1 //===- TargetRegisterInfo.cpp - Target Register Information Implementation ===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the TargetRegisterInfo interface.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Target/TargetRegisterInfo.h"
15 #include "llvm/ADT/BitVector.h"
16 #include "llvm/CodeGen/MachineFunction.h"
17 #include "llvm/CodeGen/MachineRegisterInfo.h"
18 #include "llvm/CodeGen/VirtRegMap.h"
19 #include "llvm/Support/raw_ostream.h"
20
21 using namespace llvm;
22
TargetRegisterInfo(const TargetRegisterInfoDesc * ID,regclass_iterator RCB,regclass_iterator RCE,const char * const * SRINames,const unsigned * SRILaneMasks,unsigned SRICoveringLanes)23 TargetRegisterInfo::TargetRegisterInfo(const TargetRegisterInfoDesc *ID,
24 regclass_iterator RCB, regclass_iterator RCE,
25 const char *const *SRINames,
26 const unsigned *SRILaneMasks,
27 unsigned SRICoveringLanes)
28 : InfoDesc(ID), SubRegIndexNames(SRINames),
29 SubRegIndexLaneMasks(SRILaneMasks),
30 RegClassBegin(RCB), RegClassEnd(RCE),
31 CoveringLanes(SRICoveringLanes) {
32 }
33
~TargetRegisterInfo()34 TargetRegisterInfo::~TargetRegisterInfo() {}
35
print(raw_ostream & OS) const36 void PrintReg::print(raw_ostream &OS) const {
37 if (!Reg)
38 OS << "%noreg";
39 else if (TargetRegisterInfo::isStackSlot(Reg))
40 OS << "SS#" << TargetRegisterInfo::stackSlot2Index(Reg);
41 else if (TargetRegisterInfo::isVirtualRegister(Reg))
42 OS << "%vreg" << TargetRegisterInfo::virtReg2Index(Reg);
43 else if (TRI && Reg < TRI->getNumRegs())
44 OS << '%' << TRI->getName(Reg);
45 else
46 OS << "%physreg" << Reg;
47 if (SubIdx) {
48 if (TRI)
49 OS << ':' << TRI->getSubRegIndexName(SubIdx);
50 else
51 OS << ":sub(" << SubIdx << ')';
52 }
53 }
54
print(raw_ostream & OS) const55 void PrintRegUnit::print(raw_ostream &OS) const {
56 // Generic printout when TRI is missing.
57 if (!TRI) {
58 OS << "Unit~" << Unit;
59 return;
60 }
61
62 // Check for invalid register units.
63 if (Unit >= TRI->getNumRegUnits()) {
64 OS << "BadUnit~" << Unit;
65 return;
66 }
67
68 // Normal units have at least one root.
69 MCRegUnitRootIterator Roots(Unit, TRI);
70 assert(Roots.isValid() && "Unit has no roots.");
71 OS << TRI->getName(*Roots);
72 for (++Roots; Roots.isValid(); ++Roots)
73 OS << '~' << TRI->getName(*Roots);
74 }
75
print(raw_ostream & OS) const76 void PrintVRegOrUnit::print(raw_ostream &OS) const {
77 if (TRI && TRI->isVirtualRegister(Unit)) {
78 OS << "%vreg" << TargetRegisterInfo::virtReg2Index(Unit);
79 return;
80 }
81 PrintRegUnit::print(OS);
82 }
83
84 /// getAllocatableClass - Return the maximal subclass of the given register
85 /// class that is alloctable, or NULL.
86 const TargetRegisterClass *
getAllocatableClass(const TargetRegisterClass * RC) const87 TargetRegisterInfo::getAllocatableClass(const TargetRegisterClass *RC) const {
88 if (!RC || RC->isAllocatable())
89 return RC;
90
91 const unsigned *SubClass = RC->getSubClassMask();
92 for (unsigned Base = 0, BaseE = getNumRegClasses();
93 Base < BaseE; Base += 32) {
94 unsigned Idx = Base;
95 for (unsigned Mask = *SubClass++; Mask; Mask >>= 1) {
96 unsigned Offset = countTrailingZeros(Mask);
97 const TargetRegisterClass *SubRC = getRegClass(Idx + Offset);
98 if (SubRC->isAllocatable())
99 return SubRC;
100 Mask >>= Offset;
101 Idx += Offset + 1;
102 }
103 }
104 return nullptr;
105 }
106
107 /// getMinimalPhysRegClass - Returns the Register Class of a physical
108 /// register of the given type, picking the most sub register class of
109 /// the right type that contains this physreg.
110 const TargetRegisterClass *
getMinimalPhysRegClass(unsigned reg,EVT VT) const111 TargetRegisterInfo::getMinimalPhysRegClass(unsigned reg, EVT VT) const {
112 assert(isPhysicalRegister(reg) && "reg must be a physical register");
113
114 // Pick the most sub register class of the right type that contains
115 // this physreg.
116 const TargetRegisterClass* BestRC = nullptr;
117 for (regclass_iterator I = regclass_begin(), E = regclass_end(); I != E; ++I){
118 const TargetRegisterClass* RC = *I;
119 if ((VT == MVT::Other || RC->hasType(VT)) && RC->contains(reg) &&
120 (!BestRC || BestRC->hasSubClass(RC)))
121 BestRC = RC;
122 }
123
124 assert(BestRC && "Couldn't find the register class");
125 return BestRC;
126 }
127
128 /// getAllocatableSetForRC - Toggle the bits that represent allocatable
129 /// registers for the specific register class.
getAllocatableSetForRC(const MachineFunction & MF,const TargetRegisterClass * RC,BitVector & R)130 static void getAllocatableSetForRC(const MachineFunction &MF,
131 const TargetRegisterClass *RC, BitVector &R){
132 assert(RC->isAllocatable() && "invalid for nonallocatable sets");
133 ArrayRef<MCPhysReg> Order = RC->getRawAllocationOrder(MF);
134 for (unsigned i = 0; i != Order.size(); ++i)
135 R.set(Order[i]);
136 }
137
getAllocatableSet(const MachineFunction & MF,const TargetRegisterClass * RC) const138 BitVector TargetRegisterInfo::getAllocatableSet(const MachineFunction &MF,
139 const TargetRegisterClass *RC) const {
140 BitVector Allocatable(getNumRegs());
141 if (RC) {
142 // A register class with no allocatable subclass returns an empty set.
143 const TargetRegisterClass *SubClass = getAllocatableClass(RC);
144 if (SubClass)
145 getAllocatableSetForRC(MF, SubClass, Allocatable);
146 } else {
147 for (TargetRegisterInfo::regclass_iterator I = regclass_begin(),
148 E = regclass_end(); I != E; ++I)
149 if ((*I)->isAllocatable())
150 getAllocatableSetForRC(MF, *I, Allocatable);
151 }
152
153 // Mask out the reserved registers
154 BitVector Reserved = getReservedRegs(MF);
155 Allocatable &= Reserved.flip();
156
157 return Allocatable;
158 }
159
160 static inline
firstCommonClass(const uint32_t * A,const uint32_t * B,const TargetRegisterInfo * TRI)161 const TargetRegisterClass *firstCommonClass(const uint32_t *A,
162 const uint32_t *B,
163 const TargetRegisterInfo *TRI) {
164 for (unsigned I = 0, E = TRI->getNumRegClasses(); I < E; I += 32)
165 if (unsigned Common = *A++ & *B++)
166 return TRI->getRegClass(I + countTrailingZeros(Common));
167 return nullptr;
168 }
169
170 const TargetRegisterClass *
getCommonSubClass(const TargetRegisterClass * A,const TargetRegisterClass * B) const171 TargetRegisterInfo::getCommonSubClass(const TargetRegisterClass *A,
172 const TargetRegisterClass *B) const {
173 // First take care of the trivial cases.
174 if (A == B)
175 return A;
176 if (!A || !B)
177 return nullptr;
178
179 // Register classes are ordered topologically, so the largest common
180 // sub-class it the common sub-class with the smallest ID.
181 return firstCommonClass(A->getSubClassMask(), B->getSubClassMask(), this);
182 }
183
184 const TargetRegisterClass *
getMatchingSuperRegClass(const TargetRegisterClass * A,const TargetRegisterClass * B,unsigned Idx) const185 TargetRegisterInfo::getMatchingSuperRegClass(const TargetRegisterClass *A,
186 const TargetRegisterClass *B,
187 unsigned Idx) const {
188 assert(A && B && "Missing register class");
189 assert(Idx && "Bad sub-register index");
190
191 // Find Idx in the list of super-register indices.
192 for (SuperRegClassIterator RCI(B, this); RCI.isValid(); ++RCI)
193 if (RCI.getSubReg() == Idx)
194 // The bit mask contains all register classes that are projected into B
195 // by Idx. Find a class that is also a sub-class of A.
196 return firstCommonClass(RCI.getMask(), A->getSubClassMask(), this);
197 return nullptr;
198 }
199
200 const TargetRegisterClass *TargetRegisterInfo::
getCommonSuperRegClass(const TargetRegisterClass * RCA,unsigned SubA,const TargetRegisterClass * RCB,unsigned SubB,unsigned & PreA,unsigned & PreB) const201 getCommonSuperRegClass(const TargetRegisterClass *RCA, unsigned SubA,
202 const TargetRegisterClass *RCB, unsigned SubB,
203 unsigned &PreA, unsigned &PreB) const {
204 assert(RCA && SubA && RCB && SubB && "Invalid arguments");
205
206 // Search all pairs of sub-register indices that project into RCA and RCB
207 // respectively. This is quadratic, but usually the sets are very small. On
208 // most targets like X86, there will only be a single sub-register index
209 // (e.g., sub_16bit projecting into GR16).
210 //
211 // The worst case is a register class like DPR on ARM.
212 // We have indices dsub_0..dsub_7 projecting into that class.
213 //
214 // It is very common that one register class is a sub-register of the other.
215 // Arrange for RCA to be the larger register so the answer will be found in
216 // the first iteration. This makes the search linear for the most common
217 // case.
218 const TargetRegisterClass *BestRC = nullptr;
219 unsigned *BestPreA = &PreA;
220 unsigned *BestPreB = &PreB;
221 if (RCA->getSize() < RCB->getSize()) {
222 std::swap(RCA, RCB);
223 std::swap(SubA, SubB);
224 std::swap(BestPreA, BestPreB);
225 }
226
227 // Also terminate the search one we have found a register class as small as
228 // RCA.
229 unsigned MinSize = RCA->getSize();
230
231 for (SuperRegClassIterator IA(RCA, this, true); IA.isValid(); ++IA) {
232 unsigned FinalA = composeSubRegIndices(IA.getSubReg(), SubA);
233 for (SuperRegClassIterator IB(RCB, this, true); IB.isValid(); ++IB) {
234 // Check if a common super-register class exists for this index pair.
235 const TargetRegisterClass *RC =
236 firstCommonClass(IA.getMask(), IB.getMask(), this);
237 if (!RC || RC->getSize() < MinSize)
238 continue;
239
240 // The indexes must compose identically: PreA+SubA == PreB+SubB.
241 unsigned FinalB = composeSubRegIndices(IB.getSubReg(), SubB);
242 if (FinalA != FinalB)
243 continue;
244
245 // Is RC a better candidate than BestRC?
246 if (BestRC && RC->getSize() >= BestRC->getSize())
247 continue;
248
249 // Yes, RC is the smallest super-register seen so far.
250 BestRC = RC;
251 *BestPreA = IA.getSubReg();
252 *BestPreB = IB.getSubReg();
253
254 // Bail early if we reached MinSize. We won't find a better candidate.
255 if (BestRC->getSize() == MinSize)
256 return BestRC;
257 }
258 }
259 return BestRC;
260 }
261
262 // Compute target-independent register allocator hints to help eliminate copies.
263 void
getRegAllocationHints(unsigned VirtReg,ArrayRef<MCPhysReg> Order,SmallVectorImpl<MCPhysReg> & Hints,const MachineFunction & MF,const VirtRegMap * VRM) const264 TargetRegisterInfo::getRegAllocationHints(unsigned VirtReg,
265 ArrayRef<MCPhysReg> Order,
266 SmallVectorImpl<MCPhysReg> &Hints,
267 const MachineFunction &MF,
268 const VirtRegMap *VRM) const {
269 const MachineRegisterInfo &MRI = MF.getRegInfo();
270 std::pair<unsigned, unsigned> Hint = MRI.getRegAllocationHint(VirtReg);
271
272 // Hints with HintType != 0 were set by target-dependent code.
273 // Such targets must provide their own implementation of
274 // TRI::getRegAllocationHints to interpret those hint types.
275 assert(Hint.first == 0 && "Target must implement TRI::getRegAllocationHints");
276
277 // Target-independent hints are either a physical or a virtual register.
278 unsigned Phys = Hint.second;
279 if (VRM && isVirtualRegister(Phys))
280 Phys = VRM->getPhys(Phys);
281
282 // Check that Phys is a valid hint in VirtReg's register class.
283 if (!isPhysicalRegister(Phys))
284 return;
285 if (MRI.isReserved(Phys))
286 return;
287 // Check that Phys is in the allocation order. We shouldn't heed hints
288 // from VirtReg's register class if they aren't in the allocation order. The
289 // target probably has a reason for removing the register.
290 if (std::find(Order.begin(), Order.end(), Phys) == Order.end())
291 return;
292
293 // All clear, tell the register allocator to prefer this register.
294 Hints.push_back(Phys);
295 }
296