1 //===-- Value.cpp - Implement the Value class -----------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Value, ValueHandle, and User classes.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/IR/Value.h"
15 #include "LLVMContextImpl.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/IR/Constant.h"
19 #include "llvm/IR/Constants.h"
20 #include "llvm/IR/DataLayout.h"
21 #include "llvm/IR/DerivedTypes.h"
22 #include "llvm/IR/GetElementPtrTypeIterator.h"
23 #include "llvm/IR/InstrTypes.h"
24 #include "llvm/IR/Instructions.h"
25 #include "llvm/IR/LeakDetector.h"
26 #include "llvm/IR/Module.h"
27 #include "llvm/IR/Operator.h"
28 #include "llvm/IR/ValueHandle.h"
29 #include "llvm/IR/ValueSymbolTable.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/ManagedStatic.h"
33 #include <algorithm>
34 using namespace llvm;
35
36 //===----------------------------------------------------------------------===//
37 // Value Class
38 //===----------------------------------------------------------------------===//
39
checkType(Type * Ty)40 static inline Type *checkType(Type *Ty) {
41 assert(Ty && "Value defined with a null type: Error!");
42 return Ty;
43 }
44
Value(Type * ty,unsigned scid)45 Value::Value(Type *ty, unsigned scid)
46 : VTy(checkType(ty)), UseList(nullptr), Name(nullptr), SubclassID(scid),
47 HasValueHandle(0), SubclassOptionalData(0), SubclassData(0) {
48 // FIXME: Why isn't this in the subclass gunk??
49 // Note, we cannot call isa<CallInst> before the CallInst has been
50 // constructed.
51 if (SubclassID == Instruction::Call || SubclassID == Instruction::Invoke)
52 assert((VTy->isFirstClassType() || VTy->isVoidTy() || VTy->isStructTy()) &&
53 "invalid CallInst type!");
54 else if (SubclassID != BasicBlockVal &&
55 (SubclassID < ConstantFirstVal || SubclassID > ConstantLastVal))
56 assert((VTy->isFirstClassType() || VTy->isVoidTy()) &&
57 "Cannot create non-first-class values except for constants!");
58 }
59
~Value()60 Value::~Value() {
61 // Notify all ValueHandles (if present) that this value is going away.
62 if (HasValueHandle)
63 ValueHandleBase::ValueIsDeleted(this);
64
65 #ifndef NDEBUG // Only in -g mode...
66 // Check to make sure that there are no uses of this value that are still
67 // around when the value is destroyed. If there are, then we have a dangling
68 // reference and something is wrong. This code is here to print out what is
69 // still being referenced. The value in question should be printed as
70 // a <badref>
71 //
72 if (!use_empty()) {
73 dbgs() << "While deleting: " << *VTy << " %" << getName() << "\n";
74 for (use_iterator I = use_begin(), E = use_end(); I != E; ++I)
75 dbgs() << "Use still stuck around after Def is destroyed:"
76 << **I << "\n";
77 }
78 #endif
79 assert(use_empty() && "Uses remain when a value is destroyed!");
80
81 // If this value is named, destroy the name. This should not be in a symtab
82 // at this point.
83 if (Name && SubclassID != MDStringVal)
84 Name->Destroy();
85
86 // There should be no uses of this object anymore, remove it.
87 LeakDetector::removeGarbageObject(this);
88 }
89
90 /// hasNUses - Return true if this Value has exactly N users.
91 ///
hasNUses(unsigned N) const92 bool Value::hasNUses(unsigned N) const {
93 const_use_iterator UI = use_begin(), E = use_end();
94
95 for (; N; --N, ++UI)
96 if (UI == E) return false; // Too few.
97 return UI == E;
98 }
99
100 /// hasNUsesOrMore - Return true if this value has N users or more. This is
101 /// logically equivalent to getNumUses() >= N.
102 ///
hasNUsesOrMore(unsigned N) const103 bool Value::hasNUsesOrMore(unsigned N) const {
104 const_use_iterator UI = use_begin(), E = use_end();
105
106 for (; N; --N, ++UI)
107 if (UI == E) return false; // Too few.
108
109 return true;
110 }
111
112 /// isUsedInBasicBlock - Return true if this value is used in the specified
113 /// basic block.
isUsedInBasicBlock(const BasicBlock * BB) const114 bool Value::isUsedInBasicBlock(const BasicBlock *BB) const {
115 // This can be computed either by scanning the instructions in BB, or by
116 // scanning the use list of this Value. Both lists can be very long, but
117 // usually one is quite short.
118 //
119 // Scan both lists simultaneously until one is exhausted. This limits the
120 // search to the shorter list.
121 BasicBlock::const_iterator BI = BB->begin(), BE = BB->end();
122 const_user_iterator UI = user_begin(), UE = user_end();
123 for (; BI != BE && UI != UE; ++BI, ++UI) {
124 // Scan basic block: Check if this Value is used by the instruction at BI.
125 if (std::find(BI->op_begin(), BI->op_end(), this) != BI->op_end())
126 return true;
127 // Scan use list: Check if the use at UI is in BB.
128 const Instruction *User = dyn_cast<Instruction>(*UI);
129 if (User && User->getParent() == BB)
130 return true;
131 }
132 return false;
133 }
134
135
136 /// getNumUses - This method computes the number of uses of this Value. This
137 /// is a linear time operation. Use hasOneUse or hasNUses to check for specific
138 /// values.
getNumUses() const139 unsigned Value::getNumUses() const {
140 return (unsigned)std::distance(use_begin(), use_end());
141 }
142
getSymTab(Value * V,ValueSymbolTable * & ST)143 static bool getSymTab(Value *V, ValueSymbolTable *&ST) {
144 ST = nullptr;
145 if (Instruction *I = dyn_cast<Instruction>(V)) {
146 if (BasicBlock *P = I->getParent())
147 if (Function *PP = P->getParent())
148 ST = &PP->getValueSymbolTable();
149 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) {
150 if (Function *P = BB->getParent())
151 ST = &P->getValueSymbolTable();
152 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
153 if (Module *P = GV->getParent())
154 ST = &P->getValueSymbolTable();
155 } else if (Argument *A = dyn_cast<Argument>(V)) {
156 if (Function *P = A->getParent())
157 ST = &P->getValueSymbolTable();
158 } else if (isa<MDString>(V))
159 return true;
160 else {
161 assert(isa<Constant>(V) && "Unknown value type!");
162 return true; // no name is setable for this.
163 }
164 return false;
165 }
166
getName() const167 StringRef Value::getName() const {
168 // Make sure the empty string is still a C string. For historical reasons,
169 // some clients want to call .data() on the result and expect it to be null
170 // terminated.
171 if (!Name) return StringRef("", 0);
172 return Name->getKey();
173 }
174
setName(const Twine & NewName)175 void Value::setName(const Twine &NewName) {
176 assert(SubclassID != MDStringVal &&
177 "Cannot set the name of MDString with this method!");
178
179 // Fast path for common IRBuilder case of setName("") when there is no name.
180 if (NewName.isTriviallyEmpty() && !hasName())
181 return;
182
183 SmallString<256> NameData;
184 StringRef NameRef = NewName.toStringRef(NameData);
185 assert(NameRef.find_first_of(0) == StringRef::npos &&
186 "Null bytes are not allowed in names");
187
188 // Name isn't changing?
189 if (getName() == NameRef)
190 return;
191
192 assert(!getType()->isVoidTy() && "Cannot assign a name to void values!");
193
194 // Get the symbol table to update for this object.
195 ValueSymbolTable *ST;
196 if (getSymTab(this, ST))
197 return; // Cannot set a name on this value (e.g. constant).
198
199 if (Function *F = dyn_cast<Function>(this))
200 getContext().pImpl->IntrinsicIDCache.erase(F);
201
202 if (!ST) { // No symbol table to update? Just do the change.
203 if (NameRef.empty()) {
204 // Free the name for this value.
205 Name->Destroy();
206 Name = nullptr;
207 return;
208 }
209
210 if (Name)
211 Name->Destroy();
212
213 // NOTE: Could optimize for the case the name is shrinking to not deallocate
214 // then reallocated.
215
216 // Create the new name.
217 Name = ValueName::Create(NameRef);
218 Name->setValue(this);
219 return;
220 }
221
222 // NOTE: Could optimize for the case the name is shrinking to not deallocate
223 // then reallocated.
224 if (hasName()) {
225 // Remove old name.
226 ST->removeValueName(Name);
227 Name->Destroy();
228 Name = nullptr;
229
230 if (NameRef.empty())
231 return;
232 }
233
234 // Name is changing to something new.
235 Name = ST->createValueName(NameRef, this);
236 }
237
238
239 /// takeName - transfer the name from V to this value, setting V's name to
240 /// empty. It is an error to call V->takeName(V).
takeName(Value * V)241 void Value::takeName(Value *V) {
242 assert(SubclassID != MDStringVal && "Cannot take the name of an MDString!");
243
244 ValueSymbolTable *ST = nullptr;
245 // If this value has a name, drop it.
246 if (hasName()) {
247 // Get the symtab this is in.
248 if (getSymTab(this, ST)) {
249 // We can't set a name on this value, but we need to clear V's name if
250 // it has one.
251 if (V->hasName()) V->setName("");
252 return; // Cannot set a name on this value (e.g. constant).
253 }
254
255 // Remove old name.
256 if (ST)
257 ST->removeValueName(Name);
258 Name->Destroy();
259 Name = nullptr;
260 }
261
262 // Now we know that this has no name.
263
264 // If V has no name either, we're done.
265 if (!V->hasName()) return;
266
267 // Get this's symtab if we didn't before.
268 if (!ST) {
269 if (getSymTab(this, ST)) {
270 // Clear V's name.
271 V->setName("");
272 return; // Cannot set a name on this value (e.g. constant).
273 }
274 }
275
276 // Get V's ST, this should always succed, because V has a name.
277 ValueSymbolTable *VST;
278 bool Failure = getSymTab(V, VST);
279 assert(!Failure && "V has a name, so it should have a ST!"); (void)Failure;
280
281 // If these values are both in the same symtab, we can do this very fast.
282 // This works even if both values have no symtab yet.
283 if (ST == VST) {
284 // Take the name!
285 Name = V->Name;
286 V->Name = nullptr;
287 Name->setValue(this);
288 return;
289 }
290
291 // Otherwise, things are slightly more complex. Remove V's name from VST and
292 // then reinsert it into ST.
293
294 if (VST)
295 VST->removeValueName(V->Name);
296 Name = V->Name;
297 V->Name = nullptr;
298 Name->setValue(this);
299
300 if (ST)
301 ST->reinsertValue(this);
302 }
303
304 #ifndef NDEBUG
contains(SmallPtrSet<ConstantExpr *,4> & Cache,ConstantExpr * Expr,Constant * C)305 static bool contains(SmallPtrSet<ConstantExpr *, 4> &Cache, ConstantExpr *Expr,
306 Constant *C) {
307 if (!Cache.insert(Expr))
308 return false;
309
310 for (auto &O : Expr->operands()) {
311 if (O == C)
312 return true;
313 auto *CE = dyn_cast<ConstantExpr>(O);
314 if (!CE)
315 continue;
316 if (contains(Cache, CE, C))
317 return true;
318 }
319 return false;
320 }
321
contains(Value * Expr,Value * V)322 static bool contains(Value *Expr, Value *V) {
323 if (Expr == V)
324 return true;
325
326 auto *C = dyn_cast<Constant>(V);
327 if (!C)
328 return false;
329
330 auto *CE = dyn_cast<ConstantExpr>(Expr);
331 if (!CE)
332 return false;
333
334 SmallPtrSet<ConstantExpr *, 4> Cache;
335 return contains(Cache, CE, C);
336 }
337 #endif
338
replaceAllUsesWith(Value * New)339 void Value::replaceAllUsesWith(Value *New) {
340 assert(New && "Value::replaceAllUsesWith(<null>) is invalid!");
341 assert(!contains(New, this) &&
342 "this->replaceAllUsesWith(expr(this)) is NOT valid!");
343 assert(New->getType() == getType() &&
344 "replaceAllUses of value with new value of different type!");
345
346 // Notify all ValueHandles (if present) that this value is going away.
347 if (HasValueHandle)
348 ValueHandleBase::ValueIsRAUWd(this, New);
349
350 while (!use_empty()) {
351 Use &U = *UseList;
352 // Must handle Constants specially, we cannot call replaceUsesOfWith on a
353 // constant because they are uniqued.
354 if (auto *C = dyn_cast<Constant>(U.getUser())) {
355 if (!isa<GlobalValue>(C)) {
356 C->replaceUsesOfWithOnConstant(this, New, &U);
357 continue;
358 }
359 }
360
361 U.set(New);
362 }
363
364 if (BasicBlock *BB = dyn_cast<BasicBlock>(this))
365 BB->replaceSuccessorsPhiUsesWith(cast<BasicBlock>(New));
366 }
367
368 namespace {
369 // Various metrics for how much to strip off of pointers.
370 enum PointerStripKind {
371 PSK_ZeroIndices,
372 PSK_ZeroIndicesAndAliases,
373 PSK_InBoundsConstantIndices,
374 PSK_InBounds
375 };
376
377 template <PointerStripKind StripKind>
stripPointerCastsAndOffsets(Value * V)378 static Value *stripPointerCastsAndOffsets(Value *V) {
379 if (!V->getType()->isPointerTy())
380 return V;
381
382 // Even though we don't look through PHI nodes, we could be called on an
383 // instruction in an unreachable block, which may be on a cycle.
384 SmallPtrSet<Value *, 4> Visited;
385
386 Visited.insert(V);
387 do {
388 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
389 switch (StripKind) {
390 case PSK_ZeroIndicesAndAliases:
391 case PSK_ZeroIndices:
392 if (!GEP->hasAllZeroIndices())
393 return V;
394 break;
395 case PSK_InBoundsConstantIndices:
396 if (!GEP->hasAllConstantIndices())
397 return V;
398 // fallthrough
399 case PSK_InBounds:
400 if (!GEP->isInBounds())
401 return V;
402 break;
403 }
404 V = GEP->getPointerOperand();
405 } else if (Operator::getOpcode(V) == Instruction::BitCast ||
406 Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
407 V = cast<Operator>(V)->getOperand(0);
408 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
409 if (StripKind == PSK_ZeroIndices || GA->mayBeOverridden())
410 return V;
411 V = GA->getAliasee();
412 } else {
413 return V;
414 }
415 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
416 } while (Visited.insert(V));
417
418 return V;
419 }
420 } // namespace
421
stripPointerCasts()422 Value *Value::stripPointerCasts() {
423 return stripPointerCastsAndOffsets<PSK_ZeroIndicesAndAliases>(this);
424 }
425
stripPointerCastsNoFollowAliases()426 Value *Value::stripPointerCastsNoFollowAliases() {
427 return stripPointerCastsAndOffsets<PSK_ZeroIndices>(this);
428 }
429
stripInBoundsConstantOffsets()430 Value *Value::stripInBoundsConstantOffsets() {
431 return stripPointerCastsAndOffsets<PSK_InBoundsConstantIndices>(this);
432 }
433
stripAndAccumulateInBoundsConstantOffsets(const DataLayout & DL,APInt & Offset)434 Value *Value::stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL,
435 APInt &Offset) {
436 if (!getType()->isPointerTy())
437 return this;
438
439 assert(Offset.getBitWidth() == DL.getPointerSizeInBits(cast<PointerType>(
440 getType())->getAddressSpace()) &&
441 "The offset must have exactly as many bits as our pointer.");
442
443 // Even though we don't look through PHI nodes, we could be called on an
444 // instruction in an unreachable block, which may be on a cycle.
445 SmallPtrSet<Value *, 4> Visited;
446 Visited.insert(this);
447 Value *V = this;
448 do {
449 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
450 if (!GEP->isInBounds())
451 return V;
452 APInt GEPOffset(Offset);
453 if (!GEP->accumulateConstantOffset(DL, GEPOffset))
454 return V;
455 Offset = GEPOffset;
456 V = GEP->getPointerOperand();
457 } else if (Operator::getOpcode(V) == Instruction::BitCast) {
458 V = cast<Operator>(V)->getOperand(0);
459 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
460 V = GA->getAliasee();
461 } else {
462 return V;
463 }
464 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
465 } while (Visited.insert(V));
466
467 return V;
468 }
469
stripInBoundsOffsets()470 Value *Value::stripInBoundsOffsets() {
471 return stripPointerCastsAndOffsets<PSK_InBounds>(this);
472 }
473
474 /// isDereferenceablePointer - Test if this value is always a pointer to
475 /// allocated and suitably aligned memory for a simple load or store.
isDereferenceablePointer(const Value * V,const DataLayout * DL,SmallPtrSet<const Value *,32> & Visited)476 static bool isDereferenceablePointer(const Value *V, const DataLayout *DL,
477 SmallPtrSet<const Value *, 32> &Visited) {
478 // Note that it is not safe to speculate into a malloc'd region because
479 // malloc may return null.
480
481 // These are obviously ok.
482 if (isa<AllocaInst>(V)) return true;
483
484 // It's not always safe to follow a bitcast, for example:
485 // bitcast i8* (alloca i8) to i32*
486 // would result in a 4-byte load from a 1-byte alloca. However,
487 // if we're casting from a pointer from a type of larger size
488 // to a type of smaller size (or the same size), and the alignment
489 // is at least as large as for the resulting pointer type, then
490 // we can look through the bitcast.
491 if (DL)
492 if (const BitCastInst* BC = dyn_cast<BitCastInst>(V)) {
493 Type *STy = BC->getSrcTy()->getPointerElementType(),
494 *DTy = BC->getDestTy()->getPointerElementType();
495 if (STy->isSized() && DTy->isSized() &&
496 (DL->getTypeStoreSize(STy) >=
497 DL->getTypeStoreSize(DTy)) &&
498 (DL->getABITypeAlignment(STy) >=
499 DL->getABITypeAlignment(DTy)))
500 return isDereferenceablePointer(BC->getOperand(0), DL, Visited);
501 }
502
503 // Global variables which can't collapse to null are ok.
504 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
505 return !GV->hasExternalWeakLinkage();
506
507 // byval arguments are ok.
508 if (const Argument *A = dyn_cast<Argument>(V))
509 return A->hasByValAttr();
510
511 // For GEPs, determine if the indexing lands within the allocated object.
512 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
513 // Conservatively require that the base pointer be fully dereferenceable.
514 if (!Visited.insert(GEP->getOperand(0)))
515 return false;
516 if (!isDereferenceablePointer(GEP->getOperand(0), DL, Visited))
517 return false;
518 // Check the indices.
519 gep_type_iterator GTI = gep_type_begin(GEP);
520 for (User::const_op_iterator I = GEP->op_begin()+1,
521 E = GEP->op_end(); I != E; ++I) {
522 Value *Index = *I;
523 Type *Ty = *GTI++;
524 // Struct indices can't be out of bounds.
525 if (isa<StructType>(Ty))
526 continue;
527 ConstantInt *CI = dyn_cast<ConstantInt>(Index);
528 if (!CI)
529 return false;
530 // Zero is always ok.
531 if (CI->isZero())
532 continue;
533 // Check to see that it's within the bounds of an array.
534 ArrayType *ATy = dyn_cast<ArrayType>(Ty);
535 if (!ATy)
536 return false;
537 if (CI->getValue().getActiveBits() > 64)
538 return false;
539 if (CI->getZExtValue() >= ATy->getNumElements())
540 return false;
541 }
542 // Indices check out; this is dereferenceable.
543 return true;
544 }
545
546 // If we don't know, assume the worst.
547 return false;
548 }
549
550 /// isDereferenceablePointer - Test if this value is always a pointer to
551 /// allocated and suitably aligned memory for a simple load or store.
isDereferenceablePointer(const DataLayout * DL) const552 bool Value::isDereferenceablePointer(const DataLayout *DL) const {
553 SmallPtrSet<const Value *, 32> Visited;
554 return ::isDereferenceablePointer(this, DL, Visited);
555 }
556
557 /// DoPHITranslation - If this value is a PHI node with CurBB as its parent,
558 /// return the value in the PHI node corresponding to PredBB. If not, return
559 /// ourself. This is useful if you want to know the value something has in a
560 /// predecessor block.
DoPHITranslation(const BasicBlock * CurBB,const BasicBlock * PredBB)561 Value *Value::DoPHITranslation(const BasicBlock *CurBB,
562 const BasicBlock *PredBB) {
563 PHINode *PN = dyn_cast<PHINode>(this);
564 if (PN && PN->getParent() == CurBB)
565 return PN->getIncomingValueForBlock(PredBB);
566 return this;
567 }
568
getContext() const569 LLVMContext &Value::getContext() const { return VTy->getContext(); }
570
571 //===----------------------------------------------------------------------===//
572 // ValueHandleBase Class
573 //===----------------------------------------------------------------------===//
574
575 /// AddToExistingUseList - Add this ValueHandle to the use list for VP, where
576 /// List is known to point into the existing use list.
AddToExistingUseList(ValueHandleBase ** List)577 void ValueHandleBase::AddToExistingUseList(ValueHandleBase **List) {
578 assert(List && "Handle list is null?");
579
580 // Splice ourselves into the list.
581 Next = *List;
582 *List = this;
583 setPrevPtr(List);
584 if (Next) {
585 Next->setPrevPtr(&Next);
586 assert(VP.getPointer() == Next->VP.getPointer() && "Added to wrong list?");
587 }
588 }
589
AddToExistingUseListAfter(ValueHandleBase * List)590 void ValueHandleBase::AddToExistingUseListAfter(ValueHandleBase *List) {
591 assert(List && "Must insert after existing node");
592
593 Next = List->Next;
594 setPrevPtr(&List->Next);
595 List->Next = this;
596 if (Next)
597 Next->setPrevPtr(&Next);
598 }
599
600 /// AddToUseList - Add this ValueHandle to the use list for VP.
AddToUseList()601 void ValueHandleBase::AddToUseList() {
602 assert(VP.getPointer() && "Null pointer doesn't have a use list!");
603
604 LLVMContextImpl *pImpl = VP.getPointer()->getContext().pImpl;
605
606 if (VP.getPointer()->HasValueHandle) {
607 // If this value already has a ValueHandle, then it must be in the
608 // ValueHandles map already.
609 ValueHandleBase *&Entry = pImpl->ValueHandles[VP.getPointer()];
610 assert(Entry && "Value doesn't have any handles?");
611 AddToExistingUseList(&Entry);
612 return;
613 }
614
615 // Ok, it doesn't have any handles yet, so we must insert it into the
616 // DenseMap. However, doing this insertion could cause the DenseMap to
617 // reallocate itself, which would invalidate all of the PrevP pointers that
618 // point into the old table. Handle this by checking for reallocation and
619 // updating the stale pointers only if needed.
620 DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
621 const void *OldBucketPtr = Handles.getPointerIntoBucketsArray();
622
623 ValueHandleBase *&Entry = Handles[VP.getPointer()];
624 assert(!Entry && "Value really did already have handles?");
625 AddToExistingUseList(&Entry);
626 VP.getPointer()->HasValueHandle = true;
627
628 // If reallocation didn't happen or if this was the first insertion, don't
629 // walk the table.
630 if (Handles.isPointerIntoBucketsArray(OldBucketPtr) ||
631 Handles.size() == 1) {
632 return;
633 }
634
635 // Okay, reallocation did happen. Fix the Prev Pointers.
636 for (DenseMap<Value*, ValueHandleBase*>::iterator I = Handles.begin(),
637 E = Handles.end(); I != E; ++I) {
638 assert(I->second && I->first == I->second->VP.getPointer() &&
639 "List invariant broken!");
640 I->second->setPrevPtr(&I->second);
641 }
642 }
643
644 /// RemoveFromUseList - Remove this ValueHandle from its current use list.
RemoveFromUseList()645 void ValueHandleBase::RemoveFromUseList() {
646 assert(VP.getPointer() && VP.getPointer()->HasValueHandle &&
647 "Pointer doesn't have a use list!");
648
649 // Unlink this from its use list.
650 ValueHandleBase **PrevPtr = getPrevPtr();
651 assert(*PrevPtr == this && "List invariant broken");
652
653 *PrevPtr = Next;
654 if (Next) {
655 assert(Next->getPrevPtr() == &Next && "List invariant broken");
656 Next->setPrevPtr(PrevPtr);
657 return;
658 }
659
660 // If the Next pointer was null, then it is possible that this was the last
661 // ValueHandle watching VP. If so, delete its entry from the ValueHandles
662 // map.
663 LLVMContextImpl *pImpl = VP.getPointer()->getContext().pImpl;
664 DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
665 if (Handles.isPointerIntoBucketsArray(PrevPtr)) {
666 Handles.erase(VP.getPointer());
667 VP.getPointer()->HasValueHandle = false;
668 }
669 }
670
671
ValueIsDeleted(Value * V)672 void ValueHandleBase::ValueIsDeleted(Value *V) {
673 assert(V->HasValueHandle && "Should only be called if ValueHandles present");
674
675 // Get the linked list base, which is guaranteed to exist since the
676 // HasValueHandle flag is set.
677 LLVMContextImpl *pImpl = V->getContext().pImpl;
678 ValueHandleBase *Entry = pImpl->ValueHandles[V];
679 assert(Entry && "Value bit set but no entries exist");
680
681 // We use a local ValueHandleBase as an iterator so that ValueHandles can add
682 // and remove themselves from the list without breaking our iteration. This
683 // is not really an AssertingVH; we just have to give ValueHandleBase a kind.
684 // Note that we deliberately do not the support the case when dropping a value
685 // handle results in a new value handle being permanently added to the list
686 // (as might occur in theory for CallbackVH's): the new value handle will not
687 // be processed and the checking code will mete out righteous punishment if
688 // the handle is still present once we have finished processing all the other
689 // value handles (it is fine to momentarily add then remove a value handle).
690 for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
691 Iterator.RemoveFromUseList();
692 Iterator.AddToExistingUseListAfter(Entry);
693 assert(Entry->Next == &Iterator && "Loop invariant broken.");
694
695 switch (Entry->getKind()) {
696 case Assert:
697 break;
698 case Tracking:
699 // Mark that this value has been deleted by setting it to an invalid Value
700 // pointer.
701 Entry->operator=(DenseMapInfo<Value *>::getTombstoneKey());
702 break;
703 case Weak:
704 // Weak just goes to null, which will unlink it from the list.
705 Entry->operator=(nullptr);
706 break;
707 case Callback:
708 // Forward to the subclass's implementation.
709 static_cast<CallbackVH*>(Entry)->deleted();
710 break;
711 }
712 }
713
714 // All callbacks, weak references, and assertingVHs should be dropped by now.
715 if (V->HasValueHandle) {
716 #ifndef NDEBUG // Only in +Asserts mode...
717 dbgs() << "While deleting: " << *V->getType() << " %" << V->getName()
718 << "\n";
719 if (pImpl->ValueHandles[V]->getKind() == Assert)
720 llvm_unreachable("An asserting value handle still pointed to this"
721 " value!");
722
723 #endif
724 llvm_unreachable("All references to V were not removed?");
725 }
726 }
727
728
ValueIsRAUWd(Value * Old,Value * New)729 void ValueHandleBase::ValueIsRAUWd(Value *Old, Value *New) {
730 assert(Old->HasValueHandle &&"Should only be called if ValueHandles present");
731 assert(Old != New && "Changing value into itself!");
732
733 // Get the linked list base, which is guaranteed to exist since the
734 // HasValueHandle flag is set.
735 LLVMContextImpl *pImpl = Old->getContext().pImpl;
736 ValueHandleBase *Entry = pImpl->ValueHandles[Old];
737
738 assert(Entry && "Value bit set but no entries exist");
739
740 // We use a local ValueHandleBase as an iterator so that
741 // ValueHandles can add and remove themselves from the list without
742 // breaking our iteration. This is not really an AssertingVH; we
743 // just have to give ValueHandleBase some kind.
744 for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
745 Iterator.RemoveFromUseList();
746 Iterator.AddToExistingUseListAfter(Entry);
747 assert(Entry->Next == &Iterator && "Loop invariant broken.");
748
749 switch (Entry->getKind()) {
750 case Assert:
751 // Asserting handle does not follow RAUW implicitly.
752 break;
753 case Tracking:
754 // Tracking goes to new value like a WeakVH. Note that this may make it
755 // something incompatible with its templated type. We don't want to have a
756 // virtual (or inline) interface to handle this though, so instead we make
757 // the TrackingVH accessors guarantee that a client never sees this value.
758
759 // FALLTHROUGH
760 case Weak:
761 // Weak goes to the new value, which will unlink it from Old's list.
762 Entry->operator=(New);
763 break;
764 case Callback:
765 // Forward to the subclass's implementation.
766 static_cast<CallbackVH*>(Entry)->allUsesReplacedWith(New);
767 break;
768 }
769 }
770
771 #ifndef NDEBUG
772 // If any new tracking or weak value handles were added while processing the
773 // list, then complain about it now.
774 if (Old->HasValueHandle)
775 for (Entry = pImpl->ValueHandles[Old]; Entry; Entry = Entry->Next)
776 switch (Entry->getKind()) {
777 case Tracking:
778 case Weak:
779 dbgs() << "After RAUW from " << *Old->getType() << " %"
780 << Old->getName() << " to " << *New->getType() << " %"
781 << New->getName() << "\n";
782 llvm_unreachable("A tracking or weak value handle still pointed to the"
783 " old value!\n");
784 default:
785 break;
786 }
787 #endif
788 }
789
790 // Pin the vtable to this file.
anchor()791 void CallbackVH::anchor() {}
792