• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //== Store.cpp - Interface for maps from Locations to Values ----*- C++ -*--==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file defined the types Store and StoreManager.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
15 #include "clang/AST/CXXInheritance.h"
16 #include "clang/AST/CharUnits.h"
17 #include "clang/AST/DeclObjC.h"
18 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
19 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
20 
21 using namespace clang;
22 using namespace ento;
23 
StoreManager(ProgramStateManager & stateMgr)24 StoreManager::StoreManager(ProgramStateManager &stateMgr)
25   : svalBuilder(stateMgr.getSValBuilder()), StateMgr(stateMgr),
26     MRMgr(svalBuilder.getRegionManager()), Ctx(stateMgr.getContext()) {}
27 
enterStackFrame(Store OldStore,const CallEvent & Call,const StackFrameContext * LCtx)28 StoreRef StoreManager::enterStackFrame(Store OldStore,
29                                        const CallEvent &Call,
30                                        const StackFrameContext *LCtx) {
31   StoreRef Store = StoreRef(OldStore, *this);
32 
33   SmallVector<CallEvent::FrameBindingTy, 16> InitialBindings;
34   Call.getInitialStackFrameContents(LCtx, InitialBindings);
35 
36   for (CallEvent::BindingsTy::iterator I = InitialBindings.begin(),
37                                        E = InitialBindings.end();
38        I != E; ++I) {
39     Store = Bind(Store.getStore(), I->first, I->second);
40   }
41 
42   return Store;
43 }
44 
MakeElementRegion(const MemRegion * Base,QualType EleTy,uint64_t index)45 const MemRegion *StoreManager::MakeElementRegion(const MemRegion *Base,
46                                               QualType EleTy, uint64_t index) {
47   NonLoc idx = svalBuilder.makeArrayIndex(index);
48   return MRMgr.getElementRegion(EleTy, idx, Base, svalBuilder.getContext());
49 }
50 
51 // FIXME: Merge with the implementation of the same method in MemRegion.cpp
IsCompleteType(ASTContext & Ctx,QualType Ty)52 static bool IsCompleteType(ASTContext &Ctx, QualType Ty) {
53   if (const RecordType *RT = Ty->getAs<RecordType>()) {
54     const RecordDecl *D = RT->getDecl();
55     if (!D->getDefinition())
56       return false;
57   }
58 
59   return true;
60 }
61 
BindDefault(Store store,const MemRegion * R,SVal V)62 StoreRef StoreManager::BindDefault(Store store, const MemRegion *R, SVal V) {
63   return StoreRef(store, *this);
64 }
65 
GetElementZeroRegion(const MemRegion * R,QualType T)66 const ElementRegion *StoreManager::GetElementZeroRegion(const MemRegion *R,
67                                                         QualType T) {
68   NonLoc idx = svalBuilder.makeZeroArrayIndex();
69   assert(!T.isNull());
70   return MRMgr.getElementRegion(T, idx, R, Ctx);
71 }
72 
castRegion(const MemRegion * R,QualType CastToTy)73 const MemRegion *StoreManager::castRegion(const MemRegion *R, QualType CastToTy) {
74 
75   ASTContext &Ctx = StateMgr.getContext();
76 
77   // Handle casts to Objective-C objects.
78   if (CastToTy->isObjCObjectPointerType())
79     return R->StripCasts();
80 
81   if (CastToTy->isBlockPointerType()) {
82     // FIXME: We may need different solutions, depending on the symbol
83     // involved.  Blocks can be casted to/from 'id', as they can be treated
84     // as Objective-C objects.  This could possibly be handled by enhancing
85     // our reasoning of downcasts of symbolic objects.
86     if (isa<CodeTextRegion>(R) || isa<SymbolicRegion>(R))
87       return R;
88 
89     // We don't know what to make of it.  Return a NULL region, which
90     // will be interpretted as UnknownVal.
91     return nullptr;
92   }
93 
94   // Now assume we are casting from pointer to pointer. Other cases should
95   // already be handled.
96   QualType PointeeTy = CastToTy->getPointeeType();
97   QualType CanonPointeeTy = Ctx.getCanonicalType(PointeeTy);
98 
99   // Handle casts to void*.  We just pass the region through.
100   if (CanonPointeeTy.getLocalUnqualifiedType() == Ctx.VoidTy)
101     return R;
102 
103   // Handle casts from compatible types.
104   if (R->isBoundable())
105     if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R)) {
106       QualType ObjTy = Ctx.getCanonicalType(TR->getValueType());
107       if (CanonPointeeTy == ObjTy)
108         return R;
109     }
110 
111   // Process region cast according to the kind of the region being cast.
112   switch (R->getKind()) {
113     case MemRegion::CXXThisRegionKind:
114     case MemRegion::GenericMemSpaceRegionKind:
115     case MemRegion::StackLocalsSpaceRegionKind:
116     case MemRegion::StackArgumentsSpaceRegionKind:
117     case MemRegion::HeapSpaceRegionKind:
118     case MemRegion::UnknownSpaceRegionKind:
119     case MemRegion::StaticGlobalSpaceRegionKind:
120     case MemRegion::GlobalInternalSpaceRegionKind:
121     case MemRegion::GlobalSystemSpaceRegionKind:
122     case MemRegion::GlobalImmutableSpaceRegionKind: {
123       llvm_unreachable("Invalid region cast");
124     }
125 
126     case MemRegion::FunctionTextRegionKind:
127     case MemRegion::BlockTextRegionKind:
128     case MemRegion::BlockDataRegionKind:
129     case MemRegion::StringRegionKind:
130       // FIXME: Need to handle arbitrary downcasts.
131     case MemRegion::SymbolicRegionKind:
132     case MemRegion::AllocaRegionKind:
133     case MemRegion::CompoundLiteralRegionKind:
134     case MemRegion::FieldRegionKind:
135     case MemRegion::ObjCIvarRegionKind:
136     case MemRegion::ObjCStringRegionKind:
137     case MemRegion::VarRegionKind:
138     case MemRegion::CXXTempObjectRegionKind:
139     case MemRegion::CXXBaseObjectRegionKind:
140       return MakeElementRegion(R, PointeeTy);
141 
142     case MemRegion::ElementRegionKind: {
143       // If we are casting from an ElementRegion to another type, the
144       // algorithm is as follows:
145       //
146       // (1) Compute the "raw offset" of the ElementRegion from the
147       //     base region.  This is done by calling 'getAsRawOffset()'.
148       //
149       // (2a) If we get a 'RegionRawOffset' after calling
150       //      'getAsRawOffset()', determine if the absolute offset
151       //      can be exactly divided into chunks of the size of the
152       //      casted-pointee type.  If so, create a new ElementRegion with
153       //      the pointee-cast type as the new ElementType and the index
154       //      being the offset divded by the chunk size.  If not, create
155       //      a new ElementRegion at offset 0 off the raw offset region.
156       //
157       // (2b) If we don't a get a 'RegionRawOffset' after calling
158       //      'getAsRawOffset()', it means that we are at offset 0.
159       //
160       // FIXME: Handle symbolic raw offsets.
161 
162       const ElementRegion *elementR = cast<ElementRegion>(R);
163       const RegionRawOffset &rawOff = elementR->getAsArrayOffset();
164       const MemRegion *baseR = rawOff.getRegion();
165 
166       // If we cannot compute a raw offset, throw up our hands and return
167       // a NULL MemRegion*.
168       if (!baseR)
169         return nullptr;
170 
171       CharUnits off = rawOff.getOffset();
172 
173       if (off.isZero()) {
174         // Edge case: we are at 0 bytes off the beginning of baseR.  We
175         // check to see if type we are casting to is the same as the base
176         // region.  If so, just return the base region.
177         if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(baseR)) {
178           QualType ObjTy = Ctx.getCanonicalType(TR->getValueType());
179           QualType CanonPointeeTy = Ctx.getCanonicalType(PointeeTy);
180           if (CanonPointeeTy == ObjTy)
181             return baseR;
182         }
183 
184         // Otherwise, create a new ElementRegion at offset 0.
185         return MakeElementRegion(baseR, PointeeTy);
186       }
187 
188       // We have a non-zero offset from the base region.  We want to determine
189       // if the offset can be evenly divided by sizeof(PointeeTy).  If so,
190       // we create an ElementRegion whose index is that value.  Otherwise, we
191       // create two ElementRegions, one that reflects a raw offset and the other
192       // that reflects the cast.
193 
194       // Compute the index for the new ElementRegion.
195       int64_t newIndex = 0;
196       const MemRegion *newSuperR = nullptr;
197 
198       // We can only compute sizeof(PointeeTy) if it is a complete type.
199       if (IsCompleteType(Ctx, PointeeTy)) {
200         // Compute the size in **bytes**.
201         CharUnits pointeeTySize = Ctx.getTypeSizeInChars(PointeeTy);
202         if (!pointeeTySize.isZero()) {
203           // Is the offset a multiple of the size?  If so, we can layer the
204           // ElementRegion (with elementType == PointeeTy) directly on top of
205           // the base region.
206           if (off % pointeeTySize == 0) {
207             newIndex = off / pointeeTySize;
208             newSuperR = baseR;
209           }
210         }
211       }
212 
213       if (!newSuperR) {
214         // Create an intermediate ElementRegion to represent the raw byte.
215         // This will be the super region of the final ElementRegion.
216         newSuperR = MakeElementRegion(baseR, Ctx.CharTy, off.getQuantity());
217       }
218 
219       return MakeElementRegion(newSuperR, PointeeTy, newIndex);
220     }
221   }
222 
223   llvm_unreachable("unreachable");
224 }
225 
regionMatchesCXXRecordType(SVal V,QualType Ty)226 static bool regionMatchesCXXRecordType(SVal V, QualType Ty) {
227   const MemRegion *MR = V.getAsRegion();
228   if (!MR)
229     return true;
230 
231   const TypedValueRegion *TVR = dyn_cast<TypedValueRegion>(MR);
232   if (!TVR)
233     return true;
234 
235   const CXXRecordDecl *RD = TVR->getValueType()->getAsCXXRecordDecl();
236   if (!RD)
237     return true;
238 
239   const CXXRecordDecl *Expected = Ty->getPointeeCXXRecordDecl();
240   if (!Expected)
241     Expected = Ty->getAsCXXRecordDecl();
242 
243   return Expected->getCanonicalDecl() == RD->getCanonicalDecl();
244 }
245 
evalDerivedToBase(SVal Derived,const CastExpr * Cast)246 SVal StoreManager::evalDerivedToBase(SVal Derived, const CastExpr *Cast) {
247   // Sanity check to avoid doing the wrong thing in the face of
248   // reinterpret_cast.
249   if (!regionMatchesCXXRecordType(Derived, Cast->getSubExpr()->getType()))
250     return UnknownVal();
251 
252   // Walk through the cast path to create nested CXXBaseRegions.
253   SVal Result = Derived;
254   for (CastExpr::path_const_iterator I = Cast->path_begin(),
255                                      E = Cast->path_end();
256        I != E; ++I) {
257     Result = evalDerivedToBase(Result, (*I)->getType(), (*I)->isVirtual());
258   }
259   return Result;
260 }
261 
evalDerivedToBase(SVal Derived,const CXXBasePath & Path)262 SVal StoreManager::evalDerivedToBase(SVal Derived, const CXXBasePath &Path) {
263   // Walk through the path to create nested CXXBaseRegions.
264   SVal Result = Derived;
265   for (CXXBasePath::const_iterator I = Path.begin(), E = Path.end();
266        I != E; ++I) {
267     Result = evalDerivedToBase(Result, I->Base->getType(),
268                                I->Base->isVirtual());
269   }
270   return Result;
271 }
272 
evalDerivedToBase(SVal Derived,QualType BaseType,bool IsVirtual)273 SVal StoreManager::evalDerivedToBase(SVal Derived, QualType BaseType,
274                                      bool IsVirtual) {
275   Optional<loc::MemRegionVal> DerivedRegVal =
276       Derived.getAs<loc::MemRegionVal>();
277   if (!DerivedRegVal)
278     return Derived;
279 
280   const CXXRecordDecl *BaseDecl = BaseType->getPointeeCXXRecordDecl();
281   if (!BaseDecl)
282     BaseDecl = BaseType->getAsCXXRecordDecl();
283   assert(BaseDecl && "not a C++ object?");
284 
285   const MemRegion *BaseReg =
286     MRMgr.getCXXBaseObjectRegion(BaseDecl, DerivedRegVal->getRegion(),
287                                  IsVirtual);
288 
289   return loc::MemRegionVal(BaseReg);
290 }
291 
292 /// Returns the static type of the given region, if it represents a C++ class
293 /// object.
294 ///
295 /// This handles both fully-typed regions, where the dynamic type is known, and
296 /// symbolic regions, where the dynamic type is merely bounded (and even then,
297 /// only ostensibly!), but does not take advantage of any dynamic type info.
getCXXRecordType(const MemRegion * MR)298 static const CXXRecordDecl *getCXXRecordType(const MemRegion *MR) {
299   if (const TypedValueRegion *TVR = dyn_cast<TypedValueRegion>(MR))
300     return TVR->getValueType()->getAsCXXRecordDecl();
301   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(MR))
302     return SR->getSymbol()->getType()->getPointeeCXXRecordDecl();
303   return nullptr;
304 }
305 
evalDynamicCast(SVal Base,QualType TargetType,bool & Failed)306 SVal StoreManager::evalDynamicCast(SVal Base, QualType TargetType,
307                                    bool &Failed) {
308   Failed = false;
309 
310   const MemRegion *MR = Base.getAsRegion();
311   if (!MR)
312     return UnknownVal();
313 
314   // Assume the derived class is a pointer or a reference to a CXX record.
315   TargetType = TargetType->getPointeeType();
316   assert(!TargetType.isNull());
317   const CXXRecordDecl *TargetClass = TargetType->getAsCXXRecordDecl();
318   if (!TargetClass && !TargetType->isVoidType())
319     return UnknownVal();
320 
321   // Drill down the CXXBaseObject chains, which represent upcasts (casts from
322   // derived to base).
323   while (const CXXRecordDecl *MRClass = getCXXRecordType(MR)) {
324     // If found the derived class, the cast succeeds.
325     if (MRClass == TargetClass)
326       return loc::MemRegionVal(MR);
327 
328     // We skip over incomplete types. They must be the result of an earlier
329     // reinterpret_cast, as one can only dynamic_cast between types in the same
330     // class hierarchy.
331     if (!TargetType->isVoidType() && MRClass->hasDefinition()) {
332       // Static upcasts are marked as DerivedToBase casts by Sema, so this will
333       // only happen when multiple or virtual inheritance is involved.
334       CXXBasePaths Paths(/*FindAmbiguities=*/false, /*RecordPaths=*/true,
335                          /*DetectVirtual=*/false);
336       if (MRClass->isDerivedFrom(TargetClass, Paths))
337         return evalDerivedToBase(loc::MemRegionVal(MR), Paths.front());
338     }
339 
340     if (const CXXBaseObjectRegion *BaseR = dyn_cast<CXXBaseObjectRegion>(MR)) {
341       // Drill down the chain to get the derived classes.
342       MR = BaseR->getSuperRegion();
343       continue;
344     }
345 
346     // If this is a cast to void*, return the region.
347     if (TargetType->isVoidType())
348       return loc::MemRegionVal(MR);
349 
350     // Strange use of reinterpret_cast can give us paths we don't reason
351     // about well, by putting in ElementRegions where we'd expect
352     // CXXBaseObjectRegions. If it's a valid reinterpret_cast (i.e. if the
353     // derived class has a zero offset from the base class), then it's safe
354     // to strip the cast; if it's invalid, -Wreinterpret-base-class should
355     // catch it. In the interest of performance, the analyzer will silently
356     // do the wrong thing in the invalid case (because offsets for subregions
357     // will be wrong).
358     const MemRegion *Uncasted = MR->StripCasts(/*IncludeBaseCasts=*/false);
359     if (Uncasted == MR) {
360       // We reached the bottom of the hierarchy and did not find the derived
361       // class. We we must be casting the base to derived, so the cast should
362       // fail.
363       break;
364     }
365 
366     MR = Uncasted;
367   }
368 
369   // We failed if the region we ended up with has perfect type info.
370   Failed = isa<TypedValueRegion>(MR);
371   return UnknownVal();
372 }
373 
374 
375 /// CastRetrievedVal - Used by subclasses of StoreManager to implement
376 ///  implicit casts that arise from loads from regions that are reinterpreted
377 ///  as another region.
CastRetrievedVal(SVal V,const TypedValueRegion * R,QualType castTy,bool performTestOnly)378 SVal StoreManager::CastRetrievedVal(SVal V, const TypedValueRegion *R,
379                                     QualType castTy, bool performTestOnly) {
380 
381   if (castTy.isNull() || V.isUnknownOrUndef())
382     return V;
383 
384   ASTContext &Ctx = svalBuilder.getContext();
385 
386   if (performTestOnly) {
387     // Automatically translate references to pointers.
388     QualType T = R->getValueType();
389     if (const ReferenceType *RT = T->getAs<ReferenceType>())
390       T = Ctx.getPointerType(RT->getPointeeType());
391 
392     assert(svalBuilder.getContext().hasSameUnqualifiedType(castTy, T));
393     return V;
394   }
395 
396   return svalBuilder.dispatchCast(V, castTy);
397 }
398 
getLValueFieldOrIvar(const Decl * D,SVal Base)399 SVal StoreManager::getLValueFieldOrIvar(const Decl *D, SVal Base) {
400   if (Base.isUnknownOrUndef())
401     return Base;
402 
403   Loc BaseL = Base.castAs<Loc>();
404   const MemRegion* BaseR = nullptr;
405 
406   switch (BaseL.getSubKind()) {
407   case loc::MemRegionKind:
408     BaseR = BaseL.castAs<loc::MemRegionVal>().getRegion();
409     break;
410 
411   case loc::GotoLabelKind:
412     // These are anormal cases. Flag an undefined value.
413     return UndefinedVal();
414 
415   case loc::ConcreteIntKind:
416     // While these seem funny, this can happen through casts.
417     // FIXME: What we should return is the field offset.  For example,
418     //  add the field offset to the integer value.  That way funny things
419     //  like this work properly:  &(((struct foo *) 0xa)->f)
420     return Base;
421 
422   default:
423     llvm_unreachable("Unhandled Base.");
424   }
425 
426   // NOTE: We must have this check first because ObjCIvarDecl is a subclass
427   // of FieldDecl.
428   if (const ObjCIvarDecl *ID = dyn_cast<ObjCIvarDecl>(D))
429     return loc::MemRegionVal(MRMgr.getObjCIvarRegion(ID, BaseR));
430 
431   return loc::MemRegionVal(MRMgr.getFieldRegion(cast<FieldDecl>(D), BaseR));
432 }
433 
getLValueIvar(const ObjCIvarDecl * decl,SVal base)434 SVal StoreManager::getLValueIvar(const ObjCIvarDecl *decl, SVal base) {
435   return getLValueFieldOrIvar(decl, base);
436 }
437 
getLValueElement(QualType elementType,NonLoc Offset,SVal Base)438 SVal StoreManager::getLValueElement(QualType elementType, NonLoc Offset,
439                                     SVal Base) {
440 
441   // If the base is an unknown or undefined value, just return it back.
442   // FIXME: For absolute pointer addresses, we just return that value back as
443   //  well, although in reality we should return the offset added to that
444   //  value.
445   if (Base.isUnknownOrUndef() || Base.getAs<loc::ConcreteInt>())
446     return Base;
447 
448   const MemRegion* BaseRegion = Base.castAs<loc::MemRegionVal>().getRegion();
449 
450   // Pointer of any type can be cast and used as array base.
451   const ElementRegion *ElemR = dyn_cast<ElementRegion>(BaseRegion);
452 
453   // Convert the offset to the appropriate size and signedness.
454   Offset = svalBuilder.convertToArrayIndex(Offset).castAs<NonLoc>();
455 
456   if (!ElemR) {
457     //
458     // If the base region is not an ElementRegion, create one.
459     // This can happen in the following example:
460     //
461     //   char *p = __builtin_alloc(10);
462     //   p[1] = 8;
463     //
464     //  Observe that 'p' binds to an AllocaRegion.
465     //
466     return loc::MemRegionVal(MRMgr.getElementRegion(elementType, Offset,
467                                                     BaseRegion, Ctx));
468   }
469 
470   SVal BaseIdx = ElemR->getIndex();
471 
472   if (!BaseIdx.getAs<nonloc::ConcreteInt>())
473     return UnknownVal();
474 
475   const llvm::APSInt &BaseIdxI =
476       BaseIdx.castAs<nonloc::ConcreteInt>().getValue();
477 
478   // Only allow non-integer offsets if the base region has no offset itself.
479   // FIXME: This is a somewhat arbitrary restriction. We should be using
480   // SValBuilder here to add the two offsets without checking their types.
481   if (!Offset.getAs<nonloc::ConcreteInt>()) {
482     if (isa<ElementRegion>(BaseRegion->StripCasts()))
483       return UnknownVal();
484 
485     return loc::MemRegionVal(MRMgr.getElementRegion(elementType, Offset,
486                                                     ElemR->getSuperRegion(),
487                                                     Ctx));
488   }
489 
490   const llvm::APSInt& OffI = Offset.castAs<nonloc::ConcreteInt>().getValue();
491   assert(BaseIdxI.isSigned());
492 
493   // Compute the new index.
494   nonloc::ConcreteInt NewIdx(svalBuilder.getBasicValueFactory().getValue(BaseIdxI +
495                                                                     OffI));
496 
497   // Construct the new ElementRegion.
498   const MemRegion *ArrayR = ElemR->getSuperRegion();
499   return loc::MemRegionVal(MRMgr.getElementRegion(elementType, NewIdx, ArrayR,
500                                                   Ctx));
501 }
502 
~BindingsHandler()503 StoreManager::BindingsHandler::~BindingsHandler() {}
504 
HandleBinding(StoreManager & SMgr,Store store,const MemRegion * R,SVal val)505 bool StoreManager::FindUniqueBinding::HandleBinding(StoreManager& SMgr,
506                                                     Store store,
507                                                     const MemRegion* R,
508                                                     SVal val) {
509   SymbolRef SymV = val.getAsLocSymbol();
510   if (!SymV || SymV != Sym)
511     return true;
512 
513   if (Binding) {
514     First = false;
515     return false;
516   }
517   else
518     Binding = R;
519 
520   return true;
521 }
522