1 //===--- Decl.cpp - Declaration AST Node Implementation -------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Decl subclasses.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/AST/Decl.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTLambda.h"
17 #include "clang/AST/ASTMutationListener.h"
18 #include "clang/AST/Attr.h"
19 #include "clang/AST/DeclCXX.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/DeclTemplate.h"
22 #include "clang/AST/Expr.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/AST/PrettyPrinter.h"
25 #include "clang/AST/Stmt.h"
26 #include "clang/AST/TypeLoc.h"
27 #include "clang/Basic/Builtins.h"
28 #include "clang/Basic/IdentifierTable.h"
29 #include "clang/Basic/Module.h"
30 #include "clang/Basic/Specifiers.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include <algorithm>
34
35 using namespace clang;
36
getPrimaryMergedDecl(Decl * D)37 Decl *clang::getPrimaryMergedDecl(Decl *D) {
38 return D->getASTContext().getPrimaryMergedDecl(D);
39 }
40
41 //===----------------------------------------------------------------------===//
42 // NamedDecl Implementation
43 //===----------------------------------------------------------------------===//
44
45 // Visibility rules aren't rigorously externally specified, but here
46 // are the basic principles behind what we implement:
47 //
48 // 1. An explicit visibility attribute is generally a direct expression
49 // of the user's intent and should be honored. Only the innermost
50 // visibility attribute applies. If no visibility attribute applies,
51 // global visibility settings are considered.
52 //
53 // 2. There is one caveat to the above: on or in a template pattern,
54 // an explicit visibility attribute is just a default rule, and
55 // visibility can be decreased by the visibility of template
56 // arguments. But this, too, has an exception: an attribute on an
57 // explicit specialization or instantiation causes all the visibility
58 // restrictions of the template arguments to be ignored.
59 //
60 // 3. A variable that does not otherwise have explicit visibility can
61 // be restricted by the visibility of its type.
62 //
63 // 4. A visibility restriction is explicit if it comes from an
64 // attribute (or something like it), not a global visibility setting.
65 // When emitting a reference to an external symbol, visibility
66 // restrictions are ignored unless they are explicit.
67 //
68 // 5. When computing the visibility of a non-type, including a
69 // non-type member of a class, only non-type visibility restrictions
70 // are considered: the 'visibility' attribute, global value-visibility
71 // settings, and a few special cases like __private_extern.
72 //
73 // 6. When computing the visibility of a type, including a type member
74 // of a class, only type visibility restrictions are considered:
75 // the 'type_visibility' attribute and global type-visibility settings.
76 // However, a 'visibility' attribute counts as a 'type_visibility'
77 // attribute on any declaration that only has the former.
78 //
79 // The visibility of a "secondary" entity, like a template argument,
80 // is computed using the kind of that entity, not the kind of the
81 // primary entity for which we are computing visibility. For example,
82 // the visibility of a specialization of either of these templates:
83 // template <class T, bool (&compare)(T, X)> bool has_match(list<T>, X);
84 // template <class T, bool (&compare)(T, X)> class matcher;
85 // is restricted according to the type visibility of the argument 'T',
86 // the type visibility of 'bool(&)(T,X)', and the value visibility of
87 // the argument function 'compare'. That 'has_match' is a value
88 // and 'matcher' is a type only matters when looking for attributes
89 // and settings from the immediate context.
90
91 const unsigned IgnoreExplicitVisibilityBit = 2;
92 const unsigned IgnoreAllVisibilityBit = 4;
93
94 /// Kinds of LV computation. The linkage side of the computation is
95 /// always the same, but different things can change how visibility is
96 /// computed.
97 enum LVComputationKind {
98 /// Do an LV computation for, ultimately, a type.
99 /// Visibility may be restricted by type visibility settings and
100 /// the visibility of template arguments.
101 LVForType = NamedDecl::VisibilityForType,
102
103 /// Do an LV computation for, ultimately, a non-type declaration.
104 /// Visibility may be restricted by value visibility settings and
105 /// the visibility of template arguments.
106 LVForValue = NamedDecl::VisibilityForValue,
107
108 /// Do an LV computation for, ultimately, a type that already has
109 /// some sort of explicit visibility. Visibility may only be
110 /// restricted by the visibility of template arguments.
111 LVForExplicitType = (LVForType | IgnoreExplicitVisibilityBit),
112
113 /// Do an LV computation for, ultimately, a non-type declaration
114 /// that already has some sort of explicit visibility. Visibility
115 /// may only be restricted by the visibility of template arguments.
116 LVForExplicitValue = (LVForValue | IgnoreExplicitVisibilityBit),
117
118 /// Do an LV computation when we only care about the linkage.
119 LVForLinkageOnly =
120 LVForValue | IgnoreExplicitVisibilityBit | IgnoreAllVisibilityBit
121 };
122
123 /// Does this computation kind permit us to consider additional
124 /// visibility settings from attributes and the like?
hasExplicitVisibilityAlready(LVComputationKind computation)125 static bool hasExplicitVisibilityAlready(LVComputationKind computation) {
126 return ((unsigned(computation) & IgnoreExplicitVisibilityBit) != 0);
127 }
128
129 /// Given an LVComputationKind, return one of the same type/value sort
130 /// that records that it already has explicit visibility.
131 static LVComputationKind
withExplicitVisibilityAlready(LVComputationKind oldKind)132 withExplicitVisibilityAlready(LVComputationKind oldKind) {
133 LVComputationKind newKind =
134 static_cast<LVComputationKind>(unsigned(oldKind) |
135 IgnoreExplicitVisibilityBit);
136 assert(oldKind != LVForType || newKind == LVForExplicitType);
137 assert(oldKind != LVForValue || newKind == LVForExplicitValue);
138 assert(oldKind != LVForExplicitType || newKind == LVForExplicitType);
139 assert(oldKind != LVForExplicitValue || newKind == LVForExplicitValue);
140 return newKind;
141 }
142
getExplicitVisibility(const NamedDecl * D,LVComputationKind kind)143 static Optional<Visibility> getExplicitVisibility(const NamedDecl *D,
144 LVComputationKind kind) {
145 assert(!hasExplicitVisibilityAlready(kind) &&
146 "asking for explicit visibility when we shouldn't be");
147 return D->getExplicitVisibility((NamedDecl::ExplicitVisibilityKind) kind);
148 }
149
150 /// Is the given declaration a "type" or a "value" for the purposes of
151 /// visibility computation?
usesTypeVisibility(const NamedDecl * D)152 static bool usesTypeVisibility(const NamedDecl *D) {
153 return isa<TypeDecl>(D) ||
154 isa<ClassTemplateDecl>(D) ||
155 isa<ObjCInterfaceDecl>(D);
156 }
157
158 /// Does the given declaration have member specialization information,
159 /// and if so, is it an explicit specialization?
160 template <class T> static typename
161 std::enable_if<!std::is_base_of<RedeclarableTemplateDecl, T>::value, bool>::type
isExplicitMemberSpecialization(const T * D)162 isExplicitMemberSpecialization(const T *D) {
163 if (const MemberSpecializationInfo *member =
164 D->getMemberSpecializationInfo()) {
165 return member->isExplicitSpecialization();
166 }
167 return false;
168 }
169
170 /// For templates, this question is easier: a member template can't be
171 /// explicitly instantiated, so there's a single bit indicating whether
172 /// or not this is an explicit member specialization.
isExplicitMemberSpecialization(const RedeclarableTemplateDecl * D)173 static bool isExplicitMemberSpecialization(const RedeclarableTemplateDecl *D) {
174 return D->isMemberSpecialization();
175 }
176
177 /// Given a visibility attribute, return the explicit visibility
178 /// associated with it.
179 template <class T>
getVisibilityFromAttr(const T * attr)180 static Visibility getVisibilityFromAttr(const T *attr) {
181 switch (attr->getVisibility()) {
182 case T::Default:
183 return DefaultVisibility;
184 case T::Hidden:
185 return HiddenVisibility;
186 case T::Protected:
187 return ProtectedVisibility;
188 }
189 llvm_unreachable("bad visibility kind");
190 }
191
192 /// Return the explicit visibility of the given declaration.
getVisibilityOf(const NamedDecl * D,NamedDecl::ExplicitVisibilityKind kind)193 static Optional<Visibility> getVisibilityOf(const NamedDecl *D,
194 NamedDecl::ExplicitVisibilityKind kind) {
195 // If we're ultimately computing the visibility of a type, look for
196 // a 'type_visibility' attribute before looking for 'visibility'.
197 if (kind == NamedDecl::VisibilityForType) {
198 if (const TypeVisibilityAttr *A = D->getAttr<TypeVisibilityAttr>()) {
199 return getVisibilityFromAttr(A);
200 }
201 }
202
203 // If this declaration has an explicit visibility attribute, use it.
204 if (const VisibilityAttr *A = D->getAttr<VisibilityAttr>()) {
205 return getVisibilityFromAttr(A);
206 }
207
208 // If we're on Mac OS X, an 'availability' for Mac OS X attribute
209 // implies visibility(default).
210 if (D->getASTContext().getTargetInfo().getTriple().isOSDarwin()) {
211 for (const auto *A : D->specific_attrs<AvailabilityAttr>())
212 if (A->getPlatform()->getName().equals("macosx"))
213 return DefaultVisibility;
214 }
215
216 return None;
217 }
218
219 static LinkageInfo
getLVForType(const Type & T,LVComputationKind computation)220 getLVForType(const Type &T, LVComputationKind computation) {
221 if (computation == LVForLinkageOnly)
222 return LinkageInfo(T.getLinkage(), DefaultVisibility, true);
223 return T.getLinkageAndVisibility();
224 }
225
226 /// \brief Get the most restrictive linkage for the types in the given
227 /// template parameter list. For visibility purposes, template
228 /// parameters are part of the signature of a template.
229 static LinkageInfo
getLVForTemplateParameterList(const TemplateParameterList * Params,LVComputationKind computation)230 getLVForTemplateParameterList(const TemplateParameterList *Params,
231 LVComputationKind computation) {
232 LinkageInfo LV;
233 for (const NamedDecl *P : *Params) {
234 // Template type parameters are the most common and never
235 // contribute to visibility, pack or not.
236 if (isa<TemplateTypeParmDecl>(P))
237 continue;
238
239 // Non-type template parameters can be restricted by the value type, e.g.
240 // template <enum X> class A { ... };
241 // We have to be careful here, though, because we can be dealing with
242 // dependent types.
243 if (const NonTypeTemplateParmDecl *NTTP =
244 dyn_cast<NonTypeTemplateParmDecl>(P)) {
245 // Handle the non-pack case first.
246 if (!NTTP->isExpandedParameterPack()) {
247 if (!NTTP->getType()->isDependentType()) {
248 LV.merge(getLVForType(*NTTP->getType(), computation));
249 }
250 continue;
251 }
252
253 // Look at all the types in an expanded pack.
254 for (unsigned i = 0, n = NTTP->getNumExpansionTypes(); i != n; ++i) {
255 QualType type = NTTP->getExpansionType(i);
256 if (!type->isDependentType())
257 LV.merge(type->getLinkageAndVisibility());
258 }
259 continue;
260 }
261
262 // Template template parameters can be restricted by their
263 // template parameters, recursively.
264 const TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(P);
265
266 // Handle the non-pack case first.
267 if (!TTP->isExpandedParameterPack()) {
268 LV.merge(getLVForTemplateParameterList(TTP->getTemplateParameters(),
269 computation));
270 continue;
271 }
272
273 // Look at all expansions in an expanded pack.
274 for (unsigned i = 0, n = TTP->getNumExpansionTemplateParameters();
275 i != n; ++i) {
276 LV.merge(getLVForTemplateParameterList(
277 TTP->getExpansionTemplateParameters(i), computation));
278 }
279 }
280
281 return LV;
282 }
283
284 /// getLVForDecl - Get the linkage and visibility for the given declaration.
285 static LinkageInfo getLVForDecl(const NamedDecl *D,
286 LVComputationKind computation);
287
getOutermostFuncOrBlockContext(const Decl * D)288 static const Decl *getOutermostFuncOrBlockContext(const Decl *D) {
289 const Decl *Ret = nullptr;
290 const DeclContext *DC = D->getDeclContext();
291 while (DC->getDeclKind() != Decl::TranslationUnit) {
292 if (isa<FunctionDecl>(DC) || isa<BlockDecl>(DC))
293 Ret = cast<Decl>(DC);
294 DC = DC->getParent();
295 }
296 return Ret;
297 }
298
299 /// \brief Get the most restrictive linkage for the types and
300 /// declarations in the given template argument list.
301 ///
302 /// Note that we don't take an LVComputationKind because we always
303 /// want to honor the visibility of template arguments in the same way.
getLVForTemplateArgumentList(ArrayRef<TemplateArgument> Args,LVComputationKind computation)304 static LinkageInfo getLVForTemplateArgumentList(ArrayRef<TemplateArgument> Args,
305 LVComputationKind computation) {
306 LinkageInfo LV;
307
308 for (const TemplateArgument &Arg : Args) {
309 switch (Arg.getKind()) {
310 case TemplateArgument::Null:
311 case TemplateArgument::Integral:
312 case TemplateArgument::Expression:
313 continue;
314
315 case TemplateArgument::Type:
316 LV.merge(getLVForType(*Arg.getAsType(), computation));
317 continue;
318
319 case TemplateArgument::Declaration:
320 if (NamedDecl *ND = dyn_cast<NamedDecl>(Arg.getAsDecl())) {
321 assert(!usesTypeVisibility(ND));
322 LV.merge(getLVForDecl(ND, computation));
323 }
324 continue;
325
326 case TemplateArgument::NullPtr:
327 LV.merge(Arg.getNullPtrType()->getLinkageAndVisibility());
328 continue;
329
330 case TemplateArgument::Template:
331 case TemplateArgument::TemplateExpansion:
332 if (TemplateDecl *Template =
333 Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl())
334 LV.merge(getLVForDecl(Template, computation));
335 continue;
336
337 case TemplateArgument::Pack:
338 LV.merge(getLVForTemplateArgumentList(Arg.getPackAsArray(), computation));
339 continue;
340 }
341 llvm_unreachable("bad template argument kind");
342 }
343
344 return LV;
345 }
346
347 static LinkageInfo
getLVForTemplateArgumentList(const TemplateArgumentList & TArgs,LVComputationKind computation)348 getLVForTemplateArgumentList(const TemplateArgumentList &TArgs,
349 LVComputationKind computation) {
350 return getLVForTemplateArgumentList(TArgs.asArray(), computation);
351 }
352
shouldConsiderTemplateVisibility(const FunctionDecl * fn,const FunctionTemplateSpecializationInfo * specInfo)353 static bool shouldConsiderTemplateVisibility(const FunctionDecl *fn,
354 const FunctionTemplateSpecializationInfo *specInfo) {
355 // Include visibility from the template parameters and arguments
356 // only if this is not an explicit instantiation or specialization
357 // with direct explicit visibility. (Implicit instantiations won't
358 // have a direct attribute.)
359 if (!specInfo->isExplicitInstantiationOrSpecialization())
360 return true;
361
362 return !fn->hasAttr<VisibilityAttr>();
363 }
364
365 /// Merge in template-related linkage and visibility for the given
366 /// function template specialization.
367 ///
368 /// We don't need a computation kind here because we can assume
369 /// LVForValue.
370 ///
371 /// \param[out] LV the computation to use for the parent
372 static void
mergeTemplateLV(LinkageInfo & LV,const FunctionDecl * fn,const FunctionTemplateSpecializationInfo * specInfo,LVComputationKind computation)373 mergeTemplateLV(LinkageInfo &LV, const FunctionDecl *fn,
374 const FunctionTemplateSpecializationInfo *specInfo,
375 LVComputationKind computation) {
376 bool considerVisibility =
377 shouldConsiderTemplateVisibility(fn, specInfo);
378
379 // Merge information from the template parameters.
380 FunctionTemplateDecl *temp = specInfo->getTemplate();
381 LinkageInfo tempLV =
382 getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
383 LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
384
385 // Merge information from the template arguments.
386 const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments;
387 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
388 LV.mergeMaybeWithVisibility(argsLV, considerVisibility);
389 }
390
391 /// Does the given declaration have a direct visibility attribute
392 /// that would match the given rules?
hasDirectVisibilityAttribute(const NamedDecl * D,LVComputationKind computation)393 static bool hasDirectVisibilityAttribute(const NamedDecl *D,
394 LVComputationKind computation) {
395 switch (computation) {
396 case LVForType:
397 case LVForExplicitType:
398 if (D->hasAttr<TypeVisibilityAttr>())
399 return true;
400 // fallthrough
401 case LVForValue:
402 case LVForExplicitValue:
403 if (D->hasAttr<VisibilityAttr>())
404 return true;
405 return false;
406 case LVForLinkageOnly:
407 return false;
408 }
409 llvm_unreachable("bad visibility computation kind");
410 }
411
412 /// Should we consider visibility associated with the template
413 /// arguments and parameters of the given class template specialization?
shouldConsiderTemplateVisibility(const ClassTemplateSpecializationDecl * spec,LVComputationKind computation)414 static bool shouldConsiderTemplateVisibility(
415 const ClassTemplateSpecializationDecl *spec,
416 LVComputationKind computation) {
417 // Include visibility from the template parameters and arguments
418 // only if this is not an explicit instantiation or specialization
419 // with direct explicit visibility (and note that implicit
420 // instantiations won't have a direct attribute).
421 //
422 // Furthermore, we want to ignore template parameters and arguments
423 // for an explicit specialization when computing the visibility of a
424 // member thereof with explicit visibility.
425 //
426 // This is a bit complex; let's unpack it.
427 //
428 // An explicit class specialization is an independent, top-level
429 // declaration. As such, if it or any of its members has an
430 // explicit visibility attribute, that must directly express the
431 // user's intent, and we should honor it. The same logic applies to
432 // an explicit instantiation of a member of such a thing.
433
434 // Fast path: if this is not an explicit instantiation or
435 // specialization, we always want to consider template-related
436 // visibility restrictions.
437 if (!spec->isExplicitInstantiationOrSpecialization())
438 return true;
439
440 // This is the 'member thereof' check.
441 if (spec->isExplicitSpecialization() &&
442 hasExplicitVisibilityAlready(computation))
443 return false;
444
445 return !hasDirectVisibilityAttribute(spec, computation);
446 }
447
448 /// Merge in template-related linkage and visibility for the given
449 /// class template specialization.
mergeTemplateLV(LinkageInfo & LV,const ClassTemplateSpecializationDecl * spec,LVComputationKind computation)450 static void mergeTemplateLV(LinkageInfo &LV,
451 const ClassTemplateSpecializationDecl *spec,
452 LVComputationKind computation) {
453 bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
454
455 // Merge information from the template parameters, but ignore
456 // visibility if we're only considering template arguments.
457
458 ClassTemplateDecl *temp = spec->getSpecializedTemplate();
459 LinkageInfo tempLV =
460 getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
461 LV.mergeMaybeWithVisibility(tempLV,
462 considerVisibility && !hasExplicitVisibilityAlready(computation));
463
464 // Merge information from the template arguments. We ignore
465 // template-argument visibility if we've got an explicit
466 // instantiation with a visibility attribute.
467 const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
468 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
469 if (considerVisibility)
470 LV.mergeVisibility(argsLV);
471 LV.mergeExternalVisibility(argsLV);
472 }
473
474 /// Should we consider visibility associated with the template
475 /// arguments and parameters of the given variable template
476 /// specialization? As usual, follow class template specialization
477 /// logic up to initialization.
shouldConsiderTemplateVisibility(const VarTemplateSpecializationDecl * spec,LVComputationKind computation)478 static bool shouldConsiderTemplateVisibility(
479 const VarTemplateSpecializationDecl *spec,
480 LVComputationKind computation) {
481 // Include visibility from the template parameters and arguments
482 // only if this is not an explicit instantiation or specialization
483 // with direct explicit visibility (and note that implicit
484 // instantiations won't have a direct attribute).
485 if (!spec->isExplicitInstantiationOrSpecialization())
486 return true;
487
488 // An explicit variable specialization is an independent, top-level
489 // declaration. As such, if it has an explicit visibility attribute,
490 // that must directly express the user's intent, and we should honor
491 // it.
492 if (spec->isExplicitSpecialization() &&
493 hasExplicitVisibilityAlready(computation))
494 return false;
495
496 return !hasDirectVisibilityAttribute(spec, computation);
497 }
498
499 /// Merge in template-related linkage and visibility for the given
500 /// variable template specialization. As usual, follow class template
501 /// specialization logic up to initialization.
mergeTemplateLV(LinkageInfo & LV,const VarTemplateSpecializationDecl * spec,LVComputationKind computation)502 static void mergeTemplateLV(LinkageInfo &LV,
503 const VarTemplateSpecializationDecl *spec,
504 LVComputationKind computation) {
505 bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
506
507 // Merge information from the template parameters, but ignore
508 // visibility if we're only considering template arguments.
509
510 VarTemplateDecl *temp = spec->getSpecializedTemplate();
511 LinkageInfo tempLV =
512 getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
513 LV.mergeMaybeWithVisibility(tempLV,
514 considerVisibility && !hasExplicitVisibilityAlready(computation));
515
516 // Merge information from the template arguments. We ignore
517 // template-argument visibility if we've got an explicit
518 // instantiation with a visibility attribute.
519 const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
520 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
521 if (considerVisibility)
522 LV.mergeVisibility(argsLV);
523 LV.mergeExternalVisibility(argsLV);
524 }
525
useInlineVisibilityHidden(const NamedDecl * D)526 static bool useInlineVisibilityHidden(const NamedDecl *D) {
527 // FIXME: we should warn if -fvisibility-inlines-hidden is used with c.
528 const LangOptions &Opts = D->getASTContext().getLangOpts();
529 if (!Opts.CPlusPlus || !Opts.InlineVisibilityHidden)
530 return false;
531
532 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
533 if (!FD)
534 return false;
535
536 TemplateSpecializationKind TSK = TSK_Undeclared;
537 if (FunctionTemplateSpecializationInfo *spec
538 = FD->getTemplateSpecializationInfo()) {
539 TSK = spec->getTemplateSpecializationKind();
540 } else if (MemberSpecializationInfo *MSI =
541 FD->getMemberSpecializationInfo()) {
542 TSK = MSI->getTemplateSpecializationKind();
543 }
544
545 const FunctionDecl *Def = nullptr;
546 // InlineVisibilityHidden only applies to definitions, and
547 // isInlined() only gives meaningful answers on definitions
548 // anyway.
549 return TSK != TSK_ExplicitInstantiationDeclaration &&
550 TSK != TSK_ExplicitInstantiationDefinition &&
551 FD->hasBody(Def) && Def->isInlined() && !Def->hasAttr<GNUInlineAttr>();
552 }
553
isFirstInExternCContext(T * D)554 template <typename T> static bool isFirstInExternCContext(T *D) {
555 const T *First = D->getFirstDecl();
556 return First->isInExternCContext();
557 }
558
isSingleLineLanguageLinkage(const Decl & D)559 static bool isSingleLineLanguageLinkage(const Decl &D) {
560 if (const LinkageSpecDecl *SD = dyn_cast<LinkageSpecDecl>(D.getDeclContext()))
561 if (!SD->hasBraces())
562 return true;
563 return false;
564 }
565
getLVForNamespaceScopeDecl(const NamedDecl * D,LVComputationKind computation)566 static LinkageInfo getLVForNamespaceScopeDecl(const NamedDecl *D,
567 LVComputationKind computation) {
568 assert(D->getDeclContext()->getRedeclContext()->isFileContext() &&
569 "Not a name having namespace scope");
570 ASTContext &Context = D->getASTContext();
571
572 // C++ [basic.link]p3:
573 // A name having namespace scope (3.3.6) has internal linkage if it
574 // is the name of
575 // - an object, reference, function or function template that is
576 // explicitly declared static; or,
577 // (This bullet corresponds to C99 6.2.2p3.)
578 if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
579 // Explicitly declared static.
580 if (Var->getStorageClass() == SC_Static)
581 return LinkageInfo::internal();
582
583 // - a non-volatile object or reference that is explicitly declared const
584 // or constexpr and neither explicitly declared extern nor previously
585 // declared to have external linkage; or (there is no equivalent in C99)
586 if (Context.getLangOpts().CPlusPlus &&
587 Var->getType().isConstQualified() &&
588 !Var->getType().isVolatileQualified()) {
589 const VarDecl *PrevVar = Var->getPreviousDecl();
590 if (PrevVar)
591 return getLVForDecl(PrevVar, computation);
592
593 if (Var->getStorageClass() != SC_Extern &&
594 Var->getStorageClass() != SC_PrivateExtern &&
595 !isSingleLineLanguageLinkage(*Var))
596 return LinkageInfo::internal();
597 }
598
599 for (const VarDecl *PrevVar = Var->getPreviousDecl(); PrevVar;
600 PrevVar = PrevVar->getPreviousDecl()) {
601 if (PrevVar->getStorageClass() == SC_PrivateExtern &&
602 Var->getStorageClass() == SC_None)
603 return PrevVar->getLinkageAndVisibility();
604 // Explicitly declared static.
605 if (PrevVar->getStorageClass() == SC_Static)
606 return LinkageInfo::internal();
607 }
608 } else if (const FunctionDecl *Function = D->getAsFunction()) {
609 // C++ [temp]p4:
610 // A non-member function template can have internal linkage; any
611 // other template name shall have external linkage.
612
613 // Explicitly declared static.
614 if (Function->getCanonicalDecl()->getStorageClass() == SC_Static)
615 return LinkageInfo(InternalLinkage, DefaultVisibility, false);
616 }
617 // - a data member of an anonymous union.
618 assert(!isa<IndirectFieldDecl>(D) && "Didn't expect an IndirectFieldDecl!");
619 assert(!isa<FieldDecl>(D) && "Didn't expect a FieldDecl!");
620
621 if (D->isInAnonymousNamespace()) {
622 const VarDecl *Var = dyn_cast<VarDecl>(D);
623 const FunctionDecl *Func = dyn_cast<FunctionDecl>(D);
624 if ((!Var || !isFirstInExternCContext(Var)) &&
625 (!Func || !isFirstInExternCContext(Func)))
626 return LinkageInfo::uniqueExternal();
627 }
628
629 // Set up the defaults.
630
631 // C99 6.2.2p5:
632 // If the declaration of an identifier for an object has file
633 // scope and no storage-class specifier, its linkage is
634 // external.
635 LinkageInfo LV;
636
637 if (!hasExplicitVisibilityAlready(computation)) {
638 if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) {
639 LV.mergeVisibility(*Vis, true);
640 } else {
641 // If we're declared in a namespace with a visibility attribute,
642 // use that namespace's visibility, and it still counts as explicit.
643 for (const DeclContext *DC = D->getDeclContext();
644 !isa<TranslationUnitDecl>(DC);
645 DC = DC->getParent()) {
646 const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(DC);
647 if (!ND) continue;
648 if (Optional<Visibility> Vis = getExplicitVisibility(ND, computation)) {
649 LV.mergeVisibility(*Vis, true);
650 break;
651 }
652 }
653 }
654
655 // Add in global settings if the above didn't give us direct visibility.
656 if (!LV.isVisibilityExplicit()) {
657 // Use global type/value visibility as appropriate.
658 Visibility globalVisibility;
659 if (computation == LVForValue) {
660 globalVisibility = Context.getLangOpts().getValueVisibilityMode();
661 } else {
662 assert(computation == LVForType);
663 globalVisibility = Context.getLangOpts().getTypeVisibilityMode();
664 }
665 LV.mergeVisibility(globalVisibility, /*explicit*/ false);
666
667 // If we're paying attention to global visibility, apply
668 // -finline-visibility-hidden if this is an inline method.
669 if (useInlineVisibilityHidden(D))
670 LV.mergeVisibility(HiddenVisibility, true);
671 }
672 }
673
674 // C++ [basic.link]p4:
675
676 // A name having namespace scope has external linkage if it is the
677 // name of
678 //
679 // - an object or reference, unless it has internal linkage; or
680 if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
681 // GCC applies the following optimization to variables and static
682 // data members, but not to functions:
683 //
684 // Modify the variable's LV by the LV of its type unless this is
685 // C or extern "C". This follows from [basic.link]p9:
686 // A type without linkage shall not be used as the type of a
687 // variable or function with external linkage unless
688 // - the entity has C language linkage, or
689 // - the entity is declared within an unnamed namespace, or
690 // - the entity is not used or is defined in the same
691 // translation unit.
692 // and [basic.link]p10:
693 // ...the types specified by all declarations referring to a
694 // given variable or function shall be identical...
695 // C does not have an equivalent rule.
696 //
697 // Ignore this if we've got an explicit attribute; the user
698 // probably knows what they're doing.
699 //
700 // Note that we don't want to make the variable non-external
701 // because of this, but unique-external linkage suits us.
702 if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Var)) {
703 LinkageInfo TypeLV = getLVForType(*Var->getType(), computation);
704 if (TypeLV.getLinkage() != ExternalLinkage)
705 return LinkageInfo::uniqueExternal();
706 if (!LV.isVisibilityExplicit())
707 LV.mergeVisibility(TypeLV);
708 }
709
710 if (Var->getStorageClass() == SC_PrivateExtern)
711 LV.mergeVisibility(HiddenVisibility, true);
712
713 // Note that Sema::MergeVarDecl already takes care of implementing
714 // C99 6.2.2p4 and propagating the visibility attribute, so we don't have
715 // to do it here.
716
717 // As per function and class template specializations (below),
718 // consider LV for the template and template arguments. We're at file
719 // scope, so we do not need to worry about nested specializations.
720 if (const VarTemplateSpecializationDecl *spec
721 = dyn_cast<VarTemplateSpecializationDecl>(Var)) {
722 mergeTemplateLV(LV, spec, computation);
723 }
724
725 // - a function, unless it has internal linkage; or
726 } else if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
727 // In theory, we can modify the function's LV by the LV of its
728 // type unless it has C linkage (see comment above about variables
729 // for justification). In practice, GCC doesn't do this, so it's
730 // just too painful to make work.
731
732 if (Function->getStorageClass() == SC_PrivateExtern)
733 LV.mergeVisibility(HiddenVisibility, true);
734
735 // Note that Sema::MergeCompatibleFunctionDecls already takes care of
736 // merging storage classes and visibility attributes, so we don't have to
737 // look at previous decls in here.
738
739 // In C++, then if the type of the function uses a type with
740 // unique-external linkage, it's not legally usable from outside
741 // this translation unit. However, we should use the C linkage
742 // rules instead for extern "C" declarations.
743 if (Context.getLangOpts().CPlusPlus &&
744 !Function->isInExternCContext()) {
745 // Only look at the type-as-written. If this function has an auto-deduced
746 // return type, we can't compute the linkage of that type because it could
747 // require looking at the linkage of this function, and we don't need this
748 // for correctness because the type is not part of the function's
749 // signature.
750 // FIXME: This is a hack. We should be able to solve this circularity and
751 // the one in getLVForClassMember for Functions some other way.
752 QualType TypeAsWritten = Function->getType();
753 if (TypeSourceInfo *TSI = Function->getTypeSourceInfo())
754 TypeAsWritten = TSI->getType();
755 if (TypeAsWritten->getLinkage() == UniqueExternalLinkage)
756 return LinkageInfo::uniqueExternal();
757 }
758
759 // Consider LV from the template and the template arguments.
760 // We're at file scope, so we do not need to worry about nested
761 // specializations.
762 if (FunctionTemplateSpecializationInfo *specInfo
763 = Function->getTemplateSpecializationInfo()) {
764 mergeTemplateLV(LV, Function, specInfo, computation);
765 }
766
767 // - a named class (Clause 9), or an unnamed class defined in a
768 // typedef declaration in which the class has the typedef name
769 // for linkage purposes (7.1.3); or
770 // - a named enumeration (7.2), or an unnamed enumeration
771 // defined in a typedef declaration in which the enumeration
772 // has the typedef name for linkage purposes (7.1.3); or
773 } else if (const TagDecl *Tag = dyn_cast<TagDecl>(D)) {
774 // Unnamed tags have no linkage.
775 if (!Tag->hasNameForLinkage())
776 return LinkageInfo::none();
777
778 // If this is a class template specialization, consider the
779 // linkage of the template and template arguments. We're at file
780 // scope, so we do not need to worry about nested specializations.
781 if (const ClassTemplateSpecializationDecl *spec
782 = dyn_cast<ClassTemplateSpecializationDecl>(Tag)) {
783 mergeTemplateLV(LV, spec, computation);
784 }
785
786 // - an enumerator belonging to an enumeration with external linkage;
787 } else if (isa<EnumConstantDecl>(D)) {
788 LinkageInfo EnumLV = getLVForDecl(cast<NamedDecl>(D->getDeclContext()),
789 computation);
790 if (!isExternalFormalLinkage(EnumLV.getLinkage()))
791 return LinkageInfo::none();
792 LV.merge(EnumLV);
793
794 // - a template, unless it is a function template that has
795 // internal linkage (Clause 14);
796 } else if (const TemplateDecl *temp = dyn_cast<TemplateDecl>(D)) {
797 bool considerVisibility = !hasExplicitVisibilityAlready(computation);
798 LinkageInfo tempLV =
799 getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
800 LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
801
802 // - a namespace (7.3), unless it is declared within an unnamed
803 // namespace.
804 } else if (isa<NamespaceDecl>(D) && !D->isInAnonymousNamespace()) {
805 return LV;
806
807 // By extension, we assign external linkage to Objective-C
808 // interfaces.
809 } else if (isa<ObjCInterfaceDecl>(D)) {
810 // fallout
811
812 // Everything not covered here has no linkage.
813 } else {
814 return LinkageInfo::none();
815 }
816
817 // If we ended up with non-external linkage, visibility should
818 // always be default.
819 if (LV.getLinkage() != ExternalLinkage)
820 return LinkageInfo(LV.getLinkage(), DefaultVisibility, false);
821
822 return LV;
823 }
824
getLVForClassMember(const NamedDecl * D,LVComputationKind computation)825 static LinkageInfo getLVForClassMember(const NamedDecl *D,
826 LVComputationKind computation) {
827 // Only certain class members have linkage. Note that fields don't
828 // really have linkage, but it's convenient to say they do for the
829 // purposes of calculating linkage of pointer-to-data-member
830 // template arguments.
831 //
832 // Templates also don't officially have linkage, but since we ignore
833 // the C++ standard and look at template arguments when determining
834 // linkage and visibility of a template specialization, we might hit
835 // a template template argument that way. If we do, we need to
836 // consider its linkage.
837 if (!(isa<CXXMethodDecl>(D) ||
838 isa<VarDecl>(D) ||
839 isa<FieldDecl>(D) ||
840 isa<IndirectFieldDecl>(D) ||
841 isa<TagDecl>(D) ||
842 isa<TemplateDecl>(D)))
843 return LinkageInfo::none();
844
845 LinkageInfo LV;
846
847 // If we have an explicit visibility attribute, merge that in.
848 if (!hasExplicitVisibilityAlready(computation)) {
849 if (Optional<Visibility> Vis = getExplicitVisibility(D, computation))
850 LV.mergeVisibility(*Vis, true);
851 // If we're paying attention to global visibility, apply
852 // -finline-visibility-hidden if this is an inline method.
853 //
854 // Note that we do this before merging information about
855 // the class visibility.
856 if (!LV.isVisibilityExplicit() && useInlineVisibilityHidden(D))
857 LV.mergeVisibility(HiddenVisibility, true);
858 }
859
860 // If this class member has an explicit visibility attribute, the only
861 // thing that can change its visibility is the template arguments, so
862 // only look for them when processing the class.
863 LVComputationKind classComputation = computation;
864 if (LV.isVisibilityExplicit())
865 classComputation = withExplicitVisibilityAlready(computation);
866
867 LinkageInfo classLV =
868 getLVForDecl(cast<RecordDecl>(D->getDeclContext()), classComputation);
869 // If the class already has unique-external linkage, we can't improve.
870 if (classLV.getLinkage() == UniqueExternalLinkage)
871 return LinkageInfo::uniqueExternal();
872
873 if (!isExternallyVisible(classLV.getLinkage()))
874 return LinkageInfo::none();
875
876
877 // Otherwise, don't merge in classLV yet, because in certain cases
878 // we need to completely ignore the visibility from it.
879
880 // Specifically, if this decl exists and has an explicit attribute.
881 const NamedDecl *explicitSpecSuppressor = nullptr;
882
883 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
884 // If the type of the function uses a type with unique-external
885 // linkage, it's not legally usable from outside this translation unit.
886 // But only look at the type-as-written. If this function has an auto-deduced
887 // return type, we can't compute the linkage of that type because it could
888 // require looking at the linkage of this function, and we don't need this
889 // for correctness because the type is not part of the function's
890 // signature.
891 // FIXME: This is a hack. We should be able to solve this circularity and the
892 // one in getLVForNamespaceScopeDecl for Functions some other way.
893 {
894 QualType TypeAsWritten = MD->getType();
895 if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
896 TypeAsWritten = TSI->getType();
897 if (TypeAsWritten->getLinkage() == UniqueExternalLinkage)
898 return LinkageInfo::uniqueExternal();
899 }
900 // If this is a method template specialization, use the linkage for
901 // the template parameters and arguments.
902 if (FunctionTemplateSpecializationInfo *spec
903 = MD->getTemplateSpecializationInfo()) {
904 mergeTemplateLV(LV, MD, spec, computation);
905 if (spec->isExplicitSpecialization()) {
906 explicitSpecSuppressor = MD;
907 } else if (isExplicitMemberSpecialization(spec->getTemplate())) {
908 explicitSpecSuppressor = spec->getTemplate()->getTemplatedDecl();
909 }
910 } else if (isExplicitMemberSpecialization(MD)) {
911 explicitSpecSuppressor = MD;
912 }
913
914 } else if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
915 if (const ClassTemplateSpecializationDecl *spec
916 = dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
917 mergeTemplateLV(LV, spec, computation);
918 if (spec->isExplicitSpecialization()) {
919 explicitSpecSuppressor = spec;
920 } else {
921 const ClassTemplateDecl *temp = spec->getSpecializedTemplate();
922 if (isExplicitMemberSpecialization(temp)) {
923 explicitSpecSuppressor = temp->getTemplatedDecl();
924 }
925 }
926 } else if (isExplicitMemberSpecialization(RD)) {
927 explicitSpecSuppressor = RD;
928 }
929
930 // Static data members.
931 } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
932 if (const VarTemplateSpecializationDecl *spec
933 = dyn_cast<VarTemplateSpecializationDecl>(VD))
934 mergeTemplateLV(LV, spec, computation);
935
936 // Modify the variable's linkage by its type, but ignore the
937 // type's visibility unless it's a definition.
938 LinkageInfo typeLV = getLVForType(*VD->getType(), computation);
939 if (!LV.isVisibilityExplicit() && !classLV.isVisibilityExplicit())
940 LV.mergeVisibility(typeLV);
941 LV.mergeExternalVisibility(typeLV);
942
943 if (isExplicitMemberSpecialization(VD)) {
944 explicitSpecSuppressor = VD;
945 }
946
947 // Template members.
948 } else if (const TemplateDecl *temp = dyn_cast<TemplateDecl>(D)) {
949 bool considerVisibility =
950 (!LV.isVisibilityExplicit() &&
951 !classLV.isVisibilityExplicit() &&
952 !hasExplicitVisibilityAlready(computation));
953 LinkageInfo tempLV =
954 getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
955 LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
956
957 if (const RedeclarableTemplateDecl *redeclTemp =
958 dyn_cast<RedeclarableTemplateDecl>(temp)) {
959 if (isExplicitMemberSpecialization(redeclTemp)) {
960 explicitSpecSuppressor = temp->getTemplatedDecl();
961 }
962 }
963 }
964
965 // We should never be looking for an attribute directly on a template.
966 assert(!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor));
967
968 // If this member is an explicit member specialization, and it has
969 // an explicit attribute, ignore visibility from the parent.
970 bool considerClassVisibility = true;
971 if (explicitSpecSuppressor &&
972 // optimization: hasDVA() is true only with explicit visibility.
973 LV.isVisibilityExplicit() &&
974 classLV.getVisibility() != DefaultVisibility &&
975 hasDirectVisibilityAttribute(explicitSpecSuppressor, computation)) {
976 considerClassVisibility = false;
977 }
978
979 // Finally, merge in information from the class.
980 LV.mergeMaybeWithVisibility(classLV, considerClassVisibility);
981 return LV;
982 }
983
anchor()984 void NamedDecl::anchor() { }
985
986 static LinkageInfo computeLVForDecl(const NamedDecl *D,
987 LVComputationKind computation);
988
isLinkageValid() const989 bool NamedDecl::isLinkageValid() const {
990 if (!hasCachedLinkage())
991 return true;
992
993 return computeLVForDecl(this, LVForLinkageOnly).getLinkage() ==
994 getCachedLinkage();
995 }
996
getLinkageInternal() const997 Linkage NamedDecl::getLinkageInternal() const {
998 // We don't care about visibility here, so ask for the cheapest
999 // possible visibility analysis.
1000 return getLVForDecl(this, LVForLinkageOnly).getLinkage();
1001 }
1002
getLinkageAndVisibility() const1003 LinkageInfo NamedDecl::getLinkageAndVisibility() const {
1004 LVComputationKind computation =
1005 (usesTypeVisibility(this) ? LVForType : LVForValue);
1006 return getLVForDecl(this, computation);
1007 }
1008
1009 static Optional<Visibility>
getExplicitVisibilityAux(const NamedDecl * ND,NamedDecl::ExplicitVisibilityKind kind,bool IsMostRecent)1010 getExplicitVisibilityAux(const NamedDecl *ND,
1011 NamedDecl::ExplicitVisibilityKind kind,
1012 bool IsMostRecent) {
1013 assert(!IsMostRecent || ND == ND->getMostRecentDecl());
1014
1015 // Check the declaration itself first.
1016 if (Optional<Visibility> V = getVisibilityOf(ND, kind))
1017 return V;
1018
1019 // If this is a member class of a specialization of a class template
1020 // and the corresponding decl has explicit visibility, use that.
1021 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(ND)) {
1022 CXXRecordDecl *InstantiatedFrom = RD->getInstantiatedFromMemberClass();
1023 if (InstantiatedFrom)
1024 return getVisibilityOf(InstantiatedFrom, kind);
1025 }
1026
1027 // If there wasn't explicit visibility there, and this is a
1028 // specialization of a class template, check for visibility
1029 // on the pattern.
1030 if (const ClassTemplateSpecializationDecl *spec
1031 = dyn_cast<ClassTemplateSpecializationDecl>(ND))
1032 return getVisibilityOf(spec->getSpecializedTemplate()->getTemplatedDecl(),
1033 kind);
1034
1035 // Use the most recent declaration.
1036 if (!IsMostRecent && !isa<NamespaceDecl>(ND)) {
1037 const NamedDecl *MostRecent = ND->getMostRecentDecl();
1038 if (MostRecent != ND)
1039 return getExplicitVisibilityAux(MostRecent, kind, true);
1040 }
1041
1042 if (const VarDecl *Var = dyn_cast<VarDecl>(ND)) {
1043 if (Var->isStaticDataMember()) {
1044 VarDecl *InstantiatedFrom = Var->getInstantiatedFromStaticDataMember();
1045 if (InstantiatedFrom)
1046 return getVisibilityOf(InstantiatedFrom, kind);
1047 }
1048
1049 if (const auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(Var))
1050 return getVisibilityOf(VTSD->getSpecializedTemplate()->getTemplatedDecl(),
1051 kind);
1052
1053 return None;
1054 }
1055 // Also handle function template specializations.
1056 if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(ND)) {
1057 // If the function is a specialization of a template with an
1058 // explicit visibility attribute, use that.
1059 if (FunctionTemplateSpecializationInfo *templateInfo
1060 = fn->getTemplateSpecializationInfo())
1061 return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl(),
1062 kind);
1063
1064 // If the function is a member of a specialization of a class template
1065 // and the corresponding decl has explicit visibility, use that.
1066 FunctionDecl *InstantiatedFrom = fn->getInstantiatedFromMemberFunction();
1067 if (InstantiatedFrom)
1068 return getVisibilityOf(InstantiatedFrom, kind);
1069
1070 return None;
1071 }
1072
1073 // The visibility of a template is stored in the templated decl.
1074 if (const TemplateDecl *TD = dyn_cast<TemplateDecl>(ND))
1075 return getVisibilityOf(TD->getTemplatedDecl(), kind);
1076
1077 return None;
1078 }
1079
1080 Optional<Visibility>
getExplicitVisibility(ExplicitVisibilityKind kind) const1081 NamedDecl::getExplicitVisibility(ExplicitVisibilityKind kind) const {
1082 return getExplicitVisibilityAux(this, kind, false);
1083 }
1084
getLVForClosure(const DeclContext * DC,Decl * ContextDecl,LVComputationKind computation)1085 static LinkageInfo getLVForClosure(const DeclContext *DC, Decl *ContextDecl,
1086 LVComputationKind computation) {
1087 // This lambda has its linkage/visibility determined by its owner.
1088 if (ContextDecl) {
1089 if (isa<ParmVarDecl>(ContextDecl))
1090 DC = ContextDecl->getDeclContext()->getRedeclContext();
1091 else
1092 return getLVForDecl(cast<NamedDecl>(ContextDecl), computation);
1093 }
1094
1095 if (const NamedDecl *ND = dyn_cast<NamedDecl>(DC))
1096 return getLVForDecl(ND, computation);
1097
1098 return LinkageInfo::external();
1099 }
1100
getLVForLocalDecl(const NamedDecl * D,LVComputationKind computation)1101 static LinkageInfo getLVForLocalDecl(const NamedDecl *D,
1102 LVComputationKind computation) {
1103 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
1104 if (Function->isInAnonymousNamespace() &&
1105 !Function->isInExternCContext())
1106 return LinkageInfo::uniqueExternal();
1107
1108 // This is a "void f();" which got merged with a file static.
1109 if (Function->getCanonicalDecl()->getStorageClass() == SC_Static)
1110 return LinkageInfo::internal();
1111
1112 LinkageInfo LV;
1113 if (!hasExplicitVisibilityAlready(computation)) {
1114 if (Optional<Visibility> Vis =
1115 getExplicitVisibility(Function, computation))
1116 LV.mergeVisibility(*Vis, true);
1117 }
1118
1119 // Note that Sema::MergeCompatibleFunctionDecls already takes care of
1120 // merging storage classes and visibility attributes, so we don't have to
1121 // look at previous decls in here.
1122
1123 return LV;
1124 }
1125
1126 if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
1127 if (Var->hasExternalStorage()) {
1128 if (Var->isInAnonymousNamespace() && !Var->isInExternCContext())
1129 return LinkageInfo::uniqueExternal();
1130
1131 LinkageInfo LV;
1132 if (Var->getStorageClass() == SC_PrivateExtern)
1133 LV.mergeVisibility(HiddenVisibility, true);
1134 else if (!hasExplicitVisibilityAlready(computation)) {
1135 if (Optional<Visibility> Vis = getExplicitVisibility(Var, computation))
1136 LV.mergeVisibility(*Vis, true);
1137 }
1138
1139 if (const VarDecl *Prev = Var->getPreviousDecl()) {
1140 LinkageInfo PrevLV = getLVForDecl(Prev, computation);
1141 if (PrevLV.getLinkage())
1142 LV.setLinkage(PrevLV.getLinkage());
1143 LV.mergeVisibility(PrevLV);
1144 }
1145
1146 return LV;
1147 }
1148
1149 if (!Var->isStaticLocal())
1150 return LinkageInfo::none();
1151 }
1152
1153 ASTContext &Context = D->getASTContext();
1154 if (!Context.getLangOpts().CPlusPlus)
1155 return LinkageInfo::none();
1156
1157 const Decl *OuterD = getOutermostFuncOrBlockContext(D);
1158 if (!OuterD)
1159 return LinkageInfo::none();
1160
1161 LinkageInfo LV;
1162 if (const BlockDecl *BD = dyn_cast<BlockDecl>(OuterD)) {
1163 if (!BD->getBlockManglingNumber())
1164 return LinkageInfo::none();
1165
1166 LV = getLVForClosure(BD->getDeclContext()->getRedeclContext(),
1167 BD->getBlockManglingContextDecl(), computation);
1168 } else {
1169 const FunctionDecl *FD = cast<FunctionDecl>(OuterD);
1170 if (!FD->isInlined() &&
1171 FD->getTemplateSpecializationKind() == TSK_Undeclared)
1172 return LinkageInfo::none();
1173
1174 LV = getLVForDecl(FD, computation);
1175 }
1176 if (!isExternallyVisible(LV.getLinkage()))
1177 return LinkageInfo::none();
1178 return LinkageInfo(VisibleNoLinkage, LV.getVisibility(),
1179 LV.isVisibilityExplicit());
1180 }
1181
1182 static inline const CXXRecordDecl*
getOutermostEnclosingLambda(const CXXRecordDecl * Record)1183 getOutermostEnclosingLambda(const CXXRecordDecl *Record) {
1184 const CXXRecordDecl *Ret = Record;
1185 while (Record && Record->isLambda()) {
1186 Ret = Record;
1187 if (!Record->getParent()) break;
1188 // Get the Containing Class of this Lambda Class
1189 Record = dyn_cast_or_null<CXXRecordDecl>(
1190 Record->getParent()->getParent());
1191 }
1192 return Ret;
1193 }
1194
computeLVForDecl(const NamedDecl * D,LVComputationKind computation)1195 static LinkageInfo computeLVForDecl(const NamedDecl *D,
1196 LVComputationKind computation) {
1197 // Objective-C: treat all Objective-C declarations as having external
1198 // linkage.
1199 switch (D->getKind()) {
1200 default:
1201 break;
1202 case Decl::ParmVar:
1203 return LinkageInfo::none();
1204 case Decl::TemplateTemplateParm: // count these as external
1205 case Decl::NonTypeTemplateParm:
1206 case Decl::ObjCAtDefsField:
1207 case Decl::ObjCCategory:
1208 case Decl::ObjCCategoryImpl:
1209 case Decl::ObjCCompatibleAlias:
1210 case Decl::ObjCImplementation:
1211 case Decl::ObjCMethod:
1212 case Decl::ObjCProperty:
1213 case Decl::ObjCPropertyImpl:
1214 case Decl::ObjCProtocol:
1215 return LinkageInfo::external();
1216
1217 case Decl::CXXRecord: {
1218 const CXXRecordDecl *Record = cast<CXXRecordDecl>(D);
1219 if (Record->isLambda()) {
1220 if (!Record->getLambdaManglingNumber()) {
1221 // This lambda has no mangling number, so it's internal.
1222 return LinkageInfo::internal();
1223 }
1224
1225 // This lambda has its linkage/visibility determined:
1226 // - either by the outermost lambda if that lambda has no mangling
1227 // number.
1228 // - or by the parent of the outer most lambda
1229 // This prevents infinite recursion in settings such as nested lambdas
1230 // used in NSDMI's, for e.g.
1231 // struct L {
1232 // int t{};
1233 // int t2 = ([](int a) { return [](int b) { return b; };})(t)(t);
1234 // };
1235 const CXXRecordDecl *OuterMostLambda =
1236 getOutermostEnclosingLambda(Record);
1237 if (!OuterMostLambda->getLambdaManglingNumber())
1238 return LinkageInfo::internal();
1239
1240 return getLVForClosure(
1241 OuterMostLambda->getDeclContext()->getRedeclContext(),
1242 OuterMostLambda->getLambdaContextDecl(), computation);
1243 }
1244
1245 break;
1246 }
1247 }
1248
1249 // Handle linkage for namespace-scope names.
1250 if (D->getDeclContext()->getRedeclContext()->isFileContext())
1251 return getLVForNamespaceScopeDecl(D, computation);
1252
1253 // C++ [basic.link]p5:
1254 // In addition, a member function, static data member, a named
1255 // class or enumeration of class scope, or an unnamed class or
1256 // enumeration defined in a class-scope typedef declaration such
1257 // that the class or enumeration has the typedef name for linkage
1258 // purposes (7.1.3), has external linkage if the name of the class
1259 // has external linkage.
1260 if (D->getDeclContext()->isRecord())
1261 return getLVForClassMember(D, computation);
1262
1263 // C++ [basic.link]p6:
1264 // The name of a function declared in block scope and the name of
1265 // an object declared by a block scope extern declaration have
1266 // linkage. If there is a visible declaration of an entity with
1267 // linkage having the same name and type, ignoring entities
1268 // declared outside the innermost enclosing namespace scope, the
1269 // block scope declaration declares that same entity and receives
1270 // the linkage of the previous declaration. If there is more than
1271 // one such matching entity, the program is ill-formed. Otherwise,
1272 // if no matching entity is found, the block scope entity receives
1273 // external linkage.
1274 if (D->getDeclContext()->isFunctionOrMethod())
1275 return getLVForLocalDecl(D, computation);
1276
1277 // C++ [basic.link]p6:
1278 // Names not covered by these rules have no linkage.
1279 return LinkageInfo::none();
1280 }
1281
1282 namespace clang {
1283 class LinkageComputer {
1284 public:
getLVForDecl(const NamedDecl * D,LVComputationKind computation)1285 static LinkageInfo getLVForDecl(const NamedDecl *D,
1286 LVComputationKind computation) {
1287 if (computation == LVForLinkageOnly && D->hasCachedLinkage())
1288 return LinkageInfo(D->getCachedLinkage(), DefaultVisibility, false);
1289
1290 LinkageInfo LV = computeLVForDecl(D, computation);
1291 if (D->hasCachedLinkage())
1292 assert(D->getCachedLinkage() == LV.getLinkage());
1293
1294 D->setCachedLinkage(LV.getLinkage());
1295
1296 #ifndef NDEBUG
1297 // In C (because of gnu inline) and in c++ with microsoft extensions an
1298 // static can follow an extern, so we can have two decls with different
1299 // linkages.
1300 const LangOptions &Opts = D->getASTContext().getLangOpts();
1301 if (!Opts.CPlusPlus || Opts.MicrosoftExt)
1302 return LV;
1303
1304 // We have just computed the linkage for this decl. By induction we know
1305 // that all other computed linkages match, check that the one we just
1306 // computed also does.
1307 NamedDecl *Old = nullptr;
1308 for (auto I : D->redecls()) {
1309 NamedDecl *T = cast<NamedDecl>(I);
1310 if (T == D)
1311 continue;
1312 if (!T->isInvalidDecl() && T->hasCachedLinkage()) {
1313 Old = T;
1314 break;
1315 }
1316 }
1317 assert(!Old || Old->getCachedLinkage() == D->getCachedLinkage());
1318 #endif
1319
1320 return LV;
1321 }
1322 };
1323 }
1324
getLVForDecl(const NamedDecl * D,LVComputationKind computation)1325 static LinkageInfo getLVForDecl(const NamedDecl *D,
1326 LVComputationKind computation) {
1327 return clang::LinkageComputer::getLVForDecl(D, computation);
1328 }
1329
getQualifiedNameAsString() const1330 std::string NamedDecl::getQualifiedNameAsString() const {
1331 std::string QualName;
1332 llvm::raw_string_ostream OS(QualName);
1333 printQualifiedName(OS, getASTContext().getPrintingPolicy());
1334 return OS.str();
1335 }
1336
printQualifiedName(raw_ostream & OS) const1337 void NamedDecl::printQualifiedName(raw_ostream &OS) const {
1338 printQualifiedName(OS, getASTContext().getPrintingPolicy());
1339 }
1340
printQualifiedName(raw_ostream & OS,const PrintingPolicy & P) const1341 void NamedDecl::printQualifiedName(raw_ostream &OS,
1342 const PrintingPolicy &P) const {
1343 const DeclContext *Ctx = getDeclContext();
1344
1345 if (Ctx->isFunctionOrMethod()) {
1346 printName(OS);
1347 return;
1348 }
1349
1350 typedef SmallVector<const DeclContext *, 8> ContextsTy;
1351 ContextsTy Contexts;
1352
1353 // Collect contexts.
1354 while (Ctx && isa<NamedDecl>(Ctx)) {
1355 Contexts.push_back(Ctx);
1356 Ctx = Ctx->getParent();
1357 }
1358
1359 for (ContextsTy::reverse_iterator I = Contexts.rbegin(), E = Contexts.rend();
1360 I != E; ++I) {
1361 if (const ClassTemplateSpecializationDecl *Spec
1362 = dyn_cast<ClassTemplateSpecializationDecl>(*I)) {
1363 OS << Spec->getName();
1364 const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
1365 TemplateSpecializationType::PrintTemplateArgumentList(OS,
1366 TemplateArgs.data(),
1367 TemplateArgs.size(),
1368 P);
1369 } else if (const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(*I)) {
1370 if (P.SuppressUnwrittenScope &&
1371 (ND->isAnonymousNamespace() || ND->isInline()))
1372 continue;
1373 if (ND->isAnonymousNamespace())
1374 OS << "(anonymous namespace)";
1375 else
1376 OS << *ND;
1377 } else if (const RecordDecl *RD = dyn_cast<RecordDecl>(*I)) {
1378 if (!RD->getIdentifier())
1379 OS << "(anonymous " << RD->getKindName() << ')';
1380 else
1381 OS << *RD;
1382 } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
1383 const FunctionProtoType *FT = nullptr;
1384 if (FD->hasWrittenPrototype())
1385 FT = dyn_cast<FunctionProtoType>(FD->getType()->castAs<FunctionType>());
1386
1387 OS << *FD << '(';
1388 if (FT) {
1389 unsigned NumParams = FD->getNumParams();
1390 for (unsigned i = 0; i < NumParams; ++i) {
1391 if (i)
1392 OS << ", ";
1393 OS << FD->getParamDecl(i)->getType().stream(P);
1394 }
1395
1396 if (FT->isVariadic()) {
1397 if (NumParams > 0)
1398 OS << ", ";
1399 OS << "...";
1400 }
1401 }
1402 OS << ')';
1403 } else {
1404 OS << *cast<NamedDecl>(*I);
1405 }
1406 OS << "::";
1407 }
1408
1409 if (getDeclName())
1410 OS << *this;
1411 else
1412 OS << "(anonymous)";
1413 }
1414
getNameForDiagnostic(raw_ostream & OS,const PrintingPolicy & Policy,bool Qualified) const1415 void NamedDecl::getNameForDiagnostic(raw_ostream &OS,
1416 const PrintingPolicy &Policy,
1417 bool Qualified) const {
1418 if (Qualified)
1419 printQualifiedName(OS, Policy);
1420 else
1421 printName(OS);
1422 }
1423
declarationReplaces(NamedDecl * OldD) const1424 bool NamedDecl::declarationReplaces(NamedDecl *OldD) const {
1425 assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch");
1426
1427 // UsingDirectiveDecl's are not really NamedDecl's, and all have same name.
1428 // We want to keep it, unless it nominates same namespace.
1429 if (getKind() == Decl::UsingDirective) {
1430 return cast<UsingDirectiveDecl>(this)->getNominatedNamespace()
1431 ->getOriginalNamespace() ==
1432 cast<UsingDirectiveDecl>(OldD)->getNominatedNamespace()
1433 ->getOriginalNamespace();
1434 }
1435
1436 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(this))
1437 // For function declarations, we keep track of redeclarations.
1438 return FD->getPreviousDecl() == OldD;
1439
1440 // For function templates, the underlying function declarations are linked.
1441 if (const FunctionTemplateDecl *FunctionTemplate
1442 = dyn_cast<FunctionTemplateDecl>(this))
1443 if (const FunctionTemplateDecl *OldFunctionTemplate
1444 = dyn_cast<FunctionTemplateDecl>(OldD))
1445 return FunctionTemplate->getTemplatedDecl()
1446 ->declarationReplaces(OldFunctionTemplate->getTemplatedDecl());
1447
1448 // For method declarations, we keep track of redeclarations.
1449 if (isa<ObjCMethodDecl>(this))
1450 return false;
1451
1452 // FIXME: Is this correct if one of the decls comes from an inline namespace?
1453 if (isa<ObjCInterfaceDecl>(this) && isa<ObjCCompatibleAliasDecl>(OldD))
1454 return true;
1455
1456 if (isa<UsingShadowDecl>(this) && isa<UsingShadowDecl>(OldD))
1457 return cast<UsingShadowDecl>(this)->getTargetDecl() ==
1458 cast<UsingShadowDecl>(OldD)->getTargetDecl();
1459
1460 if (isa<UsingDecl>(this) && isa<UsingDecl>(OldD)) {
1461 ASTContext &Context = getASTContext();
1462 return Context.getCanonicalNestedNameSpecifier(
1463 cast<UsingDecl>(this)->getQualifier()) ==
1464 Context.getCanonicalNestedNameSpecifier(
1465 cast<UsingDecl>(OldD)->getQualifier());
1466 }
1467
1468 if (isa<UnresolvedUsingValueDecl>(this) &&
1469 isa<UnresolvedUsingValueDecl>(OldD)) {
1470 ASTContext &Context = getASTContext();
1471 return Context.getCanonicalNestedNameSpecifier(
1472 cast<UnresolvedUsingValueDecl>(this)->getQualifier()) ==
1473 Context.getCanonicalNestedNameSpecifier(
1474 cast<UnresolvedUsingValueDecl>(OldD)->getQualifier());
1475 }
1476
1477 // A typedef of an Objective-C class type can replace an Objective-C class
1478 // declaration or definition, and vice versa.
1479 // FIXME: Is this correct if one of the decls comes from an inline namespace?
1480 if ((isa<TypedefNameDecl>(this) && isa<ObjCInterfaceDecl>(OldD)) ||
1481 (isa<ObjCInterfaceDecl>(this) && isa<TypedefNameDecl>(OldD)))
1482 return true;
1483
1484 // For non-function declarations, if the declarations are of the
1485 // same kind and have the same parent then this must be a redeclaration,
1486 // or semantic analysis would not have given us the new declaration.
1487 // Note that inline namespaces can give us two declarations with the same
1488 // name and kind in the same scope but different contexts.
1489 return this->getKind() == OldD->getKind() &&
1490 this->getDeclContext()->getRedeclContext()->Equals(
1491 OldD->getDeclContext()->getRedeclContext());
1492 }
1493
hasLinkage() const1494 bool NamedDecl::hasLinkage() const {
1495 return getFormalLinkage() != NoLinkage;
1496 }
1497
getUnderlyingDeclImpl()1498 NamedDecl *NamedDecl::getUnderlyingDeclImpl() {
1499 NamedDecl *ND = this;
1500 while (UsingShadowDecl *UD = dyn_cast<UsingShadowDecl>(ND))
1501 ND = UD->getTargetDecl();
1502
1503 if (ObjCCompatibleAliasDecl *AD = dyn_cast<ObjCCompatibleAliasDecl>(ND))
1504 return AD->getClassInterface();
1505
1506 return ND;
1507 }
1508
isCXXInstanceMember() const1509 bool NamedDecl::isCXXInstanceMember() const {
1510 if (!isCXXClassMember())
1511 return false;
1512
1513 const NamedDecl *D = this;
1514 if (isa<UsingShadowDecl>(D))
1515 D = cast<UsingShadowDecl>(D)->getTargetDecl();
1516
1517 if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D) || isa<MSPropertyDecl>(D))
1518 return true;
1519 if (const CXXMethodDecl *MD =
1520 dyn_cast_or_null<CXXMethodDecl>(D->getAsFunction()))
1521 return MD->isInstance();
1522 return false;
1523 }
1524
1525 //===----------------------------------------------------------------------===//
1526 // DeclaratorDecl Implementation
1527 //===----------------------------------------------------------------------===//
1528
1529 template <typename DeclT>
getTemplateOrInnerLocStart(const DeclT * decl)1530 static SourceLocation getTemplateOrInnerLocStart(const DeclT *decl) {
1531 if (decl->getNumTemplateParameterLists() > 0)
1532 return decl->getTemplateParameterList(0)->getTemplateLoc();
1533 else
1534 return decl->getInnerLocStart();
1535 }
1536
getTypeSpecStartLoc() const1537 SourceLocation DeclaratorDecl::getTypeSpecStartLoc() const {
1538 TypeSourceInfo *TSI = getTypeSourceInfo();
1539 if (TSI) return TSI->getTypeLoc().getBeginLoc();
1540 return SourceLocation();
1541 }
1542
setQualifierInfo(NestedNameSpecifierLoc QualifierLoc)1543 void DeclaratorDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
1544 if (QualifierLoc) {
1545 // Make sure the extended decl info is allocated.
1546 if (!hasExtInfo()) {
1547 // Save (non-extended) type source info pointer.
1548 TypeSourceInfo *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1549 // Allocate external info struct.
1550 DeclInfo = new (getASTContext()) ExtInfo;
1551 // Restore savedTInfo into (extended) decl info.
1552 getExtInfo()->TInfo = savedTInfo;
1553 }
1554 // Set qualifier info.
1555 getExtInfo()->QualifierLoc = QualifierLoc;
1556 } else {
1557 // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
1558 if (hasExtInfo()) {
1559 if (getExtInfo()->NumTemplParamLists == 0) {
1560 // Save type source info pointer.
1561 TypeSourceInfo *savedTInfo = getExtInfo()->TInfo;
1562 // Deallocate the extended decl info.
1563 getASTContext().Deallocate(getExtInfo());
1564 // Restore savedTInfo into (non-extended) decl info.
1565 DeclInfo = savedTInfo;
1566 }
1567 else
1568 getExtInfo()->QualifierLoc = QualifierLoc;
1569 }
1570 }
1571 }
1572
1573 void
setTemplateParameterListsInfo(ASTContext & Context,unsigned NumTPLists,TemplateParameterList ** TPLists)1574 DeclaratorDecl::setTemplateParameterListsInfo(ASTContext &Context,
1575 unsigned NumTPLists,
1576 TemplateParameterList **TPLists) {
1577 assert(NumTPLists > 0);
1578 // Make sure the extended decl info is allocated.
1579 if (!hasExtInfo()) {
1580 // Save (non-extended) type source info pointer.
1581 TypeSourceInfo *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1582 // Allocate external info struct.
1583 DeclInfo = new (getASTContext()) ExtInfo;
1584 // Restore savedTInfo into (extended) decl info.
1585 getExtInfo()->TInfo = savedTInfo;
1586 }
1587 // Set the template parameter lists info.
1588 getExtInfo()->setTemplateParameterListsInfo(Context, NumTPLists, TPLists);
1589 }
1590
getOuterLocStart() const1591 SourceLocation DeclaratorDecl::getOuterLocStart() const {
1592 return getTemplateOrInnerLocStart(this);
1593 }
1594
1595 namespace {
1596
1597 // Helper function: returns true if QT is or contains a type
1598 // having a postfix component.
typeIsPostfix(clang::QualType QT)1599 bool typeIsPostfix(clang::QualType QT) {
1600 while (true) {
1601 const Type* T = QT.getTypePtr();
1602 switch (T->getTypeClass()) {
1603 default:
1604 return false;
1605 case Type::Pointer:
1606 QT = cast<PointerType>(T)->getPointeeType();
1607 break;
1608 case Type::BlockPointer:
1609 QT = cast<BlockPointerType>(T)->getPointeeType();
1610 break;
1611 case Type::MemberPointer:
1612 QT = cast<MemberPointerType>(T)->getPointeeType();
1613 break;
1614 case Type::LValueReference:
1615 case Type::RValueReference:
1616 QT = cast<ReferenceType>(T)->getPointeeType();
1617 break;
1618 case Type::PackExpansion:
1619 QT = cast<PackExpansionType>(T)->getPattern();
1620 break;
1621 case Type::Paren:
1622 case Type::ConstantArray:
1623 case Type::DependentSizedArray:
1624 case Type::IncompleteArray:
1625 case Type::VariableArray:
1626 case Type::FunctionProto:
1627 case Type::FunctionNoProto:
1628 return true;
1629 }
1630 }
1631 }
1632
1633 } // namespace
1634
getSourceRange() const1635 SourceRange DeclaratorDecl::getSourceRange() const {
1636 SourceLocation RangeEnd = getLocation();
1637 if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
1638 // If the declaration has no name or the type extends past the name take the
1639 // end location of the type.
1640 if (!getDeclName() || typeIsPostfix(TInfo->getType()))
1641 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
1642 }
1643 return SourceRange(getOuterLocStart(), RangeEnd);
1644 }
1645
1646 void
setTemplateParameterListsInfo(ASTContext & Context,unsigned NumTPLists,TemplateParameterList ** TPLists)1647 QualifierInfo::setTemplateParameterListsInfo(ASTContext &Context,
1648 unsigned NumTPLists,
1649 TemplateParameterList **TPLists) {
1650 assert((NumTPLists == 0 || TPLists != nullptr) &&
1651 "Empty array of template parameters with positive size!");
1652
1653 // Free previous template parameters (if any).
1654 if (NumTemplParamLists > 0) {
1655 Context.Deallocate(TemplParamLists);
1656 TemplParamLists = nullptr;
1657 NumTemplParamLists = 0;
1658 }
1659 // Set info on matched template parameter lists (if any).
1660 if (NumTPLists > 0) {
1661 TemplParamLists = new (Context) TemplateParameterList*[NumTPLists];
1662 NumTemplParamLists = NumTPLists;
1663 for (unsigned i = NumTPLists; i-- > 0; )
1664 TemplParamLists[i] = TPLists[i];
1665 }
1666 }
1667
1668 //===----------------------------------------------------------------------===//
1669 // VarDecl Implementation
1670 //===----------------------------------------------------------------------===//
1671
getStorageClassSpecifierString(StorageClass SC)1672 const char *VarDecl::getStorageClassSpecifierString(StorageClass SC) {
1673 switch (SC) {
1674 case SC_None: break;
1675 case SC_Auto: return "auto";
1676 case SC_Extern: return "extern";
1677 case SC_OpenCLWorkGroupLocal: return "<<work-group-local>>";
1678 case SC_PrivateExtern: return "__private_extern__";
1679 case SC_Register: return "register";
1680 case SC_Static: return "static";
1681 }
1682
1683 llvm_unreachable("Invalid storage class");
1684 }
1685
VarDecl(Kind DK,ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,QualType T,TypeSourceInfo * TInfo,StorageClass SC)1686 VarDecl::VarDecl(Kind DK, ASTContext &C, DeclContext *DC,
1687 SourceLocation StartLoc, SourceLocation IdLoc,
1688 IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
1689 StorageClass SC)
1690 : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc),
1691 redeclarable_base(C), Init() {
1692 static_assert(sizeof(VarDeclBitfields) <= sizeof(unsigned),
1693 "VarDeclBitfields too large!");
1694 static_assert(sizeof(ParmVarDeclBitfields) <= sizeof(unsigned),
1695 "ParmVarDeclBitfields too large!");
1696 AllBits = 0;
1697 VarDeclBits.SClass = SC;
1698 // Everything else is implicitly initialized to false.
1699 }
1700
Create(ASTContext & C,DeclContext * DC,SourceLocation StartL,SourceLocation IdL,IdentifierInfo * Id,QualType T,TypeSourceInfo * TInfo,StorageClass S)1701 VarDecl *VarDecl::Create(ASTContext &C, DeclContext *DC,
1702 SourceLocation StartL, SourceLocation IdL,
1703 IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
1704 StorageClass S) {
1705 return new (C, DC) VarDecl(Var, C, DC, StartL, IdL, Id, T, TInfo, S);
1706 }
1707
CreateDeserialized(ASTContext & C,unsigned ID)1708 VarDecl *VarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
1709 return new (C, ID)
1710 VarDecl(Var, C, nullptr, SourceLocation(), SourceLocation(), nullptr,
1711 QualType(), nullptr, SC_None);
1712 }
1713
setStorageClass(StorageClass SC)1714 void VarDecl::setStorageClass(StorageClass SC) {
1715 assert(isLegalForVariable(SC));
1716 VarDeclBits.SClass = SC;
1717 }
1718
getTLSKind() const1719 VarDecl::TLSKind VarDecl::getTLSKind() const {
1720 switch (VarDeclBits.TSCSpec) {
1721 case TSCS_unspecified:
1722 if (hasAttr<ThreadAttr>())
1723 return TLS_Static;
1724 return TLS_None;
1725 case TSCS___thread: // Fall through.
1726 case TSCS__Thread_local:
1727 return TLS_Static;
1728 case TSCS_thread_local:
1729 return TLS_Dynamic;
1730 }
1731 llvm_unreachable("Unknown thread storage class specifier!");
1732 }
1733
getSourceRange() const1734 SourceRange VarDecl::getSourceRange() const {
1735 if (const Expr *Init = getInit()) {
1736 SourceLocation InitEnd = Init->getLocEnd();
1737 // If Init is implicit, ignore its source range and fallback on
1738 // DeclaratorDecl::getSourceRange() to handle postfix elements.
1739 if (InitEnd.isValid() && InitEnd != getLocation())
1740 return SourceRange(getOuterLocStart(), InitEnd);
1741 }
1742 return DeclaratorDecl::getSourceRange();
1743 }
1744
1745 template<typename T>
getDeclLanguageLinkage(const T & D)1746 static LanguageLinkage getDeclLanguageLinkage(const T &D) {
1747 // C++ [dcl.link]p1: All function types, function names with external linkage,
1748 // and variable names with external linkage have a language linkage.
1749 if (!D.hasExternalFormalLinkage())
1750 return NoLanguageLinkage;
1751
1752 // Language linkage is a C++ concept, but saying that everything else in C has
1753 // C language linkage fits the implementation nicely.
1754 ASTContext &Context = D.getASTContext();
1755 if (!Context.getLangOpts().CPlusPlus)
1756 return CLanguageLinkage;
1757
1758 // C++ [dcl.link]p4: A C language linkage is ignored in determining the
1759 // language linkage of the names of class members and the function type of
1760 // class member functions.
1761 const DeclContext *DC = D.getDeclContext();
1762 if (DC->isRecord())
1763 return CXXLanguageLinkage;
1764
1765 // If the first decl is in an extern "C" context, any other redeclaration
1766 // will have C language linkage. If the first one is not in an extern "C"
1767 // context, we would have reported an error for any other decl being in one.
1768 if (isFirstInExternCContext(&D))
1769 return CLanguageLinkage;
1770 return CXXLanguageLinkage;
1771 }
1772
1773 template<typename T>
isDeclExternC(const T & D)1774 static bool isDeclExternC(const T &D) {
1775 // Since the context is ignored for class members, they can only have C++
1776 // language linkage or no language linkage.
1777 const DeclContext *DC = D.getDeclContext();
1778 if (DC->isRecord()) {
1779 assert(D.getASTContext().getLangOpts().CPlusPlus);
1780 return false;
1781 }
1782
1783 return D.getLanguageLinkage() == CLanguageLinkage;
1784 }
1785
getLanguageLinkage() const1786 LanguageLinkage VarDecl::getLanguageLinkage() const {
1787 return getDeclLanguageLinkage(*this);
1788 }
1789
isExternC() const1790 bool VarDecl::isExternC() const {
1791 return isDeclExternC(*this);
1792 }
1793
isInExternCContext() const1794 bool VarDecl::isInExternCContext() const {
1795 return getLexicalDeclContext()->isExternCContext();
1796 }
1797
isInExternCXXContext() const1798 bool VarDecl::isInExternCXXContext() const {
1799 return getLexicalDeclContext()->isExternCXXContext();
1800 }
1801
getCanonicalDecl()1802 VarDecl *VarDecl::getCanonicalDecl() { return getFirstDecl(); }
1803
isThisDeclarationADefinition(ASTContext & C) const1804 VarDecl::DefinitionKind VarDecl::isThisDeclarationADefinition(
1805 ASTContext &C) const
1806 {
1807 // C++ [basic.def]p2:
1808 // A declaration is a definition unless [...] it contains the 'extern'
1809 // specifier or a linkage-specification and neither an initializer [...],
1810 // it declares a static data member in a class declaration [...].
1811 // C++1y [temp.expl.spec]p15:
1812 // An explicit specialization of a static data member or an explicit
1813 // specialization of a static data member template is a definition if the
1814 // declaration includes an initializer; otherwise, it is a declaration.
1815 //
1816 // FIXME: How do you declare (but not define) a partial specialization of
1817 // a static data member template outside the containing class?
1818 if (isStaticDataMember()) {
1819 if (isOutOfLine() &&
1820 (hasInit() ||
1821 // If the first declaration is out-of-line, this may be an
1822 // instantiation of an out-of-line partial specialization of a variable
1823 // template for which we have not yet instantiated the initializer.
1824 (getFirstDecl()->isOutOfLine()
1825 ? getTemplateSpecializationKind() == TSK_Undeclared
1826 : getTemplateSpecializationKind() !=
1827 TSK_ExplicitSpecialization) ||
1828 isa<VarTemplatePartialSpecializationDecl>(this)))
1829 return Definition;
1830 else
1831 return DeclarationOnly;
1832 }
1833 // C99 6.7p5:
1834 // A definition of an identifier is a declaration for that identifier that
1835 // [...] causes storage to be reserved for that object.
1836 // Note: that applies for all non-file-scope objects.
1837 // C99 6.9.2p1:
1838 // If the declaration of an identifier for an object has file scope and an
1839 // initializer, the declaration is an external definition for the identifier
1840 if (hasInit())
1841 return Definition;
1842
1843 if (hasAttr<AliasAttr>())
1844 return Definition;
1845
1846 // A variable template specialization (other than a static data member
1847 // template or an explicit specialization) is a declaration until we
1848 // instantiate its initializer.
1849 if (isa<VarTemplateSpecializationDecl>(this) &&
1850 getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
1851 return DeclarationOnly;
1852
1853 if (hasExternalStorage())
1854 return DeclarationOnly;
1855
1856 // [dcl.link] p7:
1857 // A declaration directly contained in a linkage-specification is treated
1858 // as if it contains the extern specifier for the purpose of determining
1859 // the linkage of the declared name and whether it is a definition.
1860 if (isSingleLineLanguageLinkage(*this))
1861 return DeclarationOnly;
1862
1863 // C99 6.9.2p2:
1864 // A declaration of an object that has file scope without an initializer,
1865 // and without a storage class specifier or the scs 'static', constitutes
1866 // a tentative definition.
1867 // No such thing in C++.
1868 if (!C.getLangOpts().CPlusPlus && isFileVarDecl())
1869 return TentativeDefinition;
1870
1871 // What's left is (in C, block-scope) declarations without initializers or
1872 // external storage. These are definitions.
1873 return Definition;
1874 }
1875
getActingDefinition()1876 VarDecl *VarDecl::getActingDefinition() {
1877 DefinitionKind Kind = isThisDeclarationADefinition();
1878 if (Kind != TentativeDefinition)
1879 return nullptr;
1880
1881 VarDecl *LastTentative = nullptr;
1882 VarDecl *First = getFirstDecl();
1883 for (auto I : First->redecls()) {
1884 Kind = I->isThisDeclarationADefinition();
1885 if (Kind == Definition)
1886 return nullptr;
1887 else if (Kind == TentativeDefinition)
1888 LastTentative = I;
1889 }
1890 return LastTentative;
1891 }
1892
getDefinition(ASTContext & C)1893 VarDecl *VarDecl::getDefinition(ASTContext &C) {
1894 VarDecl *First = getFirstDecl();
1895 for (auto I : First->redecls()) {
1896 if (I->isThisDeclarationADefinition(C) == Definition)
1897 return I;
1898 }
1899 return nullptr;
1900 }
1901
hasDefinition(ASTContext & C) const1902 VarDecl::DefinitionKind VarDecl::hasDefinition(ASTContext &C) const {
1903 DefinitionKind Kind = DeclarationOnly;
1904
1905 const VarDecl *First = getFirstDecl();
1906 for (auto I : First->redecls()) {
1907 Kind = std::max(Kind, I->isThisDeclarationADefinition(C));
1908 if (Kind == Definition)
1909 break;
1910 }
1911
1912 return Kind;
1913 }
1914
getAnyInitializer(const VarDecl * & D) const1915 const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const {
1916 for (auto I : redecls()) {
1917 if (auto Expr = I->getInit()) {
1918 D = I;
1919 return Expr;
1920 }
1921 }
1922 return nullptr;
1923 }
1924
isOutOfLine() const1925 bool VarDecl::isOutOfLine() const {
1926 if (Decl::isOutOfLine())
1927 return true;
1928
1929 if (!isStaticDataMember())
1930 return false;
1931
1932 // If this static data member was instantiated from a static data member of
1933 // a class template, check whether that static data member was defined
1934 // out-of-line.
1935 if (VarDecl *VD = getInstantiatedFromStaticDataMember())
1936 return VD->isOutOfLine();
1937
1938 return false;
1939 }
1940
getOutOfLineDefinition()1941 VarDecl *VarDecl::getOutOfLineDefinition() {
1942 if (!isStaticDataMember())
1943 return nullptr;
1944
1945 for (auto RD : redecls()) {
1946 if (RD->getLexicalDeclContext()->isFileContext())
1947 return RD;
1948 }
1949
1950 return nullptr;
1951 }
1952
setInit(Expr * I)1953 void VarDecl::setInit(Expr *I) {
1954 if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>()) {
1955 Eval->~EvaluatedStmt();
1956 getASTContext().Deallocate(Eval);
1957 }
1958
1959 Init = I;
1960 }
1961
isUsableInConstantExpressions(ASTContext & C) const1962 bool VarDecl::isUsableInConstantExpressions(ASTContext &C) const {
1963 const LangOptions &Lang = C.getLangOpts();
1964
1965 if (!Lang.CPlusPlus)
1966 return false;
1967
1968 // In C++11, any variable of reference type can be used in a constant
1969 // expression if it is initialized by a constant expression.
1970 if (Lang.CPlusPlus11 && getType()->isReferenceType())
1971 return true;
1972
1973 // Only const objects can be used in constant expressions in C++. C++98 does
1974 // not require the variable to be non-volatile, but we consider this to be a
1975 // defect.
1976 if (!getType().isConstQualified() || getType().isVolatileQualified())
1977 return false;
1978
1979 // In C++, const, non-volatile variables of integral or enumeration types
1980 // can be used in constant expressions.
1981 if (getType()->isIntegralOrEnumerationType())
1982 return true;
1983
1984 // Additionally, in C++11, non-volatile constexpr variables can be used in
1985 // constant expressions.
1986 return Lang.CPlusPlus11 && isConstexpr();
1987 }
1988
1989 /// Convert the initializer for this declaration to the elaborated EvaluatedStmt
1990 /// form, which contains extra information on the evaluated value of the
1991 /// initializer.
ensureEvaluatedStmt() const1992 EvaluatedStmt *VarDecl::ensureEvaluatedStmt() const {
1993 EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>();
1994 if (!Eval) {
1995 Stmt *S = Init.get<Stmt *>();
1996 // Note: EvaluatedStmt contains an APValue, which usually holds
1997 // resources not allocated from the ASTContext. We need to do some
1998 // work to avoid leaking those, but we do so in VarDecl::evaluateValue
1999 // where we can detect whether there's anything to clean up or not.
2000 Eval = new (getASTContext()) EvaluatedStmt;
2001 Eval->Value = S;
2002 Init = Eval;
2003 }
2004 return Eval;
2005 }
2006
evaluateValue() const2007 APValue *VarDecl::evaluateValue() const {
2008 SmallVector<PartialDiagnosticAt, 8> Notes;
2009 return evaluateValue(Notes);
2010 }
2011
2012 namespace {
2013 // Destroy an APValue that was allocated in an ASTContext.
DestroyAPValue(void * UntypedValue)2014 void DestroyAPValue(void* UntypedValue) {
2015 static_cast<APValue*>(UntypedValue)->~APValue();
2016 }
2017 } // namespace
2018
evaluateValue(SmallVectorImpl<PartialDiagnosticAt> & Notes) const2019 APValue *VarDecl::evaluateValue(
2020 SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
2021 EvaluatedStmt *Eval = ensureEvaluatedStmt();
2022
2023 // We only produce notes indicating why an initializer is non-constant the
2024 // first time it is evaluated. FIXME: The notes won't always be emitted the
2025 // first time we try evaluation, so might not be produced at all.
2026 if (Eval->WasEvaluated)
2027 return Eval->Evaluated.isUninit() ? nullptr : &Eval->Evaluated;
2028
2029 const Expr *Init = cast<Expr>(Eval->Value);
2030 assert(!Init->isValueDependent());
2031
2032 if (Eval->IsEvaluating) {
2033 // FIXME: Produce a diagnostic for self-initialization.
2034 Eval->CheckedICE = true;
2035 Eval->IsICE = false;
2036 return nullptr;
2037 }
2038
2039 Eval->IsEvaluating = true;
2040
2041 bool Result = Init->EvaluateAsInitializer(Eval->Evaluated, getASTContext(),
2042 this, Notes);
2043
2044 // Ensure the computed APValue is cleaned up later if evaluation succeeded,
2045 // or that it's empty (so that there's nothing to clean up) if evaluation
2046 // failed.
2047 if (!Result)
2048 Eval->Evaluated = APValue();
2049 else if (Eval->Evaluated.needsCleanup())
2050 getASTContext().AddDeallocation(DestroyAPValue, &Eval->Evaluated);
2051
2052 Eval->IsEvaluating = false;
2053 Eval->WasEvaluated = true;
2054
2055 // In C++11, we have determined whether the initializer was a constant
2056 // expression as a side-effect.
2057 if (getASTContext().getLangOpts().CPlusPlus11 && !Eval->CheckedICE) {
2058 Eval->CheckedICE = true;
2059 Eval->IsICE = Result && Notes.empty();
2060 }
2061
2062 return Result ? &Eval->Evaluated : nullptr;
2063 }
2064
checkInitIsICE() const2065 bool VarDecl::checkInitIsICE() const {
2066 // Initializers of weak variables are never ICEs.
2067 if (isWeak())
2068 return false;
2069
2070 EvaluatedStmt *Eval = ensureEvaluatedStmt();
2071 if (Eval->CheckedICE)
2072 // We have already checked whether this subexpression is an
2073 // integral constant expression.
2074 return Eval->IsICE;
2075
2076 const Expr *Init = cast<Expr>(Eval->Value);
2077 assert(!Init->isValueDependent());
2078
2079 // In C++11, evaluate the initializer to check whether it's a constant
2080 // expression.
2081 if (getASTContext().getLangOpts().CPlusPlus11) {
2082 SmallVector<PartialDiagnosticAt, 8> Notes;
2083 evaluateValue(Notes);
2084 return Eval->IsICE;
2085 }
2086
2087 // It's an ICE whether or not the definition we found is
2088 // out-of-line. See DR 721 and the discussion in Clang PR
2089 // 6206 for details.
2090
2091 if (Eval->CheckingICE)
2092 return false;
2093 Eval->CheckingICE = true;
2094
2095 Eval->IsICE = Init->isIntegerConstantExpr(getASTContext());
2096 Eval->CheckingICE = false;
2097 Eval->CheckedICE = true;
2098 return Eval->IsICE;
2099 }
2100
getInstantiatedFromStaticDataMember() const2101 VarDecl *VarDecl::getInstantiatedFromStaticDataMember() const {
2102 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2103 return cast<VarDecl>(MSI->getInstantiatedFrom());
2104
2105 return nullptr;
2106 }
2107
getTemplateSpecializationKind() const2108 TemplateSpecializationKind VarDecl::getTemplateSpecializationKind() const {
2109 if (const VarTemplateSpecializationDecl *Spec =
2110 dyn_cast<VarTemplateSpecializationDecl>(this))
2111 return Spec->getSpecializationKind();
2112
2113 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2114 return MSI->getTemplateSpecializationKind();
2115
2116 return TSK_Undeclared;
2117 }
2118
getPointOfInstantiation() const2119 SourceLocation VarDecl::getPointOfInstantiation() const {
2120 if (const VarTemplateSpecializationDecl *Spec =
2121 dyn_cast<VarTemplateSpecializationDecl>(this))
2122 return Spec->getPointOfInstantiation();
2123
2124 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2125 return MSI->getPointOfInstantiation();
2126
2127 return SourceLocation();
2128 }
2129
getDescribedVarTemplate() const2130 VarTemplateDecl *VarDecl::getDescribedVarTemplate() const {
2131 return getASTContext().getTemplateOrSpecializationInfo(this)
2132 .dyn_cast<VarTemplateDecl *>();
2133 }
2134
setDescribedVarTemplate(VarTemplateDecl * Template)2135 void VarDecl::setDescribedVarTemplate(VarTemplateDecl *Template) {
2136 getASTContext().setTemplateOrSpecializationInfo(this, Template);
2137 }
2138
getMemberSpecializationInfo() const2139 MemberSpecializationInfo *VarDecl::getMemberSpecializationInfo() const {
2140 if (isStaticDataMember())
2141 // FIXME: Remove ?
2142 // return getASTContext().getInstantiatedFromStaticDataMember(this);
2143 return getASTContext().getTemplateOrSpecializationInfo(this)
2144 .dyn_cast<MemberSpecializationInfo *>();
2145 return nullptr;
2146 }
2147
setTemplateSpecializationKind(TemplateSpecializationKind TSK,SourceLocation PointOfInstantiation)2148 void VarDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
2149 SourceLocation PointOfInstantiation) {
2150 assert((isa<VarTemplateSpecializationDecl>(this) ||
2151 getMemberSpecializationInfo()) &&
2152 "not a variable or static data member template specialization");
2153
2154 if (VarTemplateSpecializationDecl *Spec =
2155 dyn_cast<VarTemplateSpecializationDecl>(this)) {
2156 Spec->setSpecializationKind(TSK);
2157 if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() &&
2158 Spec->getPointOfInstantiation().isInvalid())
2159 Spec->setPointOfInstantiation(PointOfInstantiation);
2160 }
2161
2162 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) {
2163 MSI->setTemplateSpecializationKind(TSK);
2164 if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() &&
2165 MSI->getPointOfInstantiation().isInvalid())
2166 MSI->setPointOfInstantiation(PointOfInstantiation);
2167 }
2168 }
2169
2170 void
setInstantiationOfStaticDataMember(VarDecl * VD,TemplateSpecializationKind TSK)2171 VarDecl::setInstantiationOfStaticDataMember(VarDecl *VD,
2172 TemplateSpecializationKind TSK) {
2173 assert(getASTContext().getTemplateOrSpecializationInfo(this).isNull() &&
2174 "Previous template or instantiation?");
2175 getASTContext().setInstantiatedFromStaticDataMember(this, VD, TSK);
2176 }
2177
2178 //===----------------------------------------------------------------------===//
2179 // ParmVarDecl Implementation
2180 //===----------------------------------------------------------------------===//
2181
Create(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,QualType T,TypeSourceInfo * TInfo,StorageClass S,Expr * DefArg)2182 ParmVarDecl *ParmVarDecl::Create(ASTContext &C, DeclContext *DC,
2183 SourceLocation StartLoc,
2184 SourceLocation IdLoc, IdentifierInfo *Id,
2185 QualType T, TypeSourceInfo *TInfo,
2186 StorageClass S, Expr *DefArg) {
2187 return new (C, DC) ParmVarDecl(ParmVar, C, DC, StartLoc, IdLoc, Id, T, TInfo,
2188 S, DefArg);
2189 }
2190
getOriginalType() const2191 QualType ParmVarDecl::getOriginalType() const {
2192 TypeSourceInfo *TSI = getTypeSourceInfo();
2193 QualType T = TSI ? TSI->getType() : getType();
2194 if (const DecayedType *DT = dyn_cast<DecayedType>(T))
2195 return DT->getOriginalType();
2196 return T;
2197 }
2198
CreateDeserialized(ASTContext & C,unsigned ID)2199 ParmVarDecl *ParmVarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2200 return new (C, ID)
2201 ParmVarDecl(ParmVar, C, nullptr, SourceLocation(), SourceLocation(),
2202 nullptr, QualType(), nullptr, SC_None, nullptr);
2203 }
2204
getSourceRange() const2205 SourceRange ParmVarDecl::getSourceRange() const {
2206 if (!hasInheritedDefaultArg()) {
2207 SourceRange ArgRange = getDefaultArgRange();
2208 if (ArgRange.isValid())
2209 return SourceRange(getOuterLocStart(), ArgRange.getEnd());
2210 }
2211
2212 // DeclaratorDecl considers the range of postfix types as overlapping with the
2213 // declaration name, but this is not the case with parameters in ObjC methods.
2214 if (isa<ObjCMethodDecl>(getDeclContext()))
2215 return SourceRange(DeclaratorDecl::getLocStart(), getLocation());
2216
2217 return DeclaratorDecl::getSourceRange();
2218 }
2219
getDefaultArg()2220 Expr *ParmVarDecl::getDefaultArg() {
2221 assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!");
2222 assert(!hasUninstantiatedDefaultArg() &&
2223 "Default argument is not yet instantiated!");
2224
2225 Expr *Arg = getInit();
2226 if (ExprWithCleanups *E = dyn_cast_or_null<ExprWithCleanups>(Arg))
2227 return E->getSubExpr();
2228
2229 return Arg;
2230 }
2231
getDefaultArgRange() const2232 SourceRange ParmVarDecl::getDefaultArgRange() const {
2233 if (const Expr *E = getInit())
2234 return E->getSourceRange();
2235
2236 if (hasUninstantiatedDefaultArg())
2237 return getUninstantiatedDefaultArg()->getSourceRange();
2238
2239 return SourceRange();
2240 }
2241
isParameterPack() const2242 bool ParmVarDecl::isParameterPack() const {
2243 return isa<PackExpansionType>(getType());
2244 }
2245
setParameterIndexLarge(unsigned parameterIndex)2246 void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) {
2247 getASTContext().setParameterIndex(this, parameterIndex);
2248 ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel;
2249 }
2250
getParameterIndexLarge() const2251 unsigned ParmVarDecl::getParameterIndexLarge() const {
2252 return getASTContext().getParameterIndex(this);
2253 }
2254
2255 //===----------------------------------------------------------------------===//
2256 // FunctionDecl Implementation
2257 //===----------------------------------------------------------------------===//
2258
getNameForDiagnostic(raw_ostream & OS,const PrintingPolicy & Policy,bool Qualified) const2259 void FunctionDecl::getNameForDiagnostic(
2260 raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const {
2261 NamedDecl::getNameForDiagnostic(OS, Policy, Qualified);
2262 const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs();
2263 if (TemplateArgs)
2264 TemplateSpecializationType::PrintTemplateArgumentList(
2265 OS, TemplateArgs->data(), TemplateArgs->size(), Policy);
2266 }
2267
isVariadic() const2268 bool FunctionDecl::isVariadic() const {
2269 if (const FunctionProtoType *FT = getType()->getAs<FunctionProtoType>())
2270 return FT->isVariadic();
2271 return false;
2272 }
2273
hasBody(const FunctionDecl * & Definition) const2274 bool FunctionDecl::hasBody(const FunctionDecl *&Definition) const {
2275 for (auto I : redecls()) {
2276 if (I->Body || I->IsLateTemplateParsed) {
2277 Definition = I;
2278 return true;
2279 }
2280 }
2281
2282 return false;
2283 }
2284
hasTrivialBody() const2285 bool FunctionDecl::hasTrivialBody() const
2286 {
2287 Stmt *S = getBody();
2288 if (!S) {
2289 // Since we don't have a body for this function, we don't know if it's
2290 // trivial or not.
2291 return false;
2292 }
2293
2294 if (isa<CompoundStmt>(S) && cast<CompoundStmt>(S)->body_empty())
2295 return true;
2296 return false;
2297 }
2298
isDefined(const FunctionDecl * & Definition) const2299 bool FunctionDecl::isDefined(const FunctionDecl *&Definition) const {
2300 for (auto I : redecls()) {
2301 if (I->IsDeleted || I->IsDefaulted || I->Body || I->IsLateTemplateParsed ||
2302 I->hasAttr<AliasAttr>()) {
2303 Definition = I->IsDeleted ? I->getCanonicalDecl() : I;
2304 return true;
2305 }
2306 }
2307
2308 return false;
2309 }
2310
getBody(const FunctionDecl * & Definition) const2311 Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const {
2312 if (!hasBody(Definition))
2313 return nullptr;
2314
2315 if (Definition->Body)
2316 return Definition->Body.get(getASTContext().getExternalSource());
2317
2318 return nullptr;
2319 }
2320
setBody(Stmt * B)2321 void FunctionDecl::setBody(Stmt *B) {
2322 Body = B;
2323 if (B)
2324 EndRangeLoc = B->getLocEnd();
2325 }
2326
setPure(bool P)2327 void FunctionDecl::setPure(bool P) {
2328 IsPure = P;
2329 if (P)
2330 if (CXXRecordDecl *Parent = dyn_cast<CXXRecordDecl>(getDeclContext()))
2331 Parent->markedVirtualFunctionPure();
2332 }
2333
2334 template<std::size_t Len>
isNamed(const NamedDecl * ND,const char (& Str)[Len])2335 static bool isNamed(const NamedDecl *ND, const char (&Str)[Len]) {
2336 IdentifierInfo *II = ND->getIdentifier();
2337 return II && II->isStr(Str);
2338 }
2339
isMain() const2340 bool FunctionDecl::isMain() const {
2341 const TranslationUnitDecl *tunit =
2342 dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
2343 return tunit &&
2344 !tunit->getASTContext().getLangOpts().Freestanding &&
2345 isNamed(this, "main");
2346 }
2347
isMSVCRTEntryPoint() const2348 bool FunctionDecl::isMSVCRTEntryPoint() const {
2349 const TranslationUnitDecl *TUnit =
2350 dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
2351 if (!TUnit)
2352 return false;
2353
2354 // Even though we aren't really targeting MSVCRT if we are freestanding,
2355 // semantic analysis for these functions remains the same.
2356
2357 // MSVCRT entry points only exist on MSVCRT targets.
2358 if (!TUnit->getASTContext().getTargetInfo().getTriple().isOSMSVCRT())
2359 return false;
2360
2361 // Nameless functions like constructors cannot be entry points.
2362 if (!getIdentifier())
2363 return false;
2364
2365 return llvm::StringSwitch<bool>(getName())
2366 .Cases("main", // an ANSI console app
2367 "wmain", // a Unicode console App
2368 "WinMain", // an ANSI GUI app
2369 "wWinMain", // a Unicode GUI app
2370 "DllMain", // a DLL
2371 true)
2372 .Default(false);
2373 }
2374
isReservedGlobalPlacementOperator() const2375 bool FunctionDecl::isReservedGlobalPlacementOperator() const {
2376 assert(getDeclName().getNameKind() == DeclarationName::CXXOperatorName);
2377 assert(getDeclName().getCXXOverloadedOperator() == OO_New ||
2378 getDeclName().getCXXOverloadedOperator() == OO_Delete ||
2379 getDeclName().getCXXOverloadedOperator() == OO_Array_New ||
2380 getDeclName().getCXXOverloadedOperator() == OO_Array_Delete);
2381
2382 if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
2383 return false;
2384
2385 const FunctionProtoType *proto = getType()->castAs<FunctionProtoType>();
2386 if (proto->getNumParams() != 2 || proto->isVariadic())
2387 return false;
2388
2389 ASTContext &Context =
2390 cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext())
2391 ->getASTContext();
2392
2393 // The result type and first argument type are constant across all
2394 // these operators. The second argument must be exactly void*.
2395 return (proto->getParamType(1).getCanonicalType() == Context.VoidPtrTy);
2396 }
2397
isReplaceableGlobalAllocationFunction() const2398 bool FunctionDecl::isReplaceableGlobalAllocationFunction() const {
2399 if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName)
2400 return false;
2401 if (getDeclName().getCXXOverloadedOperator() != OO_New &&
2402 getDeclName().getCXXOverloadedOperator() != OO_Delete &&
2403 getDeclName().getCXXOverloadedOperator() != OO_Array_New &&
2404 getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
2405 return false;
2406
2407 if (isa<CXXRecordDecl>(getDeclContext()))
2408 return false;
2409
2410 // This can only fail for an invalid 'operator new' declaration.
2411 if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
2412 return false;
2413
2414 const FunctionProtoType *FPT = getType()->castAs<FunctionProtoType>();
2415 if (FPT->getNumParams() == 0 || FPT->getNumParams() > 2 || FPT->isVariadic())
2416 return false;
2417
2418 // If this is a single-parameter function, it must be a replaceable global
2419 // allocation or deallocation function.
2420 if (FPT->getNumParams() == 1)
2421 return true;
2422
2423 // Otherwise, we're looking for a second parameter whose type is
2424 // 'const std::nothrow_t &', or, in C++1y, 'std::size_t'.
2425 QualType Ty = FPT->getParamType(1);
2426 ASTContext &Ctx = getASTContext();
2427 if (Ctx.getLangOpts().SizedDeallocation &&
2428 Ctx.hasSameType(Ty, Ctx.getSizeType()))
2429 return true;
2430 if (!Ty->isReferenceType())
2431 return false;
2432 Ty = Ty->getPointeeType();
2433 if (Ty.getCVRQualifiers() != Qualifiers::Const)
2434 return false;
2435 const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
2436 return RD && isNamed(RD, "nothrow_t") && RD->isInStdNamespace();
2437 }
2438
2439 FunctionDecl *
getCorrespondingUnsizedGlobalDeallocationFunction() const2440 FunctionDecl::getCorrespondingUnsizedGlobalDeallocationFunction() const {
2441 ASTContext &Ctx = getASTContext();
2442 if (!Ctx.getLangOpts().SizedDeallocation)
2443 return nullptr;
2444
2445 if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName)
2446 return nullptr;
2447 if (getDeclName().getCXXOverloadedOperator() != OO_Delete &&
2448 getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
2449 return nullptr;
2450 if (isa<CXXRecordDecl>(getDeclContext()))
2451 return nullptr;
2452
2453 if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
2454 return nullptr;
2455
2456 if (getNumParams() != 2 || isVariadic() ||
2457 !Ctx.hasSameType(getType()->castAs<FunctionProtoType>()->getParamType(1),
2458 Ctx.getSizeType()))
2459 return nullptr;
2460
2461 // This is a sized deallocation function. Find the corresponding unsized
2462 // deallocation function.
2463 lookup_const_result R = getDeclContext()->lookup(getDeclName());
2464 for (lookup_const_result::iterator RI = R.begin(), RE = R.end(); RI != RE;
2465 ++RI)
2466 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*RI))
2467 if (FD->getNumParams() == 1 && !FD->isVariadic())
2468 return FD;
2469 return nullptr;
2470 }
2471
getLanguageLinkage() const2472 LanguageLinkage FunctionDecl::getLanguageLinkage() const {
2473 return getDeclLanguageLinkage(*this);
2474 }
2475
isExternC() const2476 bool FunctionDecl::isExternC() const {
2477 return isDeclExternC(*this);
2478 }
2479
isInExternCContext() const2480 bool FunctionDecl::isInExternCContext() const {
2481 return getLexicalDeclContext()->isExternCContext();
2482 }
2483
isInExternCXXContext() const2484 bool FunctionDecl::isInExternCXXContext() const {
2485 return getLexicalDeclContext()->isExternCXXContext();
2486 }
2487
isGlobal() const2488 bool FunctionDecl::isGlobal() const {
2489 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(this))
2490 return Method->isStatic();
2491
2492 if (getCanonicalDecl()->getStorageClass() == SC_Static)
2493 return false;
2494
2495 for (const DeclContext *DC = getDeclContext();
2496 DC->isNamespace();
2497 DC = DC->getParent()) {
2498 if (const NamespaceDecl *Namespace = cast<NamespaceDecl>(DC)) {
2499 if (!Namespace->getDeclName())
2500 return false;
2501 break;
2502 }
2503 }
2504
2505 return true;
2506 }
2507
isNoReturn() const2508 bool FunctionDecl::isNoReturn() const {
2509 return hasAttr<NoReturnAttr>() || hasAttr<CXX11NoReturnAttr>() ||
2510 hasAttr<C11NoReturnAttr>() ||
2511 getType()->getAs<FunctionType>()->getNoReturnAttr();
2512 }
2513
2514 void
setPreviousDeclaration(FunctionDecl * PrevDecl)2515 FunctionDecl::setPreviousDeclaration(FunctionDecl *PrevDecl) {
2516 redeclarable_base::setPreviousDecl(PrevDecl);
2517
2518 if (FunctionTemplateDecl *FunTmpl = getDescribedFunctionTemplate()) {
2519 FunctionTemplateDecl *PrevFunTmpl
2520 = PrevDecl? PrevDecl->getDescribedFunctionTemplate() : nullptr;
2521 assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch");
2522 FunTmpl->setPreviousDecl(PrevFunTmpl);
2523 }
2524
2525 if (PrevDecl && PrevDecl->IsInline)
2526 IsInline = true;
2527 }
2528
getCanonicalDecl() const2529 const FunctionDecl *FunctionDecl::getCanonicalDecl() const {
2530 return getFirstDecl();
2531 }
2532
getCanonicalDecl()2533 FunctionDecl *FunctionDecl::getCanonicalDecl() { return getFirstDecl(); }
2534
2535 /// \brief Returns a value indicating whether this function
2536 /// corresponds to a builtin function.
2537 ///
2538 /// The function corresponds to a built-in function if it is
2539 /// declared at translation scope or within an extern "C" block and
2540 /// its name matches with the name of a builtin. The returned value
2541 /// will be 0 for functions that do not correspond to a builtin, a
2542 /// value of type \c Builtin::ID if in the target-independent range
2543 /// \c [1,Builtin::First), or a target-specific builtin value.
getBuiltinID() const2544 unsigned FunctionDecl::getBuiltinID() const {
2545 if (!getIdentifier())
2546 return 0;
2547
2548 unsigned BuiltinID = getIdentifier()->getBuiltinID();
2549 if (!BuiltinID)
2550 return 0;
2551
2552 ASTContext &Context = getASTContext();
2553 if (Context.getLangOpts().CPlusPlus) {
2554 const LinkageSpecDecl *LinkageDecl = dyn_cast<LinkageSpecDecl>(
2555 getFirstDecl()->getDeclContext());
2556 // In C++, the first declaration of a builtin is always inside an implicit
2557 // extern "C".
2558 // FIXME: A recognised library function may not be directly in an extern "C"
2559 // declaration, for instance "extern "C" { namespace std { decl } }".
2560 if (!LinkageDecl || LinkageDecl->getLanguage() != LinkageSpecDecl::lang_c)
2561 return 0;
2562 }
2563
2564 // If the function is marked "overloadable", it has a different mangled name
2565 // and is not the C library function.
2566 if (hasAttr<OverloadableAttr>())
2567 return 0;
2568
2569 if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
2570 return BuiltinID;
2571
2572 // This function has the name of a known C library
2573 // function. Determine whether it actually refers to the C library
2574 // function or whether it just has the same name.
2575
2576 // If this is a static function, it's not a builtin.
2577 if (getStorageClass() == SC_Static)
2578 return 0;
2579
2580 return BuiltinID;
2581 }
2582
2583
2584 /// getNumParams - Return the number of parameters this function must have
2585 /// based on its FunctionType. This is the length of the ParamInfo array
2586 /// after it has been created.
getNumParams() const2587 unsigned FunctionDecl::getNumParams() const {
2588 const FunctionProtoType *FPT = getType()->getAs<FunctionProtoType>();
2589 return FPT ? FPT->getNumParams() : 0;
2590 }
2591
setParams(ASTContext & C,ArrayRef<ParmVarDecl * > NewParamInfo)2592 void FunctionDecl::setParams(ASTContext &C,
2593 ArrayRef<ParmVarDecl *> NewParamInfo) {
2594 assert(!ParamInfo && "Already has param info!");
2595 assert(NewParamInfo.size() == getNumParams() && "Parameter count mismatch!");
2596
2597 // Zero params -> null pointer.
2598 if (!NewParamInfo.empty()) {
2599 ParamInfo = new (C) ParmVarDecl*[NewParamInfo.size()];
2600 std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
2601 }
2602 }
2603
setDeclsInPrototypeScope(ArrayRef<NamedDecl * > NewDecls)2604 void FunctionDecl::setDeclsInPrototypeScope(ArrayRef<NamedDecl *> NewDecls) {
2605 assert(DeclsInPrototypeScope.empty() && "Already has prototype decls!");
2606
2607 if (!NewDecls.empty()) {
2608 NamedDecl **A = new (getASTContext()) NamedDecl*[NewDecls.size()];
2609 std::copy(NewDecls.begin(), NewDecls.end(), A);
2610 DeclsInPrototypeScope = ArrayRef<NamedDecl *>(A, NewDecls.size());
2611 // Move declarations introduced in prototype to the function context.
2612 for (auto I : NewDecls) {
2613 DeclContext *DC = I->getDeclContext();
2614 // Forward-declared reference to an enumeration is not added to
2615 // declaration scope, so skip declaration that is absent from its
2616 // declaration contexts.
2617 if (DC->containsDecl(I)) {
2618 DC->removeDecl(I);
2619 I->setDeclContext(this);
2620 addDecl(I);
2621 }
2622 }
2623 }
2624 }
2625
2626 /// getMinRequiredArguments - Returns the minimum number of arguments
2627 /// needed to call this function. This may be fewer than the number of
2628 /// function parameters, if some of the parameters have default
2629 /// arguments (in C++) or are parameter packs (C++11).
getMinRequiredArguments() const2630 unsigned FunctionDecl::getMinRequiredArguments() const {
2631 if (!getASTContext().getLangOpts().CPlusPlus)
2632 return getNumParams();
2633
2634 unsigned NumRequiredArgs = 0;
2635 for (auto *Param : params())
2636 if (!Param->isParameterPack() && !Param->hasDefaultArg())
2637 ++NumRequiredArgs;
2638 return NumRequiredArgs;
2639 }
2640
2641 /// \brief The combination of the extern and inline keywords under MSVC forces
2642 /// the function to be required.
2643 ///
2644 /// Note: This function assumes that we will only get called when isInlined()
2645 /// would return true for this FunctionDecl.
isMSExternInline() const2646 bool FunctionDecl::isMSExternInline() const {
2647 assert(isInlined() && "expected to get called on an inlined function!");
2648
2649 const ASTContext &Context = getASTContext();
2650 if (!Context.getLangOpts().MSVCCompat && !hasAttr<DLLExportAttr>())
2651 return false;
2652
2653 for (const FunctionDecl *FD = this; FD; FD = FD->getPreviousDecl())
2654 if (FD->getStorageClass() == SC_Extern)
2655 return true;
2656
2657 return false;
2658 }
2659
redeclForcesDefMSVC(const FunctionDecl * Redecl)2660 static bool redeclForcesDefMSVC(const FunctionDecl *Redecl) {
2661 if (Redecl->getStorageClass() != SC_Extern)
2662 return false;
2663
2664 for (const FunctionDecl *FD = Redecl->getPreviousDecl(); FD;
2665 FD = FD->getPreviousDecl())
2666 if (FD->getStorageClass() == SC_Extern)
2667 return false;
2668
2669 return true;
2670 }
2671
RedeclForcesDefC99(const FunctionDecl * Redecl)2672 static bool RedeclForcesDefC99(const FunctionDecl *Redecl) {
2673 // Only consider file-scope declarations in this test.
2674 if (!Redecl->getLexicalDeclContext()->isTranslationUnit())
2675 return false;
2676
2677 // Only consider explicit declarations; the presence of a builtin for a
2678 // libcall shouldn't affect whether a definition is externally visible.
2679 if (Redecl->isImplicit())
2680 return false;
2681
2682 if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern)
2683 return true; // Not an inline definition
2684
2685 return false;
2686 }
2687
2688 /// \brief For a function declaration in C or C++, determine whether this
2689 /// declaration causes the definition to be externally visible.
2690 ///
2691 /// For instance, this determines if adding the current declaration to the set
2692 /// of redeclarations of the given functions causes
2693 /// isInlineDefinitionExternallyVisible to change from false to true.
doesDeclarationForceExternallyVisibleDefinition() const2694 bool FunctionDecl::doesDeclarationForceExternallyVisibleDefinition() const {
2695 assert(!doesThisDeclarationHaveABody() &&
2696 "Must have a declaration without a body.");
2697
2698 ASTContext &Context = getASTContext();
2699
2700 if (Context.getLangOpts().MSVCCompat) {
2701 const FunctionDecl *Definition;
2702 if (hasBody(Definition) && Definition->isInlined() &&
2703 redeclForcesDefMSVC(this))
2704 return true;
2705 }
2706
2707 if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
2708 // With GNU inlining, a declaration with 'inline' but not 'extern', forces
2709 // an externally visible definition.
2710 //
2711 // FIXME: What happens if gnu_inline gets added on after the first
2712 // declaration?
2713 if (!isInlineSpecified() || getStorageClass() == SC_Extern)
2714 return false;
2715
2716 const FunctionDecl *Prev = this;
2717 bool FoundBody = false;
2718 while ((Prev = Prev->getPreviousDecl())) {
2719 FoundBody |= Prev->Body.isValid();
2720
2721 if (Prev->Body) {
2722 // If it's not the case that both 'inline' and 'extern' are
2723 // specified on the definition, then it is always externally visible.
2724 if (!Prev->isInlineSpecified() ||
2725 Prev->getStorageClass() != SC_Extern)
2726 return false;
2727 } else if (Prev->isInlineSpecified() &&
2728 Prev->getStorageClass() != SC_Extern) {
2729 return false;
2730 }
2731 }
2732 return FoundBody;
2733 }
2734
2735 if (Context.getLangOpts().CPlusPlus)
2736 return false;
2737
2738 // C99 6.7.4p6:
2739 // [...] If all of the file scope declarations for a function in a
2740 // translation unit include the inline function specifier without extern,
2741 // then the definition in that translation unit is an inline definition.
2742 if (isInlineSpecified() && getStorageClass() != SC_Extern)
2743 return false;
2744 const FunctionDecl *Prev = this;
2745 bool FoundBody = false;
2746 while ((Prev = Prev->getPreviousDecl())) {
2747 FoundBody |= Prev->Body.isValid();
2748 if (RedeclForcesDefC99(Prev))
2749 return false;
2750 }
2751 return FoundBody;
2752 }
2753
getReturnTypeSourceRange() const2754 SourceRange FunctionDecl::getReturnTypeSourceRange() const {
2755 const TypeSourceInfo *TSI = getTypeSourceInfo();
2756 if (!TSI)
2757 return SourceRange();
2758 FunctionTypeLoc FTL =
2759 TSI->getTypeLoc().IgnoreParens().getAs<FunctionTypeLoc>();
2760 if (!FTL)
2761 return SourceRange();
2762
2763 // Skip self-referential return types.
2764 const SourceManager &SM = getASTContext().getSourceManager();
2765 SourceRange RTRange = FTL.getReturnLoc().getSourceRange();
2766 SourceLocation Boundary = getNameInfo().getLocStart();
2767 if (RTRange.isInvalid() || Boundary.isInvalid() ||
2768 !SM.isBeforeInTranslationUnit(RTRange.getEnd(), Boundary))
2769 return SourceRange();
2770
2771 return RTRange;
2772 }
2773
2774 /// \brief For an inline function definition in C, or for a gnu_inline function
2775 /// in C++, determine whether the definition will be externally visible.
2776 ///
2777 /// Inline function definitions are always available for inlining optimizations.
2778 /// However, depending on the language dialect, declaration specifiers, and
2779 /// attributes, the definition of an inline function may or may not be
2780 /// "externally" visible to other translation units in the program.
2781 ///
2782 /// In C99, inline definitions are not externally visible by default. However,
2783 /// if even one of the global-scope declarations is marked "extern inline", the
2784 /// inline definition becomes externally visible (C99 6.7.4p6).
2785 ///
2786 /// In GNU89 mode, or if the gnu_inline attribute is attached to the function
2787 /// definition, we use the GNU semantics for inline, which are nearly the
2788 /// opposite of C99 semantics. In particular, "inline" by itself will create
2789 /// an externally visible symbol, but "extern inline" will not create an
2790 /// externally visible symbol.
isInlineDefinitionExternallyVisible() const2791 bool FunctionDecl::isInlineDefinitionExternallyVisible() const {
2792 assert(doesThisDeclarationHaveABody() && "Must have the function definition");
2793 assert(isInlined() && "Function must be inline");
2794 ASTContext &Context = getASTContext();
2795
2796 if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
2797 // Note: If you change the logic here, please change
2798 // doesDeclarationForceExternallyVisibleDefinition as well.
2799 //
2800 // If it's not the case that both 'inline' and 'extern' are
2801 // specified on the definition, then this inline definition is
2802 // externally visible.
2803 if (!(isInlineSpecified() && getStorageClass() == SC_Extern))
2804 return true;
2805
2806 // If any declaration is 'inline' but not 'extern', then this definition
2807 // is externally visible.
2808 for (auto Redecl : redecls()) {
2809 if (Redecl->isInlineSpecified() &&
2810 Redecl->getStorageClass() != SC_Extern)
2811 return true;
2812 }
2813
2814 return false;
2815 }
2816
2817 // The rest of this function is C-only.
2818 assert(!Context.getLangOpts().CPlusPlus &&
2819 "should not use C inline rules in C++");
2820
2821 // C99 6.7.4p6:
2822 // [...] If all of the file scope declarations for a function in a
2823 // translation unit include the inline function specifier without extern,
2824 // then the definition in that translation unit is an inline definition.
2825 for (auto Redecl : redecls()) {
2826 if (RedeclForcesDefC99(Redecl))
2827 return true;
2828 }
2829
2830 // C99 6.7.4p6:
2831 // An inline definition does not provide an external definition for the
2832 // function, and does not forbid an external definition in another
2833 // translation unit.
2834 return false;
2835 }
2836
2837 /// getOverloadedOperator - Which C++ overloaded operator this
2838 /// function represents, if any.
getOverloadedOperator() const2839 OverloadedOperatorKind FunctionDecl::getOverloadedOperator() const {
2840 if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
2841 return getDeclName().getCXXOverloadedOperator();
2842 else
2843 return OO_None;
2844 }
2845
2846 /// getLiteralIdentifier - The literal suffix identifier this function
2847 /// represents, if any.
getLiteralIdentifier() const2848 const IdentifierInfo *FunctionDecl::getLiteralIdentifier() const {
2849 if (getDeclName().getNameKind() == DeclarationName::CXXLiteralOperatorName)
2850 return getDeclName().getCXXLiteralIdentifier();
2851 else
2852 return nullptr;
2853 }
2854
getTemplatedKind() const2855 FunctionDecl::TemplatedKind FunctionDecl::getTemplatedKind() const {
2856 if (TemplateOrSpecialization.isNull())
2857 return TK_NonTemplate;
2858 if (TemplateOrSpecialization.is<FunctionTemplateDecl *>())
2859 return TK_FunctionTemplate;
2860 if (TemplateOrSpecialization.is<MemberSpecializationInfo *>())
2861 return TK_MemberSpecialization;
2862 if (TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>())
2863 return TK_FunctionTemplateSpecialization;
2864 if (TemplateOrSpecialization.is
2865 <DependentFunctionTemplateSpecializationInfo*>())
2866 return TK_DependentFunctionTemplateSpecialization;
2867
2868 llvm_unreachable("Did we miss a TemplateOrSpecialization type?");
2869 }
2870
getInstantiatedFromMemberFunction() const2871 FunctionDecl *FunctionDecl::getInstantiatedFromMemberFunction() const {
2872 if (MemberSpecializationInfo *Info = getMemberSpecializationInfo())
2873 return cast<FunctionDecl>(Info->getInstantiatedFrom());
2874
2875 return nullptr;
2876 }
2877
2878 void
setInstantiationOfMemberFunction(ASTContext & C,FunctionDecl * FD,TemplateSpecializationKind TSK)2879 FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C,
2880 FunctionDecl *FD,
2881 TemplateSpecializationKind TSK) {
2882 assert(TemplateOrSpecialization.isNull() &&
2883 "Member function is already a specialization");
2884 MemberSpecializationInfo *Info
2885 = new (C) MemberSpecializationInfo(FD, TSK);
2886 TemplateOrSpecialization = Info;
2887 }
2888
isImplicitlyInstantiable() const2889 bool FunctionDecl::isImplicitlyInstantiable() const {
2890 // If the function is invalid, it can't be implicitly instantiated.
2891 if (isInvalidDecl())
2892 return false;
2893
2894 switch (getTemplateSpecializationKind()) {
2895 case TSK_Undeclared:
2896 case TSK_ExplicitInstantiationDefinition:
2897 return false;
2898
2899 case TSK_ImplicitInstantiation:
2900 return true;
2901
2902 // It is possible to instantiate TSK_ExplicitSpecialization kind
2903 // if the FunctionDecl has a class scope specialization pattern.
2904 case TSK_ExplicitSpecialization:
2905 return getClassScopeSpecializationPattern() != nullptr;
2906
2907 case TSK_ExplicitInstantiationDeclaration:
2908 // Handled below.
2909 break;
2910 }
2911
2912 // Find the actual template from which we will instantiate.
2913 const FunctionDecl *PatternDecl = getTemplateInstantiationPattern();
2914 bool HasPattern = false;
2915 if (PatternDecl)
2916 HasPattern = PatternDecl->hasBody(PatternDecl);
2917
2918 // C++0x [temp.explicit]p9:
2919 // Except for inline functions, other explicit instantiation declarations
2920 // have the effect of suppressing the implicit instantiation of the entity
2921 // to which they refer.
2922 if (!HasPattern || !PatternDecl)
2923 return true;
2924
2925 return PatternDecl->isInlined();
2926 }
2927
isTemplateInstantiation() const2928 bool FunctionDecl::isTemplateInstantiation() const {
2929 switch (getTemplateSpecializationKind()) {
2930 case TSK_Undeclared:
2931 case TSK_ExplicitSpecialization:
2932 return false;
2933 case TSK_ImplicitInstantiation:
2934 case TSK_ExplicitInstantiationDeclaration:
2935 case TSK_ExplicitInstantiationDefinition:
2936 return true;
2937 }
2938 llvm_unreachable("All TSK values handled.");
2939 }
2940
getTemplateInstantiationPattern() const2941 FunctionDecl *FunctionDecl::getTemplateInstantiationPattern() const {
2942 // Handle class scope explicit specialization special case.
2943 if (getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
2944 return getClassScopeSpecializationPattern();
2945
2946 // If this is a generic lambda call operator specialization, its
2947 // instantiation pattern is always its primary template's pattern
2948 // even if its primary template was instantiated from another
2949 // member template (which happens with nested generic lambdas).
2950 // Since a lambda's call operator's body is transformed eagerly,
2951 // we don't have to go hunting for a prototype definition template
2952 // (i.e. instantiated-from-member-template) to use as an instantiation
2953 // pattern.
2954
2955 if (isGenericLambdaCallOperatorSpecialization(
2956 dyn_cast<CXXMethodDecl>(this))) {
2957 assert(getPrimaryTemplate() && "A generic lambda specialization must be "
2958 "generated from a primary call operator "
2959 "template");
2960 assert(getPrimaryTemplate()->getTemplatedDecl()->getBody() &&
2961 "A generic lambda call operator template must always have a body - "
2962 "even if instantiated from a prototype (i.e. as written) member "
2963 "template");
2964 return getPrimaryTemplate()->getTemplatedDecl();
2965 }
2966
2967 if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) {
2968 while (Primary->getInstantiatedFromMemberTemplate()) {
2969 // If we have hit a point where the user provided a specialization of
2970 // this template, we're done looking.
2971 if (Primary->isMemberSpecialization())
2972 break;
2973 Primary = Primary->getInstantiatedFromMemberTemplate();
2974 }
2975
2976 return Primary->getTemplatedDecl();
2977 }
2978
2979 return getInstantiatedFromMemberFunction();
2980 }
2981
getPrimaryTemplate() const2982 FunctionTemplateDecl *FunctionDecl::getPrimaryTemplate() const {
2983 if (FunctionTemplateSpecializationInfo *Info
2984 = TemplateOrSpecialization
2985 .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
2986 return Info->Template.getPointer();
2987 }
2988 return nullptr;
2989 }
2990
getClassScopeSpecializationPattern() const2991 FunctionDecl *FunctionDecl::getClassScopeSpecializationPattern() const {
2992 return getASTContext().getClassScopeSpecializationPattern(this);
2993 }
2994
2995 const TemplateArgumentList *
getTemplateSpecializationArgs() const2996 FunctionDecl::getTemplateSpecializationArgs() const {
2997 if (FunctionTemplateSpecializationInfo *Info
2998 = TemplateOrSpecialization
2999 .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3000 return Info->TemplateArguments;
3001 }
3002 return nullptr;
3003 }
3004
3005 const ASTTemplateArgumentListInfo *
getTemplateSpecializationArgsAsWritten() const3006 FunctionDecl::getTemplateSpecializationArgsAsWritten() const {
3007 if (FunctionTemplateSpecializationInfo *Info
3008 = TemplateOrSpecialization
3009 .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3010 return Info->TemplateArgumentsAsWritten;
3011 }
3012 return nullptr;
3013 }
3014
3015 void
setFunctionTemplateSpecialization(ASTContext & C,FunctionTemplateDecl * Template,const TemplateArgumentList * TemplateArgs,void * InsertPos,TemplateSpecializationKind TSK,const TemplateArgumentListInfo * TemplateArgsAsWritten,SourceLocation PointOfInstantiation)3016 FunctionDecl::setFunctionTemplateSpecialization(ASTContext &C,
3017 FunctionTemplateDecl *Template,
3018 const TemplateArgumentList *TemplateArgs,
3019 void *InsertPos,
3020 TemplateSpecializationKind TSK,
3021 const TemplateArgumentListInfo *TemplateArgsAsWritten,
3022 SourceLocation PointOfInstantiation) {
3023 assert(TSK != TSK_Undeclared &&
3024 "Must specify the type of function template specialization");
3025 FunctionTemplateSpecializationInfo *Info
3026 = TemplateOrSpecialization.dyn_cast<FunctionTemplateSpecializationInfo*>();
3027 if (!Info)
3028 Info = FunctionTemplateSpecializationInfo::Create(C, this, Template, TSK,
3029 TemplateArgs,
3030 TemplateArgsAsWritten,
3031 PointOfInstantiation);
3032 TemplateOrSpecialization = Info;
3033 Template->addSpecialization(Info, InsertPos);
3034 }
3035
3036 void
setDependentTemplateSpecialization(ASTContext & Context,const UnresolvedSetImpl & Templates,const TemplateArgumentListInfo & TemplateArgs)3037 FunctionDecl::setDependentTemplateSpecialization(ASTContext &Context,
3038 const UnresolvedSetImpl &Templates,
3039 const TemplateArgumentListInfo &TemplateArgs) {
3040 assert(TemplateOrSpecialization.isNull());
3041 size_t Size = sizeof(DependentFunctionTemplateSpecializationInfo);
3042 Size += Templates.size() * sizeof(FunctionTemplateDecl*);
3043 Size += TemplateArgs.size() * sizeof(TemplateArgumentLoc);
3044 void *Buffer = Context.Allocate(Size);
3045 DependentFunctionTemplateSpecializationInfo *Info =
3046 new (Buffer) DependentFunctionTemplateSpecializationInfo(Templates,
3047 TemplateArgs);
3048 TemplateOrSpecialization = Info;
3049 }
3050
3051 DependentFunctionTemplateSpecializationInfo::
DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl & Ts,const TemplateArgumentListInfo & TArgs)3052 DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl &Ts,
3053 const TemplateArgumentListInfo &TArgs)
3054 : AngleLocs(TArgs.getLAngleLoc(), TArgs.getRAngleLoc()) {
3055
3056 d.NumTemplates = Ts.size();
3057 d.NumArgs = TArgs.size();
3058
3059 FunctionTemplateDecl **TsArray =
3060 const_cast<FunctionTemplateDecl**>(getTemplates());
3061 for (unsigned I = 0, E = Ts.size(); I != E; ++I)
3062 TsArray[I] = cast<FunctionTemplateDecl>(Ts[I]->getUnderlyingDecl());
3063
3064 TemplateArgumentLoc *ArgsArray =
3065 const_cast<TemplateArgumentLoc*>(getTemplateArgs());
3066 for (unsigned I = 0, E = TArgs.size(); I != E; ++I)
3067 new (&ArgsArray[I]) TemplateArgumentLoc(TArgs[I]);
3068 }
3069
getTemplateSpecializationKind() const3070 TemplateSpecializationKind FunctionDecl::getTemplateSpecializationKind() const {
3071 // For a function template specialization, query the specialization
3072 // information object.
3073 FunctionTemplateSpecializationInfo *FTSInfo
3074 = TemplateOrSpecialization.dyn_cast<FunctionTemplateSpecializationInfo*>();
3075 if (FTSInfo)
3076 return FTSInfo->getTemplateSpecializationKind();
3077
3078 MemberSpecializationInfo *MSInfo
3079 = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>();
3080 if (MSInfo)
3081 return MSInfo->getTemplateSpecializationKind();
3082
3083 return TSK_Undeclared;
3084 }
3085
3086 void
setTemplateSpecializationKind(TemplateSpecializationKind TSK,SourceLocation PointOfInstantiation)3087 FunctionDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
3088 SourceLocation PointOfInstantiation) {
3089 if (FunctionTemplateSpecializationInfo *FTSInfo
3090 = TemplateOrSpecialization.dyn_cast<
3091 FunctionTemplateSpecializationInfo*>()) {
3092 FTSInfo->setTemplateSpecializationKind(TSK);
3093 if (TSK != TSK_ExplicitSpecialization &&
3094 PointOfInstantiation.isValid() &&
3095 FTSInfo->getPointOfInstantiation().isInvalid())
3096 FTSInfo->setPointOfInstantiation(PointOfInstantiation);
3097 } else if (MemberSpecializationInfo *MSInfo
3098 = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) {
3099 MSInfo->setTemplateSpecializationKind(TSK);
3100 if (TSK != TSK_ExplicitSpecialization &&
3101 PointOfInstantiation.isValid() &&
3102 MSInfo->getPointOfInstantiation().isInvalid())
3103 MSInfo->setPointOfInstantiation(PointOfInstantiation);
3104 } else
3105 llvm_unreachable("Function cannot have a template specialization kind");
3106 }
3107
getPointOfInstantiation() const3108 SourceLocation FunctionDecl::getPointOfInstantiation() const {
3109 if (FunctionTemplateSpecializationInfo *FTSInfo
3110 = TemplateOrSpecialization.dyn_cast<
3111 FunctionTemplateSpecializationInfo*>())
3112 return FTSInfo->getPointOfInstantiation();
3113 else if (MemberSpecializationInfo *MSInfo
3114 = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>())
3115 return MSInfo->getPointOfInstantiation();
3116
3117 return SourceLocation();
3118 }
3119
isOutOfLine() const3120 bool FunctionDecl::isOutOfLine() const {
3121 if (Decl::isOutOfLine())
3122 return true;
3123
3124 // If this function was instantiated from a member function of a
3125 // class template, check whether that member function was defined out-of-line.
3126 if (FunctionDecl *FD = getInstantiatedFromMemberFunction()) {
3127 const FunctionDecl *Definition;
3128 if (FD->hasBody(Definition))
3129 return Definition->isOutOfLine();
3130 }
3131
3132 // If this function was instantiated from a function template,
3133 // check whether that function template was defined out-of-line.
3134 if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) {
3135 const FunctionDecl *Definition;
3136 if (FunTmpl->getTemplatedDecl()->hasBody(Definition))
3137 return Definition->isOutOfLine();
3138 }
3139
3140 return false;
3141 }
3142
getSourceRange() const3143 SourceRange FunctionDecl::getSourceRange() const {
3144 return SourceRange(getOuterLocStart(), EndRangeLoc);
3145 }
3146
getMemoryFunctionKind() const3147 unsigned FunctionDecl::getMemoryFunctionKind() const {
3148 IdentifierInfo *FnInfo = getIdentifier();
3149
3150 if (!FnInfo)
3151 return 0;
3152
3153 // Builtin handling.
3154 switch (getBuiltinID()) {
3155 case Builtin::BI__builtin_memset:
3156 case Builtin::BI__builtin___memset_chk:
3157 case Builtin::BImemset:
3158 return Builtin::BImemset;
3159
3160 case Builtin::BI__builtin_memcpy:
3161 case Builtin::BI__builtin___memcpy_chk:
3162 case Builtin::BImemcpy:
3163 return Builtin::BImemcpy;
3164
3165 case Builtin::BI__builtin_memmove:
3166 case Builtin::BI__builtin___memmove_chk:
3167 case Builtin::BImemmove:
3168 return Builtin::BImemmove;
3169
3170 case Builtin::BIstrlcpy:
3171 return Builtin::BIstrlcpy;
3172 case Builtin::BIstrlcat:
3173 return Builtin::BIstrlcat;
3174
3175 case Builtin::BI__builtin_memcmp:
3176 case Builtin::BImemcmp:
3177 return Builtin::BImemcmp;
3178
3179 case Builtin::BI__builtin_strncpy:
3180 case Builtin::BI__builtin___strncpy_chk:
3181 case Builtin::BIstrncpy:
3182 return Builtin::BIstrncpy;
3183
3184 case Builtin::BI__builtin_strncmp:
3185 case Builtin::BIstrncmp:
3186 return Builtin::BIstrncmp;
3187
3188 case Builtin::BI__builtin_strncasecmp:
3189 case Builtin::BIstrncasecmp:
3190 return Builtin::BIstrncasecmp;
3191
3192 case Builtin::BI__builtin_strncat:
3193 case Builtin::BI__builtin___strncat_chk:
3194 case Builtin::BIstrncat:
3195 return Builtin::BIstrncat;
3196
3197 case Builtin::BI__builtin_strndup:
3198 case Builtin::BIstrndup:
3199 return Builtin::BIstrndup;
3200
3201 case Builtin::BI__builtin_strlen:
3202 case Builtin::BIstrlen:
3203 return Builtin::BIstrlen;
3204
3205 default:
3206 if (isExternC()) {
3207 if (FnInfo->isStr("memset"))
3208 return Builtin::BImemset;
3209 else if (FnInfo->isStr("memcpy"))
3210 return Builtin::BImemcpy;
3211 else if (FnInfo->isStr("memmove"))
3212 return Builtin::BImemmove;
3213 else if (FnInfo->isStr("memcmp"))
3214 return Builtin::BImemcmp;
3215 else if (FnInfo->isStr("strncpy"))
3216 return Builtin::BIstrncpy;
3217 else if (FnInfo->isStr("strncmp"))
3218 return Builtin::BIstrncmp;
3219 else if (FnInfo->isStr("strncasecmp"))
3220 return Builtin::BIstrncasecmp;
3221 else if (FnInfo->isStr("strncat"))
3222 return Builtin::BIstrncat;
3223 else if (FnInfo->isStr("strndup"))
3224 return Builtin::BIstrndup;
3225 else if (FnInfo->isStr("strlen"))
3226 return Builtin::BIstrlen;
3227 }
3228 break;
3229 }
3230 return 0;
3231 }
3232
3233 //===----------------------------------------------------------------------===//
3234 // FieldDecl Implementation
3235 //===----------------------------------------------------------------------===//
3236
Create(const ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,QualType T,TypeSourceInfo * TInfo,Expr * BW,bool Mutable,InClassInitStyle InitStyle)3237 FieldDecl *FieldDecl::Create(const ASTContext &C, DeclContext *DC,
3238 SourceLocation StartLoc, SourceLocation IdLoc,
3239 IdentifierInfo *Id, QualType T,
3240 TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
3241 InClassInitStyle InitStyle) {
3242 return new (C, DC) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo,
3243 BW, Mutable, InitStyle);
3244 }
3245
CreateDeserialized(ASTContext & C,unsigned ID)3246 FieldDecl *FieldDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3247 return new (C, ID) FieldDecl(Field, nullptr, SourceLocation(),
3248 SourceLocation(), nullptr, QualType(), nullptr,
3249 nullptr, false, ICIS_NoInit);
3250 }
3251
isAnonymousStructOrUnion() const3252 bool FieldDecl::isAnonymousStructOrUnion() const {
3253 if (!isImplicit() || getDeclName())
3254 return false;
3255
3256 if (const RecordType *Record = getType()->getAs<RecordType>())
3257 return Record->getDecl()->isAnonymousStructOrUnion();
3258
3259 return false;
3260 }
3261
getBitWidthValue(const ASTContext & Ctx) const3262 unsigned FieldDecl::getBitWidthValue(const ASTContext &Ctx) const {
3263 assert(isBitField() && "not a bitfield");
3264 Expr *BitWidth = InitializerOrBitWidth.getPointer();
3265 return BitWidth->EvaluateKnownConstInt(Ctx).getZExtValue();
3266 }
3267
getFieldIndex() const3268 unsigned FieldDecl::getFieldIndex() const {
3269 const FieldDecl *Canonical = getCanonicalDecl();
3270 if (Canonical != this)
3271 return Canonical->getFieldIndex();
3272
3273 if (CachedFieldIndex) return CachedFieldIndex - 1;
3274
3275 unsigned Index = 0;
3276 const RecordDecl *RD = getParent();
3277
3278 for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
3279 I != E; ++I, ++Index)
3280 I->getCanonicalDecl()->CachedFieldIndex = Index + 1;
3281
3282 assert(CachedFieldIndex && "failed to find field in parent");
3283 return CachedFieldIndex - 1;
3284 }
3285
getSourceRange() const3286 SourceRange FieldDecl::getSourceRange() const {
3287 if (const Expr *E = InitializerOrBitWidth.getPointer())
3288 return SourceRange(getInnerLocStart(), E->getLocEnd());
3289 return DeclaratorDecl::getSourceRange();
3290 }
3291
setBitWidth(Expr * Width)3292 void FieldDecl::setBitWidth(Expr *Width) {
3293 assert(!InitializerOrBitWidth.getPointer() && !hasInClassInitializer() &&
3294 "bit width or initializer already set");
3295 InitializerOrBitWidth.setPointer(Width);
3296 }
3297
setInClassInitializer(Expr * Init)3298 void FieldDecl::setInClassInitializer(Expr *Init) {
3299 assert(!InitializerOrBitWidth.getPointer() && hasInClassInitializer() &&
3300 "bit width or initializer already set");
3301 InitializerOrBitWidth.setPointer(Init);
3302 }
3303
3304 //===----------------------------------------------------------------------===//
3305 // TagDecl Implementation
3306 //===----------------------------------------------------------------------===//
3307
getOuterLocStart() const3308 SourceLocation TagDecl::getOuterLocStart() const {
3309 return getTemplateOrInnerLocStart(this);
3310 }
3311
getSourceRange() const3312 SourceRange TagDecl::getSourceRange() const {
3313 SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation();
3314 return SourceRange(getOuterLocStart(), E);
3315 }
3316
getCanonicalDecl()3317 TagDecl *TagDecl::getCanonicalDecl() { return getFirstDecl(); }
3318
setTypedefNameForAnonDecl(TypedefNameDecl * TDD)3319 void TagDecl::setTypedefNameForAnonDecl(TypedefNameDecl *TDD) {
3320 NamedDeclOrQualifier = TDD;
3321 if (const Type *T = getTypeForDecl()) {
3322 (void)T;
3323 assert(T->isLinkageValid());
3324 }
3325 assert(isLinkageValid());
3326 }
3327
startDefinition()3328 void TagDecl::startDefinition() {
3329 IsBeingDefined = true;
3330
3331 if (CXXRecordDecl *D = dyn_cast<CXXRecordDecl>(this)) {
3332 struct CXXRecordDecl::DefinitionData *Data =
3333 new (getASTContext()) struct CXXRecordDecl::DefinitionData(D);
3334 for (auto I : redecls())
3335 cast<CXXRecordDecl>(I)->DefinitionData = Data;
3336 }
3337 }
3338
completeDefinition()3339 void TagDecl::completeDefinition() {
3340 assert((!isa<CXXRecordDecl>(this) ||
3341 cast<CXXRecordDecl>(this)->hasDefinition()) &&
3342 "definition completed but not started");
3343
3344 IsCompleteDefinition = true;
3345 IsBeingDefined = false;
3346
3347 if (ASTMutationListener *L = getASTMutationListener())
3348 L->CompletedTagDefinition(this);
3349 }
3350
getDefinition() const3351 TagDecl *TagDecl::getDefinition() const {
3352 if (isCompleteDefinition())
3353 return const_cast<TagDecl *>(this);
3354
3355 // If it's possible for us to have an out-of-date definition, check now.
3356 if (MayHaveOutOfDateDef) {
3357 if (IdentifierInfo *II = getIdentifier()) {
3358 if (II->isOutOfDate()) {
3359 updateOutOfDate(*II);
3360 }
3361 }
3362 }
3363
3364 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(this))
3365 return CXXRD->getDefinition();
3366
3367 for (auto R : redecls())
3368 if (R->isCompleteDefinition())
3369 return R;
3370
3371 return nullptr;
3372 }
3373
setQualifierInfo(NestedNameSpecifierLoc QualifierLoc)3374 void TagDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
3375 if (QualifierLoc) {
3376 // Make sure the extended qualifier info is allocated.
3377 if (!hasExtInfo())
3378 NamedDeclOrQualifier = new (getASTContext()) ExtInfo;
3379 // Set qualifier info.
3380 getExtInfo()->QualifierLoc = QualifierLoc;
3381 } else {
3382 // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
3383 if (hasExtInfo()) {
3384 if (getExtInfo()->NumTemplParamLists == 0) {
3385 getASTContext().Deallocate(getExtInfo());
3386 NamedDeclOrQualifier = (TypedefNameDecl*)nullptr;
3387 }
3388 else
3389 getExtInfo()->QualifierLoc = QualifierLoc;
3390 }
3391 }
3392 }
3393
setTemplateParameterListsInfo(ASTContext & Context,unsigned NumTPLists,TemplateParameterList ** TPLists)3394 void TagDecl::setTemplateParameterListsInfo(ASTContext &Context,
3395 unsigned NumTPLists,
3396 TemplateParameterList **TPLists) {
3397 assert(NumTPLists > 0);
3398 // Make sure the extended decl info is allocated.
3399 if (!hasExtInfo())
3400 // Allocate external info struct.
3401 NamedDeclOrQualifier = new (getASTContext()) ExtInfo;
3402 // Set the template parameter lists info.
3403 getExtInfo()->setTemplateParameterListsInfo(Context, NumTPLists, TPLists);
3404 }
3405
3406 //===----------------------------------------------------------------------===//
3407 // EnumDecl Implementation
3408 //===----------------------------------------------------------------------===//
3409
anchor()3410 void EnumDecl::anchor() { }
3411
Create(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,EnumDecl * PrevDecl,bool IsScoped,bool IsScopedUsingClassTag,bool IsFixed)3412 EnumDecl *EnumDecl::Create(ASTContext &C, DeclContext *DC,
3413 SourceLocation StartLoc, SourceLocation IdLoc,
3414 IdentifierInfo *Id,
3415 EnumDecl *PrevDecl, bool IsScoped,
3416 bool IsScopedUsingClassTag, bool IsFixed) {
3417 EnumDecl *Enum = new (C, DC) EnumDecl(C, DC, StartLoc, IdLoc, Id, PrevDecl,
3418 IsScoped, IsScopedUsingClassTag,
3419 IsFixed);
3420 Enum->MayHaveOutOfDateDef = C.getLangOpts().Modules;
3421 C.getTypeDeclType(Enum, PrevDecl);
3422 return Enum;
3423 }
3424
CreateDeserialized(ASTContext & C,unsigned ID)3425 EnumDecl *EnumDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3426 EnumDecl *Enum =
3427 new (C, ID) EnumDecl(C, nullptr, SourceLocation(), SourceLocation(),
3428 nullptr, nullptr, false, false, false);
3429 Enum->MayHaveOutOfDateDef = C.getLangOpts().Modules;
3430 return Enum;
3431 }
3432
getIntegerTypeRange() const3433 SourceRange EnumDecl::getIntegerTypeRange() const {
3434 if (const TypeSourceInfo *TI = getIntegerTypeSourceInfo())
3435 return TI->getTypeLoc().getSourceRange();
3436 return SourceRange();
3437 }
3438
completeDefinition(QualType NewType,QualType NewPromotionType,unsigned NumPositiveBits,unsigned NumNegativeBits)3439 void EnumDecl::completeDefinition(QualType NewType,
3440 QualType NewPromotionType,
3441 unsigned NumPositiveBits,
3442 unsigned NumNegativeBits) {
3443 assert(!isCompleteDefinition() && "Cannot redefine enums!");
3444 if (!IntegerType)
3445 IntegerType = NewType.getTypePtr();
3446 PromotionType = NewPromotionType;
3447 setNumPositiveBits(NumPositiveBits);
3448 setNumNegativeBits(NumNegativeBits);
3449 TagDecl::completeDefinition();
3450 }
3451
getTemplateSpecializationKind() const3452 TemplateSpecializationKind EnumDecl::getTemplateSpecializationKind() const {
3453 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
3454 return MSI->getTemplateSpecializationKind();
3455
3456 return TSK_Undeclared;
3457 }
3458
setTemplateSpecializationKind(TemplateSpecializationKind TSK,SourceLocation PointOfInstantiation)3459 void EnumDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
3460 SourceLocation PointOfInstantiation) {
3461 MemberSpecializationInfo *MSI = getMemberSpecializationInfo();
3462 assert(MSI && "Not an instantiated member enumeration?");
3463 MSI->setTemplateSpecializationKind(TSK);
3464 if (TSK != TSK_ExplicitSpecialization &&
3465 PointOfInstantiation.isValid() &&
3466 MSI->getPointOfInstantiation().isInvalid())
3467 MSI->setPointOfInstantiation(PointOfInstantiation);
3468 }
3469
getInstantiatedFromMemberEnum() const3470 EnumDecl *EnumDecl::getInstantiatedFromMemberEnum() const {
3471 if (SpecializationInfo)
3472 return cast<EnumDecl>(SpecializationInfo->getInstantiatedFrom());
3473
3474 return nullptr;
3475 }
3476
setInstantiationOfMemberEnum(ASTContext & C,EnumDecl * ED,TemplateSpecializationKind TSK)3477 void EnumDecl::setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED,
3478 TemplateSpecializationKind TSK) {
3479 assert(!SpecializationInfo && "Member enum is already a specialization");
3480 SpecializationInfo = new (C) MemberSpecializationInfo(ED, TSK);
3481 }
3482
3483 //===----------------------------------------------------------------------===//
3484 // RecordDecl Implementation
3485 //===----------------------------------------------------------------------===//
3486
RecordDecl(Kind DK,TagKind TK,const ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,RecordDecl * PrevDecl)3487 RecordDecl::RecordDecl(Kind DK, TagKind TK, const ASTContext &C,
3488 DeclContext *DC, SourceLocation StartLoc,
3489 SourceLocation IdLoc, IdentifierInfo *Id,
3490 RecordDecl *PrevDecl)
3491 : TagDecl(DK, TK, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
3492 HasFlexibleArrayMember = false;
3493 AnonymousStructOrUnion = false;
3494 HasObjectMember = false;
3495 HasVolatileMember = false;
3496 LoadedFieldsFromExternalStorage = false;
3497 assert(classof(static_cast<Decl*>(this)) && "Invalid Kind!");
3498 }
3499
Create(const ASTContext & C,TagKind TK,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,RecordDecl * PrevDecl)3500 RecordDecl *RecordDecl::Create(const ASTContext &C, TagKind TK, DeclContext *DC,
3501 SourceLocation StartLoc, SourceLocation IdLoc,
3502 IdentifierInfo *Id, RecordDecl* PrevDecl) {
3503 RecordDecl *R = new (C, DC) RecordDecl(Record, TK, C, DC,
3504 StartLoc, IdLoc, Id, PrevDecl);
3505 R->MayHaveOutOfDateDef = C.getLangOpts().Modules;
3506
3507 C.getTypeDeclType(R, PrevDecl);
3508 return R;
3509 }
3510
CreateDeserialized(const ASTContext & C,unsigned ID)3511 RecordDecl *RecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) {
3512 RecordDecl *R =
3513 new (C, ID) RecordDecl(Record, TTK_Struct, C, nullptr, SourceLocation(),
3514 SourceLocation(), nullptr, nullptr);
3515 R->MayHaveOutOfDateDef = C.getLangOpts().Modules;
3516 return R;
3517 }
3518
isInjectedClassName() const3519 bool RecordDecl::isInjectedClassName() const {
3520 return isImplicit() && getDeclName() && getDeclContext()->isRecord() &&
3521 cast<RecordDecl>(getDeclContext())->getDeclName() == getDeclName();
3522 }
3523
field_begin() const3524 RecordDecl::field_iterator RecordDecl::field_begin() const {
3525 if (hasExternalLexicalStorage() && !LoadedFieldsFromExternalStorage)
3526 LoadFieldsFromExternalStorage();
3527
3528 return field_iterator(decl_iterator(FirstDecl));
3529 }
3530
3531 /// completeDefinition - Notes that the definition of this type is now
3532 /// complete.
completeDefinition()3533 void RecordDecl::completeDefinition() {
3534 assert(!isCompleteDefinition() && "Cannot redefine record!");
3535 TagDecl::completeDefinition();
3536 }
3537
3538 /// isMsStruct - Get whether or not this record uses ms_struct layout.
3539 /// This which can be turned on with an attribute, pragma, or the
3540 /// -mms-bitfields command-line option.
isMsStruct(const ASTContext & C) const3541 bool RecordDecl::isMsStruct(const ASTContext &C) const {
3542 return hasAttr<MsStructAttr>() || C.getLangOpts().MSBitfields == 1;
3543 }
3544
isFieldOrIndirectField(Decl::Kind K)3545 static bool isFieldOrIndirectField(Decl::Kind K) {
3546 return FieldDecl::classofKind(K) || IndirectFieldDecl::classofKind(K);
3547 }
3548
LoadFieldsFromExternalStorage() const3549 void RecordDecl::LoadFieldsFromExternalStorage() const {
3550 ExternalASTSource *Source = getASTContext().getExternalSource();
3551 assert(hasExternalLexicalStorage() && Source && "No external storage?");
3552
3553 // Notify that we have a RecordDecl doing some initialization.
3554 ExternalASTSource::Deserializing TheFields(Source);
3555
3556 SmallVector<Decl*, 64> Decls;
3557 LoadedFieldsFromExternalStorage = true;
3558 switch (Source->FindExternalLexicalDecls(this, isFieldOrIndirectField,
3559 Decls)) {
3560 case ELR_Success:
3561 break;
3562
3563 case ELR_AlreadyLoaded:
3564 case ELR_Failure:
3565 return;
3566 }
3567
3568 #ifndef NDEBUG
3569 // Check that all decls we got were FieldDecls.
3570 for (unsigned i=0, e=Decls.size(); i != e; ++i)
3571 assert(isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i]));
3572 #endif
3573
3574 if (Decls.empty())
3575 return;
3576
3577 std::tie(FirstDecl, LastDecl) = BuildDeclChain(Decls,
3578 /*FieldsAlreadyLoaded=*/false);
3579 }
3580
3581 //===----------------------------------------------------------------------===//
3582 // BlockDecl Implementation
3583 //===----------------------------------------------------------------------===//
3584
setParams(ArrayRef<ParmVarDecl * > NewParamInfo)3585 void BlockDecl::setParams(ArrayRef<ParmVarDecl *> NewParamInfo) {
3586 assert(!ParamInfo && "Already has param info!");
3587
3588 // Zero params -> null pointer.
3589 if (!NewParamInfo.empty()) {
3590 NumParams = NewParamInfo.size();
3591 ParamInfo = new (getASTContext()) ParmVarDecl*[NewParamInfo.size()];
3592 std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
3593 }
3594 }
3595
setCaptures(ASTContext & Context,const Capture * begin,const Capture * end,bool capturesCXXThis)3596 void BlockDecl::setCaptures(ASTContext &Context,
3597 const Capture *begin,
3598 const Capture *end,
3599 bool capturesCXXThis) {
3600 CapturesCXXThis = capturesCXXThis;
3601
3602 if (begin == end) {
3603 NumCaptures = 0;
3604 Captures = nullptr;
3605 return;
3606 }
3607
3608 NumCaptures = end - begin;
3609
3610 // Avoid new Capture[] because we don't want to provide a default
3611 // constructor.
3612 size_t allocationSize = NumCaptures * sizeof(Capture);
3613 void *buffer = Context.Allocate(allocationSize, /*alignment*/sizeof(void*));
3614 memcpy(buffer, begin, allocationSize);
3615 Captures = static_cast<Capture*>(buffer);
3616 }
3617
capturesVariable(const VarDecl * variable) const3618 bool BlockDecl::capturesVariable(const VarDecl *variable) const {
3619 for (const auto &I : captures())
3620 // Only auto vars can be captured, so no redeclaration worries.
3621 if (I.getVariable() == variable)
3622 return true;
3623
3624 return false;
3625 }
3626
getSourceRange() const3627 SourceRange BlockDecl::getSourceRange() const {
3628 return SourceRange(getLocation(), Body? Body->getLocEnd() : getLocation());
3629 }
3630
3631 //===----------------------------------------------------------------------===//
3632 // Other Decl Allocation/Deallocation Method Implementations
3633 //===----------------------------------------------------------------------===//
3634
anchor()3635 void TranslationUnitDecl::anchor() { }
3636
Create(ASTContext & C)3637 TranslationUnitDecl *TranslationUnitDecl::Create(ASTContext &C) {
3638 return new (C, (DeclContext *)nullptr) TranslationUnitDecl(C);
3639 }
3640
anchor()3641 void LabelDecl::anchor() { }
3642
Create(ASTContext & C,DeclContext * DC,SourceLocation IdentL,IdentifierInfo * II)3643 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
3644 SourceLocation IdentL, IdentifierInfo *II) {
3645 return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, IdentL);
3646 }
3647
Create(ASTContext & C,DeclContext * DC,SourceLocation IdentL,IdentifierInfo * II,SourceLocation GnuLabelL)3648 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
3649 SourceLocation IdentL, IdentifierInfo *II,
3650 SourceLocation GnuLabelL) {
3651 assert(GnuLabelL != IdentL && "Use this only for GNU local labels");
3652 return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, GnuLabelL);
3653 }
3654
CreateDeserialized(ASTContext & C,unsigned ID)3655 LabelDecl *LabelDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3656 return new (C, ID) LabelDecl(nullptr, SourceLocation(), nullptr, nullptr,
3657 SourceLocation());
3658 }
3659
anchor()3660 void ValueDecl::anchor() { }
3661
isWeak() const3662 bool ValueDecl::isWeak() const {
3663 for (const auto *I : attrs())
3664 if (isa<WeakAttr>(I) || isa<WeakRefAttr>(I))
3665 return true;
3666
3667 return isWeakImported();
3668 }
3669
anchor()3670 void ImplicitParamDecl::anchor() { }
3671
Create(ASTContext & C,DeclContext * DC,SourceLocation IdLoc,IdentifierInfo * Id,QualType Type)3672 ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, DeclContext *DC,
3673 SourceLocation IdLoc,
3674 IdentifierInfo *Id,
3675 QualType Type) {
3676 return new (C, DC) ImplicitParamDecl(C, DC, IdLoc, Id, Type);
3677 }
3678
CreateDeserialized(ASTContext & C,unsigned ID)3679 ImplicitParamDecl *ImplicitParamDecl::CreateDeserialized(ASTContext &C,
3680 unsigned ID) {
3681 return new (C, ID) ImplicitParamDecl(C, nullptr, SourceLocation(), nullptr,
3682 QualType());
3683 }
3684
Create(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,const DeclarationNameInfo & NameInfo,QualType T,TypeSourceInfo * TInfo,StorageClass SC,bool isInlineSpecified,bool hasWrittenPrototype,bool isConstexprSpecified)3685 FunctionDecl *FunctionDecl::Create(ASTContext &C, DeclContext *DC,
3686 SourceLocation StartLoc,
3687 const DeclarationNameInfo &NameInfo,
3688 QualType T, TypeSourceInfo *TInfo,
3689 StorageClass SC,
3690 bool isInlineSpecified,
3691 bool hasWrittenPrototype,
3692 bool isConstexprSpecified) {
3693 FunctionDecl *New =
3694 new (C, DC) FunctionDecl(Function, C, DC, StartLoc, NameInfo, T, TInfo,
3695 SC, isInlineSpecified, isConstexprSpecified);
3696 New->HasWrittenPrototype = hasWrittenPrototype;
3697 return New;
3698 }
3699
CreateDeserialized(ASTContext & C,unsigned ID)3700 FunctionDecl *FunctionDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3701 return new (C, ID) FunctionDecl(Function, C, nullptr, SourceLocation(),
3702 DeclarationNameInfo(), QualType(), nullptr,
3703 SC_None, false, false);
3704 }
3705
Create(ASTContext & C,DeclContext * DC,SourceLocation L)3706 BlockDecl *BlockDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
3707 return new (C, DC) BlockDecl(DC, L);
3708 }
3709
CreateDeserialized(ASTContext & C,unsigned ID)3710 BlockDecl *BlockDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3711 return new (C, ID) BlockDecl(nullptr, SourceLocation());
3712 }
3713
Create(ASTContext & C,DeclContext * DC,unsigned NumParams)3714 CapturedDecl *CapturedDecl::Create(ASTContext &C, DeclContext *DC,
3715 unsigned NumParams) {
3716 return new (C, DC, NumParams * sizeof(ImplicitParamDecl *))
3717 CapturedDecl(DC, NumParams);
3718 }
3719
CreateDeserialized(ASTContext & C,unsigned ID,unsigned NumParams)3720 CapturedDecl *CapturedDecl::CreateDeserialized(ASTContext &C, unsigned ID,
3721 unsigned NumParams) {
3722 return new (C, ID, NumParams * sizeof(ImplicitParamDecl *))
3723 CapturedDecl(nullptr, NumParams);
3724 }
3725
Create(ASTContext & C,EnumDecl * CD,SourceLocation L,IdentifierInfo * Id,QualType T,Expr * E,const llvm::APSInt & V)3726 EnumConstantDecl *EnumConstantDecl::Create(ASTContext &C, EnumDecl *CD,
3727 SourceLocation L,
3728 IdentifierInfo *Id, QualType T,
3729 Expr *E, const llvm::APSInt &V) {
3730 return new (C, CD) EnumConstantDecl(CD, L, Id, T, E, V);
3731 }
3732
3733 EnumConstantDecl *
CreateDeserialized(ASTContext & C,unsigned ID)3734 EnumConstantDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3735 return new (C, ID) EnumConstantDecl(nullptr, SourceLocation(), nullptr,
3736 QualType(), nullptr, llvm::APSInt());
3737 }
3738
anchor()3739 void IndirectFieldDecl::anchor() { }
3740
3741 IndirectFieldDecl *
Create(ASTContext & C,DeclContext * DC,SourceLocation L,IdentifierInfo * Id,QualType T,NamedDecl ** CH,unsigned CHS)3742 IndirectFieldDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L,
3743 IdentifierInfo *Id, QualType T, NamedDecl **CH,
3744 unsigned CHS) {
3745 return new (C, DC) IndirectFieldDecl(DC, L, Id, T, CH, CHS);
3746 }
3747
CreateDeserialized(ASTContext & C,unsigned ID)3748 IndirectFieldDecl *IndirectFieldDecl::CreateDeserialized(ASTContext &C,
3749 unsigned ID) {
3750 return new (C, ID) IndirectFieldDecl(nullptr, SourceLocation(),
3751 DeclarationName(), QualType(), nullptr,
3752 0);
3753 }
3754
getSourceRange() const3755 SourceRange EnumConstantDecl::getSourceRange() const {
3756 SourceLocation End = getLocation();
3757 if (Init)
3758 End = Init->getLocEnd();
3759 return SourceRange(getLocation(), End);
3760 }
3761
anchor()3762 void TypeDecl::anchor() { }
3763
Create(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,TypeSourceInfo * TInfo)3764 TypedefDecl *TypedefDecl::Create(ASTContext &C, DeclContext *DC,
3765 SourceLocation StartLoc, SourceLocation IdLoc,
3766 IdentifierInfo *Id, TypeSourceInfo *TInfo) {
3767 return new (C, DC) TypedefDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
3768 }
3769
anchor()3770 void TypedefNameDecl::anchor() { }
3771
CreateDeserialized(ASTContext & C,unsigned ID)3772 TypedefDecl *TypedefDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3773 return new (C, ID) TypedefDecl(C, nullptr, SourceLocation(), SourceLocation(),
3774 nullptr, nullptr);
3775 }
3776
Create(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,TypeSourceInfo * TInfo)3777 TypeAliasDecl *TypeAliasDecl::Create(ASTContext &C, DeclContext *DC,
3778 SourceLocation StartLoc,
3779 SourceLocation IdLoc, IdentifierInfo *Id,
3780 TypeSourceInfo *TInfo) {
3781 return new (C, DC) TypeAliasDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
3782 }
3783
CreateDeserialized(ASTContext & C,unsigned ID)3784 TypeAliasDecl *TypeAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3785 return new (C, ID) TypeAliasDecl(C, nullptr, SourceLocation(),
3786 SourceLocation(), nullptr, nullptr);
3787 }
3788
getSourceRange() const3789 SourceRange TypedefDecl::getSourceRange() const {
3790 SourceLocation RangeEnd = getLocation();
3791 if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
3792 if (typeIsPostfix(TInfo->getType()))
3793 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
3794 }
3795 return SourceRange(getLocStart(), RangeEnd);
3796 }
3797
getSourceRange() const3798 SourceRange TypeAliasDecl::getSourceRange() const {
3799 SourceLocation RangeEnd = getLocStart();
3800 if (TypeSourceInfo *TInfo = getTypeSourceInfo())
3801 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
3802 return SourceRange(getLocStart(), RangeEnd);
3803 }
3804
anchor()3805 void FileScopeAsmDecl::anchor() { }
3806
Create(ASTContext & C,DeclContext * DC,StringLiteral * Str,SourceLocation AsmLoc,SourceLocation RParenLoc)3807 FileScopeAsmDecl *FileScopeAsmDecl::Create(ASTContext &C, DeclContext *DC,
3808 StringLiteral *Str,
3809 SourceLocation AsmLoc,
3810 SourceLocation RParenLoc) {
3811 return new (C, DC) FileScopeAsmDecl(DC, Str, AsmLoc, RParenLoc);
3812 }
3813
CreateDeserialized(ASTContext & C,unsigned ID)3814 FileScopeAsmDecl *FileScopeAsmDecl::CreateDeserialized(ASTContext &C,
3815 unsigned ID) {
3816 return new (C, ID) FileScopeAsmDecl(nullptr, nullptr, SourceLocation(),
3817 SourceLocation());
3818 }
3819
anchor()3820 void EmptyDecl::anchor() {}
3821
Create(ASTContext & C,DeclContext * DC,SourceLocation L)3822 EmptyDecl *EmptyDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
3823 return new (C, DC) EmptyDecl(DC, L);
3824 }
3825
CreateDeserialized(ASTContext & C,unsigned ID)3826 EmptyDecl *EmptyDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3827 return new (C, ID) EmptyDecl(nullptr, SourceLocation());
3828 }
3829
3830 //===----------------------------------------------------------------------===//
3831 // ImportDecl Implementation
3832 //===----------------------------------------------------------------------===//
3833
3834 /// \brief Retrieve the number of module identifiers needed to name the given
3835 /// module.
getNumModuleIdentifiers(Module * Mod)3836 static unsigned getNumModuleIdentifiers(Module *Mod) {
3837 unsigned Result = 1;
3838 while (Mod->Parent) {
3839 Mod = Mod->Parent;
3840 ++Result;
3841 }
3842 return Result;
3843 }
3844
ImportDecl(DeclContext * DC,SourceLocation StartLoc,Module * Imported,ArrayRef<SourceLocation> IdentifierLocs)3845 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
3846 Module *Imported,
3847 ArrayRef<SourceLocation> IdentifierLocs)
3848 : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, true),
3849 NextLocalImport()
3850 {
3851 assert(getNumModuleIdentifiers(Imported) == IdentifierLocs.size());
3852 SourceLocation *StoredLocs = reinterpret_cast<SourceLocation *>(this + 1);
3853 memcpy(StoredLocs, IdentifierLocs.data(),
3854 IdentifierLocs.size() * sizeof(SourceLocation));
3855 }
3856
ImportDecl(DeclContext * DC,SourceLocation StartLoc,Module * Imported,SourceLocation EndLoc)3857 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
3858 Module *Imported, SourceLocation EndLoc)
3859 : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, false),
3860 NextLocalImport()
3861 {
3862 *reinterpret_cast<SourceLocation *>(this + 1) = EndLoc;
3863 }
3864
Create(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,Module * Imported,ArrayRef<SourceLocation> IdentifierLocs)3865 ImportDecl *ImportDecl::Create(ASTContext &C, DeclContext *DC,
3866 SourceLocation StartLoc, Module *Imported,
3867 ArrayRef<SourceLocation> IdentifierLocs) {
3868 return new (C, DC, IdentifierLocs.size() * sizeof(SourceLocation))
3869 ImportDecl(DC, StartLoc, Imported, IdentifierLocs);
3870 }
3871
CreateImplicit(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,Module * Imported,SourceLocation EndLoc)3872 ImportDecl *ImportDecl::CreateImplicit(ASTContext &C, DeclContext *DC,
3873 SourceLocation StartLoc,
3874 Module *Imported,
3875 SourceLocation EndLoc) {
3876 ImportDecl *Import =
3877 new (C, DC, sizeof(SourceLocation)) ImportDecl(DC, StartLoc,
3878 Imported, EndLoc);
3879 Import->setImplicit();
3880 return Import;
3881 }
3882
CreateDeserialized(ASTContext & C,unsigned ID,unsigned NumLocations)3883 ImportDecl *ImportDecl::CreateDeserialized(ASTContext &C, unsigned ID,
3884 unsigned NumLocations) {
3885 return new (C, ID, NumLocations * sizeof(SourceLocation))
3886 ImportDecl(EmptyShell());
3887 }
3888
getIdentifierLocs() const3889 ArrayRef<SourceLocation> ImportDecl::getIdentifierLocs() const {
3890 if (!ImportedAndComplete.getInt())
3891 return None;
3892
3893 const SourceLocation *StoredLocs
3894 = reinterpret_cast<const SourceLocation *>(this + 1);
3895 return ArrayRef<SourceLocation>(StoredLocs,
3896 getNumModuleIdentifiers(getImportedModule()));
3897 }
3898
getSourceRange() const3899 SourceRange ImportDecl::getSourceRange() const {
3900 if (!ImportedAndComplete.getInt())
3901 return SourceRange(getLocation(),
3902 *reinterpret_cast<const SourceLocation *>(this + 1));
3903
3904 return SourceRange(getLocation(), getIdentifierLocs().back());
3905 }
3906