• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- Value.cpp - Implement the Value class -----------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Value, ValueHandle, and User classes.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/IR/Value.h"
15 #include "LLVMContextImpl.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/IR/Constant.h"
19 #include "llvm/IR/Constants.h"
20 #include "llvm/IR/DataLayout.h"
21 #include "llvm/IR/DerivedTypes.h"
22 #include "llvm/IR/GetElementPtrTypeIterator.h"
23 #include "llvm/IR/InstrTypes.h"
24 #include "llvm/IR/Instructions.h"
25 #include "llvm/IR/LeakDetector.h"
26 #include "llvm/IR/Module.h"
27 #include "llvm/IR/Operator.h"
28 #include "llvm/IR/ValueHandle.h"
29 #include "llvm/IR/ValueSymbolTable.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/ManagedStatic.h"
33 #include <algorithm>
34 using namespace llvm;
35 
36 //===----------------------------------------------------------------------===//
37 //                                Value Class
38 //===----------------------------------------------------------------------===//
39 
checkType(Type * Ty)40 static inline Type *checkType(Type *Ty) {
41   assert(Ty && "Value defined with a null type: Error!");
42   return Ty;
43 }
44 
Value(Type * ty,unsigned scid)45 Value::Value(Type *ty, unsigned scid)
46     : VTy(checkType(ty)), UseList(nullptr), Name(nullptr), SubclassID(scid),
47       HasValueHandle(0), SubclassOptionalData(0), SubclassData(0) {
48   // FIXME: Why isn't this in the subclass gunk??
49   // Note, we cannot call isa<CallInst> before the CallInst has been
50   // constructed.
51   if (SubclassID == Instruction::Call || SubclassID == Instruction::Invoke)
52     assert((VTy->isFirstClassType() || VTy->isVoidTy() || VTy->isStructTy()) &&
53            "invalid CallInst type!");
54   else if (SubclassID != BasicBlockVal &&
55            (SubclassID < ConstantFirstVal || SubclassID > ConstantLastVal))
56     assert((VTy->isFirstClassType() || VTy->isVoidTy()) &&
57            "Cannot create non-first-class values except for constants!");
58 }
59 
~Value()60 Value::~Value() {
61   // Notify all ValueHandles (if present) that this value is going away.
62   if (HasValueHandle)
63     ValueHandleBase::ValueIsDeleted(this);
64 
65 #ifndef NDEBUG      // Only in -g mode...
66   // Check to make sure that there are no uses of this value that are still
67   // around when the value is destroyed.  If there are, then we have a dangling
68   // reference and something is wrong.  This code is here to print out what is
69   // still being referenced.  The value in question should be printed as
70   // a <badref>
71   //
72   if (!use_empty()) {
73     dbgs() << "While deleting: " << *VTy << " %" << getName() << "\n";
74     for (use_iterator I = use_begin(), E = use_end(); I != E; ++I)
75       dbgs() << "Use still stuck around after Def is destroyed:"
76            << **I << "\n";
77   }
78 #endif
79   assert(use_empty() && "Uses remain when a value is destroyed!");
80 
81   // If this value is named, destroy the name.  This should not be in a symtab
82   // at this point.
83   if (Name && SubclassID != MDStringVal)
84     Name->Destroy();
85 
86   // There should be no uses of this object anymore, remove it.
87   LeakDetector::removeGarbageObject(this);
88 }
89 
90 /// hasNUses - Return true if this Value has exactly N users.
91 ///
hasNUses(unsigned N) const92 bool Value::hasNUses(unsigned N) const {
93   const_use_iterator UI = use_begin(), E = use_end();
94 
95   for (; N; --N, ++UI)
96     if (UI == E) return false;  // Too few.
97   return UI == E;
98 }
99 
100 /// hasNUsesOrMore - Return true if this value has N users or more.  This is
101 /// logically equivalent to getNumUses() >= N.
102 ///
hasNUsesOrMore(unsigned N) const103 bool Value::hasNUsesOrMore(unsigned N) const {
104   const_use_iterator UI = use_begin(), E = use_end();
105 
106   for (; N; --N, ++UI)
107     if (UI == E) return false;  // Too few.
108 
109   return true;
110 }
111 
112 /// isUsedInBasicBlock - Return true if this value is used in the specified
113 /// basic block.
isUsedInBasicBlock(const BasicBlock * BB) const114 bool Value::isUsedInBasicBlock(const BasicBlock *BB) const {
115   // This can be computed either by scanning the instructions in BB, or by
116   // scanning the use list of this Value. Both lists can be very long, but
117   // usually one is quite short.
118   //
119   // Scan both lists simultaneously until one is exhausted. This limits the
120   // search to the shorter list.
121   BasicBlock::const_iterator BI = BB->begin(), BE = BB->end();
122   const_user_iterator UI = user_begin(), UE = user_end();
123   for (; BI != BE && UI != UE; ++BI, ++UI) {
124     // Scan basic block: Check if this Value is used by the instruction at BI.
125     if (std::find(BI->op_begin(), BI->op_end(), this) != BI->op_end())
126       return true;
127     // Scan use list: Check if the use at UI is in BB.
128     const Instruction *User = dyn_cast<Instruction>(*UI);
129     if (User && User->getParent() == BB)
130       return true;
131   }
132   return false;
133 }
134 
135 
136 /// getNumUses - This method computes the number of uses of this Value.  This
137 /// is a linear time operation.  Use hasOneUse or hasNUses to check for specific
138 /// values.
getNumUses() const139 unsigned Value::getNumUses() const {
140   return (unsigned)std::distance(use_begin(), use_end());
141 }
142 
getSymTab(Value * V,ValueSymbolTable * & ST)143 static bool getSymTab(Value *V, ValueSymbolTable *&ST) {
144   ST = nullptr;
145   if (Instruction *I = dyn_cast<Instruction>(V)) {
146     if (BasicBlock *P = I->getParent())
147       if (Function *PP = P->getParent())
148         ST = &PP->getValueSymbolTable();
149   } else if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) {
150     if (Function *P = BB->getParent())
151       ST = &P->getValueSymbolTable();
152   } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
153     if (Module *P = GV->getParent())
154       ST = &P->getValueSymbolTable();
155   } else if (Argument *A = dyn_cast<Argument>(V)) {
156     if (Function *P = A->getParent())
157       ST = &P->getValueSymbolTable();
158   } else if (isa<MDString>(V))
159     return true;
160   else {
161     assert(isa<Constant>(V) && "Unknown value type!");
162     return true;  // no name is setable for this.
163   }
164   return false;
165 }
166 
getName() const167 StringRef Value::getName() const {
168   // Make sure the empty string is still a C string. For historical reasons,
169   // some clients want to call .data() on the result and expect it to be null
170   // terminated.
171   if (!Name) return StringRef("", 0);
172   return Name->getKey();
173 }
174 
setName(const Twine & NewName)175 void Value::setName(const Twine &NewName) {
176   assert(SubclassID != MDStringVal &&
177          "Cannot set the name of MDString with this method!");
178 
179   // Fast path for common IRBuilder case of setName("") when there is no name.
180   if (NewName.isTriviallyEmpty() && !hasName())
181     return;
182 
183   SmallString<256> NameData;
184   StringRef NameRef = NewName.toStringRef(NameData);
185   assert(NameRef.find_first_of(0) == StringRef::npos &&
186          "Null bytes are not allowed in names");
187 
188   // Name isn't changing?
189   if (getName() == NameRef)
190     return;
191 
192   assert(!getType()->isVoidTy() && "Cannot assign a name to void values!");
193 
194   // Get the symbol table to update for this object.
195   ValueSymbolTable *ST;
196   if (getSymTab(this, ST))
197     return;  // Cannot set a name on this value (e.g. constant).
198 
199   if (Function *F = dyn_cast<Function>(this))
200     getContext().pImpl->IntrinsicIDCache.erase(F);
201 
202   if (!ST) { // No symbol table to update?  Just do the change.
203     if (NameRef.empty()) {
204       // Free the name for this value.
205       Name->Destroy();
206       Name = nullptr;
207       return;
208     }
209 
210     if (Name)
211       Name->Destroy();
212 
213     // NOTE: Could optimize for the case the name is shrinking to not deallocate
214     // then reallocated.
215 
216     // Create the new name.
217     Name = ValueName::Create(NameRef);
218     Name->setValue(this);
219     return;
220   }
221 
222   // NOTE: Could optimize for the case the name is shrinking to not deallocate
223   // then reallocated.
224   if (hasName()) {
225     // Remove old name.
226     ST->removeValueName(Name);
227     Name->Destroy();
228     Name = nullptr;
229 
230     if (NameRef.empty())
231       return;
232   }
233 
234   // Name is changing to something new.
235   Name = ST->createValueName(NameRef, this);
236 }
237 
238 
239 /// takeName - transfer the name from V to this value, setting V's name to
240 /// empty.  It is an error to call V->takeName(V).
takeName(Value * V)241 void Value::takeName(Value *V) {
242   assert(SubclassID != MDStringVal && "Cannot take the name of an MDString!");
243 
244   ValueSymbolTable *ST = nullptr;
245   // If this value has a name, drop it.
246   if (hasName()) {
247     // Get the symtab this is in.
248     if (getSymTab(this, ST)) {
249       // We can't set a name on this value, but we need to clear V's name if
250       // it has one.
251       if (V->hasName()) V->setName("");
252       return;  // Cannot set a name on this value (e.g. constant).
253     }
254 
255     // Remove old name.
256     if (ST)
257       ST->removeValueName(Name);
258     Name->Destroy();
259     Name = nullptr;
260   }
261 
262   // Now we know that this has no name.
263 
264   // If V has no name either, we're done.
265   if (!V->hasName()) return;
266 
267   // Get this's symtab if we didn't before.
268   if (!ST) {
269     if (getSymTab(this, ST)) {
270       // Clear V's name.
271       V->setName("");
272       return;  // Cannot set a name on this value (e.g. constant).
273     }
274   }
275 
276   // Get V's ST, this should always succed, because V has a name.
277   ValueSymbolTable *VST;
278   bool Failure = getSymTab(V, VST);
279   assert(!Failure && "V has a name, so it should have a ST!"); (void)Failure;
280 
281   // If these values are both in the same symtab, we can do this very fast.
282   // This works even if both values have no symtab yet.
283   if (ST == VST) {
284     // Take the name!
285     Name = V->Name;
286     V->Name = nullptr;
287     Name->setValue(this);
288     return;
289   }
290 
291   // Otherwise, things are slightly more complex.  Remove V's name from VST and
292   // then reinsert it into ST.
293 
294   if (VST)
295     VST->removeValueName(V->Name);
296   Name = V->Name;
297   V->Name = nullptr;
298   Name->setValue(this);
299 
300   if (ST)
301     ST->reinsertValue(this);
302 }
303 
304 #ifndef NDEBUG
contains(SmallPtrSet<ConstantExpr *,4> & Cache,ConstantExpr * Expr,Constant * C)305 static bool contains(SmallPtrSet<ConstantExpr *, 4> &Cache, ConstantExpr *Expr,
306                      Constant *C) {
307   if (!Cache.insert(Expr))
308     return false;
309 
310   for (auto &O : Expr->operands()) {
311     if (O == C)
312       return true;
313     auto *CE = dyn_cast<ConstantExpr>(O);
314     if (!CE)
315       continue;
316     if (contains(Cache, CE, C))
317       return true;
318   }
319   return false;
320 }
321 
contains(Value * Expr,Value * V)322 static bool contains(Value *Expr, Value *V) {
323   if (Expr == V)
324     return true;
325 
326   auto *C = dyn_cast<Constant>(V);
327   if (!C)
328     return false;
329 
330   auto *CE = dyn_cast<ConstantExpr>(Expr);
331   if (!CE)
332     return false;
333 
334   SmallPtrSet<ConstantExpr *, 4> Cache;
335   return contains(Cache, CE, C);
336 }
337 #endif
338 
replaceAllUsesWith(Value * New)339 void Value::replaceAllUsesWith(Value *New) {
340   assert(New && "Value::replaceAllUsesWith(<null>) is invalid!");
341   assert(!contains(New, this) &&
342          "this->replaceAllUsesWith(expr(this)) is NOT valid!");
343   assert(New->getType() == getType() &&
344          "replaceAllUses of value with new value of different type!");
345 
346   // Notify all ValueHandles (if present) that this value is going away.
347   if (HasValueHandle)
348     ValueHandleBase::ValueIsRAUWd(this, New);
349 
350   while (!use_empty()) {
351     Use &U = *UseList;
352     // Must handle Constants specially, we cannot call replaceUsesOfWith on a
353     // constant because they are uniqued.
354     if (auto *C = dyn_cast<Constant>(U.getUser())) {
355       if (!isa<GlobalValue>(C)) {
356         C->replaceUsesOfWithOnConstant(this, New, &U);
357         continue;
358       }
359     }
360 
361     U.set(New);
362   }
363 
364   if (BasicBlock *BB = dyn_cast<BasicBlock>(this))
365     BB->replaceSuccessorsPhiUsesWith(cast<BasicBlock>(New));
366 }
367 
368 namespace {
369 // Various metrics for how much to strip off of pointers.
370 enum PointerStripKind {
371   PSK_ZeroIndices,
372   PSK_ZeroIndicesAndAliases,
373   PSK_InBoundsConstantIndices,
374   PSK_InBounds
375 };
376 
377 template <PointerStripKind StripKind>
stripPointerCastsAndOffsets(Value * V)378 static Value *stripPointerCastsAndOffsets(Value *V) {
379   if (!V->getType()->isPointerTy())
380     return V;
381 
382   // Even though we don't look through PHI nodes, we could be called on an
383   // instruction in an unreachable block, which may be on a cycle.
384   SmallPtrSet<Value *, 4> Visited;
385 
386   Visited.insert(V);
387   do {
388     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
389       switch (StripKind) {
390       case PSK_ZeroIndicesAndAliases:
391       case PSK_ZeroIndices:
392         if (!GEP->hasAllZeroIndices())
393           return V;
394         break;
395       case PSK_InBoundsConstantIndices:
396         if (!GEP->hasAllConstantIndices())
397           return V;
398         // fallthrough
399       case PSK_InBounds:
400         if (!GEP->isInBounds())
401           return V;
402         break;
403       }
404       V = GEP->getPointerOperand();
405     } else if (Operator::getOpcode(V) == Instruction::BitCast ||
406                Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
407       V = cast<Operator>(V)->getOperand(0);
408     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
409       if (StripKind == PSK_ZeroIndices || GA->mayBeOverridden())
410         return V;
411       V = GA->getAliasee();
412     } else {
413       return V;
414     }
415     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
416   } while (Visited.insert(V));
417 
418   return V;
419 }
420 } // namespace
421 
stripPointerCasts()422 Value *Value::stripPointerCasts() {
423   return stripPointerCastsAndOffsets<PSK_ZeroIndicesAndAliases>(this);
424 }
425 
stripPointerCastsNoFollowAliases()426 Value *Value::stripPointerCastsNoFollowAliases() {
427   return stripPointerCastsAndOffsets<PSK_ZeroIndices>(this);
428 }
429 
stripInBoundsConstantOffsets()430 Value *Value::stripInBoundsConstantOffsets() {
431   return stripPointerCastsAndOffsets<PSK_InBoundsConstantIndices>(this);
432 }
433 
stripAndAccumulateInBoundsConstantOffsets(const DataLayout & DL,APInt & Offset)434 Value *Value::stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL,
435                                                         APInt &Offset) {
436   if (!getType()->isPointerTy())
437     return this;
438 
439   assert(Offset.getBitWidth() == DL.getPointerSizeInBits(cast<PointerType>(
440                                      getType())->getAddressSpace()) &&
441          "The offset must have exactly as many bits as our pointer.");
442 
443   // Even though we don't look through PHI nodes, we could be called on an
444   // instruction in an unreachable block, which may be on a cycle.
445   SmallPtrSet<Value *, 4> Visited;
446   Visited.insert(this);
447   Value *V = this;
448   do {
449     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
450       if (!GEP->isInBounds())
451         return V;
452       APInt GEPOffset(Offset);
453       if (!GEP->accumulateConstantOffset(DL, GEPOffset))
454         return V;
455       Offset = GEPOffset;
456       V = GEP->getPointerOperand();
457     } else if (Operator::getOpcode(V) == Instruction::BitCast) {
458       V = cast<Operator>(V)->getOperand(0);
459     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
460       V = GA->getAliasee();
461     } else {
462       return V;
463     }
464     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
465   } while (Visited.insert(V));
466 
467   return V;
468 }
469 
stripInBoundsOffsets()470 Value *Value::stripInBoundsOffsets() {
471   return stripPointerCastsAndOffsets<PSK_InBounds>(this);
472 }
473 
474 /// isDereferenceablePointer - Test if this value is always a pointer to
475 /// allocated and suitably aligned memory for a simple load or store.
isDereferenceablePointer(const Value * V,const DataLayout * DL,SmallPtrSet<const Value *,32> & Visited)476 static bool isDereferenceablePointer(const Value *V, const DataLayout *DL,
477                                      SmallPtrSet<const Value *, 32> &Visited) {
478   // Note that it is not safe to speculate into a malloc'd region because
479   // malloc may return null.
480 
481   // These are obviously ok.
482   if (isa<AllocaInst>(V)) return true;
483 
484   // It's not always safe to follow a bitcast, for example:
485   //   bitcast i8* (alloca i8) to i32*
486   // would result in a 4-byte load from a 1-byte alloca. However,
487   // if we're casting from a pointer from a type of larger size
488   // to a type of smaller size (or the same size), and the alignment
489   // is at least as large as for the resulting pointer type, then
490   // we can look through the bitcast.
491   if (DL)
492     if (const BitCastInst* BC = dyn_cast<BitCastInst>(V)) {
493       Type *STy = BC->getSrcTy()->getPointerElementType(),
494            *DTy = BC->getDestTy()->getPointerElementType();
495       if (STy->isSized() && DTy->isSized() &&
496           (DL->getTypeStoreSize(STy) >=
497            DL->getTypeStoreSize(DTy)) &&
498           (DL->getABITypeAlignment(STy) >=
499            DL->getABITypeAlignment(DTy)))
500         return isDereferenceablePointer(BC->getOperand(0), DL, Visited);
501     }
502 
503   // Global variables which can't collapse to null are ok.
504   if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
505     return !GV->hasExternalWeakLinkage();
506 
507   // byval arguments are ok.
508   if (const Argument *A = dyn_cast<Argument>(V))
509     return A->hasByValAttr();
510 
511   // For GEPs, determine if the indexing lands within the allocated object.
512   if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
513     // Conservatively require that the base pointer be fully dereferenceable.
514     if (!Visited.insert(GEP->getOperand(0)))
515       return false;
516     if (!isDereferenceablePointer(GEP->getOperand(0), DL, Visited))
517       return false;
518     // Check the indices.
519     gep_type_iterator GTI = gep_type_begin(GEP);
520     for (User::const_op_iterator I = GEP->op_begin()+1,
521          E = GEP->op_end(); I != E; ++I) {
522       Value *Index = *I;
523       Type *Ty = *GTI++;
524       // Struct indices can't be out of bounds.
525       if (isa<StructType>(Ty))
526         continue;
527       ConstantInt *CI = dyn_cast<ConstantInt>(Index);
528       if (!CI)
529         return false;
530       // Zero is always ok.
531       if (CI->isZero())
532         continue;
533       // Check to see that it's within the bounds of an array.
534       ArrayType *ATy = dyn_cast<ArrayType>(Ty);
535       if (!ATy)
536         return false;
537       if (CI->getValue().getActiveBits() > 64)
538         return false;
539       if (CI->getZExtValue() >= ATy->getNumElements())
540         return false;
541     }
542     // Indices check out; this is dereferenceable.
543     return true;
544   }
545 
546   // If we don't know, assume the worst.
547   return false;
548 }
549 
550 /// isDereferenceablePointer - Test if this value is always a pointer to
551 /// allocated and suitably aligned memory for a simple load or store.
isDereferenceablePointer(const DataLayout * DL) const552 bool Value::isDereferenceablePointer(const DataLayout *DL) const {
553   SmallPtrSet<const Value *, 32> Visited;
554   return ::isDereferenceablePointer(this, DL, Visited);
555 }
556 
557 /// DoPHITranslation - If this value is a PHI node with CurBB as its parent,
558 /// return the value in the PHI node corresponding to PredBB.  If not, return
559 /// ourself.  This is useful if you want to know the value something has in a
560 /// predecessor block.
DoPHITranslation(const BasicBlock * CurBB,const BasicBlock * PredBB)561 Value *Value::DoPHITranslation(const BasicBlock *CurBB,
562                                const BasicBlock *PredBB) {
563   PHINode *PN = dyn_cast<PHINode>(this);
564   if (PN && PN->getParent() == CurBB)
565     return PN->getIncomingValueForBlock(PredBB);
566   return this;
567 }
568 
getContext() const569 LLVMContext &Value::getContext() const { return VTy->getContext(); }
570 
571 //===----------------------------------------------------------------------===//
572 //                             ValueHandleBase Class
573 //===----------------------------------------------------------------------===//
574 
575 /// AddToExistingUseList - Add this ValueHandle to the use list for VP, where
576 /// List is known to point into the existing use list.
AddToExistingUseList(ValueHandleBase ** List)577 void ValueHandleBase::AddToExistingUseList(ValueHandleBase **List) {
578   assert(List && "Handle list is null?");
579 
580   // Splice ourselves into the list.
581   Next = *List;
582   *List = this;
583   setPrevPtr(List);
584   if (Next) {
585     Next->setPrevPtr(&Next);
586     assert(VP.getPointer() == Next->VP.getPointer() && "Added to wrong list?");
587   }
588 }
589 
AddToExistingUseListAfter(ValueHandleBase * List)590 void ValueHandleBase::AddToExistingUseListAfter(ValueHandleBase *List) {
591   assert(List && "Must insert after existing node");
592 
593   Next = List->Next;
594   setPrevPtr(&List->Next);
595   List->Next = this;
596   if (Next)
597     Next->setPrevPtr(&Next);
598 }
599 
600 /// AddToUseList - Add this ValueHandle to the use list for VP.
AddToUseList()601 void ValueHandleBase::AddToUseList() {
602   assert(VP.getPointer() && "Null pointer doesn't have a use list!");
603 
604   LLVMContextImpl *pImpl = VP.getPointer()->getContext().pImpl;
605 
606   if (VP.getPointer()->HasValueHandle) {
607     // If this value already has a ValueHandle, then it must be in the
608     // ValueHandles map already.
609     ValueHandleBase *&Entry = pImpl->ValueHandles[VP.getPointer()];
610     assert(Entry && "Value doesn't have any handles?");
611     AddToExistingUseList(&Entry);
612     return;
613   }
614 
615   // Ok, it doesn't have any handles yet, so we must insert it into the
616   // DenseMap.  However, doing this insertion could cause the DenseMap to
617   // reallocate itself, which would invalidate all of the PrevP pointers that
618   // point into the old table.  Handle this by checking for reallocation and
619   // updating the stale pointers only if needed.
620   DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
621   const void *OldBucketPtr = Handles.getPointerIntoBucketsArray();
622 
623   ValueHandleBase *&Entry = Handles[VP.getPointer()];
624   assert(!Entry && "Value really did already have handles?");
625   AddToExistingUseList(&Entry);
626   VP.getPointer()->HasValueHandle = true;
627 
628   // If reallocation didn't happen or if this was the first insertion, don't
629   // walk the table.
630   if (Handles.isPointerIntoBucketsArray(OldBucketPtr) ||
631       Handles.size() == 1) {
632     return;
633   }
634 
635   // Okay, reallocation did happen.  Fix the Prev Pointers.
636   for (DenseMap<Value*, ValueHandleBase*>::iterator I = Handles.begin(),
637        E = Handles.end(); I != E; ++I) {
638     assert(I->second && I->first == I->second->VP.getPointer() &&
639            "List invariant broken!");
640     I->second->setPrevPtr(&I->second);
641   }
642 }
643 
644 /// RemoveFromUseList - Remove this ValueHandle from its current use list.
RemoveFromUseList()645 void ValueHandleBase::RemoveFromUseList() {
646   assert(VP.getPointer() && VP.getPointer()->HasValueHandle &&
647          "Pointer doesn't have a use list!");
648 
649   // Unlink this from its use list.
650   ValueHandleBase **PrevPtr = getPrevPtr();
651   assert(*PrevPtr == this && "List invariant broken");
652 
653   *PrevPtr = Next;
654   if (Next) {
655     assert(Next->getPrevPtr() == &Next && "List invariant broken");
656     Next->setPrevPtr(PrevPtr);
657     return;
658   }
659 
660   // If the Next pointer was null, then it is possible that this was the last
661   // ValueHandle watching VP.  If so, delete its entry from the ValueHandles
662   // map.
663   LLVMContextImpl *pImpl = VP.getPointer()->getContext().pImpl;
664   DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
665   if (Handles.isPointerIntoBucketsArray(PrevPtr)) {
666     Handles.erase(VP.getPointer());
667     VP.getPointer()->HasValueHandle = false;
668   }
669 }
670 
671 
ValueIsDeleted(Value * V)672 void ValueHandleBase::ValueIsDeleted(Value *V) {
673   assert(V->HasValueHandle && "Should only be called if ValueHandles present");
674 
675   // Get the linked list base, which is guaranteed to exist since the
676   // HasValueHandle flag is set.
677   LLVMContextImpl *pImpl = V->getContext().pImpl;
678   ValueHandleBase *Entry = pImpl->ValueHandles[V];
679   assert(Entry && "Value bit set but no entries exist");
680 
681   // We use a local ValueHandleBase as an iterator so that ValueHandles can add
682   // and remove themselves from the list without breaking our iteration.  This
683   // is not really an AssertingVH; we just have to give ValueHandleBase a kind.
684   // Note that we deliberately do not the support the case when dropping a value
685   // handle results in a new value handle being permanently added to the list
686   // (as might occur in theory for CallbackVH's): the new value handle will not
687   // be processed and the checking code will mete out righteous punishment if
688   // the handle is still present once we have finished processing all the other
689   // value handles (it is fine to momentarily add then remove a value handle).
690   for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
691     Iterator.RemoveFromUseList();
692     Iterator.AddToExistingUseListAfter(Entry);
693     assert(Entry->Next == &Iterator && "Loop invariant broken.");
694 
695     switch (Entry->getKind()) {
696     case Assert:
697       break;
698     case Tracking:
699       // Mark that this value has been deleted by setting it to an invalid Value
700       // pointer.
701       Entry->operator=(DenseMapInfo<Value *>::getTombstoneKey());
702       break;
703     case Weak:
704       // Weak just goes to null, which will unlink it from the list.
705       Entry->operator=(nullptr);
706       break;
707     case Callback:
708       // Forward to the subclass's implementation.
709       static_cast<CallbackVH*>(Entry)->deleted();
710       break;
711     }
712   }
713 
714   // All callbacks, weak references, and assertingVHs should be dropped by now.
715   if (V->HasValueHandle) {
716 #ifndef NDEBUG      // Only in +Asserts mode...
717     dbgs() << "While deleting: " << *V->getType() << " %" << V->getName()
718            << "\n";
719     if (pImpl->ValueHandles[V]->getKind() == Assert)
720       llvm_unreachable("An asserting value handle still pointed to this"
721                        " value!");
722 
723 #endif
724     llvm_unreachable("All references to V were not removed?");
725   }
726 }
727 
728 
ValueIsRAUWd(Value * Old,Value * New)729 void ValueHandleBase::ValueIsRAUWd(Value *Old, Value *New) {
730   assert(Old->HasValueHandle &&"Should only be called if ValueHandles present");
731   assert(Old != New && "Changing value into itself!");
732 
733   // Get the linked list base, which is guaranteed to exist since the
734   // HasValueHandle flag is set.
735   LLVMContextImpl *pImpl = Old->getContext().pImpl;
736   ValueHandleBase *Entry = pImpl->ValueHandles[Old];
737 
738   assert(Entry && "Value bit set but no entries exist");
739 
740   // We use a local ValueHandleBase as an iterator so that
741   // ValueHandles can add and remove themselves from the list without
742   // breaking our iteration.  This is not really an AssertingVH; we
743   // just have to give ValueHandleBase some kind.
744   for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
745     Iterator.RemoveFromUseList();
746     Iterator.AddToExistingUseListAfter(Entry);
747     assert(Entry->Next == &Iterator && "Loop invariant broken.");
748 
749     switch (Entry->getKind()) {
750     case Assert:
751       // Asserting handle does not follow RAUW implicitly.
752       break;
753     case Tracking:
754       // Tracking goes to new value like a WeakVH. Note that this may make it
755       // something incompatible with its templated type. We don't want to have a
756       // virtual (or inline) interface to handle this though, so instead we make
757       // the TrackingVH accessors guarantee that a client never sees this value.
758 
759       // FALLTHROUGH
760     case Weak:
761       // Weak goes to the new value, which will unlink it from Old's list.
762       Entry->operator=(New);
763       break;
764     case Callback:
765       // Forward to the subclass's implementation.
766       static_cast<CallbackVH*>(Entry)->allUsesReplacedWith(New);
767       break;
768     }
769   }
770 
771 #ifndef NDEBUG
772   // If any new tracking or weak value handles were added while processing the
773   // list, then complain about it now.
774   if (Old->HasValueHandle)
775     for (Entry = pImpl->ValueHandles[Old]; Entry; Entry = Entry->Next)
776       switch (Entry->getKind()) {
777       case Tracking:
778       case Weak:
779         dbgs() << "After RAUW from " << *Old->getType() << " %"
780                << Old->getName() << " to " << *New->getType() << " %"
781                << New->getName() << "\n";
782         llvm_unreachable("A tracking or weak value handle still pointed to the"
783                          " old value!\n");
784       default:
785         break;
786       }
787 #endif
788 }
789 
790 // Pin the vtable to this file.
anchor()791 void CallbackVH::anchor() {}
792