1 //===-- Type.cpp - Implement the Type class -------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Type class for the IR library.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/IR/Type.h"
15 #include "LLVMContextImpl.h"
16 #include "llvm/ADT/SmallString.h"
17 #include "llvm/IR/Module.h"
18 #include <algorithm>
19 #include <cstdarg>
20 using namespace llvm;
21
22 //===----------------------------------------------------------------------===//
23 // Type Class Implementation
24 //===----------------------------------------------------------------------===//
25
getPrimitiveType(LLVMContext & C,TypeID IDNumber)26 Type *Type::getPrimitiveType(LLVMContext &C, TypeID IDNumber) {
27 switch (IDNumber) {
28 case VoidTyID : return getVoidTy(C);
29 case HalfTyID : return getHalfTy(C);
30 case FloatTyID : return getFloatTy(C);
31 case DoubleTyID : return getDoubleTy(C);
32 case X86_FP80TyID : return getX86_FP80Ty(C);
33 case FP128TyID : return getFP128Ty(C);
34 case PPC_FP128TyID : return getPPC_FP128Ty(C);
35 case LabelTyID : return getLabelTy(C);
36 case MetadataTyID : return getMetadataTy(C);
37 case X86_MMXTyID : return getX86_MMXTy(C);
38 default:
39 return nullptr;
40 }
41 }
42
43 /// getScalarType - If this is a vector type, return the element type,
44 /// otherwise return this.
getScalarType()45 Type *Type::getScalarType() {
46 if (VectorType *VTy = dyn_cast<VectorType>(this))
47 return VTy->getElementType();
48 return this;
49 }
50
getScalarType() const51 const Type *Type::getScalarType() const {
52 if (const VectorType *VTy = dyn_cast<VectorType>(this))
53 return VTy->getElementType();
54 return this;
55 }
56
57 /// isIntegerTy - Return true if this is an IntegerType of the specified width.
isIntegerTy(unsigned Bitwidth) const58 bool Type::isIntegerTy(unsigned Bitwidth) const {
59 return isIntegerTy() && cast<IntegerType>(this)->getBitWidth() == Bitwidth;
60 }
61
62 // canLosslesslyBitCastTo - Return true if this type can be converted to
63 // 'Ty' without any reinterpretation of bits. For example, i8* to i32*.
64 //
canLosslesslyBitCastTo(Type * Ty) const65 bool Type::canLosslesslyBitCastTo(Type *Ty) const {
66 // Identity cast means no change so return true
67 if (this == Ty)
68 return true;
69
70 // They are not convertible unless they are at least first class types
71 if (!this->isFirstClassType() || !Ty->isFirstClassType())
72 return false;
73
74 // Vector -> Vector conversions are always lossless if the two vector types
75 // have the same size, otherwise not. Also, 64-bit vector types can be
76 // converted to x86mmx.
77 if (const VectorType *thisPTy = dyn_cast<VectorType>(this)) {
78 if (const VectorType *thatPTy = dyn_cast<VectorType>(Ty))
79 return thisPTy->getBitWidth() == thatPTy->getBitWidth();
80 if (Ty->getTypeID() == Type::X86_MMXTyID &&
81 thisPTy->getBitWidth() == 64)
82 return true;
83 }
84
85 if (this->getTypeID() == Type::X86_MMXTyID)
86 if (const VectorType *thatPTy = dyn_cast<VectorType>(Ty))
87 if (thatPTy->getBitWidth() == 64)
88 return true;
89
90 // At this point we have only various mismatches of the first class types
91 // remaining and ptr->ptr. Just select the lossless conversions. Everything
92 // else is not lossless.
93 if (this->isPointerTy())
94 return Ty->isPointerTy();
95 return false; // Other types have no identity values
96 }
97
isEmptyTy() const98 bool Type::isEmptyTy() const {
99 const ArrayType *ATy = dyn_cast<ArrayType>(this);
100 if (ATy) {
101 unsigned NumElements = ATy->getNumElements();
102 return NumElements == 0 || ATy->getElementType()->isEmptyTy();
103 }
104
105 const StructType *STy = dyn_cast<StructType>(this);
106 if (STy) {
107 unsigned NumElements = STy->getNumElements();
108 for (unsigned i = 0; i < NumElements; ++i)
109 if (!STy->getElementType(i)->isEmptyTy())
110 return false;
111 return true;
112 }
113
114 return false;
115 }
116
getPrimitiveSizeInBits() const117 unsigned Type::getPrimitiveSizeInBits() const {
118 switch (getTypeID()) {
119 case Type::HalfTyID: return 16;
120 case Type::FloatTyID: return 32;
121 case Type::DoubleTyID: return 64;
122 case Type::X86_FP80TyID: return 80;
123 case Type::FP128TyID: return 128;
124 case Type::PPC_FP128TyID: return 128;
125 case Type::X86_MMXTyID: return 64;
126 case Type::IntegerTyID: return cast<IntegerType>(this)->getBitWidth();
127 case Type::VectorTyID: return cast<VectorType>(this)->getBitWidth();
128 default: return 0;
129 }
130 }
131
132 /// getScalarSizeInBits - If this is a vector type, return the
133 /// getPrimitiveSizeInBits value for the element type. Otherwise return the
134 /// getPrimitiveSizeInBits value for this type.
getScalarSizeInBits() const135 unsigned Type::getScalarSizeInBits() const {
136 return getScalarType()->getPrimitiveSizeInBits();
137 }
138
139 /// getFPMantissaWidth - Return the width of the mantissa of this type. This
140 /// is only valid on floating point types. If the FP type does not
141 /// have a stable mantissa (e.g. ppc long double), this method returns -1.
getFPMantissaWidth() const142 int Type::getFPMantissaWidth() const {
143 if (const VectorType *VTy = dyn_cast<VectorType>(this))
144 return VTy->getElementType()->getFPMantissaWidth();
145 assert(isFloatingPointTy() && "Not a floating point type!");
146 if (getTypeID() == HalfTyID) return 11;
147 if (getTypeID() == FloatTyID) return 24;
148 if (getTypeID() == DoubleTyID) return 53;
149 if (getTypeID() == X86_FP80TyID) return 64;
150 if (getTypeID() == FP128TyID) return 113;
151 assert(getTypeID() == PPC_FP128TyID && "unknown fp type");
152 return -1;
153 }
154
155 /// isSizedDerivedType - Derived types like structures and arrays are sized
156 /// iff all of the members of the type are sized as well. Since asking for
157 /// their size is relatively uncommon, move this operation out of line.
isSizedDerivedType(SmallPtrSet<const Type *,4> * Visited) const158 bool Type::isSizedDerivedType(SmallPtrSet<const Type*, 4> *Visited) const {
159 if (const ArrayType *ATy = dyn_cast<ArrayType>(this))
160 return ATy->getElementType()->isSized(Visited);
161
162 if (const VectorType *VTy = dyn_cast<VectorType>(this))
163 return VTy->getElementType()->isSized(Visited);
164
165 return cast<StructType>(this)->isSized(Visited);
166 }
167
168 //===----------------------------------------------------------------------===//
169 // Subclass Helper Methods
170 //===----------------------------------------------------------------------===//
171
getIntegerBitWidth() const172 unsigned Type::getIntegerBitWidth() const {
173 return cast<IntegerType>(this)->getBitWidth();
174 }
175
isFunctionVarArg() const176 bool Type::isFunctionVarArg() const {
177 return cast<FunctionType>(this)->isVarArg();
178 }
179
getFunctionParamType(unsigned i) const180 Type *Type::getFunctionParamType(unsigned i) const {
181 return cast<FunctionType>(this)->getParamType(i);
182 }
183
getFunctionNumParams() const184 unsigned Type::getFunctionNumParams() const {
185 return cast<FunctionType>(this)->getNumParams();
186 }
187
getStructName() const188 StringRef Type::getStructName() const {
189 return cast<StructType>(this)->getName();
190 }
191
getStructNumElements() const192 unsigned Type::getStructNumElements() const {
193 return cast<StructType>(this)->getNumElements();
194 }
195
getStructElementType(unsigned N) const196 Type *Type::getStructElementType(unsigned N) const {
197 return cast<StructType>(this)->getElementType(N);
198 }
199
getSequentialElementType() const200 Type *Type::getSequentialElementType() const {
201 return cast<SequentialType>(this)->getElementType();
202 }
203
getArrayNumElements() const204 uint64_t Type::getArrayNumElements() const {
205 return cast<ArrayType>(this)->getNumElements();
206 }
207
getVectorNumElements() const208 unsigned Type::getVectorNumElements() const {
209 return cast<VectorType>(this)->getNumElements();
210 }
211
getPointerAddressSpace() const212 unsigned Type::getPointerAddressSpace() const {
213 return cast<PointerType>(getScalarType())->getAddressSpace();
214 }
215
216
217 //===----------------------------------------------------------------------===//
218 // Primitive 'Type' data
219 //===----------------------------------------------------------------------===//
220
getVoidTy(LLVMContext & C)221 Type *Type::getVoidTy(LLVMContext &C) { return &C.pImpl->VoidTy; }
getLabelTy(LLVMContext & C)222 Type *Type::getLabelTy(LLVMContext &C) { return &C.pImpl->LabelTy; }
getHalfTy(LLVMContext & C)223 Type *Type::getHalfTy(LLVMContext &C) { return &C.pImpl->HalfTy; }
getFloatTy(LLVMContext & C)224 Type *Type::getFloatTy(LLVMContext &C) { return &C.pImpl->FloatTy; }
getDoubleTy(LLVMContext & C)225 Type *Type::getDoubleTy(LLVMContext &C) { return &C.pImpl->DoubleTy; }
getMetadataTy(LLVMContext & C)226 Type *Type::getMetadataTy(LLVMContext &C) { return &C.pImpl->MetadataTy; }
getX86_FP80Ty(LLVMContext & C)227 Type *Type::getX86_FP80Ty(LLVMContext &C) { return &C.pImpl->X86_FP80Ty; }
getFP128Ty(LLVMContext & C)228 Type *Type::getFP128Ty(LLVMContext &C) { return &C.pImpl->FP128Ty; }
getPPC_FP128Ty(LLVMContext & C)229 Type *Type::getPPC_FP128Ty(LLVMContext &C) { return &C.pImpl->PPC_FP128Ty; }
getX86_MMXTy(LLVMContext & C)230 Type *Type::getX86_MMXTy(LLVMContext &C) { return &C.pImpl->X86_MMXTy; }
231
getInt1Ty(LLVMContext & C)232 IntegerType *Type::getInt1Ty(LLVMContext &C) { return &C.pImpl->Int1Ty; }
getInt8Ty(LLVMContext & C)233 IntegerType *Type::getInt8Ty(LLVMContext &C) { return &C.pImpl->Int8Ty; }
getInt16Ty(LLVMContext & C)234 IntegerType *Type::getInt16Ty(LLVMContext &C) { return &C.pImpl->Int16Ty; }
getInt32Ty(LLVMContext & C)235 IntegerType *Type::getInt32Ty(LLVMContext &C) { return &C.pImpl->Int32Ty; }
getInt64Ty(LLVMContext & C)236 IntegerType *Type::getInt64Ty(LLVMContext &C) { return &C.pImpl->Int64Ty; }
237
getIntNTy(LLVMContext & C,unsigned N)238 IntegerType *Type::getIntNTy(LLVMContext &C, unsigned N) {
239 return IntegerType::get(C, N);
240 }
241
getHalfPtrTy(LLVMContext & C,unsigned AS)242 PointerType *Type::getHalfPtrTy(LLVMContext &C, unsigned AS) {
243 return getHalfTy(C)->getPointerTo(AS);
244 }
245
getFloatPtrTy(LLVMContext & C,unsigned AS)246 PointerType *Type::getFloatPtrTy(LLVMContext &C, unsigned AS) {
247 return getFloatTy(C)->getPointerTo(AS);
248 }
249
getDoublePtrTy(LLVMContext & C,unsigned AS)250 PointerType *Type::getDoublePtrTy(LLVMContext &C, unsigned AS) {
251 return getDoubleTy(C)->getPointerTo(AS);
252 }
253
getX86_FP80PtrTy(LLVMContext & C,unsigned AS)254 PointerType *Type::getX86_FP80PtrTy(LLVMContext &C, unsigned AS) {
255 return getX86_FP80Ty(C)->getPointerTo(AS);
256 }
257
getFP128PtrTy(LLVMContext & C,unsigned AS)258 PointerType *Type::getFP128PtrTy(LLVMContext &C, unsigned AS) {
259 return getFP128Ty(C)->getPointerTo(AS);
260 }
261
getPPC_FP128PtrTy(LLVMContext & C,unsigned AS)262 PointerType *Type::getPPC_FP128PtrTy(LLVMContext &C, unsigned AS) {
263 return getPPC_FP128Ty(C)->getPointerTo(AS);
264 }
265
getX86_MMXPtrTy(LLVMContext & C,unsigned AS)266 PointerType *Type::getX86_MMXPtrTy(LLVMContext &C, unsigned AS) {
267 return getX86_MMXTy(C)->getPointerTo(AS);
268 }
269
getIntNPtrTy(LLVMContext & C,unsigned N,unsigned AS)270 PointerType *Type::getIntNPtrTy(LLVMContext &C, unsigned N, unsigned AS) {
271 return getIntNTy(C, N)->getPointerTo(AS);
272 }
273
getInt1PtrTy(LLVMContext & C,unsigned AS)274 PointerType *Type::getInt1PtrTy(LLVMContext &C, unsigned AS) {
275 return getInt1Ty(C)->getPointerTo(AS);
276 }
277
getInt8PtrTy(LLVMContext & C,unsigned AS)278 PointerType *Type::getInt8PtrTy(LLVMContext &C, unsigned AS) {
279 return getInt8Ty(C)->getPointerTo(AS);
280 }
281
getInt16PtrTy(LLVMContext & C,unsigned AS)282 PointerType *Type::getInt16PtrTy(LLVMContext &C, unsigned AS) {
283 return getInt16Ty(C)->getPointerTo(AS);
284 }
285
getInt32PtrTy(LLVMContext & C,unsigned AS)286 PointerType *Type::getInt32PtrTy(LLVMContext &C, unsigned AS) {
287 return getInt32Ty(C)->getPointerTo(AS);
288 }
289
getInt64PtrTy(LLVMContext & C,unsigned AS)290 PointerType *Type::getInt64PtrTy(LLVMContext &C, unsigned AS) {
291 return getInt64Ty(C)->getPointerTo(AS);
292 }
293
294
295 //===----------------------------------------------------------------------===//
296 // IntegerType Implementation
297 //===----------------------------------------------------------------------===//
298
get(LLVMContext & C,unsigned NumBits)299 IntegerType *IntegerType::get(LLVMContext &C, unsigned NumBits) {
300 assert(NumBits >= MIN_INT_BITS && "bitwidth too small");
301 assert(NumBits <= MAX_INT_BITS && "bitwidth too large");
302
303 // Check for the built-in integer types
304 switch (NumBits) {
305 case 1: return cast<IntegerType>(Type::getInt1Ty(C));
306 case 8: return cast<IntegerType>(Type::getInt8Ty(C));
307 case 16: return cast<IntegerType>(Type::getInt16Ty(C));
308 case 32: return cast<IntegerType>(Type::getInt32Ty(C));
309 case 64: return cast<IntegerType>(Type::getInt64Ty(C));
310 default:
311 break;
312 }
313
314 IntegerType *&Entry = C.pImpl->IntegerTypes[NumBits];
315
316 if (!Entry)
317 Entry = new (C.pImpl->TypeAllocator) IntegerType(C, NumBits);
318
319 return Entry;
320 }
321
isPowerOf2ByteWidth() const322 bool IntegerType::isPowerOf2ByteWidth() const {
323 unsigned BitWidth = getBitWidth();
324 return (BitWidth > 7) && isPowerOf2_32(BitWidth);
325 }
326
getMask() const327 APInt IntegerType::getMask() const {
328 return APInt::getAllOnesValue(getBitWidth());
329 }
330
331 //===----------------------------------------------------------------------===//
332 // FunctionType Implementation
333 //===----------------------------------------------------------------------===//
334
FunctionType(Type * Result,ArrayRef<Type * > Params,bool IsVarArgs)335 FunctionType::FunctionType(Type *Result, ArrayRef<Type*> Params,
336 bool IsVarArgs)
337 : Type(Result->getContext(), FunctionTyID) {
338 Type **SubTys = reinterpret_cast<Type**>(this+1);
339 assert(isValidReturnType(Result) && "invalid return type for function");
340 setSubclassData(IsVarArgs);
341
342 SubTys[0] = const_cast<Type*>(Result);
343
344 for (unsigned i = 0, e = Params.size(); i != e; ++i) {
345 assert(isValidArgumentType(Params[i]) &&
346 "Not a valid type for function argument!");
347 SubTys[i+1] = Params[i];
348 }
349
350 ContainedTys = SubTys;
351 NumContainedTys = Params.size() + 1; // + 1 for result type
352 }
353
354 // FunctionType::get - The factory function for the FunctionType class.
get(Type * ReturnType,ArrayRef<Type * > Params,bool isVarArg)355 FunctionType *FunctionType::get(Type *ReturnType,
356 ArrayRef<Type*> Params, bool isVarArg) {
357 LLVMContextImpl *pImpl = ReturnType->getContext().pImpl;
358 FunctionTypeKeyInfo::KeyTy Key(ReturnType, Params, isVarArg);
359 LLVMContextImpl::FunctionTypeMap::iterator I =
360 pImpl->FunctionTypes.find_as(Key);
361 FunctionType *FT;
362
363 if (I == pImpl->FunctionTypes.end()) {
364 FT = (FunctionType*) pImpl->TypeAllocator.
365 Allocate(sizeof(FunctionType) + sizeof(Type*) * (Params.size() + 1),
366 AlignOf<FunctionType>::Alignment);
367 new (FT) FunctionType(ReturnType, Params, isVarArg);
368 pImpl->FunctionTypes[FT] = true;
369 } else {
370 FT = I->first;
371 }
372
373 return FT;
374 }
375
get(Type * Result,bool isVarArg)376 FunctionType *FunctionType::get(Type *Result, bool isVarArg) {
377 return get(Result, None, isVarArg);
378 }
379
380 /// isValidReturnType - Return true if the specified type is valid as a return
381 /// type.
isValidReturnType(Type * RetTy)382 bool FunctionType::isValidReturnType(Type *RetTy) {
383 return !RetTy->isFunctionTy() && !RetTy->isLabelTy() &&
384 !RetTy->isMetadataTy();
385 }
386
387 /// isValidArgumentType - Return true if the specified type is valid as an
388 /// argument type.
isValidArgumentType(Type * ArgTy)389 bool FunctionType::isValidArgumentType(Type *ArgTy) {
390 return ArgTy->isFirstClassType();
391 }
392
393 //===----------------------------------------------------------------------===//
394 // StructType Implementation
395 //===----------------------------------------------------------------------===//
396
397 // Primitive Constructors.
398
get(LLVMContext & Context,ArrayRef<Type * > ETypes,bool isPacked)399 StructType *StructType::get(LLVMContext &Context, ArrayRef<Type*> ETypes,
400 bool isPacked) {
401 LLVMContextImpl *pImpl = Context.pImpl;
402 AnonStructTypeKeyInfo::KeyTy Key(ETypes, isPacked);
403 LLVMContextImpl::StructTypeMap::iterator I =
404 pImpl->AnonStructTypes.find_as(Key);
405 StructType *ST;
406
407 if (I == pImpl->AnonStructTypes.end()) {
408 // Value not found. Create a new type!
409 ST = new (Context.pImpl->TypeAllocator) StructType(Context);
410 ST->setSubclassData(SCDB_IsLiteral); // Literal struct.
411 ST->setBody(ETypes, isPacked);
412 Context.pImpl->AnonStructTypes[ST] = true;
413 } else {
414 ST = I->first;
415 }
416
417 return ST;
418 }
419
setBody(ArrayRef<Type * > Elements,bool isPacked)420 void StructType::setBody(ArrayRef<Type*> Elements, bool isPacked) {
421 assert(isOpaque() && "Struct body already set!");
422
423 setSubclassData(getSubclassData() | SCDB_HasBody);
424 if (isPacked)
425 setSubclassData(getSubclassData() | SCDB_Packed);
426
427 unsigned NumElements = Elements.size();
428 Type **Elts = getContext().pImpl->TypeAllocator.Allocate<Type*>(NumElements);
429 memcpy(Elts, Elements.data(), sizeof(Elements[0]) * NumElements);
430
431 ContainedTys = Elts;
432 NumContainedTys = NumElements;
433 }
434
setName(StringRef Name)435 void StructType::setName(StringRef Name) {
436 if (Name == getName()) return;
437
438 StringMap<StructType *> &SymbolTable = getContext().pImpl->NamedStructTypes;
439 typedef StringMap<StructType *>::MapEntryTy EntryTy;
440
441 // If this struct already had a name, remove its symbol table entry. Don't
442 // delete the data yet because it may be part of the new name.
443 if (SymbolTableEntry)
444 SymbolTable.remove((EntryTy *)SymbolTableEntry);
445
446 // If this is just removing the name, we're done.
447 if (Name.empty()) {
448 if (SymbolTableEntry) {
449 // Delete the old string data.
450 ((EntryTy *)SymbolTableEntry)->Destroy(SymbolTable.getAllocator());
451 SymbolTableEntry = nullptr;
452 }
453 return;
454 }
455
456 // Look up the entry for the name.
457 EntryTy *Entry = &getContext().pImpl->NamedStructTypes.GetOrCreateValue(Name);
458
459 // While we have a name collision, try a random rename.
460 if (Entry->getValue()) {
461 SmallString<64> TempStr(Name);
462 TempStr.push_back('.');
463 raw_svector_ostream TmpStream(TempStr);
464 unsigned NameSize = Name.size();
465
466 do {
467 TempStr.resize(NameSize + 1);
468 TmpStream.resync();
469 TmpStream << getContext().pImpl->NamedStructTypesUniqueID++;
470
471 Entry = &getContext().pImpl->
472 NamedStructTypes.GetOrCreateValue(TmpStream.str());
473 } while (Entry->getValue());
474 }
475
476 // Okay, we found an entry that isn't used. It's us!
477 Entry->setValue(this);
478
479 // Delete the old string data.
480 if (SymbolTableEntry)
481 ((EntryTy *)SymbolTableEntry)->Destroy(SymbolTable.getAllocator());
482 SymbolTableEntry = Entry;
483 }
484
485 //===----------------------------------------------------------------------===//
486 // StructType Helper functions.
487
create(LLVMContext & Context,StringRef Name)488 StructType *StructType::create(LLVMContext &Context, StringRef Name) {
489 StructType *ST = new (Context.pImpl->TypeAllocator) StructType(Context);
490 if (!Name.empty())
491 ST->setName(Name);
492 return ST;
493 }
494
get(LLVMContext & Context,bool isPacked)495 StructType *StructType::get(LLVMContext &Context, bool isPacked) {
496 return get(Context, None, isPacked);
497 }
498
get(Type * type,...)499 StructType *StructType::get(Type *type, ...) {
500 assert(type && "Cannot create a struct type with no elements with this");
501 LLVMContext &Ctx = type->getContext();
502 va_list ap;
503 SmallVector<llvm::Type*, 8> StructFields;
504 va_start(ap, type);
505 while (type) {
506 StructFields.push_back(type);
507 type = va_arg(ap, llvm::Type*);
508 }
509 return llvm::StructType::get(Ctx, StructFields);
510 }
511
create(LLVMContext & Context,ArrayRef<Type * > Elements,StringRef Name,bool isPacked)512 StructType *StructType::create(LLVMContext &Context, ArrayRef<Type*> Elements,
513 StringRef Name, bool isPacked) {
514 StructType *ST = create(Context, Name);
515 ST->setBody(Elements, isPacked);
516 return ST;
517 }
518
create(LLVMContext & Context,ArrayRef<Type * > Elements)519 StructType *StructType::create(LLVMContext &Context, ArrayRef<Type*> Elements) {
520 return create(Context, Elements, StringRef());
521 }
522
create(LLVMContext & Context)523 StructType *StructType::create(LLVMContext &Context) {
524 return create(Context, StringRef());
525 }
526
create(ArrayRef<Type * > Elements,StringRef Name,bool isPacked)527 StructType *StructType::create(ArrayRef<Type*> Elements, StringRef Name,
528 bool isPacked) {
529 assert(!Elements.empty() &&
530 "This method may not be invoked with an empty list");
531 return create(Elements[0]->getContext(), Elements, Name, isPacked);
532 }
533
create(ArrayRef<Type * > Elements)534 StructType *StructType::create(ArrayRef<Type*> Elements) {
535 assert(!Elements.empty() &&
536 "This method may not be invoked with an empty list");
537 return create(Elements[0]->getContext(), Elements, StringRef());
538 }
539
create(StringRef Name,Type * type,...)540 StructType *StructType::create(StringRef Name, Type *type, ...) {
541 assert(type && "Cannot create a struct type with no elements with this");
542 LLVMContext &Ctx = type->getContext();
543 va_list ap;
544 SmallVector<llvm::Type*, 8> StructFields;
545 va_start(ap, type);
546 while (type) {
547 StructFields.push_back(type);
548 type = va_arg(ap, llvm::Type*);
549 }
550 return llvm::StructType::create(Ctx, StructFields, Name);
551 }
552
isSized(SmallPtrSet<const Type *,4> * Visited) const553 bool StructType::isSized(SmallPtrSet<const Type*, 4> *Visited) const {
554 if ((getSubclassData() & SCDB_IsSized) != 0)
555 return true;
556 if (isOpaque())
557 return false;
558
559 if (Visited && !Visited->insert(this))
560 return false;
561
562 // Okay, our struct is sized if all of the elements are, but if one of the
563 // elements is opaque, the struct isn't sized *yet*, but may become sized in
564 // the future, so just bail out without caching.
565 for (element_iterator I = element_begin(), E = element_end(); I != E; ++I)
566 if (!(*I)->isSized(Visited))
567 return false;
568
569 // Here we cheat a bit and cast away const-ness. The goal is to memoize when
570 // we find a sized type, as types can only move from opaque to sized, not the
571 // other way.
572 const_cast<StructType*>(this)->setSubclassData(
573 getSubclassData() | SCDB_IsSized);
574 return true;
575 }
576
getName() const577 StringRef StructType::getName() const {
578 assert(!isLiteral() && "Literal structs never have names");
579 if (!SymbolTableEntry) return StringRef();
580
581 return ((StringMapEntry<StructType*> *)SymbolTableEntry)->getKey();
582 }
583
setBody(Type * type,...)584 void StructType::setBody(Type *type, ...) {
585 assert(type && "Cannot create a struct type with no elements with this");
586 va_list ap;
587 SmallVector<llvm::Type*, 8> StructFields;
588 va_start(ap, type);
589 while (type) {
590 StructFields.push_back(type);
591 type = va_arg(ap, llvm::Type*);
592 }
593 setBody(StructFields);
594 }
595
isValidElementType(Type * ElemTy)596 bool StructType::isValidElementType(Type *ElemTy) {
597 return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
598 !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy();
599 }
600
601 /// isLayoutIdentical - Return true if this is layout identical to the
602 /// specified struct.
isLayoutIdentical(StructType * Other) const603 bool StructType::isLayoutIdentical(StructType *Other) const {
604 if (this == Other) return true;
605
606 if (isPacked() != Other->isPacked() ||
607 getNumElements() != Other->getNumElements())
608 return false;
609
610 return std::equal(element_begin(), element_end(), Other->element_begin());
611 }
612
613 /// getTypeByName - Return the type with the specified name, or null if there
614 /// is none by that name.
getTypeByName(StringRef Name) const615 StructType *Module::getTypeByName(StringRef Name) const {
616 return getContext().pImpl->NamedStructTypes.lookup(Name);
617 }
618
619
620 //===----------------------------------------------------------------------===//
621 // CompositeType Implementation
622 //===----------------------------------------------------------------------===//
623
getTypeAtIndex(const Value * V)624 Type *CompositeType::getTypeAtIndex(const Value *V) {
625 if (StructType *STy = dyn_cast<StructType>(this)) {
626 unsigned Idx =
627 (unsigned)cast<Constant>(V)->getUniqueInteger().getZExtValue();
628 assert(indexValid(Idx) && "Invalid structure index!");
629 return STy->getElementType(Idx);
630 }
631
632 return cast<SequentialType>(this)->getElementType();
633 }
getTypeAtIndex(unsigned Idx)634 Type *CompositeType::getTypeAtIndex(unsigned Idx) {
635 if (StructType *STy = dyn_cast<StructType>(this)) {
636 assert(indexValid(Idx) && "Invalid structure index!");
637 return STy->getElementType(Idx);
638 }
639
640 return cast<SequentialType>(this)->getElementType();
641 }
indexValid(const Value * V) const642 bool CompositeType::indexValid(const Value *V) const {
643 if (const StructType *STy = dyn_cast<StructType>(this)) {
644 // Structure indexes require (vectors of) 32-bit integer constants. In the
645 // vector case all of the indices must be equal.
646 if (!V->getType()->getScalarType()->isIntegerTy(32))
647 return false;
648 const Constant *C = dyn_cast<Constant>(V);
649 if (C && V->getType()->isVectorTy())
650 C = C->getSplatValue();
651 const ConstantInt *CU = dyn_cast_or_null<ConstantInt>(C);
652 return CU && CU->getZExtValue() < STy->getNumElements();
653 }
654
655 // Sequential types can be indexed by any integer.
656 return V->getType()->isIntOrIntVectorTy();
657 }
658
indexValid(unsigned Idx) const659 bool CompositeType::indexValid(unsigned Idx) const {
660 if (const StructType *STy = dyn_cast<StructType>(this))
661 return Idx < STy->getNumElements();
662 // Sequential types can be indexed by any integer.
663 return true;
664 }
665
666
667 //===----------------------------------------------------------------------===//
668 // ArrayType Implementation
669 //===----------------------------------------------------------------------===//
670
ArrayType(Type * ElType,uint64_t NumEl)671 ArrayType::ArrayType(Type *ElType, uint64_t NumEl)
672 : SequentialType(ArrayTyID, ElType) {
673 NumElements = NumEl;
674 }
675
get(Type * elementType,uint64_t NumElements)676 ArrayType *ArrayType::get(Type *elementType, uint64_t NumElements) {
677 Type *ElementType = const_cast<Type*>(elementType);
678 assert(isValidElementType(ElementType) && "Invalid type for array element!");
679
680 LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
681 ArrayType *&Entry =
682 pImpl->ArrayTypes[std::make_pair(ElementType, NumElements)];
683
684 if (!Entry)
685 Entry = new (pImpl->TypeAllocator) ArrayType(ElementType, NumElements);
686 return Entry;
687 }
688
isValidElementType(Type * ElemTy)689 bool ArrayType::isValidElementType(Type *ElemTy) {
690 return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
691 !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy();
692 }
693
694 //===----------------------------------------------------------------------===//
695 // VectorType Implementation
696 //===----------------------------------------------------------------------===//
697
VectorType(Type * ElType,unsigned NumEl)698 VectorType::VectorType(Type *ElType, unsigned NumEl)
699 : SequentialType(VectorTyID, ElType) {
700 NumElements = NumEl;
701 }
702
get(Type * elementType,unsigned NumElements)703 VectorType *VectorType::get(Type *elementType, unsigned NumElements) {
704 Type *ElementType = const_cast<Type*>(elementType);
705 assert(NumElements > 0 && "#Elements of a VectorType must be greater than 0");
706 assert(isValidElementType(ElementType) &&
707 "Elements of a VectorType must be a primitive type");
708
709 LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
710 VectorType *&Entry = ElementType->getContext().pImpl
711 ->VectorTypes[std::make_pair(ElementType, NumElements)];
712
713 if (!Entry)
714 Entry = new (pImpl->TypeAllocator) VectorType(ElementType, NumElements);
715 return Entry;
716 }
717
isValidElementType(Type * ElemTy)718 bool VectorType::isValidElementType(Type *ElemTy) {
719 return ElemTy->isIntegerTy() || ElemTy->isFloatingPointTy() ||
720 ElemTy->isPointerTy();
721 }
722
723 //===----------------------------------------------------------------------===//
724 // PointerType Implementation
725 //===----------------------------------------------------------------------===//
726
get(Type * EltTy,unsigned AddressSpace)727 PointerType *PointerType::get(Type *EltTy, unsigned AddressSpace) {
728 assert(EltTy && "Can't get a pointer to <null> type!");
729 assert(isValidElementType(EltTy) && "Invalid type for pointer element!");
730
731 LLVMContextImpl *CImpl = EltTy->getContext().pImpl;
732
733 // Since AddressSpace #0 is the common case, we special case it.
734 PointerType *&Entry = AddressSpace == 0 ? CImpl->PointerTypes[EltTy]
735 : CImpl->ASPointerTypes[std::make_pair(EltTy, AddressSpace)];
736
737 if (!Entry)
738 Entry = new (CImpl->TypeAllocator) PointerType(EltTy, AddressSpace);
739 return Entry;
740 }
741
742
PointerType(Type * E,unsigned AddrSpace)743 PointerType::PointerType(Type *E, unsigned AddrSpace)
744 : SequentialType(PointerTyID, E) {
745 #ifndef NDEBUG
746 const unsigned oldNCT = NumContainedTys;
747 #endif
748 setSubclassData(AddrSpace);
749 // Check for miscompile. PR11652.
750 assert(oldNCT == NumContainedTys && "bitfield written out of bounds?");
751 }
752
getPointerTo(unsigned addrs)753 PointerType *Type::getPointerTo(unsigned addrs) {
754 return PointerType::get(this, addrs);
755 }
756
isValidElementType(Type * ElemTy)757 bool PointerType::isValidElementType(Type *ElemTy) {
758 return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
759 !ElemTy->isMetadataTy();
760 }
761