1 //===-- StringRef.cpp - Lightweight String References ---------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "llvm/ADT/StringRef.h"
11 #include "llvm/ADT/APInt.h"
12 #include "llvm/ADT/Hashing.h"
13 #include "llvm/ADT/edit_distance.h"
14 #include <bitset>
15
16 using namespace llvm;
17
18 // MSVC emits references to this into the translation units which reference it.
19 #ifndef _MSC_VER
20 const size_t StringRef::npos;
21 #endif
22
ascii_tolower(char x)23 static char ascii_tolower(char x) {
24 if (x >= 'A' && x <= 'Z')
25 return x - 'A' + 'a';
26 return x;
27 }
28
ascii_toupper(char x)29 static char ascii_toupper(char x) {
30 if (x >= 'a' && x <= 'z')
31 return x - 'a' + 'A';
32 return x;
33 }
34
ascii_isdigit(char x)35 static bool ascii_isdigit(char x) {
36 return x >= '0' && x <= '9';
37 }
38
39 // strncasecmp() is not available on non-POSIX systems, so define an
40 // alternative function here.
ascii_strncasecmp(const char * LHS,const char * RHS,size_t Length)41 static int ascii_strncasecmp(const char *LHS, const char *RHS, size_t Length) {
42 for (size_t I = 0; I < Length; ++I) {
43 unsigned char LHC = ascii_tolower(LHS[I]);
44 unsigned char RHC = ascii_tolower(RHS[I]);
45 if (LHC != RHC)
46 return LHC < RHC ? -1 : 1;
47 }
48 return 0;
49 }
50
51 /// compare_lower - Compare strings, ignoring case.
compare_lower(StringRef RHS) const52 int StringRef::compare_lower(StringRef RHS) const {
53 if (int Res = ascii_strncasecmp(Data, RHS.Data, min(Length, RHS.Length)))
54 return Res;
55 if (Length == RHS.Length)
56 return 0;
57 return Length < RHS.Length ? -1 : 1;
58 }
59
60 /// Check if this string starts with the given \p Prefix, ignoring case.
startswith_lower(StringRef Prefix) const61 bool StringRef::startswith_lower(StringRef Prefix) const {
62 return Length >= Prefix.Length &&
63 ascii_strncasecmp(Data, Prefix.Data, Prefix.Length) == 0;
64 }
65
66 /// Check if this string ends with the given \p Suffix, ignoring case.
endswith_lower(StringRef Suffix) const67 bool StringRef::endswith_lower(StringRef Suffix) const {
68 return Length >= Suffix.Length &&
69 ascii_strncasecmp(end() - Suffix.Length, Suffix.Data, Suffix.Length) == 0;
70 }
71
72 /// compare_numeric - Compare strings, handle embedded numbers.
compare_numeric(StringRef RHS) const73 int StringRef::compare_numeric(StringRef RHS) const {
74 for (size_t I = 0, E = min(Length, RHS.Length); I != E; ++I) {
75 // Check for sequences of digits.
76 if (ascii_isdigit(Data[I]) && ascii_isdigit(RHS.Data[I])) {
77 // The longer sequence of numbers is considered larger.
78 // This doesn't really handle prefixed zeros well.
79 size_t J;
80 for (J = I + 1; J != E + 1; ++J) {
81 bool ld = J < Length && ascii_isdigit(Data[J]);
82 bool rd = J < RHS.Length && ascii_isdigit(RHS.Data[J]);
83 if (ld != rd)
84 return rd ? -1 : 1;
85 if (!rd)
86 break;
87 }
88 // The two number sequences have the same length (J-I), just memcmp them.
89 if (int Res = compareMemory(Data + I, RHS.Data + I, J - I))
90 return Res < 0 ? -1 : 1;
91 // Identical number sequences, continue search after the numbers.
92 I = J - 1;
93 continue;
94 }
95 if (Data[I] != RHS.Data[I])
96 return (unsigned char)Data[I] < (unsigned char)RHS.Data[I] ? -1 : 1;
97 }
98 if (Length == RHS.Length)
99 return 0;
100 return Length < RHS.Length ? -1 : 1;
101 }
102
103 // Compute the edit distance between the two given strings.
edit_distance(llvm::StringRef Other,bool AllowReplacements,unsigned MaxEditDistance) const104 unsigned StringRef::edit_distance(llvm::StringRef Other,
105 bool AllowReplacements,
106 unsigned MaxEditDistance) const {
107 return llvm::ComputeEditDistance(
108 llvm::ArrayRef<char>(data(), size()),
109 llvm::ArrayRef<char>(Other.data(), Other.size()),
110 AllowReplacements, MaxEditDistance);
111 }
112
113 //===----------------------------------------------------------------------===//
114 // String Operations
115 //===----------------------------------------------------------------------===//
116
lower() const117 std::string StringRef::lower() const {
118 std::string Result(size(), char());
119 for (size_type i = 0, e = size(); i != e; ++i) {
120 Result[i] = ascii_tolower(Data[i]);
121 }
122 return Result;
123 }
124
upper() const125 std::string StringRef::upper() const {
126 std::string Result(size(), char());
127 for (size_type i = 0, e = size(); i != e; ++i) {
128 Result[i] = ascii_toupper(Data[i]);
129 }
130 return Result;
131 }
132
133 //===----------------------------------------------------------------------===//
134 // String Searching
135 //===----------------------------------------------------------------------===//
136
137
138 /// find - Search for the first string \arg Str in the string.
139 ///
140 /// \return - The index of the first occurrence of \arg Str, or npos if not
141 /// found.
find(StringRef Str,size_t From) const142 size_t StringRef::find(StringRef Str, size_t From) const {
143 size_t N = Str.size();
144 if (N > Length)
145 return npos;
146
147 // For short haystacks or unsupported needles fall back to the naive algorithm
148 if (Length < 16 || N > 255 || N == 0) {
149 for (size_t e = Length - N + 1, i = min(From, e); i != e; ++i)
150 if (substr(i, N).equals(Str))
151 return i;
152 return npos;
153 }
154
155 if (From >= Length)
156 return npos;
157
158 // Build the bad char heuristic table, with uint8_t to reduce cache thrashing.
159 uint8_t BadCharSkip[256];
160 std::memset(BadCharSkip, N, 256);
161 for (unsigned i = 0; i != N-1; ++i)
162 BadCharSkip[(uint8_t)Str[i]] = N-1-i;
163
164 unsigned Len = Length-From, Pos = From;
165 while (Len >= N) {
166 if (substr(Pos, N).equals(Str)) // See if this is the correct substring.
167 return Pos;
168
169 // Otherwise skip the appropriate number of bytes.
170 uint8_t Skip = BadCharSkip[(uint8_t)(*this)[Pos+N-1]];
171 Len -= Skip;
172 Pos += Skip;
173 }
174
175 return npos;
176 }
177
178 /// rfind - Search for the last string \arg Str in the string.
179 ///
180 /// \return - The index of the last occurrence of \arg Str, or npos if not
181 /// found.
rfind(StringRef Str) const182 size_t StringRef::rfind(StringRef Str) const {
183 size_t N = Str.size();
184 if (N > Length)
185 return npos;
186 for (size_t i = Length - N + 1, e = 0; i != e;) {
187 --i;
188 if (substr(i, N).equals(Str))
189 return i;
190 }
191 return npos;
192 }
193
194 /// find_first_of - Find the first character in the string that is in \arg
195 /// Chars, or npos if not found.
196 ///
197 /// Note: O(size() + Chars.size())
find_first_of(StringRef Chars,size_t From) const198 StringRef::size_type StringRef::find_first_of(StringRef Chars,
199 size_t From) const {
200 std::bitset<1 << CHAR_BIT> CharBits;
201 for (size_type i = 0; i != Chars.size(); ++i)
202 CharBits.set((unsigned char)Chars[i]);
203
204 for (size_type i = min(From, Length), e = Length; i != e; ++i)
205 if (CharBits.test((unsigned char)Data[i]))
206 return i;
207 return npos;
208 }
209
210 /// find_first_not_of - Find the first character in the string that is not
211 /// \arg C or npos if not found.
find_first_not_of(char C,size_t From) const212 StringRef::size_type StringRef::find_first_not_of(char C, size_t From) const {
213 for (size_type i = min(From, Length), e = Length; i != e; ++i)
214 if (Data[i] != C)
215 return i;
216 return npos;
217 }
218
219 /// find_first_not_of - Find the first character in the string that is not
220 /// in the string \arg Chars, or npos if not found.
221 ///
222 /// Note: O(size() + Chars.size())
find_first_not_of(StringRef Chars,size_t From) const223 StringRef::size_type StringRef::find_first_not_of(StringRef Chars,
224 size_t From) const {
225 std::bitset<1 << CHAR_BIT> CharBits;
226 for (size_type i = 0; i != Chars.size(); ++i)
227 CharBits.set((unsigned char)Chars[i]);
228
229 for (size_type i = min(From, Length), e = Length; i != e; ++i)
230 if (!CharBits.test((unsigned char)Data[i]))
231 return i;
232 return npos;
233 }
234
235 /// find_last_of - Find the last character in the string that is in \arg C,
236 /// or npos if not found.
237 ///
238 /// Note: O(size() + Chars.size())
find_last_of(StringRef Chars,size_t From) const239 StringRef::size_type StringRef::find_last_of(StringRef Chars,
240 size_t From) const {
241 std::bitset<1 << CHAR_BIT> CharBits;
242 for (size_type i = 0; i != Chars.size(); ++i)
243 CharBits.set((unsigned char)Chars[i]);
244
245 for (size_type i = min(From, Length) - 1, e = -1; i != e; --i)
246 if (CharBits.test((unsigned char)Data[i]))
247 return i;
248 return npos;
249 }
250
251 /// find_last_not_of - Find the last character in the string that is not
252 /// \arg C, or npos if not found.
find_last_not_of(char C,size_t From) const253 StringRef::size_type StringRef::find_last_not_of(char C, size_t From) const {
254 for (size_type i = min(From, Length) - 1, e = -1; i != e; --i)
255 if (Data[i] != C)
256 return i;
257 return npos;
258 }
259
260 /// find_last_not_of - Find the last character in the string that is not in
261 /// \arg Chars, or npos if not found.
262 ///
263 /// Note: O(size() + Chars.size())
find_last_not_of(StringRef Chars,size_t From) const264 StringRef::size_type StringRef::find_last_not_of(StringRef Chars,
265 size_t From) const {
266 std::bitset<1 << CHAR_BIT> CharBits;
267 for (size_type i = 0, e = Chars.size(); i != e; ++i)
268 CharBits.set((unsigned char)Chars[i]);
269
270 for (size_type i = min(From, Length) - 1, e = -1; i != e; --i)
271 if (!CharBits.test((unsigned char)Data[i]))
272 return i;
273 return npos;
274 }
275
split(SmallVectorImpl<StringRef> & A,StringRef Separators,int MaxSplit,bool KeepEmpty) const276 void StringRef::split(SmallVectorImpl<StringRef> &A,
277 StringRef Separators, int MaxSplit,
278 bool KeepEmpty) const {
279 StringRef rest = *this;
280
281 // rest.data() is used to distinguish cases like "a," that splits into
282 // "a" + "" and "a" that splits into "a" + 0.
283 for (int splits = 0;
284 rest.data() != nullptr && (MaxSplit < 0 || splits < MaxSplit);
285 ++splits) {
286 std::pair<StringRef, StringRef> p = rest.split(Separators);
287
288 if (KeepEmpty || p.first.size() != 0)
289 A.push_back(p.first);
290 rest = p.second;
291 }
292 // If we have a tail left, add it.
293 if (rest.data() != nullptr && (rest.size() != 0 || KeepEmpty))
294 A.push_back(rest);
295 }
296
297 //===----------------------------------------------------------------------===//
298 // Helpful Algorithms
299 //===----------------------------------------------------------------------===//
300
301 /// count - Return the number of non-overlapped occurrences of \arg Str in
302 /// the string.
count(StringRef Str) const303 size_t StringRef::count(StringRef Str) const {
304 size_t Count = 0;
305 size_t N = Str.size();
306 if (N > Length)
307 return 0;
308 for (size_t i = 0, e = Length - N + 1; i != e; ++i)
309 if (substr(i, N).equals(Str))
310 ++Count;
311 return Count;
312 }
313
GetAutoSenseRadix(StringRef & Str)314 static unsigned GetAutoSenseRadix(StringRef &Str) {
315 if (Str.startswith("0x")) {
316 Str = Str.substr(2);
317 return 16;
318 }
319
320 if (Str.startswith("0b")) {
321 Str = Str.substr(2);
322 return 2;
323 }
324
325 if (Str.startswith("0o")) {
326 Str = Str.substr(2);
327 return 8;
328 }
329
330 if (Str.startswith("0"))
331 return 8;
332
333 return 10;
334 }
335
336
337 /// GetAsUnsignedInteger - Workhorse method that converts a integer character
338 /// sequence of radix up to 36 to an unsigned long long value.
getAsUnsignedInteger(StringRef Str,unsigned Radix,unsigned long long & Result)339 bool llvm::getAsUnsignedInteger(StringRef Str, unsigned Radix,
340 unsigned long long &Result) {
341 // Autosense radix if not specified.
342 if (Radix == 0)
343 Radix = GetAutoSenseRadix(Str);
344
345 // Empty strings (after the radix autosense) are invalid.
346 if (Str.empty()) return true;
347
348 // Parse all the bytes of the string given this radix. Watch for overflow.
349 Result = 0;
350 while (!Str.empty()) {
351 unsigned CharVal;
352 if (Str[0] >= '0' && Str[0] <= '9')
353 CharVal = Str[0]-'0';
354 else if (Str[0] >= 'a' && Str[0] <= 'z')
355 CharVal = Str[0]-'a'+10;
356 else if (Str[0] >= 'A' && Str[0] <= 'Z')
357 CharVal = Str[0]-'A'+10;
358 else
359 return true;
360
361 // If the parsed value is larger than the integer radix, the string is
362 // invalid.
363 if (CharVal >= Radix)
364 return true;
365
366 // Add in this character.
367 unsigned long long PrevResult = Result;
368 Result = Result*Radix+CharVal;
369
370 // Check for overflow by shifting back and seeing if bits were lost.
371 if (Result/Radix < PrevResult)
372 return true;
373
374 Str = Str.substr(1);
375 }
376
377 return false;
378 }
379
getAsSignedInteger(StringRef Str,unsigned Radix,long long & Result)380 bool llvm::getAsSignedInteger(StringRef Str, unsigned Radix,
381 long long &Result) {
382 unsigned long long ULLVal;
383
384 // Handle positive strings first.
385 if (Str.empty() || Str.front() != '-') {
386 if (getAsUnsignedInteger(Str, Radix, ULLVal) ||
387 // Check for value so large it overflows a signed value.
388 (long long)ULLVal < 0)
389 return true;
390 Result = ULLVal;
391 return false;
392 }
393
394 // Get the positive part of the value.
395 if (getAsUnsignedInteger(Str.substr(1), Radix, ULLVal) ||
396 // Reject values so large they'd overflow as negative signed, but allow
397 // "-0". This negates the unsigned so that the negative isn't undefined
398 // on signed overflow.
399 (long long)-ULLVal > 0)
400 return true;
401
402 Result = -ULLVal;
403 return false;
404 }
405
getAsInteger(unsigned Radix,APInt & Result) const406 bool StringRef::getAsInteger(unsigned Radix, APInt &Result) const {
407 StringRef Str = *this;
408
409 // Autosense radix if not specified.
410 if (Radix == 0)
411 Radix = GetAutoSenseRadix(Str);
412
413 assert(Radix > 1 && Radix <= 36);
414
415 // Empty strings (after the radix autosense) are invalid.
416 if (Str.empty()) return true;
417
418 // Skip leading zeroes. This can be a significant improvement if
419 // it means we don't need > 64 bits.
420 while (!Str.empty() && Str.front() == '0')
421 Str = Str.substr(1);
422
423 // If it was nothing but zeroes....
424 if (Str.empty()) {
425 Result = APInt(64, 0);
426 return false;
427 }
428
429 // (Over-)estimate the required number of bits.
430 unsigned Log2Radix = 0;
431 while ((1U << Log2Radix) < Radix) Log2Radix++;
432 bool IsPowerOf2Radix = ((1U << Log2Radix) == Radix);
433
434 unsigned BitWidth = Log2Radix * Str.size();
435 if (BitWidth < Result.getBitWidth())
436 BitWidth = Result.getBitWidth(); // don't shrink the result
437 else if (BitWidth > Result.getBitWidth())
438 Result = Result.zext(BitWidth);
439
440 APInt RadixAP, CharAP; // unused unless !IsPowerOf2Radix
441 if (!IsPowerOf2Radix) {
442 // These must have the same bit-width as Result.
443 RadixAP = APInt(BitWidth, Radix);
444 CharAP = APInt(BitWidth, 0);
445 }
446
447 // Parse all the bytes of the string given this radix.
448 Result = 0;
449 while (!Str.empty()) {
450 unsigned CharVal;
451 if (Str[0] >= '0' && Str[0] <= '9')
452 CharVal = Str[0]-'0';
453 else if (Str[0] >= 'a' && Str[0] <= 'z')
454 CharVal = Str[0]-'a'+10;
455 else if (Str[0] >= 'A' && Str[0] <= 'Z')
456 CharVal = Str[0]-'A'+10;
457 else
458 return true;
459
460 // If the parsed value is larger than the integer radix, the string is
461 // invalid.
462 if (CharVal >= Radix)
463 return true;
464
465 // Add in this character.
466 if (IsPowerOf2Radix) {
467 Result <<= Log2Radix;
468 Result |= CharVal;
469 } else {
470 Result *= RadixAP;
471 CharAP = CharVal;
472 Result += CharAP;
473 }
474
475 Str = Str.substr(1);
476 }
477
478 return false;
479 }
480
481
482 // Implementation of StringRef hashing.
hash_value(StringRef S)483 hash_code llvm::hash_value(StringRef S) {
484 return hash_combine_range(S.begin(), S.end());
485 }
486