1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Decl nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CodeGenFunction.h"
15 #include "CGDebugInfo.h"
16 #include "CGOpenCLRuntime.h"
17 #include "CodeGenModule.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/CharUnits.h"
20 #include "clang/AST/Decl.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/Basic/SourceManager.h"
23 #include "clang/Basic/TargetInfo.h"
24 #include "clang/CodeGen/CGFunctionInfo.h"
25 #include "clang/Frontend/CodeGenOptions.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/GlobalVariable.h"
28 #include "llvm/IR/Intrinsics.h"
29 #include "llvm/IR/Type.h"
30 using namespace clang;
31 using namespace CodeGen;
32
33
EmitDecl(const Decl & D)34 void CodeGenFunction::EmitDecl(const Decl &D) {
35 switch (D.getKind()) {
36 case Decl::TranslationUnit:
37 case Decl::Namespace:
38 case Decl::UnresolvedUsingTypename:
39 case Decl::ClassTemplateSpecialization:
40 case Decl::ClassTemplatePartialSpecialization:
41 case Decl::VarTemplateSpecialization:
42 case Decl::VarTemplatePartialSpecialization:
43 case Decl::TemplateTypeParm:
44 case Decl::UnresolvedUsingValue:
45 case Decl::NonTypeTemplateParm:
46 case Decl::CXXMethod:
47 case Decl::CXXConstructor:
48 case Decl::CXXDestructor:
49 case Decl::CXXConversion:
50 case Decl::Field:
51 case Decl::MSProperty:
52 case Decl::IndirectField:
53 case Decl::ObjCIvar:
54 case Decl::ObjCAtDefsField:
55 case Decl::ParmVar:
56 case Decl::ImplicitParam:
57 case Decl::ClassTemplate:
58 case Decl::VarTemplate:
59 case Decl::FunctionTemplate:
60 case Decl::TypeAliasTemplate:
61 case Decl::TemplateTemplateParm:
62 case Decl::ObjCMethod:
63 case Decl::ObjCCategory:
64 case Decl::ObjCProtocol:
65 case Decl::ObjCInterface:
66 case Decl::ObjCCategoryImpl:
67 case Decl::ObjCImplementation:
68 case Decl::ObjCProperty:
69 case Decl::ObjCCompatibleAlias:
70 case Decl::AccessSpec:
71 case Decl::LinkageSpec:
72 case Decl::ObjCPropertyImpl:
73 case Decl::FileScopeAsm:
74 case Decl::Friend:
75 case Decl::FriendTemplate:
76 case Decl::Block:
77 case Decl::Captured:
78 case Decl::ClassScopeFunctionSpecialization:
79 case Decl::UsingShadow:
80 llvm_unreachable("Declaration should not be in declstmts!");
81 case Decl::Function: // void X();
82 case Decl::Record: // struct/union/class X;
83 case Decl::Enum: // enum X;
84 case Decl::EnumConstant: // enum ? { X = ? }
85 case Decl::CXXRecord: // struct/union/class X; [C++]
86 case Decl::StaticAssert: // static_assert(X, ""); [C++0x]
87 case Decl::Label: // __label__ x;
88 case Decl::Import:
89 case Decl::OMPThreadPrivate:
90 case Decl::Empty:
91 // None of these decls require codegen support.
92 return;
93
94 case Decl::NamespaceAlias:
95 if (CGDebugInfo *DI = getDebugInfo())
96 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D));
97 return;
98 case Decl::Using: // using X; [C++]
99 if (CGDebugInfo *DI = getDebugInfo())
100 DI->EmitUsingDecl(cast<UsingDecl>(D));
101 return;
102 case Decl::UsingDirective: // using namespace X; [C++]
103 if (CGDebugInfo *DI = getDebugInfo())
104 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D));
105 return;
106 case Decl::Var: {
107 const VarDecl &VD = cast<VarDecl>(D);
108 assert(VD.isLocalVarDecl() &&
109 "Should not see file-scope variables inside a function!");
110 return EmitVarDecl(VD);
111 }
112
113 case Decl::Typedef: // typedef int X;
114 case Decl::TypeAlias: { // using X = int; [C++0x]
115 const TypedefNameDecl &TD = cast<TypedefNameDecl>(D);
116 QualType Ty = TD.getUnderlyingType();
117
118 if (Ty->isVariablyModifiedType())
119 EmitVariablyModifiedType(Ty);
120 }
121 }
122 }
123
124 /// EmitVarDecl - This method handles emission of any variable declaration
125 /// inside a function, including static vars etc.
EmitVarDecl(const VarDecl & D)126 void CodeGenFunction::EmitVarDecl(const VarDecl &D) {
127 if (D.isStaticLocal()) {
128 llvm::GlobalValue::LinkageTypes Linkage =
129 CGM.getLLVMLinkageVarDefinition(&D, /*isConstant=*/false);
130
131 // FIXME: We need to force the emission/use of a guard variable for
132 // some variables even if we can constant-evaluate them because
133 // we can't guarantee every translation unit will constant-evaluate them.
134
135 return EmitStaticVarDecl(D, Linkage);
136 }
137
138 if (D.hasExternalStorage())
139 // Don't emit it now, allow it to be emitted lazily on its first use.
140 return;
141
142 if (D.getStorageClass() == SC_OpenCLWorkGroupLocal)
143 return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D);
144
145 assert(D.hasLocalStorage());
146 return EmitAutoVarDecl(D);
147 }
148
GetStaticDeclName(CodeGenFunction & CGF,const VarDecl & D,const char * Separator)149 static std::string GetStaticDeclName(CodeGenFunction &CGF, const VarDecl &D,
150 const char *Separator) {
151 CodeGenModule &CGM = CGF.CGM;
152
153 if (CGF.getLangOpts().CPlusPlus)
154 return CGM.getMangledName(&D).str();
155
156 StringRef ContextName;
157 if (!CGF.CurFuncDecl) {
158 // Better be in a block declared in global scope.
159 const NamedDecl *ND = cast<NamedDecl>(&D);
160 const DeclContext *DC = ND->getDeclContext();
161 if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC))
162 ContextName = CGM.getBlockMangledName(GlobalDecl(), BD);
163 else
164 llvm_unreachable("Unknown context for block static var decl");
165 } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CGF.CurFuncDecl))
166 ContextName = CGM.getMangledName(FD);
167 else if (isa<ObjCMethodDecl>(CGF.CurFuncDecl))
168 ContextName = CGF.CurFn->getName();
169 else
170 llvm_unreachable("Unknown context for static var decl");
171
172 return ContextName.str() + Separator + D.getNameAsString();
173 }
174
175 llvm::Constant *
CreateStaticVarDecl(const VarDecl & D,const char * Separator,llvm::GlobalValue::LinkageTypes Linkage)176 CodeGenFunction::CreateStaticVarDecl(const VarDecl &D,
177 const char *Separator,
178 llvm::GlobalValue::LinkageTypes Linkage) {
179 QualType Ty = D.getType();
180 assert(Ty->isConstantSizeType() && "VLAs can't be static");
181
182 // Use the label if the variable is renamed with the asm-label extension.
183 std::string Name;
184 if (D.hasAttr<AsmLabelAttr>())
185 Name = CGM.getMangledName(&D);
186 else
187 Name = GetStaticDeclName(*this, D, Separator);
188
189 llvm::Type *LTy = CGM.getTypes().ConvertTypeForMem(Ty);
190 unsigned AddrSpace =
191 CGM.GetGlobalVarAddressSpace(&D, CGM.getContext().getTargetAddressSpace(Ty));
192 llvm::GlobalVariable *GV =
193 new llvm::GlobalVariable(CGM.getModule(), LTy,
194 Ty.isConstant(getContext()), Linkage,
195 CGM.EmitNullConstant(D.getType()), Name, nullptr,
196 llvm::GlobalVariable::NotThreadLocal,
197 AddrSpace);
198 GV->setAlignment(getContext().getDeclAlign(&D).getQuantity());
199 CGM.setGlobalVisibility(GV, &D);
200
201 if (D.getTLSKind())
202 CGM.setTLSMode(GV, D);
203
204 if (D.isExternallyVisible()) {
205 if (D.hasAttr<DLLImportAttr>())
206 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
207 else if (D.hasAttr<DLLExportAttr>())
208 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
209 }
210
211 // Make sure the result is of the correct type.
212 unsigned ExpectedAddrSpace = CGM.getContext().getTargetAddressSpace(Ty);
213 if (AddrSpace != ExpectedAddrSpace) {
214 llvm::PointerType *PTy = llvm::PointerType::get(LTy, ExpectedAddrSpace);
215 return llvm::ConstantExpr::getAddrSpaceCast(GV, PTy);
216 }
217
218 return GV;
219 }
220
221 /// hasNontrivialDestruction - Determine whether a type's destruction is
222 /// non-trivial. If so, and the variable uses static initialization, we must
223 /// register its destructor to run on exit.
hasNontrivialDestruction(QualType T)224 static bool hasNontrivialDestruction(QualType T) {
225 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
226 return RD && !RD->hasTrivialDestructor();
227 }
228
229 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
230 /// global variable that has already been created for it. If the initializer
231 /// has a different type than GV does, this may free GV and return a different
232 /// one. Otherwise it just returns GV.
233 llvm::GlobalVariable *
AddInitializerToStaticVarDecl(const VarDecl & D,llvm::GlobalVariable * GV)234 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D,
235 llvm::GlobalVariable *GV) {
236 llvm::Constant *Init = CGM.EmitConstantInit(D, this);
237
238 // If constant emission failed, then this should be a C++ static
239 // initializer.
240 if (!Init) {
241 if (!getLangOpts().CPlusPlus)
242 CGM.ErrorUnsupported(D.getInit(), "constant l-value expression");
243 else if (Builder.GetInsertBlock()) {
244 // Since we have a static initializer, this global variable can't
245 // be constant.
246 GV->setConstant(false);
247
248 EmitCXXGuardedInit(D, GV, /*PerformInit*/true);
249 }
250 return GV;
251 }
252
253 // The initializer may differ in type from the global. Rewrite
254 // the global to match the initializer. (We have to do this
255 // because some types, like unions, can't be completely represented
256 // in the LLVM type system.)
257 if (GV->getType()->getElementType() != Init->getType()) {
258 llvm::GlobalVariable *OldGV = GV;
259
260 GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(),
261 OldGV->isConstant(),
262 OldGV->getLinkage(), Init, "",
263 /*InsertBefore*/ OldGV,
264 OldGV->getThreadLocalMode(),
265 CGM.getContext().getTargetAddressSpace(D.getType()));
266 GV->setVisibility(OldGV->getVisibility());
267
268 // Steal the name of the old global
269 GV->takeName(OldGV);
270
271 // Replace all uses of the old global with the new global
272 llvm::Constant *NewPtrForOldDecl =
273 llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
274 OldGV->replaceAllUsesWith(NewPtrForOldDecl);
275
276 // Erase the old global, since it is no longer used.
277 OldGV->eraseFromParent();
278 }
279
280 GV->setConstant(CGM.isTypeConstant(D.getType(), true));
281 GV->setInitializer(Init);
282
283 if (hasNontrivialDestruction(D.getType())) {
284 // We have a constant initializer, but a nontrivial destructor. We still
285 // need to perform a guarded "initialization" in order to register the
286 // destructor.
287 EmitCXXGuardedInit(D, GV, /*PerformInit*/false);
288 }
289
290 return GV;
291 }
292
EmitStaticVarDecl(const VarDecl & D,llvm::GlobalValue::LinkageTypes Linkage)293 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D,
294 llvm::GlobalValue::LinkageTypes Linkage) {
295 llvm::Value *&DMEntry = LocalDeclMap[&D];
296 assert(!DMEntry && "Decl already exists in localdeclmap!");
297
298 // Check to see if we already have a global variable for this
299 // declaration. This can happen when double-emitting function
300 // bodies, e.g. with complete and base constructors.
301 llvm::Constant *addr =
302 CGM.getStaticLocalDeclAddress(&D);
303
304 if (!addr)
305 addr = CreateStaticVarDecl(D, ".", Linkage);
306
307 // Store into LocalDeclMap before generating initializer to handle
308 // circular references.
309 DMEntry = addr;
310 CGM.setStaticLocalDeclAddress(&D, addr);
311
312 // We can't have a VLA here, but we can have a pointer to a VLA,
313 // even though that doesn't really make any sense.
314 // Make sure to evaluate VLA bounds now so that we have them for later.
315 if (D.getType()->isVariablyModifiedType())
316 EmitVariablyModifiedType(D.getType());
317
318 // Save the type in case adding the initializer forces a type change.
319 llvm::Type *expectedType = addr->getType();
320
321 llvm::GlobalVariable *var =
322 cast<llvm::GlobalVariable>(addr->stripPointerCasts());
323 // If this value has an initializer, emit it.
324 if (D.getInit())
325 var = AddInitializerToStaticVarDecl(D, var);
326
327 var->setAlignment(getContext().getDeclAlign(&D).getQuantity());
328
329 if (D.hasAttr<AnnotateAttr>())
330 CGM.AddGlobalAnnotations(&D, var);
331
332 if (const SectionAttr *SA = D.getAttr<SectionAttr>())
333 var->setSection(SA->getName());
334
335 if (D.hasAttr<UsedAttr>())
336 CGM.addUsedGlobal(var);
337
338 // We may have to cast the constant because of the initializer
339 // mismatch above.
340 //
341 // FIXME: It is really dangerous to store this in the map; if anyone
342 // RAUW's the GV uses of this constant will be invalid.
343 llvm::Constant *castedAddr =
344 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType);
345 DMEntry = castedAddr;
346 CGM.setStaticLocalDeclAddress(&D, castedAddr);
347
348 CGM.reportGlobalToASan(var, D.getLocation());
349
350 // Emit global variable debug descriptor for static vars.
351 CGDebugInfo *DI = getDebugInfo();
352 if (DI &&
353 CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) {
354 DI->setLocation(D.getLocation());
355 DI->EmitGlobalVariable(var, &D);
356 }
357 }
358
359 namespace {
360 struct DestroyObject : EHScopeStack::Cleanup {
DestroyObject__anon0f75d9860111::DestroyObject361 DestroyObject(llvm::Value *addr, QualType type,
362 CodeGenFunction::Destroyer *destroyer,
363 bool useEHCleanupForArray)
364 : addr(addr), type(type), destroyer(destroyer),
365 useEHCleanupForArray(useEHCleanupForArray) {}
366
367 llvm::Value *addr;
368 QualType type;
369 CodeGenFunction::Destroyer *destroyer;
370 bool useEHCleanupForArray;
371
Emit__anon0f75d9860111::DestroyObject372 void Emit(CodeGenFunction &CGF, Flags flags) override {
373 // Don't use an EH cleanup recursively from an EH cleanup.
374 bool useEHCleanupForArray =
375 flags.isForNormalCleanup() && this->useEHCleanupForArray;
376
377 CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray);
378 }
379 };
380
381 struct DestroyNRVOVariable : EHScopeStack::Cleanup {
DestroyNRVOVariable__anon0f75d9860111::DestroyNRVOVariable382 DestroyNRVOVariable(llvm::Value *addr,
383 const CXXDestructorDecl *Dtor,
384 llvm::Value *NRVOFlag)
385 : Dtor(Dtor), NRVOFlag(NRVOFlag), Loc(addr) {}
386
387 const CXXDestructorDecl *Dtor;
388 llvm::Value *NRVOFlag;
389 llvm::Value *Loc;
390
Emit__anon0f75d9860111::DestroyNRVOVariable391 void Emit(CodeGenFunction &CGF, Flags flags) override {
392 // Along the exceptions path we always execute the dtor.
393 bool NRVO = flags.isForNormalCleanup() && NRVOFlag;
394
395 llvm::BasicBlock *SkipDtorBB = nullptr;
396 if (NRVO) {
397 // If we exited via NRVO, we skip the destructor call.
398 llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused");
399 SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor");
400 llvm::Value *DidNRVO = CGF.Builder.CreateLoad(NRVOFlag, "nrvo.val");
401 CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB);
402 CGF.EmitBlock(RunDtorBB);
403 }
404
405 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
406 /*ForVirtualBase=*/false,
407 /*Delegating=*/false,
408 Loc);
409
410 if (NRVO) CGF.EmitBlock(SkipDtorBB);
411 }
412 };
413
414 struct CallStackRestore : EHScopeStack::Cleanup {
415 llvm::Value *Stack;
CallStackRestore__anon0f75d9860111::CallStackRestore416 CallStackRestore(llvm::Value *Stack) : Stack(Stack) {}
Emit__anon0f75d9860111::CallStackRestore417 void Emit(CodeGenFunction &CGF, Flags flags) override {
418 llvm::Value *V = CGF.Builder.CreateLoad(Stack);
419 llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
420 CGF.Builder.CreateCall(F, V);
421 }
422 };
423
424 struct ExtendGCLifetime : EHScopeStack::Cleanup {
425 const VarDecl &Var;
ExtendGCLifetime__anon0f75d9860111::ExtendGCLifetime426 ExtendGCLifetime(const VarDecl *var) : Var(*var) {}
427
Emit__anon0f75d9860111::ExtendGCLifetime428 void Emit(CodeGenFunction &CGF, Flags flags) override {
429 // Compute the address of the local variable, in case it's a
430 // byref or something.
431 DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false,
432 Var.getType(), VK_LValue, SourceLocation());
433 llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE),
434 SourceLocation());
435 CGF.EmitExtendGCLifetime(value);
436 }
437 };
438
439 struct CallCleanupFunction : EHScopeStack::Cleanup {
440 llvm::Constant *CleanupFn;
441 const CGFunctionInfo &FnInfo;
442 const VarDecl &Var;
443
CallCleanupFunction__anon0f75d9860111::CallCleanupFunction444 CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info,
445 const VarDecl *Var)
446 : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {}
447
Emit__anon0f75d9860111::CallCleanupFunction448 void Emit(CodeGenFunction &CGF, Flags flags) override {
449 DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false,
450 Var.getType(), VK_LValue, SourceLocation());
451 // Compute the address of the local variable, in case it's a byref
452 // or something.
453 llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getAddress();
454
455 // In some cases, the type of the function argument will be different from
456 // the type of the pointer. An example of this is
457 // void f(void* arg);
458 // __attribute__((cleanup(f))) void *g;
459 //
460 // To fix this we insert a bitcast here.
461 QualType ArgTy = FnInfo.arg_begin()->type;
462 llvm::Value *Arg =
463 CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy));
464
465 CallArgList Args;
466 Args.add(RValue::get(Arg),
467 CGF.getContext().getPointerType(Var.getType()));
468 CGF.EmitCall(FnInfo, CleanupFn, ReturnValueSlot(), Args);
469 }
470 };
471
472 /// A cleanup to call @llvm.lifetime.end.
473 class CallLifetimeEnd : public EHScopeStack::Cleanup {
474 llvm::Value *Addr;
475 llvm::Value *Size;
476 public:
CallLifetimeEnd(llvm::Value * addr,llvm::Value * size)477 CallLifetimeEnd(llvm::Value *addr, llvm::Value *size)
478 : Addr(addr), Size(size) {}
479
Emit(CodeGenFunction & CGF,Flags flags)480 void Emit(CodeGenFunction &CGF, Flags flags) override {
481 llvm::Value *castAddr = CGF.Builder.CreateBitCast(Addr, CGF.Int8PtrTy);
482 CGF.Builder.CreateCall2(CGF.CGM.getLLVMLifetimeEndFn(),
483 Size, castAddr)
484 ->setDoesNotThrow();
485 }
486 };
487 }
488
489 /// EmitAutoVarWithLifetime - Does the setup required for an automatic
490 /// variable with lifetime.
EmitAutoVarWithLifetime(CodeGenFunction & CGF,const VarDecl & var,llvm::Value * addr,Qualifiers::ObjCLifetime lifetime)491 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var,
492 llvm::Value *addr,
493 Qualifiers::ObjCLifetime lifetime) {
494 switch (lifetime) {
495 case Qualifiers::OCL_None:
496 llvm_unreachable("present but none");
497
498 case Qualifiers::OCL_ExplicitNone:
499 // nothing to do
500 break;
501
502 case Qualifiers::OCL_Strong: {
503 CodeGenFunction::Destroyer *destroyer =
504 (var.hasAttr<ObjCPreciseLifetimeAttr>()
505 ? CodeGenFunction::destroyARCStrongPrecise
506 : CodeGenFunction::destroyARCStrongImprecise);
507
508 CleanupKind cleanupKind = CGF.getARCCleanupKind();
509 CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer,
510 cleanupKind & EHCleanup);
511 break;
512 }
513 case Qualifiers::OCL_Autoreleasing:
514 // nothing to do
515 break;
516
517 case Qualifiers::OCL_Weak:
518 // __weak objects always get EH cleanups; otherwise, exceptions
519 // could cause really nasty crashes instead of mere leaks.
520 CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(),
521 CodeGenFunction::destroyARCWeak,
522 /*useEHCleanup*/ true);
523 break;
524 }
525 }
526
isAccessedBy(const VarDecl & var,const Stmt * s)527 static bool isAccessedBy(const VarDecl &var, const Stmt *s) {
528 if (const Expr *e = dyn_cast<Expr>(s)) {
529 // Skip the most common kinds of expressions that make
530 // hierarchy-walking expensive.
531 s = e = e->IgnoreParenCasts();
532
533 if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e))
534 return (ref->getDecl() == &var);
535 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
536 const BlockDecl *block = be->getBlockDecl();
537 for (const auto &I : block->captures()) {
538 if (I.getVariable() == &var)
539 return true;
540 }
541 }
542 }
543
544 for (Stmt::const_child_range children = s->children(); children; ++children)
545 // children might be null; as in missing decl or conditional of an if-stmt.
546 if ((*children) && isAccessedBy(var, *children))
547 return true;
548
549 return false;
550 }
551
isAccessedBy(const ValueDecl * decl,const Expr * e)552 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) {
553 if (!decl) return false;
554 if (!isa<VarDecl>(decl)) return false;
555 const VarDecl *var = cast<VarDecl>(decl);
556 return isAccessedBy(*var, e);
557 }
558
drillIntoBlockVariable(CodeGenFunction & CGF,LValue & lvalue,const VarDecl * var)559 static void drillIntoBlockVariable(CodeGenFunction &CGF,
560 LValue &lvalue,
561 const VarDecl *var) {
562 lvalue.setAddress(CGF.BuildBlockByrefAddress(lvalue.getAddress(), var));
563 }
564
EmitScalarInit(const Expr * init,const ValueDecl * D,LValue lvalue,bool capturedByInit)565 void CodeGenFunction::EmitScalarInit(const Expr *init,
566 const ValueDecl *D,
567 LValue lvalue,
568 bool capturedByInit) {
569 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
570 if (!lifetime) {
571 llvm::Value *value = EmitScalarExpr(init);
572 if (capturedByInit)
573 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
574 EmitStoreThroughLValue(RValue::get(value), lvalue, true);
575 return;
576 }
577
578 if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init))
579 init = DIE->getExpr();
580
581 // If we're emitting a value with lifetime, we have to do the
582 // initialization *before* we leave the cleanup scopes.
583 if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(init)) {
584 enterFullExpression(ewc);
585 init = ewc->getSubExpr();
586 }
587 CodeGenFunction::RunCleanupsScope Scope(*this);
588
589 // We have to maintain the illusion that the variable is
590 // zero-initialized. If the variable might be accessed in its
591 // initializer, zero-initialize before running the initializer, then
592 // actually perform the initialization with an assign.
593 bool accessedByInit = false;
594 if (lifetime != Qualifiers::OCL_ExplicitNone)
595 accessedByInit = (capturedByInit || isAccessedBy(D, init));
596 if (accessedByInit) {
597 LValue tempLV = lvalue;
598 // Drill down to the __block object if necessary.
599 if (capturedByInit) {
600 // We can use a simple GEP for this because it can't have been
601 // moved yet.
602 tempLV.setAddress(Builder.CreateStructGEP(tempLV.getAddress(),
603 getByRefValueLLVMField(cast<VarDecl>(D))));
604 }
605
606 llvm::PointerType *ty
607 = cast<llvm::PointerType>(tempLV.getAddress()->getType());
608 ty = cast<llvm::PointerType>(ty->getElementType());
609
610 llvm::Value *zero = llvm::ConstantPointerNull::get(ty);
611
612 // If __weak, we want to use a barrier under certain conditions.
613 if (lifetime == Qualifiers::OCL_Weak)
614 EmitARCInitWeak(tempLV.getAddress(), zero);
615
616 // Otherwise just do a simple store.
617 else
618 EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true);
619 }
620
621 // Emit the initializer.
622 llvm::Value *value = nullptr;
623
624 switch (lifetime) {
625 case Qualifiers::OCL_None:
626 llvm_unreachable("present but none");
627
628 case Qualifiers::OCL_ExplicitNone:
629 // nothing to do
630 value = EmitScalarExpr(init);
631 break;
632
633 case Qualifiers::OCL_Strong: {
634 value = EmitARCRetainScalarExpr(init);
635 break;
636 }
637
638 case Qualifiers::OCL_Weak: {
639 // No way to optimize a producing initializer into this. It's not
640 // worth optimizing for, because the value will immediately
641 // disappear in the common case.
642 value = EmitScalarExpr(init);
643
644 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
645 if (accessedByInit)
646 EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true);
647 else
648 EmitARCInitWeak(lvalue.getAddress(), value);
649 return;
650 }
651
652 case Qualifiers::OCL_Autoreleasing:
653 value = EmitARCRetainAutoreleaseScalarExpr(init);
654 break;
655 }
656
657 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
658
659 // If the variable might have been accessed by its initializer, we
660 // might have to initialize with a barrier. We have to do this for
661 // both __weak and __strong, but __weak got filtered out above.
662 if (accessedByInit && lifetime == Qualifiers::OCL_Strong) {
663 llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc());
664 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
665 EmitARCRelease(oldValue, ARCImpreciseLifetime);
666 return;
667 }
668
669 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
670 }
671
672 /// EmitScalarInit - Initialize the given lvalue with the given object.
EmitScalarInit(llvm::Value * init,LValue lvalue)673 void CodeGenFunction::EmitScalarInit(llvm::Value *init, LValue lvalue) {
674 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
675 if (!lifetime)
676 return EmitStoreThroughLValue(RValue::get(init), lvalue, true);
677
678 switch (lifetime) {
679 case Qualifiers::OCL_None:
680 llvm_unreachable("present but none");
681
682 case Qualifiers::OCL_ExplicitNone:
683 // nothing to do
684 break;
685
686 case Qualifiers::OCL_Strong:
687 init = EmitARCRetain(lvalue.getType(), init);
688 break;
689
690 case Qualifiers::OCL_Weak:
691 // Initialize and then skip the primitive store.
692 EmitARCInitWeak(lvalue.getAddress(), init);
693 return;
694
695 case Qualifiers::OCL_Autoreleasing:
696 init = EmitARCRetainAutorelease(lvalue.getType(), init);
697 break;
698 }
699
700 EmitStoreOfScalar(init, lvalue, /* isInitialization */ true);
701 }
702
703 /// canEmitInitWithFewStoresAfterMemset - Decide whether we can emit the
704 /// non-zero parts of the specified initializer with equal or fewer than
705 /// NumStores scalar stores.
canEmitInitWithFewStoresAfterMemset(llvm::Constant * Init,unsigned & NumStores)706 static bool canEmitInitWithFewStoresAfterMemset(llvm::Constant *Init,
707 unsigned &NumStores) {
708 // Zero and Undef never requires any extra stores.
709 if (isa<llvm::ConstantAggregateZero>(Init) ||
710 isa<llvm::ConstantPointerNull>(Init) ||
711 isa<llvm::UndefValue>(Init))
712 return true;
713 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
714 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
715 isa<llvm::ConstantExpr>(Init))
716 return Init->isNullValue() || NumStores--;
717
718 // See if we can emit each element.
719 if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) {
720 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
721 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
722 if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores))
723 return false;
724 }
725 return true;
726 }
727
728 if (llvm::ConstantDataSequential *CDS =
729 dyn_cast<llvm::ConstantDataSequential>(Init)) {
730 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
731 llvm::Constant *Elt = CDS->getElementAsConstant(i);
732 if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores))
733 return false;
734 }
735 return true;
736 }
737
738 // Anything else is hard and scary.
739 return false;
740 }
741
742 /// emitStoresForInitAfterMemset - For inits that
743 /// canEmitInitWithFewStoresAfterMemset returned true for, emit the scalar
744 /// stores that would be required.
emitStoresForInitAfterMemset(llvm::Constant * Init,llvm::Value * Loc,bool isVolatile,CGBuilderTy & Builder)745 static void emitStoresForInitAfterMemset(llvm::Constant *Init, llvm::Value *Loc,
746 bool isVolatile, CGBuilderTy &Builder) {
747 assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) &&
748 "called emitStoresForInitAfterMemset for zero or undef value.");
749
750 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
751 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
752 isa<llvm::ConstantExpr>(Init)) {
753 Builder.CreateStore(Init, Loc, isVolatile);
754 return;
755 }
756
757 if (llvm::ConstantDataSequential *CDS =
758 dyn_cast<llvm::ConstantDataSequential>(Init)) {
759 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
760 llvm::Constant *Elt = CDS->getElementAsConstant(i);
761
762 // If necessary, get a pointer to the element and emit it.
763 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
764 emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i),
765 isVolatile, Builder);
766 }
767 return;
768 }
769
770 assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) &&
771 "Unknown value type!");
772
773 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
774 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
775
776 // If necessary, get a pointer to the element and emit it.
777 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
778 emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i),
779 isVolatile, Builder);
780 }
781 }
782
783
784 /// shouldUseMemSetPlusStoresToInitialize - Decide whether we should use memset
785 /// plus some stores to initialize a local variable instead of using a memcpy
786 /// from a constant global. It is beneficial to use memset if the global is all
787 /// zeros, or mostly zeros and large.
shouldUseMemSetPlusStoresToInitialize(llvm::Constant * Init,uint64_t GlobalSize)788 static bool shouldUseMemSetPlusStoresToInitialize(llvm::Constant *Init,
789 uint64_t GlobalSize) {
790 // If a global is all zeros, always use a memset.
791 if (isa<llvm::ConstantAggregateZero>(Init)) return true;
792
793 // If a non-zero global is <= 32 bytes, always use a memcpy. If it is large,
794 // do it if it will require 6 or fewer scalar stores.
795 // TODO: Should budget depends on the size? Avoiding a large global warrants
796 // plopping in more stores.
797 unsigned StoreBudget = 6;
798 uint64_t SizeLimit = 32;
799
800 return GlobalSize > SizeLimit &&
801 canEmitInitWithFewStoresAfterMemset(Init, StoreBudget);
802 }
803
804 /// Should we use the LLVM lifetime intrinsics for the given local variable?
shouldUseLifetimeMarkers(CodeGenFunction & CGF,const VarDecl & D,unsigned Size)805 static bool shouldUseLifetimeMarkers(CodeGenFunction &CGF, const VarDecl &D,
806 unsigned Size) {
807 // For now, only in optimized builds.
808 if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0)
809 return false;
810
811 // Limit the size of marked objects to 32 bytes. We don't want to increase
812 // compile time by marking tiny objects.
813 unsigned SizeThreshold = 32;
814
815 return Size > SizeThreshold;
816 }
817
818
819 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a
820 /// variable declaration with auto, register, or no storage class specifier.
821 /// These turn into simple stack objects, or GlobalValues depending on target.
EmitAutoVarDecl(const VarDecl & D)822 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) {
823 AutoVarEmission emission = EmitAutoVarAlloca(D);
824 EmitAutoVarInit(emission);
825 EmitAutoVarCleanups(emission);
826 }
827
828 /// EmitAutoVarAlloca - Emit the alloca and debug information for a
829 /// local variable. Does not emit initialization or destruction.
830 CodeGenFunction::AutoVarEmission
EmitAutoVarAlloca(const VarDecl & D)831 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) {
832 QualType Ty = D.getType();
833
834 AutoVarEmission emission(D);
835
836 bool isByRef = D.hasAttr<BlocksAttr>();
837 emission.IsByRef = isByRef;
838
839 CharUnits alignment = getContext().getDeclAlign(&D);
840 emission.Alignment = alignment;
841
842 // If the type is variably-modified, emit all the VLA sizes for it.
843 if (Ty->isVariablyModifiedType())
844 EmitVariablyModifiedType(Ty);
845
846 llvm::Value *DeclPtr;
847 if (Ty->isConstantSizeType()) {
848 bool NRVO = getLangOpts().ElideConstructors &&
849 D.isNRVOVariable();
850
851 // If this value is an array or struct with a statically determinable
852 // constant initializer, there are optimizations we can do.
853 //
854 // TODO: We should constant-evaluate the initializer of any variable,
855 // as long as it is initialized by a constant expression. Currently,
856 // isConstantInitializer produces wrong answers for structs with
857 // reference or bitfield members, and a few other cases, and checking
858 // for POD-ness protects us from some of these.
859 if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) &&
860 (D.isConstexpr() ||
861 ((Ty.isPODType(getContext()) ||
862 getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) &&
863 D.getInit()->isConstantInitializer(getContext(), false)))) {
864
865 // If the variable's a const type, and it's neither an NRVO
866 // candidate nor a __block variable and has no mutable members,
867 // emit it as a global instead.
868 if (CGM.getCodeGenOpts().MergeAllConstants && !NRVO && !isByRef &&
869 CGM.isTypeConstant(Ty, true)) {
870 EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage);
871
872 emission.Address = nullptr; // signal this condition to later callbacks
873 assert(emission.wasEmittedAsGlobal());
874 return emission;
875 }
876
877 // Otherwise, tell the initialization code that we're in this case.
878 emission.IsConstantAggregate = true;
879 }
880
881 // A normal fixed sized variable becomes an alloca in the entry block,
882 // unless it's an NRVO variable.
883 llvm::Type *LTy = ConvertTypeForMem(Ty);
884
885 if (NRVO) {
886 // The named return value optimization: allocate this variable in the
887 // return slot, so that we can elide the copy when returning this
888 // variable (C++0x [class.copy]p34).
889 DeclPtr = ReturnValue;
890
891 if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
892 if (!cast<CXXRecordDecl>(RecordTy->getDecl())->hasTrivialDestructor()) {
893 // Create a flag that is used to indicate when the NRVO was applied
894 // to this variable. Set it to zero to indicate that NRVO was not
895 // applied.
896 llvm::Value *Zero = Builder.getFalse();
897 llvm::Value *NRVOFlag = CreateTempAlloca(Zero->getType(), "nrvo");
898 EnsureInsertPoint();
899 Builder.CreateStore(Zero, NRVOFlag);
900
901 // Record the NRVO flag for this variable.
902 NRVOFlags[&D] = NRVOFlag;
903 emission.NRVOFlag = NRVOFlag;
904 }
905 }
906 } else {
907 if (isByRef)
908 LTy = BuildByRefType(&D);
909
910 llvm::AllocaInst *Alloc = CreateTempAlloca(LTy);
911 Alloc->setName(D.getName());
912
913 CharUnits allocaAlignment = alignment;
914 if (isByRef)
915 allocaAlignment = std::max(allocaAlignment,
916 getContext().toCharUnitsFromBits(getTarget().getPointerAlign(0)));
917 Alloc->setAlignment(allocaAlignment.getQuantity());
918 DeclPtr = Alloc;
919
920 // Emit a lifetime intrinsic if meaningful. There's no point
921 // in doing this if we don't have a valid insertion point (?).
922 uint64_t size = CGM.getDataLayout().getTypeAllocSize(LTy);
923 if (HaveInsertPoint() && shouldUseLifetimeMarkers(*this, D, size)) {
924 llvm::Value *sizeV = llvm::ConstantInt::get(Int64Ty, size);
925
926 emission.SizeForLifetimeMarkers = sizeV;
927 llvm::Value *castAddr = Builder.CreateBitCast(Alloc, Int8PtrTy);
928 Builder.CreateCall2(CGM.getLLVMLifetimeStartFn(), sizeV, castAddr)
929 ->setDoesNotThrow();
930 } else {
931 assert(!emission.useLifetimeMarkers());
932 }
933 }
934 } else {
935 EnsureInsertPoint();
936
937 if (!DidCallStackSave) {
938 // Save the stack.
939 llvm::Value *Stack = CreateTempAlloca(Int8PtrTy, "saved_stack");
940
941 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave);
942 llvm::Value *V = Builder.CreateCall(F);
943
944 Builder.CreateStore(V, Stack);
945
946 DidCallStackSave = true;
947
948 // Push a cleanup block and restore the stack there.
949 // FIXME: in general circumstances, this should be an EH cleanup.
950 pushStackRestore(NormalCleanup, Stack);
951 }
952
953 llvm::Value *elementCount;
954 QualType elementType;
955 std::tie(elementCount, elementType) = getVLASize(Ty);
956
957 llvm::Type *llvmTy = ConvertTypeForMem(elementType);
958
959 // Allocate memory for the array.
960 llvm::AllocaInst *vla = Builder.CreateAlloca(llvmTy, elementCount, "vla");
961 vla->setAlignment(alignment.getQuantity());
962
963 DeclPtr = vla;
964 }
965
966 llvm::Value *&DMEntry = LocalDeclMap[&D];
967 assert(!DMEntry && "Decl already exists in localdeclmap!");
968 DMEntry = DeclPtr;
969 emission.Address = DeclPtr;
970
971 // Emit debug info for local var declaration.
972 if (HaveInsertPoint())
973 if (CGDebugInfo *DI = getDebugInfo()) {
974 if (CGM.getCodeGenOpts().getDebugInfo()
975 >= CodeGenOptions::LimitedDebugInfo) {
976 DI->setLocation(D.getLocation());
977 DI->EmitDeclareOfAutoVariable(&D, DeclPtr, Builder);
978 }
979 }
980
981 if (D.hasAttr<AnnotateAttr>())
982 EmitVarAnnotations(&D, emission.Address);
983
984 return emission;
985 }
986
987 /// Determines whether the given __block variable is potentially
988 /// captured by the given expression.
isCapturedBy(const VarDecl & var,const Expr * e)989 static bool isCapturedBy(const VarDecl &var, const Expr *e) {
990 // Skip the most common kinds of expressions that make
991 // hierarchy-walking expensive.
992 e = e->IgnoreParenCasts();
993
994 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
995 const BlockDecl *block = be->getBlockDecl();
996 for (const auto &I : block->captures()) {
997 if (I.getVariable() == &var)
998 return true;
999 }
1000
1001 // No need to walk into the subexpressions.
1002 return false;
1003 }
1004
1005 if (const StmtExpr *SE = dyn_cast<StmtExpr>(e)) {
1006 const CompoundStmt *CS = SE->getSubStmt();
1007 for (const auto *BI : CS->body())
1008 if (const auto *E = dyn_cast<Expr>(BI)) {
1009 if (isCapturedBy(var, E))
1010 return true;
1011 }
1012 else if (const auto *DS = dyn_cast<DeclStmt>(BI)) {
1013 // special case declarations
1014 for (const auto *I : DS->decls()) {
1015 if (const auto *VD = dyn_cast<VarDecl>((I))) {
1016 const Expr *Init = VD->getInit();
1017 if (Init && isCapturedBy(var, Init))
1018 return true;
1019 }
1020 }
1021 }
1022 else
1023 // FIXME. Make safe assumption assuming arbitrary statements cause capturing.
1024 // Later, provide code to poke into statements for capture analysis.
1025 return true;
1026 return false;
1027 }
1028
1029 for (Stmt::const_child_range children = e->children(); children; ++children)
1030 if (isCapturedBy(var, cast<Expr>(*children)))
1031 return true;
1032
1033 return false;
1034 }
1035
1036 /// \brief Determine whether the given initializer is trivial in the sense
1037 /// that it requires no code to be generated.
isTrivialInitializer(const Expr * Init)1038 static bool isTrivialInitializer(const Expr *Init) {
1039 if (!Init)
1040 return true;
1041
1042 if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init))
1043 if (CXXConstructorDecl *Constructor = Construct->getConstructor())
1044 if (Constructor->isTrivial() &&
1045 Constructor->isDefaultConstructor() &&
1046 !Construct->requiresZeroInitialization())
1047 return true;
1048
1049 return false;
1050 }
EmitAutoVarInit(const AutoVarEmission & emission)1051 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) {
1052 assert(emission.Variable && "emission was not valid!");
1053
1054 // If this was emitted as a global constant, we're done.
1055 if (emission.wasEmittedAsGlobal()) return;
1056
1057 const VarDecl &D = *emission.Variable;
1058 QualType type = D.getType();
1059
1060 // If this local has an initializer, emit it now.
1061 const Expr *Init = D.getInit();
1062
1063 // If we are at an unreachable point, we don't need to emit the initializer
1064 // unless it contains a label.
1065 if (!HaveInsertPoint()) {
1066 if (!Init || !ContainsLabel(Init)) return;
1067 EnsureInsertPoint();
1068 }
1069
1070 // Initialize the structure of a __block variable.
1071 if (emission.IsByRef)
1072 emitByrefStructureInit(emission);
1073
1074 if (isTrivialInitializer(Init))
1075 return;
1076
1077 CharUnits alignment = emission.Alignment;
1078
1079 // Check whether this is a byref variable that's potentially
1080 // captured and moved by its own initializer. If so, we'll need to
1081 // emit the initializer first, then copy into the variable.
1082 bool capturedByInit = emission.IsByRef && isCapturedBy(D, Init);
1083
1084 llvm::Value *Loc =
1085 capturedByInit ? emission.Address : emission.getObjectAddress(*this);
1086
1087 llvm::Constant *constant = nullptr;
1088 if (emission.IsConstantAggregate || D.isConstexpr()) {
1089 assert(!capturedByInit && "constant init contains a capturing block?");
1090 constant = CGM.EmitConstantInit(D, this);
1091 }
1092
1093 if (!constant) {
1094 LValue lv = MakeAddrLValue(Loc, type, alignment);
1095 lv.setNonGC(true);
1096 return EmitExprAsInit(Init, &D, lv, capturedByInit);
1097 }
1098
1099 if (!emission.IsConstantAggregate) {
1100 // For simple scalar/complex initialization, store the value directly.
1101 LValue lv = MakeAddrLValue(Loc, type, alignment);
1102 lv.setNonGC(true);
1103 return EmitStoreThroughLValue(RValue::get(constant), lv, true);
1104 }
1105
1106 // If this is a simple aggregate initialization, we can optimize it
1107 // in various ways.
1108 bool isVolatile = type.isVolatileQualified();
1109
1110 llvm::Value *SizeVal =
1111 llvm::ConstantInt::get(IntPtrTy,
1112 getContext().getTypeSizeInChars(type).getQuantity());
1113
1114 llvm::Type *BP = Int8PtrTy;
1115 if (Loc->getType() != BP)
1116 Loc = Builder.CreateBitCast(Loc, BP);
1117
1118 // If the initializer is all or mostly zeros, codegen with memset then do
1119 // a few stores afterward.
1120 if (shouldUseMemSetPlusStoresToInitialize(constant,
1121 CGM.getDataLayout().getTypeAllocSize(constant->getType()))) {
1122 Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal,
1123 alignment.getQuantity(), isVolatile);
1124 // Zero and undef don't require a stores.
1125 if (!constant->isNullValue() && !isa<llvm::UndefValue>(constant)) {
1126 Loc = Builder.CreateBitCast(Loc, constant->getType()->getPointerTo());
1127 emitStoresForInitAfterMemset(constant, Loc, isVolatile, Builder);
1128 }
1129 } else {
1130 // Otherwise, create a temporary global with the initializer then
1131 // memcpy from the global to the alloca.
1132 std::string Name = GetStaticDeclName(*this, D, ".");
1133 llvm::GlobalVariable *GV =
1134 new llvm::GlobalVariable(CGM.getModule(), constant->getType(), true,
1135 llvm::GlobalValue::PrivateLinkage,
1136 constant, Name);
1137 GV->setAlignment(alignment.getQuantity());
1138 GV->setUnnamedAddr(true);
1139
1140 llvm::Value *SrcPtr = GV;
1141 if (SrcPtr->getType() != BP)
1142 SrcPtr = Builder.CreateBitCast(SrcPtr, BP);
1143
1144 Builder.CreateMemCpy(Loc, SrcPtr, SizeVal, alignment.getQuantity(),
1145 isVolatile);
1146 }
1147 }
1148
1149 /// Emit an expression as an initializer for a variable at the given
1150 /// location. The expression is not necessarily the normal
1151 /// initializer for the variable, and the address is not necessarily
1152 /// its normal location.
1153 ///
1154 /// \param init the initializing expression
1155 /// \param var the variable to act as if we're initializing
1156 /// \param loc the address to initialize; its type is a pointer
1157 /// to the LLVM mapping of the variable's type
1158 /// \param alignment the alignment of the address
1159 /// \param capturedByInit true if the variable is a __block variable
1160 /// whose address is potentially changed by the initializer
EmitExprAsInit(const Expr * init,const ValueDecl * D,LValue lvalue,bool capturedByInit)1161 void CodeGenFunction::EmitExprAsInit(const Expr *init,
1162 const ValueDecl *D,
1163 LValue lvalue,
1164 bool capturedByInit) {
1165 QualType type = D->getType();
1166
1167 if (type->isReferenceType()) {
1168 RValue rvalue = EmitReferenceBindingToExpr(init);
1169 if (capturedByInit)
1170 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1171 EmitStoreThroughLValue(rvalue, lvalue, true);
1172 return;
1173 }
1174 switch (getEvaluationKind(type)) {
1175 case TEK_Scalar:
1176 EmitScalarInit(init, D, lvalue, capturedByInit);
1177 return;
1178 case TEK_Complex: {
1179 ComplexPairTy complex = EmitComplexExpr(init);
1180 if (capturedByInit)
1181 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1182 EmitStoreOfComplex(complex, lvalue, /*init*/ true);
1183 return;
1184 }
1185 case TEK_Aggregate:
1186 if (type->isAtomicType()) {
1187 EmitAtomicInit(const_cast<Expr*>(init), lvalue);
1188 } else {
1189 // TODO: how can we delay here if D is captured by its initializer?
1190 EmitAggExpr(init, AggValueSlot::forLValue(lvalue,
1191 AggValueSlot::IsDestructed,
1192 AggValueSlot::DoesNotNeedGCBarriers,
1193 AggValueSlot::IsNotAliased));
1194 }
1195 return;
1196 }
1197 llvm_unreachable("bad evaluation kind");
1198 }
1199
1200 /// Enter a destroy cleanup for the given local variable.
emitAutoVarTypeCleanup(const CodeGenFunction::AutoVarEmission & emission,QualType::DestructionKind dtorKind)1201 void CodeGenFunction::emitAutoVarTypeCleanup(
1202 const CodeGenFunction::AutoVarEmission &emission,
1203 QualType::DestructionKind dtorKind) {
1204 assert(dtorKind != QualType::DK_none);
1205
1206 // Note that for __block variables, we want to destroy the
1207 // original stack object, not the possibly forwarded object.
1208 llvm::Value *addr = emission.getObjectAddress(*this);
1209
1210 const VarDecl *var = emission.Variable;
1211 QualType type = var->getType();
1212
1213 CleanupKind cleanupKind = NormalAndEHCleanup;
1214 CodeGenFunction::Destroyer *destroyer = nullptr;
1215
1216 switch (dtorKind) {
1217 case QualType::DK_none:
1218 llvm_unreachable("no cleanup for trivially-destructible variable");
1219
1220 case QualType::DK_cxx_destructor:
1221 // If there's an NRVO flag on the emission, we need a different
1222 // cleanup.
1223 if (emission.NRVOFlag) {
1224 assert(!type->isArrayType());
1225 CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor();
1226 EHStack.pushCleanup<DestroyNRVOVariable>(cleanupKind, addr, dtor,
1227 emission.NRVOFlag);
1228 return;
1229 }
1230 break;
1231
1232 case QualType::DK_objc_strong_lifetime:
1233 // Suppress cleanups for pseudo-strong variables.
1234 if (var->isARCPseudoStrong()) return;
1235
1236 // Otherwise, consider whether to use an EH cleanup or not.
1237 cleanupKind = getARCCleanupKind();
1238
1239 // Use the imprecise destroyer by default.
1240 if (!var->hasAttr<ObjCPreciseLifetimeAttr>())
1241 destroyer = CodeGenFunction::destroyARCStrongImprecise;
1242 break;
1243
1244 case QualType::DK_objc_weak_lifetime:
1245 break;
1246 }
1247
1248 // If we haven't chosen a more specific destroyer, use the default.
1249 if (!destroyer) destroyer = getDestroyer(dtorKind);
1250
1251 // Use an EH cleanup in array destructors iff the destructor itself
1252 // is being pushed as an EH cleanup.
1253 bool useEHCleanup = (cleanupKind & EHCleanup);
1254 EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer,
1255 useEHCleanup);
1256 }
1257
EmitAutoVarCleanups(const AutoVarEmission & emission)1258 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) {
1259 assert(emission.Variable && "emission was not valid!");
1260
1261 // If this was emitted as a global constant, we're done.
1262 if (emission.wasEmittedAsGlobal()) return;
1263
1264 // If we don't have an insertion point, we're done. Sema prevents
1265 // us from jumping into any of these scopes anyway.
1266 if (!HaveInsertPoint()) return;
1267
1268 const VarDecl &D = *emission.Variable;
1269
1270 // Make sure we call @llvm.lifetime.end. This needs to happen
1271 // *last*, so the cleanup needs to be pushed *first*.
1272 if (emission.useLifetimeMarkers()) {
1273 EHStack.pushCleanup<CallLifetimeEnd>(NormalCleanup,
1274 emission.getAllocatedAddress(),
1275 emission.getSizeForLifetimeMarkers());
1276 }
1277
1278 // Check the type for a cleanup.
1279 if (QualType::DestructionKind dtorKind = D.getType().isDestructedType())
1280 emitAutoVarTypeCleanup(emission, dtorKind);
1281
1282 // In GC mode, honor objc_precise_lifetime.
1283 if (getLangOpts().getGC() != LangOptions::NonGC &&
1284 D.hasAttr<ObjCPreciseLifetimeAttr>()) {
1285 EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D);
1286 }
1287
1288 // Handle the cleanup attribute.
1289 if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) {
1290 const FunctionDecl *FD = CA->getFunctionDecl();
1291
1292 llvm::Constant *F = CGM.GetAddrOfFunction(FD);
1293 assert(F && "Could not find function!");
1294
1295 const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD);
1296 EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D);
1297 }
1298
1299 // If this is a block variable, call _Block_object_destroy
1300 // (on the unforwarded address).
1301 if (emission.IsByRef)
1302 enterByrefCleanup(emission);
1303 }
1304
1305 CodeGenFunction::Destroyer *
getDestroyer(QualType::DestructionKind kind)1306 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) {
1307 switch (kind) {
1308 case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor");
1309 case QualType::DK_cxx_destructor:
1310 return destroyCXXObject;
1311 case QualType::DK_objc_strong_lifetime:
1312 return destroyARCStrongPrecise;
1313 case QualType::DK_objc_weak_lifetime:
1314 return destroyARCWeak;
1315 }
1316 llvm_unreachable("Unknown DestructionKind");
1317 }
1318
1319 /// pushEHDestroy - Push the standard destructor for the given type as
1320 /// an EH-only cleanup.
pushEHDestroy(QualType::DestructionKind dtorKind,llvm::Value * addr,QualType type)1321 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind,
1322 llvm::Value *addr, QualType type) {
1323 assert(dtorKind && "cannot push destructor for trivial type");
1324 assert(needsEHCleanup(dtorKind));
1325
1326 pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true);
1327 }
1328
1329 /// pushDestroy - Push the standard destructor for the given type as
1330 /// at least a normal cleanup.
pushDestroy(QualType::DestructionKind dtorKind,llvm::Value * addr,QualType type)1331 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind,
1332 llvm::Value *addr, QualType type) {
1333 assert(dtorKind && "cannot push destructor for trivial type");
1334
1335 CleanupKind cleanupKind = getCleanupKind(dtorKind);
1336 pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind),
1337 cleanupKind & EHCleanup);
1338 }
1339
pushDestroy(CleanupKind cleanupKind,llvm::Value * addr,QualType type,Destroyer * destroyer,bool useEHCleanupForArray)1340 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, llvm::Value *addr,
1341 QualType type, Destroyer *destroyer,
1342 bool useEHCleanupForArray) {
1343 pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type,
1344 destroyer, useEHCleanupForArray);
1345 }
1346
pushStackRestore(CleanupKind Kind,llvm::Value * SPMem)1347 void CodeGenFunction::pushStackRestore(CleanupKind Kind, llvm::Value *SPMem) {
1348 EHStack.pushCleanup<CallStackRestore>(Kind, SPMem);
1349 }
1350
pushLifetimeExtendedDestroy(CleanupKind cleanupKind,llvm::Value * addr,QualType type,Destroyer * destroyer,bool useEHCleanupForArray)1351 void CodeGenFunction::pushLifetimeExtendedDestroy(
1352 CleanupKind cleanupKind, llvm::Value *addr, QualType type,
1353 Destroyer *destroyer, bool useEHCleanupForArray) {
1354 assert(!isInConditionalBranch() &&
1355 "performing lifetime extension from within conditional");
1356
1357 // Push an EH-only cleanup for the object now.
1358 // FIXME: When popping normal cleanups, we need to keep this EH cleanup
1359 // around in case a temporary's destructor throws an exception.
1360 if (cleanupKind & EHCleanup)
1361 EHStack.pushCleanup<DestroyObject>(
1362 static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type,
1363 destroyer, useEHCleanupForArray);
1364
1365 // Remember that we need to push a full cleanup for the object at the
1366 // end of the full-expression.
1367 pushCleanupAfterFullExpr<DestroyObject>(
1368 cleanupKind, addr, type, destroyer, useEHCleanupForArray);
1369 }
1370
1371 /// emitDestroy - Immediately perform the destruction of the given
1372 /// object.
1373 ///
1374 /// \param addr - the address of the object; a type*
1375 /// \param type - the type of the object; if an array type, all
1376 /// objects are destroyed in reverse order
1377 /// \param destroyer - the function to call to destroy individual
1378 /// elements
1379 /// \param useEHCleanupForArray - whether an EH cleanup should be
1380 /// used when destroying array elements, in case one of the
1381 /// destructions throws an exception
emitDestroy(llvm::Value * addr,QualType type,Destroyer * destroyer,bool useEHCleanupForArray)1382 void CodeGenFunction::emitDestroy(llvm::Value *addr, QualType type,
1383 Destroyer *destroyer,
1384 bool useEHCleanupForArray) {
1385 const ArrayType *arrayType = getContext().getAsArrayType(type);
1386 if (!arrayType)
1387 return destroyer(*this, addr, type);
1388
1389 llvm::Value *begin = addr;
1390 llvm::Value *length = emitArrayLength(arrayType, type, begin);
1391
1392 // Normally we have to check whether the array is zero-length.
1393 bool checkZeroLength = true;
1394
1395 // But if the array length is constant, we can suppress that.
1396 if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) {
1397 // ...and if it's constant zero, we can just skip the entire thing.
1398 if (constLength->isZero()) return;
1399 checkZeroLength = false;
1400 }
1401
1402 llvm::Value *end = Builder.CreateInBoundsGEP(begin, length);
1403 emitArrayDestroy(begin, end, type, destroyer,
1404 checkZeroLength, useEHCleanupForArray);
1405 }
1406
1407 /// emitArrayDestroy - Destroys all the elements of the given array,
1408 /// beginning from last to first. The array cannot be zero-length.
1409 ///
1410 /// \param begin - a type* denoting the first element of the array
1411 /// \param end - a type* denoting one past the end of the array
1412 /// \param type - the element type of the array
1413 /// \param destroyer - the function to call to destroy elements
1414 /// \param useEHCleanup - whether to push an EH cleanup to destroy
1415 /// the remaining elements in case the destruction of a single
1416 /// element throws
emitArrayDestroy(llvm::Value * begin,llvm::Value * end,QualType type,Destroyer * destroyer,bool checkZeroLength,bool useEHCleanup)1417 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin,
1418 llvm::Value *end,
1419 QualType type,
1420 Destroyer *destroyer,
1421 bool checkZeroLength,
1422 bool useEHCleanup) {
1423 assert(!type->isArrayType());
1424
1425 // The basic structure here is a do-while loop, because we don't
1426 // need to check for the zero-element case.
1427 llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body");
1428 llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done");
1429
1430 if (checkZeroLength) {
1431 llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end,
1432 "arraydestroy.isempty");
1433 Builder.CreateCondBr(isEmpty, doneBB, bodyBB);
1434 }
1435
1436 // Enter the loop body, making that address the current address.
1437 llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1438 EmitBlock(bodyBB);
1439 llvm::PHINode *elementPast =
1440 Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast");
1441 elementPast->addIncoming(end, entryBB);
1442
1443 // Shift the address back by one element.
1444 llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true);
1445 llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne,
1446 "arraydestroy.element");
1447
1448 if (useEHCleanup)
1449 pushRegularPartialArrayCleanup(begin, element, type, destroyer);
1450
1451 // Perform the actual destruction there.
1452 destroyer(*this, element, type);
1453
1454 if (useEHCleanup)
1455 PopCleanupBlock();
1456
1457 // Check whether we've reached the end.
1458 llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done");
1459 Builder.CreateCondBr(done, doneBB, bodyBB);
1460 elementPast->addIncoming(element, Builder.GetInsertBlock());
1461
1462 // Done.
1463 EmitBlock(doneBB);
1464 }
1465
1466 /// Perform partial array destruction as if in an EH cleanup. Unlike
1467 /// emitArrayDestroy, the element type here may still be an array type.
emitPartialArrayDestroy(CodeGenFunction & CGF,llvm::Value * begin,llvm::Value * end,QualType type,CodeGenFunction::Destroyer * destroyer)1468 static void emitPartialArrayDestroy(CodeGenFunction &CGF,
1469 llvm::Value *begin, llvm::Value *end,
1470 QualType type,
1471 CodeGenFunction::Destroyer *destroyer) {
1472 // If the element type is itself an array, drill down.
1473 unsigned arrayDepth = 0;
1474 while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) {
1475 // VLAs don't require a GEP index to walk into.
1476 if (!isa<VariableArrayType>(arrayType))
1477 arrayDepth++;
1478 type = arrayType->getElementType();
1479 }
1480
1481 if (arrayDepth) {
1482 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, arrayDepth+1);
1483
1484 SmallVector<llvm::Value*,4> gepIndices(arrayDepth, zero);
1485 begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin");
1486 end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend");
1487 }
1488
1489 // Destroy the array. We don't ever need an EH cleanup because we
1490 // assume that we're in an EH cleanup ourselves, so a throwing
1491 // destructor causes an immediate terminate.
1492 CGF.emitArrayDestroy(begin, end, type, destroyer,
1493 /*checkZeroLength*/ true, /*useEHCleanup*/ false);
1494 }
1495
1496 namespace {
1497 /// RegularPartialArrayDestroy - a cleanup which performs a partial
1498 /// array destroy where the end pointer is regularly determined and
1499 /// does not need to be loaded from a local.
1500 class RegularPartialArrayDestroy : public EHScopeStack::Cleanup {
1501 llvm::Value *ArrayBegin;
1502 llvm::Value *ArrayEnd;
1503 QualType ElementType;
1504 CodeGenFunction::Destroyer *Destroyer;
1505 public:
RegularPartialArrayDestroy(llvm::Value * arrayBegin,llvm::Value * arrayEnd,QualType elementType,CodeGenFunction::Destroyer * destroyer)1506 RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd,
1507 QualType elementType,
1508 CodeGenFunction::Destroyer *destroyer)
1509 : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd),
1510 ElementType(elementType), Destroyer(destroyer) {}
1511
Emit(CodeGenFunction & CGF,Flags flags)1512 void Emit(CodeGenFunction &CGF, Flags flags) override {
1513 emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd,
1514 ElementType, Destroyer);
1515 }
1516 };
1517
1518 /// IrregularPartialArrayDestroy - a cleanup which performs a
1519 /// partial array destroy where the end pointer is irregularly
1520 /// determined and must be loaded from a local.
1521 class IrregularPartialArrayDestroy : public EHScopeStack::Cleanup {
1522 llvm::Value *ArrayBegin;
1523 llvm::Value *ArrayEndPointer;
1524 QualType ElementType;
1525 CodeGenFunction::Destroyer *Destroyer;
1526 public:
IrregularPartialArrayDestroy(llvm::Value * arrayBegin,llvm::Value * arrayEndPointer,QualType elementType,CodeGenFunction::Destroyer * destroyer)1527 IrregularPartialArrayDestroy(llvm::Value *arrayBegin,
1528 llvm::Value *arrayEndPointer,
1529 QualType elementType,
1530 CodeGenFunction::Destroyer *destroyer)
1531 : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer),
1532 ElementType(elementType), Destroyer(destroyer) {}
1533
Emit(CodeGenFunction & CGF,Flags flags)1534 void Emit(CodeGenFunction &CGF, Flags flags) override {
1535 llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer);
1536 emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd,
1537 ElementType, Destroyer);
1538 }
1539 };
1540 }
1541
1542 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy
1543 /// already-constructed elements of the given array. The cleanup
1544 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
1545 ///
1546 /// \param elementType - the immediate element type of the array;
1547 /// possibly still an array type
pushIrregularPartialArrayCleanup(llvm::Value * arrayBegin,llvm::Value * arrayEndPointer,QualType elementType,Destroyer * destroyer)1548 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1549 llvm::Value *arrayEndPointer,
1550 QualType elementType,
1551 Destroyer *destroyer) {
1552 pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup,
1553 arrayBegin, arrayEndPointer,
1554 elementType, destroyer);
1555 }
1556
1557 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy
1558 /// already-constructed elements of the given array. The cleanup
1559 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
1560 ///
1561 /// \param elementType - the immediate element type of the array;
1562 /// possibly still an array type
pushRegularPartialArrayCleanup(llvm::Value * arrayBegin,llvm::Value * arrayEnd,QualType elementType,Destroyer * destroyer)1563 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1564 llvm::Value *arrayEnd,
1565 QualType elementType,
1566 Destroyer *destroyer) {
1567 pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup,
1568 arrayBegin, arrayEnd,
1569 elementType, destroyer);
1570 }
1571
1572 /// Lazily declare the @llvm.lifetime.start intrinsic.
getLLVMLifetimeStartFn()1573 llvm::Constant *CodeGenModule::getLLVMLifetimeStartFn() {
1574 if (LifetimeStartFn) return LifetimeStartFn;
1575 LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(),
1576 llvm::Intrinsic::lifetime_start);
1577 return LifetimeStartFn;
1578 }
1579
1580 /// Lazily declare the @llvm.lifetime.end intrinsic.
getLLVMLifetimeEndFn()1581 llvm::Constant *CodeGenModule::getLLVMLifetimeEndFn() {
1582 if (LifetimeEndFn) return LifetimeEndFn;
1583 LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(),
1584 llvm::Intrinsic::lifetime_end);
1585 return LifetimeEndFn;
1586 }
1587
1588 namespace {
1589 /// A cleanup to perform a release of an object at the end of a
1590 /// function. This is used to balance out the incoming +1 of a
1591 /// ns_consumed argument when we can't reasonably do that just by
1592 /// not doing the initial retain for a __block argument.
1593 struct ConsumeARCParameter : EHScopeStack::Cleanup {
ConsumeARCParameter__anon0f75d9860311::ConsumeARCParameter1594 ConsumeARCParameter(llvm::Value *param,
1595 ARCPreciseLifetime_t precise)
1596 : Param(param), Precise(precise) {}
1597
1598 llvm::Value *Param;
1599 ARCPreciseLifetime_t Precise;
1600
Emit__anon0f75d9860311::ConsumeARCParameter1601 void Emit(CodeGenFunction &CGF, Flags flags) override {
1602 CGF.EmitARCRelease(Param, Precise);
1603 }
1604 };
1605 }
1606
1607 /// Emit an alloca (or GlobalValue depending on target)
1608 /// for the specified parameter and set up LocalDeclMap.
EmitParmDecl(const VarDecl & D,llvm::Value * Arg,bool ArgIsPointer,unsigned ArgNo)1609 void CodeGenFunction::EmitParmDecl(const VarDecl &D, llvm::Value *Arg,
1610 bool ArgIsPointer, unsigned ArgNo) {
1611 // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl?
1612 assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) &&
1613 "Invalid argument to EmitParmDecl");
1614
1615 Arg->setName(D.getName());
1616
1617 QualType Ty = D.getType();
1618
1619 // Use better IR generation for certain implicit parameters.
1620 if (isa<ImplicitParamDecl>(D)) {
1621 // The only implicit argument a block has is its literal.
1622 if (BlockInfo) {
1623 LocalDeclMap[&D] = Arg;
1624 llvm::Value *LocalAddr = nullptr;
1625 if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
1626 // Allocate a stack slot to let the debug info survive the RA.
1627 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty),
1628 D.getName() + ".addr");
1629 Alloc->setAlignment(getContext().getDeclAlign(&D).getQuantity());
1630 LValue lv = MakeAddrLValue(Alloc, Ty, getContext().getDeclAlign(&D));
1631 EmitStoreOfScalar(Arg, lv, /* isInitialization */ true);
1632 LocalAddr = Builder.CreateLoad(Alloc);
1633 }
1634
1635 if (CGDebugInfo *DI = getDebugInfo()) {
1636 if (CGM.getCodeGenOpts().getDebugInfo()
1637 >= CodeGenOptions::LimitedDebugInfo) {
1638 DI->setLocation(D.getLocation());
1639 DI->EmitDeclareOfBlockLiteralArgVariable(*BlockInfo, Arg, LocalAddr, Builder);
1640 }
1641 }
1642
1643 return;
1644 }
1645 }
1646
1647 llvm::Value *DeclPtr;
1648 bool DoStore = false;
1649 bool IsScalar = hasScalarEvaluationKind(Ty);
1650 CharUnits Align = getContext().getDeclAlign(&D);
1651 // If we already have a pointer to the argument, reuse the input pointer.
1652 if (ArgIsPointer) {
1653 // If we have a prettier pointer type at this point, bitcast to that.
1654 unsigned AS = cast<llvm::PointerType>(Arg->getType())->getAddressSpace();
1655 llvm::Type *IRTy = ConvertTypeForMem(Ty)->getPointerTo(AS);
1656 DeclPtr = Arg->getType() == IRTy ? Arg : Builder.CreateBitCast(Arg, IRTy,
1657 D.getName());
1658 // Push a destructor cleanup for this parameter if the ABI requires it.
1659 if (!IsScalar &&
1660 getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
1661 const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
1662 if (RD && RD->hasNonTrivialDestructor())
1663 pushDestroy(QualType::DK_cxx_destructor, DeclPtr, Ty);
1664 }
1665 } else {
1666 // Otherwise, create a temporary to hold the value.
1667 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty),
1668 D.getName() + ".addr");
1669 Alloc->setAlignment(Align.getQuantity());
1670 DeclPtr = Alloc;
1671 DoStore = true;
1672 }
1673
1674 LValue lv = MakeAddrLValue(DeclPtr, Ty, Align);
1675 if (IsScalar) {
1676 Qualifiers qs = Ty.getQualifiers();
1677 if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) {
1678 // We honor __attribute__((ns_consumed)) for types with lifetime.
1679 // For __strong, it's handled by just skipping the initial retain;
1680 // otherwise we have to balance out the initial +1 with an extra
1681 // cleanup to do the release at the end of the function.
1682 bool isConsumed = D.hasAttr<NSConsumedAttr>();
1683
1684 // 'self' is always formally __strong, but if this is not an
1685 // init method then we don't want to retain it.
1686 if (D.isARCPseudoStrong()) {
1687 const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CurCodeDecl);
1688 assert(&D == method->getSelfDecl());
1689 assert(lt == Qualifiers::OCL_Strong);
1690 assert(qs.hasConst());
1691 assert(method->getMethodFamily() != OMF_init);
1692 (void) method;
1693 lt = Qualifiers::OCL_ExplicitNone;
1694 }
1695
1696 if (lt == Qualifiers::OCL_Strong) {
1697 if (!isConsumed) {
1698 if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
1699 // use objc_storeStrong(&dest, value) for retaining the
1700 // object. But first, store a null into 'dest' because
1701 // objc_storeStrong attempts to release its old value.
1702 llvm::Value *Null = CGM.EmitNullConstant(D.getType());
1703 EmitStoreOfScalar(Null, lv, /* isInitialization */ true);
1704 EmitARCStoreStrongCall(lv.getAddress(), Arg, true);
1705 DoStore = false;
1706 }
1707 else
1708 // Don't use objc_retainBlock for block pointers, because we
1709 // don't want to Block_copy something just because we got it
1710 // as a parameter.
1711 Arg = EmitARCRetainNonBlock(Arg);
1712 }
1713 } else {
1714 // Push the cleanup for a consumed parameter.
1715 if (isConsumed) {
1716 ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>()
1717 ? ARCPreciseLifetime : ARCImpreciseLifetime);
1718 EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), Arg,
1719 precise);
1720 }
1721
1722 if (lt == Qualifiers::OCL_Weak) {
1723 EmitARCInitWeak(DeclPtr, Arg);
1724 DoStore = false; // The weak init is a store, no need to do two.
1725 }
1726 }
1727
1728 // Enter the cleanup scope.
1729 EmitAutoVarWithLifetime(*this, D, DeclPtr, lt);
1730 }
1731 }
1732
1733 // Store the initial value into the alloca.
1734 if (DoStore)
1735 EmitStoreOfScalar(Arg, lv, /* isInitialization */ true);
1736
1737 llvm::Value *&DMEntry = LocalDeclMap[&D];
1738 assert(!DMEntry && "Decl already exists in localdeclmap!");
1739 DMEntry = DeclPtr;
1740
1741 // Emit debug info for param declaration.
1742 if (CGDebugInfo *DI = getDebugInfo()) {
1743 if (CGM.getCodeGenOpts().getDebugInfo()
1744 >= CodeGenOptions::LimitedDebugInfo) {
1745 DI->EmitDeclareOfArgVariable(&D, DeclPtr, ArgNo, Builder);
1746 }
1747 }
1748
1749 if (D.hasAttr<AnnotateAttr>())
1750 EmitVarAnnotations(&D, DeclPtr);
1751 }
1752