1 //===-- Module.cpp - Implement the Module class ---------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Module class for the IR library.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/IR/Module.h"
15 #include "SymbolTableListTraitsImpl.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/StringExtras.h"
20 #include "llvm/IR/Constants.h"
21 #include "llvm/IR/DerivedTypes.h"
22 #include "llvm/IR/GVMaterializer.h"
23 #include "llvm/IR/InstrTypes.h"
24 #include "llvm/IR/LLVMContext.h"
25 #include "llvm/IR/LeakDetector.h"
26 #include "llvm/Support/Dwarf.h"
27 #include "llvm/Support/Path.h"
28 #include "llvm/Support/RandomNumberGenerator.h"
29 #include <algorithm>
30 #include <cstdarg>
31 #include <cstdlib>
32 using namespace llvm;
33
34 //===----------------------------------------------------------------------===//
35 // Methods to implement the globals and functions lists.
36 //
37
38 // Explicit instantiations of SymbolTableListTraits since some of the methods
39 // are not in the public header file.
40 template class llvm::SymbolTableListTraits<Function, Module>;
41 template class llvm::SymbolTableListTraits<GlobalVariable, Module>;
42 template class llvm::SymbolTableListTraits<GlobalAlias, Module>;
43
44 //===----------------------------------------------------------------------===//
45 // Primitive Module methods.
46 //
47
Module(StringRef MID,LLVMContext & C)48 Module::Module(StringRef MID, LLVMContext &C)
49 : Context(C), Materializer(), ModuleID(MID), RNG(nullptr), DL("") {
50 ValSymTab = new ValueSymbolTable();
51 NamedMDSymTab = new StringMap<NamedMDNode *>();
52 Context.addModule(this);
53 }
54
~Module()55 Module::~Module() {
56 Context.removeModule(this);
57 dropAllReferences();
58 GlobalList.clear();
59 FunctionList.clear();
60 AliasList.clear();
61 NamedMDList.clear();
62 delete ValSymTab;
63 delete static_cast<StringMap<NamedMDNode *> *>(NamedMDSymTab);
64 delete RNG;
65 }
66
67 /// getNamedValue - Return the first global value in the module with
68 /// the specified name, of arbitrary type. This method returns null
69 /// if a global with the specified name is not found.
getNamedValue(StringRef Name) const70 GlobalValue *Module::getNamedValue(StringRef Name) const {
71 return cast_or_null<GlobalValue>(getValueSymbolTable().lookup(Name));
72 }
73
74 /// getMDKindID - Return a unique non-zero ID for the specified metadata kind.
75 /// This ID is uniqued across modules in the current LLVMContext.
getMDKindID(StringRef Name) const76 unsigned Module::getMDKindID(StringRef Name) const {
77 return Context.getMDKindID(Name);
78 }
79
80 /// getMDKindNames - Populate client supplied SmallVector with the name for
81 /// custom metadata IDs registered in this LLVMContext. ID #0 is not used,
82 /// so it is filled in as an empty string.
getMDKindNames(SmallVectorImpl<StringRef> & Result) const83 void Module::getMDKindNames(SmallVectorImpl<StringRef> &Result) const {
84 return Context.getMDKindNames(Result);
85 }
86
87
88 //===----------------------------------------------------------------------===//
89 // Methods for easy access to the functions in the module.
90 //
91
92 // getOrInsertFunction - Look up the specified function in the module symbol
93 // table. If it does not exist, add a prototype for the function and return
94 // it. This is nice because it allows most passes to get away with not handling
95 // the symbol table directly for this common task.
96 //
getOrInsertFunction(StringRef Name,FunctionType * Ty,AttributeSet AttributeList)97 Constant *Module::getOrInsertFunction(StringRef Name,
98 FunctionType *Ty,
99 AttributeSet AttributeList) {
100 // See if we have a definition for the specified function already.
101 GlobalValue *F = getNamedValue(Name);
102 if (!F) {
103 // Nope, add it
104 Function *New = Function::Create(Ty, GlobalVariable::ExternalLinkage, Name);
105 if (!New->isIntrinsic()) // Intrinsics get attrs set on construction
106 New->setAttributes(AttributeList);
107 FunctionList.push_back(New);
108 return New; // Return the new prototype.
109 }
110
111 // If the function exists but has the wrong type, return a bitcast to the
112 // right type.
113 if (F->getType() != PointerType::getUnqual(Ty))
114 return ConstantExpr::getBitCast(F, PointerType::getUnqual(Ty));
115
116 // Otherwise, we just found the existing function or a prototype.
117 return F;
118 }
119
getOrInsertFunction(StringRef Name,FunctionType * Ty)120 Constant *Module::getOrInsertFunction(StringRef Name,
121 FunctionType *Ty) {
122 return getOrInsertFunction(Name, Ty, AttributeSet());
123 }
124
125 // getOrInsertFunction - Look up the specified function in the module symbol
126 // table. If it does not exist, add a prototype for the function and return it.
127 // This version of the method takes a null terminated list of function
128 // arguments, which makes it easier for clients to use.
129 //
getOrInsertFunction(StringRef Name,AttributeSet AttributeList,Type * RetTy,...)130 Constant *Module::getOrInsertFunction(StringRef Name,
131 AttributeSet AttributeList,
132 Type *RetTy, ...) {
133 va_list Args;
134 va_start(Args, RetTy);
135
136 // Build the list of argument types...
137 std::vector<Type*> ArgTys;
138 while (Type *ArgTy = va_arg(Args, Type*))
139 ArgTys.push_back(ArgTy);
140
141 va_end(Args);
142
143 // Build the function type and chain to the other getOrInsertFunction...
144 return getOrInsertFunction(Name,
145 FunctionType::get(RetTy, ArgTys, false),
146 AttributeList);
147 }
148
getOrInsertFunction(StringRef Name,Type * RetTy,...)149 Constant *Module::getOrInsertFunction(StringRef Name,
150 Type *RetTy, ...) {
151 va_list Args;
152 va_start(Args, RetTy);
153
154 // Build the list of argument types...
155 std::vector<Type*> ArgTys;
156 while (Type *ArgTy = va_arg(Args, Type*))
157 ArgTys.push_back(ArgTy);
158
159 va_end(Args);
160
161 // Build the function type and chain to the other getOrInsertFunction...
162 return getOrInsertFunction(Name,
163 FunctionType::get(RetTy, ArgTys, false),
164 AttributeSet());
165 }
166
167 // getFunction - Look up the specified function in the module symbol table.
168 // If it does not exist, return null.
169 //
getFunction(StringRef Name) const170 Function *Module::getFunction(StringRef Name) const {
171 return dyn_cast_or_null<Function>(getNamedValue(Name));
172 }
173
174 //===----------------------------------------------------------------------===//
175 // Methods for easy access to the global variables in the module.
176 //
177
178 /// getGlobalVariable - Look up the specified global variable in the module
179 /// symbol table. If it does not exist, return null. The type argument
180 /// should be the underlying type of the global, i.e., it should not have
181 /// the top-level PointerType, which represents the address of the global.
182 /// If AllowLocal is set to true, this function will return types that
183 /// have an local. By default, these types are not returned.
184 ///
getGlobalVariable(StringRef Name,bool AllowLocal)185 GlobalVariable *Module::getGlobalVariable(StringRef Name, bool AllowLocal) {
186 if (GlobalVariable *Result =
187 dyn_cast_or_null<GlobalVariable>(getNamedValue(Name)))
188 if (AllowLocal || !Result->hasLocalLinkage())
189 return Result;
190 return nullptr;
191 }
192
193 /// getOrInsertGlobal - Look up the specified global in the module symbol table.
194 /// 1. If it does not exist, add a declaration of the global and return it.
195 /// 2. Else, the global exists but has the wrong type: return the function
196 /// with a constantexpr cast to the right type.
197 /// 3. Finally, if the existing global is the correct declaration, return the
198 /// existing global.
getOrInsertGlobal(StringRef Name,Type * Ty)199 Constant *Module::getOrInsertGlobal(StringRef Name, Type *Ty) {
200 // See if we have a definition for the specified global already.
201 GlobalVariable *GV = dyn_cast_or_null<GlobalVariable>(getNamedValue(Name));
202 if (!GV) {
203 // Nope, add it
204 GlobalVariable *New =
205 new GlobalVariable(*this, Ty, false, GlobalVariable::ExternalLinkage,
206 nullptr, Name);
207 return New; // Return the new declaration.
208 }
209
210 // If the variable exists but has the wrong type, return a bitcast to the
211 // right type.
212 Type *GVTy = GV->getType();
213 PointerType *PTy = PointerType::get(Ty, GVTy->getPointerAddressSpace());
214 if (GVTy != PTy)
215 return ConstantExpr::getBitCast(GV, PTy);
216
217 // Otherwise, we just found the existing function or a prototype.
218 return GV;
219 }
220
221 //===----------------------------------------------------------------------===//
222 // Methods for easy access to the global variables in the module.
223 //
224
225 // getNamedAlias - Look up the specified global in the module symbol table.
226 // If it does not exist, return null.
227 //
getNamedAlias(StringRef Name) const228 GlobalAlias *Module::getNamedAlias(StringRef Name) const {
229 return dyn_cast_or_null<GlobalAlias>(getNamedValue(Name));
230 }
231
232 /// getNamedMetadata - Return the first NamedMDNode in the module with the
233 /// specified name. This method returns null if a NamedMDNode with the
234 /// specified name is not found.
getNamedMetadata(const Twine & Name) const235 NamedMDNode *Module::getNamedMetadata(const Twine &Name) const {
236 SmallString<256> NameData;
237 StringRef NameRef = Name.toStringRef(NameData);
238 return static_cast<StringMap<NamedMDNode*> *>(NamedMDSymTab)->lookup(NameRef);
239 }
240
241 /// getOrInsertNamedMetadata - Return the first named MDNode in the module
242 /// with the specified name. This method returns a new NamedMDNode if a
243 /// NamedMDNode with the specified name is not found.
getOrInsertNamedMetadata(StringRef Name)244 NamedMDNode *Module::getOrInsertNamedMetadata(StringRef Name) {
245 NamedMDNode *&NMD =
246 (*static_cast<StringMap<NamedMDNode *> *>(NamedMDSymTab))[Name];
247 if (!NMD) {
248 NMD = new NamedMDNode(Name);
249 NMD->setParent(this);
250 NamedMDList.push_back(NMD);
251 }
252 return NMD;
253 }
254
255 /// eraseNamedMetadata - Remove the given NamedMDNode from this module and
256 /// delete it.
eraseNamedMetadata(NamedMDNode * NMD)257 void Module::eraseNamedMetadata(NamedMDNode *NMD) {
258 static_cast<StringMap<NamedMDNode *> *>(NamedMDSymTab)->erase(NMD->getName());
259 NamedMDList.erase(NMD);
260 }
261
262 /// getModuleFlagsMetadata - Returns the module flags in the provided vector.
263 void Module::
getModuleFlagsMetadata(SmallVectorImpl<ModuleFlagEntry> & Flags) const264 getModuleFlagsMetadata(SmallVectorImpl<ModuleFlagEntry> &Flags) const {
265 const NamedMDNode *ModFlags = getModuleFlagsMetadata();
266 if (!ModFlags) return;
267
268 for (const MDNode *Flag : ModFlags->operands()) {
269 if (Flag->getNumOperands() >= 3 && isa<ConstantInt>(Flag->getOperand(0)) &&
270 isa<MDString>(Flag->getOperand(1))) {
271 // Check the operands of the MDNode before accessing the operands.
272 // The verifier will actually catch these failures.
273 ConstantInt *Behavior = cast<ConstantInt>(Flag->getOperand(0));
274 MDString *Key = cast<MDString>(Flag->getOperand(1));
275 Value *Val = Flag->getOperand(2);
276 Flags.push_back(ModuleFlagEntry(ModFlagBehavior(Behavior->getZExtValue()),
277 Key, Val));
278 }
279 }
280 }
281
282 /// Return the corresponding value if Key appears in module flags, otherwise
283 /// return null.
getModuleFlag(StringRef Key) const284 Value *Module::getModuleFlag(StringRef Key) const {
285 SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags;
286 getModuleFlagsMetadata(ModuleFlags);
287 for (const ModuleFlagEntry &MFE : ModuleFlags) {
288 if (Key == MFE.Key->getString())
289 return MFE.Val;
290 }
291 return nullptr;
292 }
293
294 /// getModuleFlagsMetadata - Returns the NamedMDNode in the module that
295 /// represents module-level flags. This method returns null if there are no
296 /// module-level flags.
getModuleFlagsMetadata() const297 NamedMDNode *Module::getModuleFlagsMetadata() const {
298 return getNamedMetadata("llvm.module.flags");
299 }
300
301 /// getOrInsertModuleFlagsMetadata - Returns the NamedMDNode in the module that
302 /// represents module-level flags. If module-level flags aren't found, it
303 /// creates the named metadata that contains them.
getOrInsertModuleFlagsMetadata()304 NamedMDNode *Module::getOrInsertModuleFlagsMetadata() {
305 return getOrInsertNamedMetadata("llvm.module.flags");
306 }
307
308 /// addModuleFlag - Add a module-level flag to the module-level flags
309 /// metadata. It will create the module-level flags named metadata if it doesn't
310 /// already exist.
addModuleFlag(ModFlagBehavior Behavior,StringRef Key,Value * Val)311 void Module::addModuleFlag(ModFlagBehavior Behavior, StringRef Key,
312 Value *Val) {
313 Type *Int32Ty = Type::getInt32Ty(Context);
314 Value *Ops[3] = {
315 ConstantInt::get(Int32Ty, Behavior), MDString::get(Context, Key), Val
316 };
317 getOrInsertModuleFlagsMetadata()->addOperand(MDNode::get(Context, Ops));
318 }
addModuleFlag(ModFlagBehavior Behavior,StringRef Key,uint32_t Val)319 void Module::addModuleFlag(ModFlagBehavior Behavior, StringRef Key,
320 uint32_t Val) {
321 Type *Int32Ty = Type::getInt32Ty(Context);
322 addModuleFlag(Behavior, Key, ConstantInt::get(Int32Ty, Val));
323 }
addModuleFlag(MDNode * Node)324 void Module::addModuleFlag(MDNode *Node) {
325 assert(Node->getNumOperands() == 3 &&
326 "Invalid number of operands for module flag!");
327 assert(isa<ConstantInt>(Node->getOperand(0)) &&
328 isa<MDString>(Node->getOperand(1)) &&
329 "Invalid operand types for module flag!");
330 getOrInsertModuleFlagsMetadata()->addOperand(Node);
331 }
332
setDataLayout(StringRef Desc)333 void Module::setDataLayout(StringRef Desc) {
334 DL.reset(Desc);
335
336 if (Desc.empty()) {
337 DataLayoutStr = "";
338 } else {
339 DataLayoutStr = DL.getStringRepresentation();
340 // DataLayoutStr is now equivalent to Desc, but since the representation
341 // is not unique, they may not be identical.
342 }
343 }
344
setDataLayout(const DataLayout * Other)345 void Module::setDataLayout(const DataLayout *Other) {
346 if (!Other) {
347 DataLayoutStr = "";
348 DL.reset("");
349 } else {
350 DL = *Other;
351 DataLayoutStr = DL.getStringRepresentation();
352 }
353 }
354
getDataLayout() const355 const DataLayout *Module::getDataLayout() const {
356 if (DataLayoutStr.empty())
357 return nullptr;
358 return &DL;
359 }
360
361 // We want reproducible builds, but ModuleID may be a full path so we just use
362 // the filename to salt the RNG (although it is not guaranteed to be unique).
getRNG() const363 RandomNumberGenerator &Module::getRNG() const {
364 if (RNG == nullptr) {
365 StringRef Salt = sys::path::filename(ModuleID);
366 RNG = new RandomNumberGenerator(Salt);
367 }
368 return *RNG;
369 }
370
371 //===----------------------------------------------------------------------===//
372 // Methods to control the materialization of GlobalValues in the Module.
373 //
setMaterializer(GVMaterializer * GVM)374 void Module::setMaterializer(GVMaterializer *GVM) {
375 assert(!Materializer &&
376 "Module already has a GVMaterializer. Call MaterializeAllPermanently"
377 " to clear it out before setting another one.");
378 Materializer.reset(GVM);
379 }
380
isMaterializable(const GlobalValue * GV) const381 bool Module::isMaterializable(const GlobalValue *GV) const {
382 if (Materializer)
383 return Materializer->isMaterializable(GV);
384 return false;
385 }
386
isDematerializable(const GlobalValue * GV) const387 bool Module::isDematerializable(const GlobalValue *GV) const {
388 if (Materializer)
389 return Materializer->isDematerializable(GV);
390 return false;
391 }
392
Materialize(GlobalValue * GV,std::string * ErrInfo)393 bool Module::Materialize(GlobalValue *GV, std::string *ErrInfo) {
394 if (!Materializer)
395 return false;
396
397 std::error_code EC = Materializer->Materialize(GV);
398 if (!EC)
399 return false;
400 if (ErrInfo)
401 *ErrInfo = EC.message();
402 return true;
403 }
404
Dematerialize(GlobalValue * GV)405 void Module::Dematerialize(GlobalValue *GV) {
406 if (Materializer)
407 return Materializer->Dematerialize(GV);
408 }
409
materializeAll()410 std::error_code Module::materializeAll() {
411 if (!Materializer)
412 return std::error_code();
413 return Materializer->MaterializeModule(this);
414 }
415
materializeAllPermanently(bool ReleaseBuffer)416 std::error_code Module::materializeAllPermanently(bool ReleaseBuffer) {
417 if (std::error_code EC = materializeAll())
418 return EC;
419
420 if (ReleaseBuffer)
421 Materializer->releaseBuffer();
422
423 Materializer.reset();
424 return std::error_code();
425 }
426
427 //===----------------------------------------------------------------------===//
428 // Other module related stuff.
429 //
430
431
432 // dropAllReferences() - This function causes all the subelements to "let go"
433 // of all references that they are maintaining. This allows one to 'delete' a
434 // whole module at a time, even though there may be circular references... first
435 // all references are dropped, and all use counts go to zero. Then everything
436 // is deleted for real. Note that no operations are valid on an object that
437 // has "dropped all references", except operator delete.
438 //
dropAllReferences()439 void Module::dropAllReferences() {
440 for (Function &F : *this)
441 F.dropAllReferences();
442
443 for (GlobalVariable &GV : globals())
444 GV.dropAllReferences();
445
446 for (GlobalAlias &GA : aliases())
447 GA.dropAllReferences();
448 }
449
getDwarfVersion() const450 unsigned Module::getDwarfVersion() const {
451 Value *Val = getModuleFlag("Dwarf Version");
452 if (!Val)
453 return dwarf::DWARF_VERSION;
454 return cast<ConstantInt>(Val)->getZExtValue();
455 }
456
getOrInsertComdat(StringRef Name)457 Comdat *Module::getOrInsertComdat(StringRef Name) {
458 Comdat C;
459 StringMapEntry<Comdat> &Entry =
460 ComdatSymTab.GetOrCreateValue(Name, std::move(C));
461 Entry.second.Name = &Entry;
462 return &Entry.second;
463 }
464