterates over all strong roots in the heap.
862   void IterateStrongRoots(ObjectVisitor* v, VisitMode mode);
863   // Iterates over entries in the smi roots list.  Only interesting to the
864   // serializer/deserializer, since GC does not care about smis.
865   void IterateSmiRoots(ObjectVisitor* v);
866   // Iterates over all the other roots in the heap.
867   void IterateWeakRoots(ObjectVisitor* v, VisitMode mode);
868 
869   // Iterate pointers to from semispace of new space found in memory interval
870   // from start to end.
871   void IterateAndMarkPointersToFromSpace(Address start,
872                                          Address end,
873                                          ObjectSlotCallback callback);
874 
875   // Returns whether the object resides in new space.
876   inline bool InNewSpace(Object* object);
877   inline bool InNewSpace(Address address);
878   inline bool InNewSpacePage(Address address);
879   inline bool InFromSpace(Object* object);
880   inline bool InToSpace(Object* object);
881 
882   // Returns whether the object resides in old pointer space.
883   inline bool InOldPointerSpace(Address address);
884   inline bool InOldPointerSpace(Object* object);
885 
886   // Returns whether the object resides in old data space.
887   inline bool InOldDataSpace(Address address);
888   inline bool InOldDataSpace(Object* object);
889 
890   // Checks whether an address/object in the heap (including auxiliary
891   // area and unused area).
892   bool Contains(Address addr);
893   bool Contains(HeapObject* value);
894 
895   // Checks whether an address/object in a space.
896   // Currently used by tests, serialization and heap verification only.
897   bool InSpace(Address addr, AllocationSpace space);
898   bool InSpace(HeapObject* value, AllocationSpace space);
899 
900   // Finds out which space an object should get promoted to based on its type.
901   inline OldSpace* TargetSpace(HeapObject* object);
902   static inline AllocationSpace TargetSpaceId(InstanceType type);
903 
904   // Checks whether the given object is allowed to be migrated from it's
905   // current space into the given destination space. Used for debugging.
906   inline bool AllowedToBeMigrated(HeapObject* object, AllocationSpace dest);
907 
908   // Sets the stub_cache_ (only used when expanding the dictionary).
public_set_code_stubs(UnseededNumberDictionary * value)909   void public_set_code_stubs(UnseededNumberDictionary* value) {
910     roots_[kCodeStubsRootIndex] = value;
911   }
912 
913   // Support for computing object sizes for old objects during GCs. Returns
914   // a function that is guaranteed to be safe for computing object sizes in
915   // the current GC phase.
GcSafeSizeOfOldObjectFunction()916   HeapObjectCallback GcSafeSizeOfOldObjectFunction() {
917     return gc_safe_size_of_old_object_;
918   }
919 
920   // Sets the non_monomorphic_cache_ (only used when expanding the dictionary).
public_set_non_monomorphic_cache(UnseededNumberDictionary * value)921   void public_set_non_monomorphic_cache(UnseededNumberDictionary* value) {
922     roots_[kNonMonomorphicCacheRootIndex] = value;
923   }
924 
public_set_empty_script(Script * script)925   void public_set_empty_script(Script* script) {
926     roots_[kEmptyScriptRootIndex] = script;
927   }
928 
public_set_store_buffer_top(Address * top)929   void public_set_store_buffer_top(Address* top) {
930     roots_[kStoreBufferTopRootIndex] = reinterpret_cast<Smi*>(top);
931   }
932 
public_set_materialized_objects(FixedArray * objects)933   void public_set_materialized_objects(FixedArray* objects) {
934     roots_[kMaterializedObjectsRootIndex] = objects;
935   }
936 
937   // Generated code can embed this address to get access to the roots.
roots_array_start()938   Object** roots_array_start() { return roots_; }
939 
store_buffer_top_address()940   Address* store_buffer_top_address() {
941     return reinterpret_cast<Address*>(&roots_[kStoreBufferTopRootIndex]);
942   }
943 
944 #ifdef VERIFY_HEAP
945   // Verify the heap is in its normal state before or after a GC.
946   void Verify();
947 
948 
weak_embedded_objects_verification_enabled()949   bool weak_embedded_objects_verification_enabled() {
950     return no_weak_object_verification_scope_depth_ == 0;
951   }
952 #endif
953 
954 #ifdef DEBUG
955   void Print();
956   void PrintHandles();
957 
958   void OldPointerSpaceCheckStoreBuffer();
959   void MapSpaceCheckStoreBuffer();
960   void LargeObjectSpaceCheckStoreBuffer();
961 
962   // Report heap statistics.
963   void ReportHeapStatistics(const char* title);
964   void ReportCodeStatistics(const char* title);
965 #endif
966 
967   // Zapping is needed for verify heap, and always done in debug builds.
ShouldZapGarbage()968   static inline bool ShouldZapGarbage() {
969 #ifdef DEBUG
970     return true;
971 #else
972 #ifdef VERIFY_HEAP
973     return FLAG_verify_heap;
974 #else
975     return false;
976 #endif
977 #endif
978   }
979 
980   // Print short heap statistics.
981   void PrintShortHeapStatistics();
982 
983   // Write barrier support for address[offset] = o.
984   INLINE(void RecordWrite(Address address, int offset));
985 
986   // Write barrier support for address[start : start + len[ = o.
987   INLINE(void RecordWrites(Address address, int start, int len));
988 
989   enum HeapState { NOT_IN_GC, SCAVENGE, MARK_COMPACT };
gc_state()990   inline HeapState gc_state() { return gc_state_; }
991 
IsInGCPostProcessing()992   inline bool IsInGCPostProcessing() { return gc_post_processing_depth_ > 0; }
993 
994 #ifdef DEBUG
set_allocation_timeout(int timeout)995   void set_allocation_timeout(int timeout) {
996     allocation_timeout_ = timeout;
997   }
998 
999   void TracePathToObjectFrom(Object* target, Object* root);
1000   void TracePathToObject(Object* target);
1001   void TracePathToGlobal();
1002 #endif
1003 
1004   // Callback function passed to Heap::Iterate etc.  Copies an object if
1005   // necessary, the object might be promoted to an old space.  The caller must
1006   // ensure the precondition that the object is (a) a heap object and (b) in
1007   // the heap's from space.
1008   static inline void ScavengePointer(HeapObject** p);
1009   static inline void ScavengeObject(HeapObject** p, HeapObject* object);
1010 
1011   enum ScratchpadSlotMode {
1012     IGNORE_SCRATCHPAD_SLOT,
1013     RECORD_SCRATCHPAD_SLOT
1014   };
1015 
1016   // If an object has an AllocationMemento trailing it, return it, otherwise
1017   // return NULL;
1018   inline AllocationMemento* FindAllocationMemento(HeapObject* object);
1019 
1020   // An object may have an AllocationSite associated with it through a trailing
1021   // AllocationMemento. Its feedback should be updated when objects are found
1022   // in the heap.
1023   static inline void UpdateAllocationSiteFeedback(
1024       HeapObject* object, ScratchpadSlotMode mode);
1025 
1026   // Support for partial snapshots.  After calling this we have a linear
1027   // space to write objects in each space.
1028   void ReserveSpace(int *sizes, Address* addresses);
1029 
1030   //
1031   // Support for the API.
1032   //
1033 
1034   void CreateApiObjects();
1035 
PromotedTotalSize()1036   inline intptr_t PromotedTotalSize() {
1037     int64_t total = PromotedSpaceSizeOfObjects() + PromotedExternalMemorySize();
1038     if (total > kMaxInt) return static_cast<intptr_t>(kMaxInt);
1039     if (total < 0) return 0;
1040     return static_cast<intptr_t>(total);
1041   }
1042 
OldGenerationSpaceAvailable()1043   inline intptr_t OldGenerationSpaceAvailable() {
1044     return old_generation_allocation_limit_ - PromotedTotalSize();
1045   }
1046 
OldGenerationCapacityAvailable()1047   inline intptr_t OldGenerationCapacityAvailable() {
1048     return max_old_generation_size_ - PromotedTotalSize();
1049   }
1050 
1051   static const intptr_t kMinimumOldGenerationAllocationLimit =
1052       8 * (Page::kPageSize > MB ? Page::kPageSize : MB);
1053 
1054   static const int kPointerMultiplier = i::kPointerSize / 4;
1055 
1056   // The new space size has to be a power of 2. Sizes are in MB.
1057   static const int kMaxSemiSpaceSizeLowMemoryDevice =
1058       1 * kPointerMultiplier;
1059   static const int kMaxSemiSpaceSizeMediumMemoryDevice =
1060       4 * kPointerMultiplier;
1061   static const int kMaxSemiSpaceSizeHighMemoryDevice =
1062       8 * kPointerMultiplier;
1063   static const int kMaxSemiSpaceSizeHugeMemoryDevice =
1064       8 * kPointerMultiplier;
1065 
1066   // The old space size has to be a multiple of Page::kPageSize.
1067   // Sizes are in MB.
1068   static const int kMaxOldSpaceSizeLowMemoryDevice =
1069       128 * kPointerMultiplier;
1070   static const int kMaxOldSpaceSizeMediumMemoryDevice =
1071       256 * kPointerMultiplier;
1072   static const int kMaxOldSpaceSizeHighMemoryDevice =
1073       512 * kPointerMultiplier;
1074   static const int kMaxOldSpaceSizeHugeMemoryDevice =
1075       700 * kPointerMultiplier;
1076 
1077   // The executable size has to be a multiple of Page::kPageSize.
1078   // Sizes are in MB.
1079   static const int kMaxExecutableSizeLowMemoryDevice = 96 * kPointerMultiplier;
1080   static const int kMaxExecutableSizeMediumMemoryDevice =
1081       192 * kPointerMultiplier;
1082   static const int kMaxExecutableSizeHighMemoryDevice =
1083       256 * kPointerMultiplier;
1084   static const int kMaxExecutableSizeHugeMemoryDevice =
1085       256 * kPointerMultiplier;
1086 
1087   intptr_t OldGenerationAllocationLimit(intptr_t old_gen_size,
1088                                         int freed_global_handles);
1089 
1090   // Indicates whether inline bump-pointer allocation has been disabled.
inline_allocation_disabled()1091   bool inline_allocation_disabled() { return inline_allocation_disabled_; }
1092 
1093   // Switch whether inline bump-pointer allocation should be used.
1094   void EnableInlineAllocation();
1095   void DisableInlineAllocation();
1096 
1097   // Implements the corresponding V8 API function.
1098   bool IdleNotification(int hint);
1099 
1100   // Declare all the root indices.  This defines the root list order.
1101   enum RootListIndex {
1102 #define ROOT_INDEX_DECLARATION(type, name, camel_name) k##camel_name##RootIndex,
1103     STRONG_ROOT_LIST(ROOT_INDEX_DECLARATION)
1104 #undef ROOT_INDEX_DECLARATION
1105 
1106 #define STRING_INDEX_DECLARATION(name, str) k##name##RootIndex,
1107     INTERNALIZED_STRING_LIST(STRING_INDEX_DECLARATION)
1108 #undef STRING_DECLARATION
1109 
1110     // Utility type maps
1111 #define DECLARE_STRUCT_MAP(NAME, Name, name) k##Name##MapRootIndex,
1112     STRUCT_LIST(DECLARE_STRUCT_MAP)
1113 #undef DECLARE_STRUCT_MAP
1114 
1115     kStringTableRootIndex,
1116 
1117 #define ROOT_INDEX_DECLARATION(type, name, camel_name) k##camel_name##RootIndex,
1118     SMI_ROOT_LIST(ROOT_INDEX_DECLARATION)
1119 #undef ROOT_INDEX_DECLARATION
1120 
1121     kRootListLength,
1122     kStrongRootListLength = kStringTableRootIndex,
1123     kSmiRootsStart = kStringTableRootIndex + 1
1124   };
1125 
1126   STATIC_ASSERT(kUndefinedValueRootIndex ==
1127                 Internals::kUndefinedValueRootIndex);
1128   STATIC_ASSERT(kNullValueRootIndex == Internals::kNullValueRootIndex);
1129   STATIC_ASSERT(kTrueValueRootIndex == Internals::kTrueValueRootIndex);
1130   STATIC_ASSERT(kFalseValueRootIndex == Internals::kFalseValueRootIndex);
1131   STATIC_ASSERT(kempty_stringRootIndex == Internals::kEmptyStringRootIndex);
1132 
1133   // Generated code can embed direct references to non-writable roots if
1134   // they are in new space.
1135   static bool RootCanBeWrittenAfterInitialization(RootListIndex root_index);
1136   // Generated code can treat direct references to this root as constant.
1137   bool RootCanBeTreatedAsConstant(RootListIndex root_index);
1138 
1139   Map* MapForFixedTypedArray(ExternalArrayType array_type);
1140   RootListIndex RootIndexForFixedTypedArray(
1141       ExternalArrayType array_type);
1142 
1143   Map* MapForExternalArrayType(ExternalArrayType array_type);
1144   RootListIndex RootIndexForExternalArrayType(
1145       ExternalArrayType array_type);
1146 
1147   RootListIndex RootIndexForEmptyExternalArray(ElementsKind kind);
1148   RootListIndex RootIndexForEmptyFixedTypedArray(ElementsKind kind);
1149   ExternalArray* EmptyExternalArrayForMap(Map* map);
1150   FixedTypedArrayBase* EmptyFixedTypedArrayForMap(Map* map);
1151 
1152   void RecordStats(HeapStats* stats, bool take_snapshot = false);
1153 
1154   // Copy block of memory from src to dst. Size of block should be aligned
1155   // by pointer size.
1156   static inline void CopyBlock(Address dst, Address src, int byte_size);
1157 
1158   // Optimized version of memmove for blocks with pointer size aligned sizes and
1159   // pointer size aligned addresses.
1160   static inline void MoveBlock(Address dst, Address src, int byte_size);
1161 
1162   // Check new space expansion criteria and expand semispaces if it was hit.
1163   void CheckNewSpaceExpansionCriteria();
1164 
IncrementPromotedObjectsSize(int object_size)1165   inline void IncrementPromotedObjectsSize(int object_size) {
1166     ASSERT(object_size > 0);
1167     promoted_objects_size_ += object_size;
1168   }
1169 
IncrementSemiSpaceCopiedObjectSize(int object_size)1170   inline void IncrementSemiSpaceCopiedObjectSize(int object_size) {
1171     ASSERT(object_size > 0);
1172     semi_space_copied_object_size_ += object_size;
1173   }
1174 
IncrementYoungSurvivorsCounter(int survived)1175   inline void IncrementYoungSurvivorsCounter(int survived) {
1176     ASSERT(survived >= 0);
1177     survived_since_last_expansion_ += survived;
1178   }
1179 
NextGCIsLikelyToBeFull()1180   inline bool NextGCIsLikelyToBeFull() {
1181     if (FLAG_gc_global) return true;
1182 
1183     if (FLAG_stress_compaction && (gc_count_ & 1) != 0) return true;
1184 
1185     intptr_t adjusted_allocation_limit =
1186         old_generation_allocation_limit_ - new_space_.Capacity();
1187 
1188     if (PromotedTotalSize() >= adjusted_allocation_limit) return true;
1189 
1190     return false;
1191   }
1192 
1193   void UpdateNewSpaceReferencesInExternalStringTable(
1194       ExternalStringTableUpdaterCallback updater_func);
1195 
1196   void UpdateReferencesInExternalStringTable(
1197       ExternalStringTableUpdaterCallback updater_func);
1198 
1199   void ProcessWeakReferences(WeakObjectRetainer* retainer);
1200 
1201   void VisitExternalResources(v8::ExternalResourceVisitor* visitor);
1202 
1203   // Helper function that governs the promotion policy from new space to
1204   // old.  If the object's old address lies below the new space's age
1205   // mark or if we've already filled the bottom 1/16th of the to space,
1206   // we try to promote this object.
1207   inline bool ShouldBePromoted(Address old_address, int object_size);
1208 
1209   void ClearJSFunctionResultCaches();
1210 
1211   void ClearNormalizedMapCaches();
1212 
tracer()1213   GCTracer* tracer() { return tracer_; }
1214 
1215   // Returns the size of objects residing in non new spaces.
1216   intptr_t PromotedSpaceSizeOfObjects();
1217 
total_regexp_code_generated()1218   double total_regexp_code_generated() { return total_regexp_code_generated_; }
IncreaseTotalRegexpCodeGenerated(int size)1219   void IncreaseTotalRegexpCodeGenerated(int size) {
1220     total_regexp_code_generated_ += size;
1221   }
1222 
IncrementCodeGeneratedBytes(bool is_crankshafted,int size)1223   void IncrementCodeGeneratedBytes(bool is_crankshafted, int size) {
1224     if (is_crankshafted) {
1225       crankshaft_codegen_bytes_generated_ += size;
1226     } else {
1227       full_codegen_bytes_generated_ += size;
1228     }
1229   }
1230 
1231   // Returns maximum GC pause.
get_max_gc_pause()1232   double get_max_gc_pause() { return max_gc_pause_; }
1233 
1234   // Returns maximum size of objects alive after GC.
get_max_alive_after_gc()1235   intptr_t get_max_alive_after_gc() { return max_alive_after_gc_; }
1236 
1237   // Returns minimal interval between two subsequent collections.
get_min_in_mutator()1238   double get_min_in_mutator() { return min_in_mutator_; }
1239 
1240   // TODO(hpayer): remove, should be handled by GCTracer
AddMarkingTime(double marking_time)1241   void AddMarkingTime(double marking_time) {
1242     marking_time_ += marking_time;
1243   }
1244 
marking_time()1245   double marking_time() const {
1246     return marking_time_;
1247   }
1248 
1249   // TODO(hpayer): remove, should be handled by GCTracer
AddSweepingTime(double sweeping_time)1250   void AddSweepingTime(double sweeping_time) {
1251     sweeping_time_ += sweeping_time;
1252   }
1253 
sweeping_time()1254   double sweeping_time() const {
1255     return sweeping_time_;
1256   }
1257 
mark_compact_collector()1258   MarkCompactCollector* mark_compact_collector() {
1259     return &mark_compact_collector_;
1260   }
1261 
store_buffer()1262   StoreBuffer* store_buffer() {
1263     return &store_buffer_;
1264   }
1265 
marking()1266   Marking* marking() {
1267     return &marking_;
1268   }
1269 
incremental_marking()1270   IncrementalMarking* incremental_marking() {
1271     return &incremental_marking_;
1272   }
1273 
external_string_table()1274   ExternalStringTable* external_string_table() {
1275     return &external_string_table_;
1276   }
1277 
1278   // Returns the current sweep generation.
sweep_generation()1279   int sweep_generation() {
1280     return sweep_generation_;
1281   }
1282 
1283   inline Isolate* isolate();
1284 
1285   void CallGCPrologueCallbacks(GCType gc_type, GCCallbackFlags flags);
1286   void CallGCEpilogueCallbacks(GCType gc_type, GCCallbackFlags flags);
1287 
1288   inline bool OldGenerationAllocationLimitReached();
1289 
DoScavengeObject(Map * map,HeapObject ** slot,HeapObject * obj)1290   inline void DoScavengeObject(Map* map, HeapObject** slot, HeapObject* obj) {
1291     scavenging_visitors_table_.GetVisitor(map)(map, slot, obj);
1292   }
1293 
1294   void QueueMemoryChunkForFree(MemoryChunk* chunk);
1295   void FreeQueuedChunks();
1296 
gc_count()1297   int gc_count() const { return gc_count_; }
1298 
1299   // Completely clear the Instanceof cache (to stop it keeping objects alive
1300   // around a GC).
1301   inline void CompletelyClearInstanceofCache();
1302 
1303   // The roots that have an index less than this are always in old space.
1304   static const int kOldSpaceRoots = 0x20;
1305 
HashSeed()1306   uint32_t HashSeed() {
1307     uint32_t seed = static_cast<uint32_t>(hash_seed()->value());
1308     ASSERT(FLAG_randomize_hashes || seed == 0);
1309     return seed;
1310   }
1311 
SetArgumentsAdaptorDeoptPCOffset(int pc_offset)1312   void SetArgumentsAdaptorDeoptPCOffset(int pc_offset) {
1313     ASSERT(arguments_adaptor_deopt_pc_offset() == Smi::FromInt(0));
1314     set_arguments_adaptor_deopt_pc_offset(Smi::FromInt(pc_offset));
1315   }
1316 
SetConstructStubDeoptPCOffset(int pc_offset)1317   void SetConstructStubDeoptPCOffset(int pc_offset) {
1318     ASSERT(construct_stub_deopt_pc_offset() == Smi::FromInt(0));
1319     set_construct_stub_deopt_pc_offset(Smi::FromInt(pc_offset));
1320   }
1321 
SetGetterStubDeoptPCOffset(int pc_offset)1322   void SetGetterStubDeoptPCOffset(int pc_offset) {
1323     ASSERT(getter_stub_deopt_pc_offset() == Smi::FromInt(0));
1324     set_getter_stub_deopt_pc_offset(Smi::FromInt(pc_offset));
1325   }
1326 
SetSetterStubDeoptPCOffset(int pc_offset)1327   void SetSetterStubDeoptPCOffset(int pc_offset) {
1328     ASSERT(setter_stub_deopt_pc_offset() == Smi::FromInt(0));
1329     set_setter_stub_deopt_pc_offset(Smi::FromInt(pc_offset));
1330   }
1331 
1332   // For post mortem debugging.
1333   void RememberUnmappedPage(Address page, bool compacted);
1334 
1335   // Global inline caching age: it is incremented on some GCs after context
1336   // disposal. We use it to flush inline caches.
global_ic_age()1337   int global_ic_age() {
1338     return global_ic_age_;
1339   }
1340 
AgeInlineCaches()1341   void AgeInlineCaches() {
1342     global_ic_age_ = (global_ic_age_ + 1) & SharedFunctionInfo::ICAgeBits::kMax;
1343   }
1344 
flush_monomorphic_ics()1345   bool flush_monomorphic_ics() { return flush_monomorphic_ics_; }
1346 
amount_of_external_allocated_memory()1347   int64_t amount_of_external_allocated_memory() {
1348     return amount_of_external_allocated_memory_;
1349   }
1350 
1351   void DeoptMarkedAllocationSites();
1352 
MaximumSizeScavenge()1353   bool MaximumSizeScavenge() {
1354     return maximum_size_scavenges_ > 0;
1355   }
1356 
DeoptMaybeTenuredAllocationSites()1357   bool DeoptMaybeTenuredAllocationSites() {
1358     return new_space_.IsAtMaximumCapacity() && maximum_size_scavenges_ == 0;
1359   }
1360 
1361   // ObjectStats are kept in two arrays, counts and sizes. Related stats are
1362   // stored in a contiguous linear buffer. Stats groups are stored one after
1363   // another.
1364   enum {
1365     FIRST_CODE_KIND_SUB_TYPE = LAST_TYPE + 1,
1366     FIRST_FIXED_ARRAY_SUB_TYPE =
1367         FIRST_CODE_KIND_SUB_TYPE + Code::NUMBER_OF_KINDS,
1368     FIRST_CODE_AGE_SUB_TYPE =
1369         FIRST_FIXED_ARRAY_SUB_TYPE + LAST_FIXED_ARRAY_SUB_TYPE + 1,
1370     OBJECT_STATS_COUNT = FIRST_CODE_AGE_SUB_TYPE + Code::kCodeAgeCount + 1
1371   };
1372 
RecordObjectStats(InstanceType type,size_t size)1373   void RecordObjectStats(InstanceType type, size_t size) {
1374     ASSERT(type <= LAST_TYPE);
1375     object_counts_[type]++;
1376     object_sizes_[type] += size;
1377   }
1378 
RecordCodeSubTypeStats(int code_sub_type,int code_age,size_t size)1379   void RecordCodeSubTypeStats(int code_sub_type, int code_age, size_t size) {
1380     int code_sub_type_index = FIRST_CODE_KIND_SUB_TYPE + code_sub_type;
1381     int code_age_index =
1382         FIRST_CODE_AGE_SUB_TYPE + code_age - Code::kFirstCodeAge;
1383     ASSERT(code_sub_type_index >= FIRST_CODE_KIND_SUB_TYPE &&
1384            code_sub_type_index < FIRST_CODE_AGE_SUB_TYPE);
1385     ASSERT(code_age_index >= FIRST_CODE_AGE_SUB_TYPE &&
1386            code_age_index < OBJECT_STATS_COUNT);
1387     object_counts_[code_sub_type_index]++;
1388     object_sizes_[code_sub_type_index] += size;
1389     object_counts_[code_age_index]++;
1390     object_sizes_[code_age_index] += size;
1391   }
1392 
RecordFixedArraySubTypeStats(int array_sub_type,size_t size)1393   void RecordFixedArraySubTypeStats(int array_sub_type, size_t size) {
1394     ASSERT(array_sub_type <= LAST_FIXED_ARRAY_SUB_TYPE);
1395     object_counts_[FIRST_FIXED_ARRAY_SUB_TYPE + array_sub_type]++;
1396     object_sizes_[FIRST_FIXED_ARRAY_SUB_TYPE + array_sub_type] += size;
1397   }
1398 
1399   void CheckpointObjectStats();
1400 
1401   // We don't use a LockGuard here since we want to lock the heap
1402   // only when FLAG_concurrent_recompilation is true.
1403   class RelocationLock {
1404    public:
RelocationLock(Heap * heap)1405     explicit RelocationLock(Heap* heap) : heap_(heap) {
1406       heap_->relocation_mutex_.Lock();
1407     }
1408 
1409 
~RelocationLock()1410     ~RelocationLock() {
1411       heap_->relocation_mutex_.Unlock();
1412     }
1413 
1414    private:
1415     Heap* heap_;
1416   };
1417 
1418   void AddWeakObjectToCodeDependency(Handle<Object> obj,
1419                                      Handle<DependentCode> dep);
1420 
1421   DependentCode* LookupWeakObjectToCodeDependency(Handle<Object> obj);
1422 
InitializeWeakObjectToCodeTable()1423   void InitializeWeakObjectToCodeTable() {
1424     set_weak_object_to_code_table(undefined_value());
1425   }
1426 
1427   void EnsureWeakObjectToCodeTable();
1428 
1429   static void FatalProcessOutOfMemory(const char* location,
1430                                       bool take_snapshot = false);
1431 
1432  protected:
1433   // Methods made available to tests.
1434 
1435   // Allocates a JS Map in the heap.
1436   MUST_USE_RESULT AllocationResult AllocateMap(
1437       InstanceType instance_type,
1438       int instance_size,
1439       ElementsKind elements_kind = TERMINAL_FAST_ELEMENTS_KIND);
1440 
1441   // Allocates and initializes a new JavaScript object based on a
1442   // constructor.
1443   // If allocation_site is non-null, then a memento is emitted after the object
1444   // that points to the site.
1445   MUST_USE_RESULT AllocationResult AllocateJSObject(
1446       JSFunction* constructor,
1447       PretenureFlag pretenure = NOT_TENURED,
1448       AllocationSite* allocation_site = NULL);
1449 
1450   // Allocates and initializes a new JavaScript object based on a map.
1451   // Passing an allocation site means that a memento will be created that
1452   // points to the site.
1453   MUST_USE_RESULT AllocationResult AllocateJSObjectFromMap(
1454       Map* map,
1455       PretenureFlag pretenure = NOT_TENURED,
1456       bool alloc_props = true,
1457       AllocationSite* allocation_site = NULL);
1458 
1459   // Allocated a HeapNumber from value.
1460   MUST_USE_RESULT AllocationResult AllocateHeapNumber(
1461       double value, PretenureFlag pretenure = NOT_TENURED);
1462 
1463   // Allocate a byte array of the specified length
1464   MUST_USE_RESULT AllocationResult AllocateByteArray(
1465       int length,
1466       PretenureFlag pretenure = NOT_TENURED);
1467 
1468   // Allocates an arguments object - optionally with an elements array.
1469   MUST_USE_RESULT AllocationResult AllocateArgumentsObject(
1470       Object* callee, int length);
1471 
1472   // Copy the code and scope info part of the code object, but insert
1473   // the provided data as the relocation information.
1474   MUST_USE_RESULT AllocationResult CopyCode(Code* code,
1475                                             Vector<byte> reloc_info);
1476 
1477   MUST_USE_RESULT AllocationResult CopyCode(Code* code);
1478 
1479   // Allocates a fixed array initialized with undefined values
1480   MUST_USE_RESULT AllocationResult AllocateFixedArray(
1481       int length,
1482       PretenureFlag pretenure = NOT_TENURED);
1483 
1484  private:
1485   Heap();
1486 
1487   // The amount of external memory registered through the API kept alive
1488   // by global handles
1489   int64_t amount_of_external_allocated_memory_;
1490 
1491   // Caches the amount of external memory registered at the last global gc.
1492   int64_t amount_of_external_allocated_memory_at_last_global_gc_;
1493 
1494   // This can be calculated directly from a pointer to the heap; however, it is
1495   // more expedient to get at the isolate directly from within Heap methods.
1496   Isolate* isolate_;
1497 
1498   Object* roots_[kRootListLength];
1499 
1500   size_t code_range_size_;
1501   int reserved_semispace_size_;
1502   int max_semi_space_size_;
1503   int initial_semispace_size_;
1504   intptr_t max_old_generation_size_;
1505   intptr_t max_executable_size_;
1506   intptr_t maximum_committed_;
1507 
1508   // For keeping track of how much data has survived
1509   // scavenge since last new space expansion.
1510   int survived_since_last_expansion_;
1511 
1512   // For keeping track on when to flush RegExp code.
1513   int sweep_generation_;
1514 
1515   int always_allocate_scope_depth_;
1516   int linear_allocation_scope_depth_;
1517 
1518   // For keeping track of context disposals.
1519   int contexts_disposed_;
1520 
1521   int global_ic_age_;
1522 
1523   bool flush_monomorphic_ics_;
1524 
1525   int scan_on_scavenge_pages_;
1526 
1527   NewSpace new_space_;
1528   OldSpace* old_pointer_space_;
1529   OldSpace* old_data_space_;
1530   OldSpace* code_space_;
1531   MapSpace* map_space_;
1532   CellSpace* cell_space_;
1533   PropertyCellSpace* property_cell_space_;
1534   LargeObjectSpace* lo_space_;
1535   HeapState gc_state_;
1536   int gc_post_processing_depth_;
1537   Address new_space_top_after_last_gc_;
1538 
1539   // Returns the amount of external memory registered since last global gc.
1540   int64_t PromotedExternalMemorySize();
1541 
1542   unsigned int ms_count_;  // how many mark-sweep collections happened
1543   unsigned int gc_count_;  // how many gc happened
1544 
1545   // For post mortem debugging.
1546   static const int kRememberedUnmappedPages = 128;
1547   int remembered_unmapped_pages_index_;
1548   Address remembered_unmapped_pages_[kRememberedUnmappedPages];
1549 
1550   // Total length of the strings we failed to flatten since the last GC.
1551   int unflattened_strings_length_;
1552 
1553 #define ROOT_ACCESSOR(type, name, camel_name)                                  \
1554   inline void set_##name(type* value) {                                        \
1555     /* The deserializer makes use of the fact that these common roots are */   \
1556     /* never in new space and never on a page that is being compacted.    */   \
1557     ASSERT(k##camel_name##RootIndex >= kOldSpaceRoots || !InNewSpace(value));  \
1558     roots_[k##camel_name##RootIndex] = value;                                  \
1559   }
1560   ROOT_LIST(ROOT_ACCESSOR)
1561 #undef ROOT_ACCESSOR
1562 
1563 #ifdef DEBUG
1564   // If the --gc-interval flag is set to a positive value, this
1565   // variable holds the value indicating the number of allocations
1566   // remain until the next failure and garbage collection.
1567   int allocation_timeout_;
1568 #endif  // DEBUG
1569 
1570   // Limit that triggers a global GC on the next (normally caused) GC.  This
1571   // is checked when we have already decided to do a GC to help determine
1572   // which collector to invoke, before expanding a paged space in the old
1573   // generation and on every allocation in large object space.
1574   intptr_t old_generation_allocation_limit_;
1575 
1576   // Indicates that an allocation has failed in the old generation since the
1577   // last GC.
1578   bool old_gen_exhausted_;
1579 
1580   // Indicates that inline bump-pointer allocation has been globally disabled
1581   // for all spaces. This is used to disable allocations in generated code.
1582   bool inline_allocation_disabled_;
1583 
1584   // Weak list heads, threaded through the objects.
1585   // List heads are initilized lazily and contain the undefined_value at start.
1586   Object* native_contexts_list_;
1587   Object* array_buffers_list_;
1588   Object* allocation_sites_list_;
1589 
1590   // WeakHashTable that maps objects embedded in optimized code to dependent
1591   // code list. It is initilized lazily and contains the undefined_value at
1592   // start.
1593   Object* weak_object_to_code_table_;
1594 
1595   // List of encountered weak collections (JSWeakMap and JSWeakSet) during
1596   // marking. It is initialized during marking, destroyed after marking and
1597   // contains Smi(0) while marking is not active.
1598   Object* encountered_weak_collections_;
1599 
1600   StoreBufferRebuilder store_buffer_rebuilder_;
1601 
1602   struct StringTypeTable {
1603     InstanceType type;
1604     int size;
1605     RootListIndex index;
1606   };
1607 
1608   struct ConstantStringTable {
1609     const char* contents;
1610     RootListIndex index;
1611   };
1612 
1613   struct StructTable {
1614     InstanceType type;
1615     int size;
1616     RootListIndex index;
1617   };
1618 
1619   static const StringTypeTable string_type_table[];
1620   static const ConstantStringTable constant_string_table[];
1621   static const StructTable struct_table[];
1622 
1623   // The special hidden string which is an empty string, but does not match
1624   // any string when looked up in properties.
1625   String* hidden_string_;
1626 
1627   // GC callback function, called before and after mark-compact GC.
1628   // Allocations in the callback function are disallowed.
1629   struct GCPrologueCallbackPair {
GCPrologueCallbackPairGCPrologueCallbackPair1630     GCPrologueCallbackPair(v8::Isolate::GCPrologueCallback callback,
1631                            GCType gc_type,
1632                            bool pass_isolate)
1633         : callback(callback), gc_type(gc_type), pass_isolate_(pass_isolate) {
1634     }
1635     bool operator==(const GCPrologueCallbackPair& pair) const {
1636       return pair.callback == callback;
1637     }
1638     v8::Isolate::GCPrologueCallback callback;
1639     GCType gc_type;
1640     // TODO(dcarney): remove variable
1641     bool pass_isolate_;
1642   };
1643   List<GCPrologueCallbackPair> gc_prologue_callbacks_;
1644 
1645   struct GCEpilogueCallbackPair {
GCEpilogueCallbackPairGCEpilogueCallbackPair1646     GCEpilogueCallbackPair(v8::Isolate::GCPrologueCallback callback,
1647                            GCType gc_type,
1648                            bool pass_isolate)
1649         : callback(callback), gc_type(gc_type), pass_isolate_(pass_isolate) {
1650     }
1651     bool operator==(const GCEpilogueCallbackPair& pair) const {
1652       return pair.callback == callback;
1653     }
1654     v8::Isolate::GCPrologueCallback callback;
1655     GCType gc_type;
1656     // TODO(dcarney): remove variable
1657     bool pass_isolate_;
1658   };
1659   List<GCEpilogueCallbackPair> gc_epilogue_callbacks_;
1660 
1661   // Support for computing object sizes during GC.
1662   HeapObjectCallback gc_safe_size_of_old_object_;
1663   static int GcSafeSizeOfOldObject(HeapObject* object);
1664 
1665   // Update the GC state. Called from the mark-compact collector.
MarkMapPointersAsEncoded(bool encoded)1666   void MarkMapPointersAsEncoded(bool encoded) {
1667     ASSERT(!encoded);
1668     gc_safe_size_of_old_object_ = &GcSafeSizeOfOldObject;
1669   }
1670 
1671   // Code that should be run before and after each GC.  Includes some
1672   // reporting/verification activities when compiled with DEBUG set.
1673   void GarbageCollectionPrologue();
1674   void GarbageCollectionEpilogue();
1675 
1676   // Pretenuring decisions are made based on feedback collected during new
1677   // space evacuation. Note that between feedback collection and calling this
1678   // method object in old space must not move.
1679   // Right now we only process pretenuring feedback in high promotion mode.
1680   void ProcessPretenuringFeedback();
1681 
1682   // Checks whether a global GC is necessary
1683   GarbageCollector SelectGarbageCollector(AllocationSpace space,
1684                                           const char** reason);
1685 
1686   // Make sure there is a filler value behind the top of the new space
1687   // so that the GC does not confuse some unintialized/stale memory
1688   // with the allocation memento of the object at the top
1689   void EnsureFillerObjectAtTop();
1690 
1691   // Ensure that we have swept all spaces in such a way that we can iterate
1692   // over all objects.  May cause a GC.
1693   void MakeHeapIterable();
1694 
1695   // Performs garbage collection operation.
1696   // Returns whether there is a chance that another major GC could
1697   // collect more garbage.
1698   bool CollectGarbage(
1699       GarbageCollector collector,
1700       const char* gc_reason,
1701       const char* collector_reason,
1702       const GCCallbackFlags gc_callback_flags = kNoGCCallbackFlags);
1703 
1704   // Performs garbage collection
1705   // Returns whether there is a chance another major GC could
1706   // collect more garbage.
1707   bool PerformGarbageCollection(
1708       GarbageCollector collector,
1709       GCTracer* tracer,
1710       const GCCallbackFlags gc_callback_flags = kNoGCCallbackFlags);
1711 
1712   inline void UpdateOldSpaceLimits();
1713 
1714   // Selects the proper allocation space depending on the given object
1715   // size, pretenuring decision, and preferred old-space.
SelectSpace(int object_size,AllocationSpace preferred_old_space,PretenureFlag pretenure)1716   static AllocationSpace SelectSpace(int object_size,
1717                                      AllocationSpace preferred_old_space,
1718                                      PretenureFlag pretenure) {
1719     ASSERT(preferred_old_space == OLD_POINTER_SPACE ||
1720            preferred_old_space == OLD_DATA_SPACE);
1721     if (object_size > Page::kMaxRegularHeapObjectSize) return LO_SPACE;
1722     return (pretenure == TENURED) ? preferred_old_space : NEW_SPACE;
1723   }
1724 
1725   // Allocate an uninitialized object.  The memory is non-executable if the
1726   // hardware and OS allow.  This is the single choke-point for allocations
1727   // performed by the runtime and should not be bypassed (to extend this to
1728   // inlined allocations, use the Heap::DisableInlineAllocation() support).
1729   MUST_USE_RESULT inline AllocationResult AllocateRaw(
1730       int size_in_bytes,
1731       AllocationSpace space,
1732       AllocationSpace retry_space);
1733 
1734   // Allocates a heap object based on the map.
1735   MUST_USE_RESULT AllocationResult Allocate(
1736       Map* map,
1737       AllocationSpace space,
1738       AllocationSite* allocation_site = NULL);
1739 
1740   // Allocates a partial map for bootstrapping.
1741   MUST_USE_RESULT AllocationResult AllocatePartialMap(
1742       InstanceType instance_type,
1743       int instance_size);
1744 
1745   // Initializes a JSObject based on its map.
1746   void InitializeJSObjectFromMap(JSObject* obj,
1747                                  FixedArray* properties,
1748                                  Map* map);
1749   void InitializeAllocationMemento(AllocationMemento* memento,
1750                                    AllocationSite* allocation_site);
1751 
1752   // Allocate a block of memory in the given space (filled with a filler).
1753   // Used as a fall-back for generated code when the space is full.
1754   MUST_USE_RESULT AllocationResult AllocateFillerObject(int size,
1755                                                     bool double_align,
1756                                                     AllocationSpace space);
1757 
1758   // Allocate an uninitialized fixed array.
1759   MUST_USE_RESULT AllocationResult AllocateRawFixedArray(
1760       int length, PretenureFlag pretenure);
1761 
1762   // Allocate an uninitialized fixed double array.
1763   MUST_USE_RESULT AllocationResult AllocateRawFixedDoubleArray(
1764       int length, PretenureFlag pretenure);
1765 
1766   // Allocate an initialized fixed array with the given filler value.
1767   MUST_USE_RESULT AllocationResult AllocateFixedArrayWithFiller(
1768       int length, PretenureFlag pretenure, Object* filler);
1769 
1770   // Allocate and partially initializes a String.  There are two String
1771   // encodings: ASCII and two byte.  These functions allocate a string of the
1772   // given length and set its map and length fields.  The characters of the
1773   // string are uninitialized.
1774   MUST_USE_RESULT AllocationResult AllocateRawOneByteString(
1775       int length, PretenureFlag pretenure);
1776   MUST_USE_RESULT AllocationResult AllocateRawTwoByteString(
1777       int length, PretenureFlag pretenure);
1778 
1779   bool CreateInitialMaps();
1780   void CreateInitialObjects();
1781 
1782   // Allocates an internalized string in old space based on the character
1783   // stream.
1784   MUST_USE_RESULT inline AllocationResult AllocateInternalizedStringFromUtf8(
1785       Vector<const char> str,
1786       int chars,
1787       uint32_t hash_field);
1788 
1789   MUST_USE_RESULT inline AllocationResult AllocateOneByteInternalizedString(
1790         Vector<const uint8_t> str,
1791         uint32_t hash_field);
1792 
1793   MUST_USE_RESULT inline AllocationResult AllocateTwoByteInternalizedString(
1794         Vector<const uc16> str,
1795         uint32_t hash_field);
1796 
1797   template<bool is_one_byte, typename T>
1798   MUST_USE_RESULT AllocationResult AllocateInternalizedStringImpl(
1799       T t, int chars, uint32_t hash_field);
1800 
1801   template<typename T>
1802   MUST_USE_RESULT inline AllocationResult AllocateInternalizedStringImpl(
1803       T t, int chars, uint32_t hash_field);
1804 
1805   // Allocates an uninitialized fixed array. It must be filled by the caller.
1806   MUST_USE_RESULT AllocationResult AllocateUninitializedFixedArray(int length);
1807 
1808   // Make a copy of src and return it. Returns
1809   // Failure::RetryAfterGC(requested_bytes, space) if the allocation failed.
1810   MUST_USE_RESULT inline AllocationResult CopyFixedArray(FixedArray* src);
1811 
1812   // Make a copy of src, set the map, and return the copy. Returns
1813   // Failure::RetryAfterGC(requested_bytes, space) if the allocation failed.
1814   MUST_USE_RESULT AllocationResult CopyFixedArrayWithMap(FixedArray* src,
1815                                                          Map* map);
1816 
1817   // Make a copy of src and return it. Returns
1818   // Failure::RetryAfterGC(requested_bytes, space) if the allocation failed.
1819   MUST_USE_RESULT inline AllocationResult CopyFixedDoubleArray(
1820       FixedDoubleArray* src);
1821 
1822   // Make a copy of src and return it. Returns
1823   // Failure::RetryAfterGC(requested_bytes, space) if the allocation failed.
1824   MUST_USE_RESULT inline AllocationResult CopyConstantPoolArray(
1825       ConstantPoolArray* src);
1826 
1827 
1828   // Computes a single character string where the character has code.
1829   // A cache is used for ASCII codes.
1830   MUST_USE_RESULT AllocationResult LookupSingleCharacterStringFromCode(
1831       uint16_t code);
1832 
1833   // Allocate a symbol in old space.
1834   MUST_USE_RESULT AllocationResult AllocateSymbol();
1835 
1836   // Make a copy of src, set the map, and return the copy.
1837   MUST_USE_RESULT AllocationResult CopyConstantPoolArrayWithMap(
1838       ConstantPoolArray* src, Map* map);
1839 
1840   MUST_USE_RESULT AllocationResult AllocateConstantPoolArray(
1841       const ConstantPoolArray::NumberOfEntries& small);
1842 
1843   MUST_USE_RESULT AllocationResult AllocateExtendedConstantPoolArray(
1844       const ConstantPoolArray::NumberOfEntries& small,
1845       const ConstantPoolArray::NumberOfEntries& extended);
1846 
1847   // Allocates an external array of the specified length and type.
1848   MUST_USE_RESULT AllocationResult AllocateExternalArray(
1849       int length,
1850       ExternalArrayType array_type,
1851       void* external_pointer,
1852       PretenureFlag pretenure);
1853 
1854   // Allocates a fixed typed array of the specified length and type.
1855   MUST_USE_RESULT AllocationResult AllocateFixedTypedArray(
1856       int length,
1857       ExternalArrayType array_type,
1858       PretenureFlag pretenure);
1859 
1860   // Make a copy of src and return it.
1861   MUST_USE_RESULT AllocationResult CopyAndTenureFixedCOWArray(FixedArray* src);
1862 
1863   // Make a copy of src, set the map, and return the copy.
1864   MUST_USE_RESULT AllocationResult CopyFixedDoubleArrayWithMap(
1865       FixedDoubleArray* src, Map* map);
1866 
1867   // Allocates a fixed double array with uninitialized values. Returns
1868   MUST_USE_RESULT AllocationResult AllocateUninitializedFixedDoubleArray(
1869       int length,
1870       PretenureFlag pretenure = NOT_TENURED);
1871 
1872   // These five Create*EntryStub functions are here and forced to not be inlined
1873   // because of a gcc-4.4 bug that assigns wrong vtable entries.
1874   NO_INLINE(void CreateJSEntryStub());
1875   NO_INLINE(void CreateJSConstructEntryStub());
1876 
1877   void CreateFixedStubs();
1878 
1879   // Allocate empty fixed array.
1880   MUST_USE_RESULT AllocationResult AllocateEmptyFixedArray();
1881 
1882   // Allocate empty external array of given type.
1883   MUST_USE_RESULT AllocationResult AllocateEmptyExternalArray(
1884       ExternalArrayType array_type);
1885 
1886   // Allocate empty fixed typed array of given type.
1887   MUST_USE_RESULT AllocationResult AllocateEmptyFixedTypedArray(
1888       ExternalArrayType array_type);
1889 
1890   // Allocate empty constant pool array.
1891   MUST_USE_RESULT AllocationResult AllocateEmptyConstantPoolArray();
1892 
1893   // Allocate a tenured simple cell.
1894   MUST_USE_RESULT AllocationResult AllocateCell(Object* value);
1895 
1896   // Allocate a tenured JS global property cell initialized with the hole.
1897   MUST_USE_RESULT AllocationResult AllocatePropertyCell();
1898 
1899   // Allocates a new utility object in the old generation.
1900   MUST_USE_RESULT AllocationResult AllocateStruct(InstanceType type);
1901 
1902   // Allocates a new foreign object.
1903   MUST_USE_RESULT AllocationResult AllocateForeign(
1904       Address address, PretenureFlag pretenure = NOT_TENURED);
1905 
1906   MUST_USE_RESULT AllocationResult AllocateCode(int object_size,
1907                                                 bool immovable);
1908 
1909   MUST_USE_RESULT AllocationResult InternalizeStringWithKey(HashTableKey* key);
1910 
1911   MUST_USE_RESULT AllocationResult InternalizeString(String* str);
1912 
1913   // Performs a minor collection in new generation.
1914   void Scavenge();
1915 
1916   // Commits from space if it is uncommitted.
1917   void EnsureFromSpaceIsCommitted();
1918 
1919   // Uncommit unused semi space.
UncommitFromSpace()1920   bool UncommitFromSpace() { return new_space_.UncommitFromSpace(); }
1921 
1922   // Fill in bogus values in from space
1923   void ZapFromSpace();
1924 
1925   static String* UpdateNewSpaceReferenceInExternalStringTableEntry(
1926       Heap* heap,
1927       Object** pointer);
1928 
1929   Address DoScavenge(ObjectVisitor* scavenge_visitor, Address new_space_front);
1930   static void ScavengeStoreBufferCallback(Heap* heap,
1931                                           MemoryChunk* page,
1932                                           StoreBufferEvent event);
1933 
1934   // Performs a major collection in the whole heap.
1935   void MarkCompact(GCTracer* tracer);
1936 
1937   // Code to be run before and after mark-compact.
1938   void MarkCompactPrologue();
1939 
1940   void ProcessNativeContexts(WeakObjectRetainer* retainer);
1941   void ProcessArrayBuffers(WeakObjectRetainer* retainer);
1942   void ProcessAllocationSites(WeakObjectRetainer* retainer);
1943 
1944   // Deopts all code that contains allocation instruction which are tenured or
1945   // not tenured. Moreover it clears the pretenuring allocation site statistics.
1946   void ResetAllAllocationSitesDependentCode(PretenureFlag flag);
1947 
1948   // Evaluates local pretenuring for the old space and calls
1949   // ResetAllTenuredAllocationSitesDependentCode if too many objects died in
1950   // the old space.
1951   void EvaluateOldSpaceLocalPretenuring(uint64_t size_of_objects_before_gc);
1952 
1953   // Called on heap tear-down.
1954   void TearDownArrayBuffers();
1955 
1956   // Record statistics before and after garbage collection.
1957   void ReportStatisticsBeforeGC();
1958   void ReportStatisticsAfterGC();
1959 
1960   // Slow part of scavenge object.
1961   static void ScavengeObjectSlow(HeapObject** p, HeapObject* object);
1962 
1963   // Total RegExp code ever generated
1964   double total_regexp_code_generated_;
1965 
1966   GCTracer* tracer_;
1967 
1968   // Creates and installs the full-sized number string cache.
1969   int FullSizeNumberStringCacheLength();
1970   // Flush the number to string cache.
1971   void FlushNumberStringCache();
1972 
1973   // Sets used allocation sites entries to undefined.
1974   void FlushAllocationSitesScratchpad();
1975 
1976   // Initializes the allocation sites scratchpad with undefined values.
1977   void InitializeAllocationSitesScratchpad();
1978 
1979   // Adds an allocation site to the scratchpad if there is space left.
1980   void AddAllocationSiteToScratchpad(AllocationSite* site,
1981                                      ScratchpadSlotMode mode);
1982 
1983   void UpdateSurvivalStatistics(int start_new_space_size);
1984 
1985   static const int kYoungSurvivalRateHighThreshold = 90;
1986   static const int kYoungSurvivalRateAllowedDeviation = 15;
1987 
1988   static const int kOldSurvivalRateLowThreshold = 10;
1989 
1990   int high_survival_rate_period_length_;
1991   intptr_t promoted_objects_size_;
1992   double promotion_rate_;
1993   intptr_t semi_space_copied_object_size_;
1994   double semi_space_copied_rate_;
1995 
1996   // This is the pretenuring trigger for allocation sites that are in maybe
1997   // tenure state. When we switched to the maximum new space size we deoptimize
1998   // the code that belongs to the allocation site and derive the lifetime
1999   // of the allocation site.
2000   unsigned int maximum_size_scavenges_;
2001 
2002   // TODO(hpayer): Allocation site pretenuring may make this method obsolete.
2003   // Re-visit incremental marking heuristics.
IsHighSurvivalRate()2004   bool IsHighSurvivalRate() {
2005     return high_survival_rate_period_length_ > 0;
2006   }
2007 
2008   void SelectScavengingVisitorsTable();
2009 
StartIdleRound()2010   void StartIdleRound() {
2011     mark_sweeps_since_idle_round_started_ = 0;
2012   }
2013 
FinishIdleRound()2014   void FinishIdleRound() {
2015     mark_sweeps_since_idle_round_started_ = kMaxMarkSweepsInIdleRound;
2016     scavenges_since_last_idle_round_ = 0;
2017   }
2018 
EnoughGarbageSinceLastIdleRound()2019   bool EnoughGarbageSinceLastIdleRound() {
2020     return (scavenges_since_last_idle_round_ >= kIdleScavengeThreshold);
2021   }
2022 
2023   // Estimates how many milliseconds a Mark-Sweep would take to complete.
2024   // In idle notification handler we assume that this function will return:
2025   // - a number less than 10 for small heaps, which are less than 8Mb.
2026   // - a number greater than 10 for large heaps, which are greater than 32Mb.
TimeMarkSweepWouldTakeInMs()2027   int TimeMarkSweepWouldTakeInMs() {
2028     // Rough estimate of how many megabytes of heap can be processed in 1 ms.
2029     static const int kMbPerMs = 2;
2030 
2031     int heap_size_mb = static_cast<int>(SizeOfObjects() / MB);
2032     return heap_size_mb / kMbPerMs;
2033   }
2034 
2035   // Returns true if no more GC work is left.
2036   bool IdleGlobalGC();
2037 
2038   void AdvanceIdleIncrementalMarking(intptr_t step_size);
2039 
2040   void ClearObjectStats(bool clear_last_time_stats = false);
2041 
set_weak_object_to_code_table(Object * value)2042   void set_weak_object_to_code_table(Object* value) {
2043     ASSERT(!InNewSpace(value));
2044     weak_object_to_code_table_ = value;
2045   }
2046 
weak_object_to_code_table_address()2047   Object** weak_object_to_code_table_address() {
2048     return &weak_object_to_code_table_;
2049   }
2050 
2051   static const int kInitialStringTableSize = 2048;
2052   static const int kInitialEvalCacheSize = 64;
2053   static const int kInitialNumberStringCacheSize = 256;
2054 
2055   // Object counts and used memory by InstanceType
2056   size_t object_counts_[OBJECT_STATS_COUNT];
2057   size_t object_counts_last_time_[OBJECT_STATS_COUNT];
2058   size_t object_sizes_[OBJECT_STATS_COUNT];
2059   size_t object_sizes_last_time_[OBJECT_STATS_COUNT];
2060 
2061   // Maximum GC pause.
2062   double max_gc_pause_;
2063 
2064   // Total time spent in GC.
2065   double total_gc_time_ms_;
2066 
2067   // Maximum size of objects alive after GC.
2068   intptr_t max_alive_after_gc_;
2069 
2070   // Minimal interval between two subsequent collections.
2071   double min_in_mutator_;
2072 
2073   // Size of objects alive after last GC.
2074   intptr_t alive_after_last_gc_;
2075 
2076   double last_gc_end_timestamp_;
2077 
2078   // Cumulative GC time spent in marking
2079   double marking_time_;
2080 
2081   // Cumulative GC time spent in sweeping
2082   double sweeping_time_;
2083 
2084   MarkCompactCollector mark_compact_collector_;
2085 
2086   StoreBuffer store_buffer_;
2087 
2088   Marking marking_;
2089 
2090   IncrementalMarking incremental_marking_;
2091 
2092   int number_idle_notifications_;
2093   unsigned int last_idle_notification_gc_count_;
2094   bool last_idle_notification_gc_count_init_;
2095 
2096   int mark_sweeps_since_idle_round_started_;
2097   unsigned int gc_count_at_last_idle_gc_;
2098   int scavenges_since_last_idle_round_;
2099 
2100   // These two counters are monotomically increasing and never reset.
2101   size_t full_codegen_bytes_generated_;
2102   size_t crankshaft_codegen_bytes_generated_;
2103 
2104   // If the --deopt_every_n_garbage_collections flag is set to a positive value,
2105   // this variable holds the number of garbage collections since the last
2106   // deoptimization triggered by garbage collection.
2107   int gcs_since_last_deopt_;
2108 
2109 #ifdef VERIFY_HEAP
2110   int no_weak_object_verification_scope_depth_;
2111 #endif
2112 
2113   static const int kAllocationSiteScratchpadSize = 256;
2114   int allocation_sites_scratchpad_length_;
2115 
2116   static const int kMaxMarkSweepsInIdleRound = 7;
2117   static const int kIdleScavengeThreshold = 5;
2118 
2119   // Shared state read by the scavenge collector and set by ScavengeObject.
2120   PromotionQueue promotion_queue_;
2121 
2122   // Flag is set when the heap has been configured.  The heap can be repeatedly
2123   // configured through the API until it is set up.
2124   bool configured_;
2125 
2126   ExternalStringTable external_string_table_;
2127 
2128   VisitorDispatchTable<ScavengingCallback> scavenging_visitors_table_;
2129 
2130   MemoryChunk* chunks_queued_for_free_;
2131 
2132   Mutex relocation_mutex_;
2133 
2134   int gc_callbacks_depth_;
2135 
2136   friend class AlwaysAllocateScope;
2137   friend class Factory;
2138   friend class GCCallbacksScope;
2139   friend class GCTracer;
2140   friend class HeapIterator;
2141   friend class Isolate;
2142   friend class MarkCompactCollector;
2143   friend class MarkCompactMarkingVisitor;
2144   friend class MapCompact;
2145 #ifdef VERIFY_HEAP
2146   friend class NoWeakObjectVerificationScope;
2147 #endif
2148   friend class Page;
2149 
2150   DISALLOW_COPY_AND_ASSIGN(Heap);
2151 };
2152 
2153 
2154 class HeapStats {
2155  public:
2156   static const int kStartMarker = 0xDECADE00;
2157   static const int kEndMarker = 0xDECADE01;
2158 
2159   int* start_marker;                    //  0
2160   int* new_space_size;                  //  1
2161   int* new_space_capacity;              //  2
2162   intptr_t* old_pointer_space_size;          //  3
2163   intptr_t* old_pointer_space_capacity;      //  4
2164   intptr_t* old_data_space_size;             //  5
2165   intptr_t* old_data_space_capacity;         //  6
2166   intptr_t* code_space_size;                 //  7
2167   intptr_t* code_space_capacity;             //  8
2168   intptr_t* map_space_size;                  //  9
2169   intptr_t* map_space_capacity;              // 10
2170   intptr_t* cell_space_size;                 // 11
2171   intptr_t* cell_space_capacity;             // 12
2172   intptr_t* lo_space_size;                   // 13
2173   int* global_handle_count;             // 14
2174   int* weak_global_handle_count;        // 15
2175   int* pending_global_handle_count;     // 16
2176   int* near_death_global_handle_count;  // 17
2177   int* free_global_handle_count;        // 18
2178   intptr_t* memory_allocator_size;           // 19
2179   intptr_t* memory_allocator_capacity;       // 20
2180   int* objects_per_type;                // 21
2181   int* size_per_type;                   // 22
2182   int* os_error;                        // 23
2183   int* end_marker;                      // 24
2184   intptr_t* property_cell_space_size;   // 25
2185   intptr_t* property_cell_space_capacity;    // 26
2186 };
2187 
2188 
2189 class AlwaysAllocateScope {
2190  public:
2191   explicit inline AlwaysAllocateScope(Isolate* isolate);
2192   inline ~AlwaysAllocateScope();
2193 
2194  private:
2195   // Implicitly disable artificial allocation failures.
2196   Heap* heap_;
2197   DisallowAllocationFailure daf_;
2198 };
2199 
2200 
2201 #ifdef VERIFY_HEAP
2202 class NoWeakObjectVerificationScope {
2203  public:
2204   inline NoWeakObjectVerificationScope();
2205   inline ~NoWeakObjectVerificationScope();
2206 };
2207 #endif
2208 
2209 
2210 class GCCallbacksScope {
2211  public:
2212   explicit inline GCCallbacksScope(Heap* heap);
2213   inline ~GCCallbacksScope();
2214 
2215   inline bool CheckReenter();
2216 
2217  private:
2218   Heap* heap_;
2219 };
2220 
2221 
2222 // Visitor class to verify interior pointers in spaces that do not contain
2223 // or care about intergenerational references. All heap object pointers have to
2224 // point into the heap to a location that has a map pointer at its first word.
2225 // Caveat: Heap::Contains is an approximation because it can return true for
2226 // objects in a heap space but above the allocation pointer.
2227 class VerifyPointersVisitor: public ObjectVisitor {
2228  public:
2229   inline void VisitPointers(Object** start, Object** end);
2230 };
2231 
2232 
2233 // Verify that all objects are Smis.
2234 class VerifySmisVisitor: public ObjectVisitor {
2235  public:
2236   inline void VisitPointers(Object** start, Object** end);
2237 };
2238 
2239 
2240 // Space iterator for iterating over all spaces of the heap.  Returns each space
2241 // in turn, and null when it is done.
2242 class AllSpaces BASE_EMBEDDED {
2243  public:
AllSpaces(Heap * heap)2244   explicit AllSpaces(Heap* heap) : heap_(heap), counter_(FIRST_SPACE) {}
2245   Space* next();
2246  private:
2247   Heap* heap_;
2248   int counter_;
2249 };
2250 
2251 
2252 // Space iterator for iterating over all old spaces of the heap: Old pointer
2253 // space, old data space and code space.  Returns each space in turn, and null
2254 // when it is done.
2255 class OldSpaces BASE_EMBEDDED {
2256  public:
OldSpaces(Heap * heap)2257   explicit OldSpaces(Heap* heap) : heap_(heap), counter_(OLD_POINTER_SPACE) {}
2258   OldSpace* next();
2259  private:
2260   Heap* heap_;
2261   int counter_;
2262 };
2263 
2264 
2265 // Space iterator for iterating over all the paged spaces of the heap: Map
2266 // space, old pointer space, old data space, code space and cell space.  Returns
2267 // each space in turn, and null when it is done.
2268 class PagedSpaces BASE_EMBEDDED {
2269  public:
PagedSpaces(Heap * heap)2270   explicit PagedSpaces(Heap* heap) : heap_(heap), counter_(OLD_POINTER_SPACE) {}
2271   PagedSpace* next();
2272  private:
2273   Heap* heap_;
2274   int counter_;
2275 };
2276 
2277 
2278 // Space iterator for iterating over all spaces of the heap.
2279 // For each space an object iterator is provided. The deallocation of the
2280 // returned object iterators is handled by the space iterator.
2281 class SpaceIterator : public Malloced {
2282  public:
2283   explicit SpaceIterator(Heap* heap);
2284   SpaceIterator(Heap* heap, HeapObjectCallback size_func);
2285   virtual ~SpaceIterator();
2286 
2287   bool has_next();
2288   ObjectIterator* next();
2289 
2290  private:
2291   ObjectIterator* CreateIterator();
2292 
2293   Heap* heap_;
2294   int current_space_;  // from enum AllocationSpace.
2295   ObjectIterator* iterator_;  // object iterator for the current space.
2296   HeapObjectCallback size_func_;
2297 };
2298 
2299 
2300 // A HeapIterator provides iteration over the whole heap. It
2301 // aggregates the specific iterators for the different spaces as
2302 // these can only iterate over one space only.
2303 //
2304 // HeapIterator ensures there is no allocation during its lifetime
2305 // (using an embedded DisallowHeapAllocation instance).
2306 //
2307 // HeapIterator can skip free list nodes (that is, de-allocated heap
2308 // objects that still remain in the heap). As implementation of free
2309 // nodes filtering uses GC marks, it can't be used during MS/MC GC
2310 // phases. Also, it is forbidden to interrupt iteration in this mode,
2311 // as this will leave heap objects marked (and thus, unusable).
2312 class HeapObjectsFilter;
2313 
2314 class HeapIterator BASE_EMBEDDED {
2315  public:
2316   enum HeapObjectsFiltering {
2317     kNoFiltering,
2318     kFilterUnreachable
2319   };
2320 
2321   explicit HeapIterator(Heap* heap);
2322   HeapIterator(Heap* heap, HeapObjectsFiltering filtering);
2323   ~HeapIterator();
2324 
2325   HeapObject* next();
2326   void reset();
2327 
2328  private:
2329   struct MakeHeapIterableHelper {
MakeHeapIterableHelperMakeHeapIterableHelper2330     explicit MakeHeapIterableHelper(Heap* heap) { heap->MakeHeapIterable(); }
2331   };
2332 
2333   // Perform the initialization.
2334   void Init();
2335   // Perform all necessary shutdown (destruction) work.
2336   void Shutdown();
2337   HeapObject* NextObject();
2338 
2339   MakeHeapIterableHelper make_heap_iterable_helper_;
2340   DisallowHeapAllocation no_heap_allocation_;
2341   Heap* heap_;
2342   HeapObjectsFiltering filtering_;
2343   HeapObjectsFilter* filter_;
2344   // Space iterator for iterating all the spaces.
2345   SpaceIterator* space_iterator_;
2346   // Object iterator for the space currently being iterated.
2347   ObjectIterator* object_iterator_;
2348 };
2349 
2350 
2351 // Cache for mapping (map, property name) into field offset.
2352 // Cleared at startup and prior to mark sweep collection.
2353 class KeyedLookupCache {
2354  public:
2355   // Lookup field offset for (map, name). If absent, -1 is returned.
2356   int Lookup(Handle<Map> map, Handle<Name> name);
2357 
2358   // Update an element in the cache.
2359   void Update(Handle<Map> map, Handle<Name> name, int field_offset);
2360 
2361   // Clear the cache.
2362   void Clear();
2363 
2364   static const int kLength = 256;
2365   static const int kCapacityMask = kLength - 1;
2366   static const int kMapHashShift = 5;
2367   static const int kHashMask = -4;  // Zero the last two bits.
2368   static const int kEntriesPerBucket = 4;
2369   static const int kEntryLength = 2;
2370   static const int kMapIndex = 0;
2371   static const int kKeyIndex = 1;
2372   static const int kNotFound = -1;
2373 
2374   // kEntriesPerBucket should be a power of 2.
2375   STATIC_ASSERT((kEntriesPerBucket & (kEntriesPerBucket - 1)) == 0);
2376   STATIC_ASSERT(kEntriesPerBucket == -kHashMask);
2377 
2378  private:
KeyedLookupCache()2379   KeyedLookupCache() {
2380     for (int i = 0; i < kLength; ++i) {
2381       keys_[i].map = NULL;
2382       keys_[i].name = NULL;
2383       field_offsets_[i] = kNotFound;
2384     }
2385   }
2386 
2387   static inline int Hash(Handle<Map> map, Handle<Name> name);
2388 
2389   // Get the address of the keys and field_offsets arrays.  Used in
2390   // generated code to perform cache lookups.
keys_address()2391   Address keys_address() {
2392     return reinterpret_cast<Address>(&keys_);
2393   }
2394 
field_offsets_address()2395   Address field_offsets_address() {
2396     return reinterpret_cast<Address>(&field_offsets_);
2397   }
2398 
2399   struct Key {
2400     Map* map;
2401     Name* name;
2402   };
2403 
2404   Key keys_[kLength];
2405   int field_offsets_[kLength];
2406 
2407   friend class ExternalReference;
2408   friend class Isolate;
2409   DISALLOW_COPY_AND_ASSIGN(KeyedLookupCache);
2410 };
2411 
2412 
2413 // Cache for mapping (map, property name) into descriptor index.
2414 // The cache contains both positive and negative results.
2415 // Descriptor index equals kNotFound means the property is absent.
2416 // Cleared at startup and prior to any gc.
2417 class DescriptorLookupCache {
2418  public:
2419   // Lookup descriptor index for (map, name).
2420   // If absent, kAbsent is returned.
Lookup(Map * source,Name * name)2421   int Lookup(Map* source, Name* name) {
2422     if (!name->IsUniqueName()) return kAbsent;
2423     int index = Hash(source, name);
2424     Key& key = keys_[index];
2425     if ((key.source == source) && (key.name == name)) return results_[index];
2426     return kAbsent;
2427   }
2428 
2429   // Update an element in the cache.
Update(Map * source,Name * name,int result)2430   void Update(Map* source, Name* name, int result) {
2431     ASSERT(result != kAbsent);
2432     if (name->IsUniqueName()) {
2433       int index = Hash(source, name);
2434       Key& key = keys_[index];
2435       key.source = source;
2436       key.name = name;
2437       results_[index] = result;
2438     }
2439   }
2440 
2441   // Clear the cache.
2442   void Clear();
2443 
2444   static const int kAbsent = -2;
2445 
2446  private:
DescriptorLookupCache()2447   DescriptorLookupCache() {
2448     for (int i = 0; i < kLength; ++i) {
2449       keys_[i].source = NULL;
2450       keys_[i].name = NULL;
2451       results_[i] = kAbsent;
2452     }
2453   }
2454 
Hash(Object * source,Name * name)2455   static int Hash(Object* source, Name* name) {
2456     // Uses only lower 32 bits if pointers are larger.
2457     uint32_t source_hash =
2458         static_cast<uint32_t>(reinterpret_cast<uintptr_t>(source))
2459             >> kPointerSizeLog2;
2460     uint32_t name_hash =
2461         static_cast<uint32_t>(reinterpret_cast<uintptr_t>(name))
2462             >> kPointerSizeLog2;
2463     return (source_hash ^ name_hash) % kLength;
2464   }
2465 
2466   static const int kLength = 64;
2467   struct Key {
2468     Map* source;
2469     Name* name;
2470   };
2471 
2472   Key keys_[kLength];
2473   int results_[kLength];
2474 
2475   friend class Isolate;
2476   DISALLOW_COPY_AND_ASSIGN(DescriptorLookupCache);
2477 };
2478 
2479 
2480 // GCTracer collects and prints ONE line after each garbage collector
2481 // invocation IFF --trace_gc is used.
2482 
2483 class GCTracer BASE_EMBEDDED {
2484  public:
2485   class Scope BASE_EMBEDDED {
2486    public:
2487     enum ScopeId {
2488       EXTERNAL,
2489       MC_MARK,
2490       MC_SWEEP,
2491       MC_SWEEP_NEWSPACE,
2492       MC_SWEEP_OLDSPACE,
2493       MC_EVACUATE_PAGES,
2494       MC_UPDATE_NEW_TO_NEW_POINTERS,
2495       MC_UPDATE_ROOT_TO_NEW_POINTERS,
2496       MC_UPDATE_OLD_TO_NEW_POINTERS,
2497       MC_UPDATE_POINTERS_TO_EVACUATED,
2498       MC_UPDATE_POINTERS_BETWEEN_EVACUATED,
2499       MC_UPDATE_MISC_POINTERS,
2500       MC_WEAKCOLLECTION_PROCESS,
2501       MC_WEAKCOLLECTION_CLEAR,
2502       MC_FLUSH_CODE,
2503       kNumberOfScopes
2504     };
2505 
Scope(GCTracer * tracer,ScopeId scope)2506     Scope(GCTracer* tracer, ScopeId scope)
2507         : tracer_(tracer),
2508         scope_(scope) {
2509       start_time_ = OS::TimeCurrentMillis();
2510     }
2511 
~Scope()2512     ~Scope() {
2513       ASSERT(scope_ < kNumberOfScopes);  // scope_ is unsigned.
2514       tracer_->scopes_[scope_] += OS::TimeCurrentMillis() - start_time_;
2515     }
2516 
2517    private:
2518     GCTracer* tracer_;
2519     ScopeId scope_;
2520     double start_time_;
2521   };
2522 
2523   explicit GCTracer(Heap* heap,
2524                     const char* gc_reason,
2525                     const char* collector_reason);
2526   ~GCTracer();
2527 
2528   // Sets the collector.
set_collector(GarbageCollector collector)2529   void set_collector(GarbageCollector collector) { collector_ = collector; }
2530 
2531   // Sets the GC count.
set_gc_count(unsigned int count)2532   void set_gc_count(unsigned int count) { gc_count_ = count; }
2533 
2534   // Sets the full GC count.
set_full_gc_count(int count)2535   void set_full_gc_count(int count) { full_gc_count_ = count; }
2536 
increment_nodes_died_in_new_space()2537   void increment_nodes_died_in_new_space() {
2538     nodes_died_in_new_space_++;
2539   }
2540 
increment_nodes_copied_in_new_space()2541   void increment_nodes_copied_in_new_space() {
2542     nodes_copied_in_new_space_++;
2543   }
2544 
increment_nodes_promoted()2545   void increment_nodes_promoted() {
2546     nodes_promoted_++;
2547   }
2548 
2549  private:
2550   // Returns a string matching the collector.
2551   const char* CollectorString();
2552 
2553   // Returns size of object in heap (in MB).
2554   inline double SizeOfHeapObjects();
2555 
2556   // Timestamp set in the constructor.
2557   double start_time_;
2558 
2559   // Size of objects in heap set in constructor.
2560   intptr_t start_object_size_;
2561 
2562   // Size of memory allocated from OS set in constructor.
2563   intptr_t start_memory_size_;
2564 
2565   // Type of collector.
2566   GarbageCollector collector_;
2567 
2568   // A count (including this one, e.g. the first collection is 1) of the
2569   // number of garbage collections.
2570   unsigned int gc_count_;
2571 
2572   // A count (including this one) of the number of full garbage collections.
2573   int full_gc_count_;
2574 
2575   // Amounts of time spent in different scopes during GC.
2576   double scopes_[Scope::kNumberOfScopes];
2577 
2578   // Total amount of space either wasted or contained in one of free lists
2579   // before the current GC.
2580   intptr_t in_free_list_or_wasted_before_gc_;
2581 
2582   // Difference between space used in the heap at the beginning of the current
2583   // collection and the end of the previous collection.
2584   intptr_t allocated_since_last_gc_;
2585 
2586   // Amount of time spent in mutator that is time elapsed between end of the
2587   // previous collection and the beginning of the current one.
2588   double spent_in_mutator_;
2589 
2590   // Number of died nodes in the new space.
2591   int nodes_died_in_new_space_;
2592 
2593   // Number of copied nodes to the new space.
2594   int nodes_copied_in_new_space_;
2595 
2596   // Number of promoted nodes to the old space.
2597   int nodes_promoted_;
2598 
2599   // Incremental marking steps counters.
2600   int steps_count_;
2601   double steps_took_;
2602   double longest_step_;
2603   int steps_count_since_last_gc_;
2604   double steps_took_since_last_gc_;
2605 
2606   Heap* heap_;
2607 
2608   const char* gc_reason_;
2609   const char* collector_reason_;
2610 };
2611 
2612 
2613 class RegExpResultsCache {
2614  public:
2615   enum ResultsCacheType { REGEXP_MULTIPLE_INDICES, STRING_SPLIT_SUBSTRINGS };
2616 
2617   // Attempt to retrieve a cached result.  On failure, 0 is returned as a Smi.
2618   // On success, the returned result is guaranteed to be a COW-array.
2619   static Object* Lookup(Heap* heap,
2620                         String* key_string,
2621                         Object* key_pattern,
2622                         ResultsCacheType type);
2623   // Attempt to add value_array to the cache specified by type.  On success,
2624   // value_array is turned into a COW-array.
2625   static void Enter(Isolate* isolate,
2626                     Handle<String> key_string,
2627                     Handle<Object> key_pattern,
2628                     Handle<FixedArray> value_array,
2629                     ResultsCacheType type);
2630   static void Clear(FixedArray* cache);
2631   static const int kRegExpResultsCacheSize = 0x100;
2632 
2633  private:
2634   static const int kArrayEntriesPerCacheEntry = 4;
2635   static const int kStringOffset = 0;
2636   static const int kPatternOffset = 1;
2637   static const int kArrayOffset = 2;
2638 };
2639 
2640 
2641 // Abstract base class for checking whether a weak object should be retained.
2642 class WeakObjectRetainer {
2643  public:
~WeakObjectRetainer()2644   virtual ~WeakObjectRetainer() {}
2645 
2646   // Return whether this object should be retained. If NULL is returned the
2647   // object has no references. Otherwise the address of the retained object
2648   // should be returned as in some GC situations the object has been moved.
2649   virtual Object* RetainAs(Object* object) = 0;
2650 };
2651 
2652 
2653 // Intrusive object marking uses least significant bit of
2654 // heap object's map word to mark objects.
2655 // Normally all map words have least significant bit set
2656 // because they contain tagged map pointer.
2657 // If the bit is not set object is marked.
2658 // All objects should be unmarked before resuming
2659 // JavaScript execution.
2660 class IntrusiveMarking {
2661  public:
IsMarked(HeapObject * object)2662   static bool IsMarked(HeapObject* object) {
2663     return (object->map_word().ToRawValue() & kNotMarkedBit) == 0;
2664   }
2665 
ClearMark(HeapObject * object)2666   static void ClearMark(HeapObject* object) {
2667     uintptr_t map_word = object->map_word().ToRawValue();
2668     object->set_map_word(MapWord::FromRawValue(map_word | kNotMarkedBit));
2669     ASSERT(!IsMarked(object));
2670   }
2671 
SetMark(HeapObject * object)2672   static void SetMark(HeapObject* object) {
2673     uintptr_t map_word = object->map_word().ToRawValue();
2674     object->set_map_word(MapWord::FromRawValue(map_word & ~kNotMarkedBit));
2675     ASSERT(IsMarked(object));
2676   }
2677 
MapOfMarkedObject(HeapObject * object)2678   static Map* MapOfMarkedObject(HeapObject* object) {
2679     uintptr_t map_word = object->map_word().ToRawValue();
2680     return MapWord::FromRawValue(map_word | kNotMarkedBit).ToMap();
2681   }
2682 
SizeOfMarkedObject(HeapObject * object)2683   static int SizeOfMarkedObject(HeapObject* object) {
2684     return object->SizeFromMap(MapOfMarkedObject(object));
2685   }
2686 
2687  private:
2688   static const uintptr_t kNotMarkedBit = 0x1;
2689   STATIC_ASSERT((kHeapObjectTag & kNotMarkedBit) != 0);  // NOLINT
2690 };
2691 
2692 
2693 #ifdef DEBUG
2694 // Helper class for tracing paths to a search target Object from all roots.
2695 // The TracePathFrom() method can be used to trace paths from a specific
2696 // object to the search target object.
2697 class PathTracer : public ObjectVisitor {
2698  public:
2699   enum WhatToFind {
2700     FIND_ALL,   // Will find all matches.
2701     FIND_FIRST  // Will stop the search after first match.
2702   };
2703 
2704   // Tags 0, 1, and 3 are used. Use 2 for marking visited HeapObject.
2705   static const int kMarkTag = 2;
2706 
2707   // For the WhatToFind arg, if FIND_FIRST is specified, tracing will stop
2708   // after the first match.  If FIND_ALL is specified, then tracing will be
2709   // done for all matches.
PathTracer(Object * search_target,WhatToFind what_to_find,VisitMode visit_mode)2710   PathTracer(Object* search_target,
2711              WhatToFind what_to_find,
2712              VisitMode visit_mode)
2713       : search_target_(search_target),
2714         found_target_(false),
2715         found_target_in_trace_(false),
2716         what_to_find_(what_to_find),
2717         visit_mode_(visit_mode),
2718         object_stack_(20),
2719         no_allocation() {}
2720 
2721   virtual void VisitPointers(Object** start, Object** end);
2722 
2723   void Reset();
2724   void TracePathFrom(Object** root);
2725 
found()2726   bool found() const { return found_target_; }
2727 
2728   static Object* const kAnyGlobalObject;
2729 
2730  protected:
2731   class MarkVisitor;
2732   class UnmarkVisitor;
2733 
2734   void MarkRecursively(Object** p, MarkVisitor* mark_visitor);
2735   void UnmarkRecursively(Object** p, UnmarkVisitor* unmark_visitor);
2736   virtual void ProcessResults();
2737 
2738   Object* search_target_;
2739   bool found_target_;
2740   bool found_target_in_trace_;
2741   WhatToFind what_to_find_;
2742   VisitMode visit_mode_;
2743   List<Object*> object_stack_;
2744 
2745   DisallowHeapAllocation no_allocation;  // i.e. no gc allowed.
2746 
2747  private:
2748   DISALLOW_IMPLICIT_CONSTRUCTORS(PathTracer);
2749 };
2750 #endif  // DEBUG
2751 
2752 } }  // namespace v8::internal
2753 
2754 #endif  // V8_HEAP_H_
2755