• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //
2 // Copyright (c) 2002-2013 The ANGLE Project Authors. All rights reserved.
3 // Use of this source code is governed by a BSD-style license that can be
4 // found in the LICENSE file.
5 //
6 
7 //
8 // Build the intermediate representation.
9 //
10 
11 #include <float.h>
12 #include <limits.h>
13 #include <algorithm>
14 
15 #include "compiler/translator/HashNames.h"
16 #include "compiler/translator/localintermediate.h"
17 #include "compiler/translator/QualifierAlive.h"
18 #include "compiler/translator/RemoveTree.h"
19 #include "compiler/translator/SymbolTable.h"
20 
21 bool CompareStructure(const TType& leftNodeType, ConstantUnion* rightUnionArray, ConstantUnion* leftUnionArray);
22 
GetHigherPrecision(TPrecision left,TPrecision right)23 static TPrecision GetHigherPrecision(TPrecision left, TPrecision right)
24 {
25     return left > right ? left : right;
26 }
27 
getOperatorString(TOperator op)28 const char* getOperatorString(TOperator op)
29 {
30     switch (op) {
31       case EOpInitialize: return "=";
32       case EOpAssign: return "=";
33       case EOpAddAssign: return "+=";
34       case EOpSubAssign: return "-=";
35       case EOpDivAssign: return "/=";
36 
37       // Fall-through.
38       case EOpMulAssign:
39       case EOpVectorTimesMatrixAssign:
40       case EOpVectorTimesScalarAssign:
41       case EOpMatrixTimesScalarAssign:
42       case EOpMatrixTimesMatrixAssign: return "*=";
43 
44       // Fall-through.
45       case EOpIndexDirect:
46       case EOpIndexIndirect: return "[]";
47 
48       case EOpIndexDirectStruct:
49       case EOpIndexDirectInterfaceBlock: return ".";
50       case EOpVectorSwizzle: return ".";
51       case EOpAdd: return "+";
52       case EOpSub: return "-";
53       case EOpMul: return "*";
54       case EOpDiv: return "/";
55       case EOpMod: UNIMPLEMENTED(); break;
56       case EOpEqual: return "==";
57       case EOpNotEqual: return "!=";
58       case EOpLessThan: return "<";
59       case EOpGreaterThan: return ">";
60       case EOpLessThanEqual: return "<=";
61       case EOpGreaterThanEqual: return ">=";
62 
63       // Fall-through.
64       case EOpVectorTimesScalar:
65       case EOpVectorTimesMatrix:
66       case EOpMatrixTimesVector:
67       case EOpMatrixTimesScalar:
68       case EOpMatrixTimesMatrix: return "*";
69 
70       case EOpLogicalOr: return "||";
71       case EOpLogicalXor: return "^^";
72       case EOpLogicalAnd: return "&&";
73       case EOpNegative: return "-";
74       case EOpVectorLogicalNot: return "not";
75       case EOpLogicalNot: return "!";
76       case EOpPostIncrement: return "++";
77       case EOpPostDecrement: return "--";
78       case EOpPreIncrement: return "++";
79       case EOpPreDecrement: return "--";
80 
81       // Fall-through.
82       case EOpConvIntToBool:
83       case EOpConvUIntToBool:
84       case EOpConvFloatToBool: return "bool";
85 
86       // Fall-through.
87       case EOpConvBoolToFloat:
88       case EOpConvUIntToFloat:
89       case EOpConvIntToFloat: return "float";
90 
91       // Fall-through.
92       case EOpConvFloatToInt:
93       case EOpConvUIntToInt:
94       case EOpConvBoolToInt: return "int";
95 
96       // Fall-through.
97       case EOpConvIntToUInt:
98       case EOpConvFloatToUInt:
99       case EOpConvBoolToUInt: return "uint";
100 
101       case EOpRadians: return "radians";
102       case EOpDegrees: return "degrees";
103       case EOpSin: return "sin";
104       case EOpCos: return "cos";
105       case EOpTan: return "tan";
106       case EOpAsin: return "asin";
107       case EOpAcos: return "acos";
108       case EOpAtan: return "atan";
109       case EOpExp: return "exp";
110       case EOpLog: return "log";
111       case EOpExp2: return "exp2";
112       case EOpLog2: return "log2";
113       case EOpSqrt: return "sqrt";
114       case EOpInverseSqrt: return "inversesqrt";
115       case EOpAbs: return "abs";
116       case EOpSign: return "sign";
117       case EOpFloor: return "floor";
118       case EOpCeil: return "ceil";
119       case EOpFract: return "fract";
120       case EOpLength: return "length";
121       case EOpNormalize: return "normalize";
122       case EOpDFdx: return "dFdx";
123       case EOpDFdy: return "dFdy";
124       case EOpFwidth: return "fwidth";
125       case EOpAny: return "any";
126       case EOpAll: return "all";
127 
128       default: break;
129     }
130     return "";
131 }
132 
133 ////////////////////////////////////////////////////////////////////////////
134 //
135 // First set of functions are to help build the intermediate representation.
136 // These functions are not member functions of the nodes.
137 // They are called from parser productions.
138 //
139 /////////////////////////////////////////////////////////////////////////////
140 
141 //
142 // Add a terminal node for an identifier in an expression.
143 //
144 // Returns the added node.
145 //
addSymbol(int id,const TString & name,const TType & type,const TSourceLoc & line)146 TIntermSymbol* TIntermediate::addSymbol(int id, const TString& name, const TType& type, const TSourceLoc& line)
147 {
148     TIntermSymbol* node = new TIntermSymbol(id, name, type);
149     node->setLine(line);
150 
151     return node;
152 }
153 
154 //
155 // Connect two nodes with a new parent that does a binary operation on the nodes.
156 //
157 // Returns the added node.
158 //
addBinaryMath(TOperator op,TIntermTyped * left,TIntermTyped * right,const TSourceLoc & line)159 TIntermTyped* TIntermediate::addBinaryMath(TOperator op, TIntermTyped* left, TIntermTyped* right, const TSourceLoc& line)
160 {
161     switch (op) {
162         case EOpEqual:
163         case EOpNotEqual:
164             if (left->isArray())
165                 return 0;
166             break;
167         case EOpLessThan:
168         case EOpGreaterThan:
169         case EOpLessThanEqual:
170         case EOpGreaterThanEqual:
171             if (left->isMatrix() || left->isArray() || left->isVector() || left->getBasicType() == EbtStruct) {
172                 return 0;
173             }
174             break;
175         case EOpLogicalOr:
176         case EOpLogicalXor:
177         case EOpLogicalAnd:
178             if (left->getBasicType() != EbtBool || left->isMatrix() || left->isArray() || left->isVector()) {
179                 return 0;
180             }
181             break;
182         case EOpAdd:
183         case EOpSub:
184         case EOpDiv:
185         case EOpMul:
186             if (left->getBasicType() == EbtStruct || left->getBasicType() == EbtBool)
187                 return 0;
188         default: break;
189     }
190 
191     //
192     // First try converting the children to compatible types.
193     //
194     if (left->getType().getStruct() && right->getType().getStruct()) {
195         if (left->getType() != right->getType())
196             return 0;
197     } else {
198         TIntermTyped* child = addConversion(op, left->getType(), right);
199         if (child)
200             right = child;
201         else {
202             child = addConversion(op, right->getType(), left);
203             if (child)
204                 left = child;
205             else
206                 return 0;
207         }
208     }
209 
210     //
211     // Need a new node holding things together then.  Make
212     // one and promote it to the right type.
213     //
214     TIntermBinary* node = new TIntermBinary(op);
215     node->setLine(line);
216 
217     node->setLeft(left);
218     node->setRight(right);
219     if (!node->promote(infoSink))
220         return 0;
221 
222     //
223     // See if we can fold constants.
224     //
225     TIntermConstantUnion *leftTempConstant = left->getAsConstantUnion();
226     TIntermConstantUnion *rightTempConstant = right->getAsConstantUnion();
227     if (leftTempConstant && rightTempConstant) {
228         TIntermTyped *typedReturnNode = leftTempConstant->fold(node->getOp(), rightTempConstant, infoSink);
229 
230         if (typedReturnNode)
231             return typedReturnNode;
232     }
233 
234     return node;
235 }
236 
237 //
238 // Connect two nodes through an assignment.
239 //
240 // Returns the added node.
241 //
addAssign(TOperator op,TIntermTyped * left,TIntermTyped * right,const TSourceLoc & line)242 TIntermTyped* TIntermediate::addAssign(TOperator op, TIntermTyped* left, TIntermTyped* right, const TSourceLoc& line)
243 {
244     //
245     // Like adding binary math, except the conversion can only go
246     // from right to left.
247     //
248     TIntermBinary* node = new TIntermBinary(op);
249     node->setLine(line);
250 
251     TIntermTyped* child = addConversion(op, left->getType(), right);
252     if (child == 0)
253         return 0;
254 
255     node->setLeft(left);
256     node->setRight(child);
257     if (! node->promote(infoSink))
258         return 0;
259 
260     return node;
261 }
262 
263 //
264 // Connect two nodes through an index operator, where the left node is the base
265 // of an array or struct, and the right node is a direct or indirect offset.
266 //
267 // Returns the added node.
268 // The caller should set the type of the returned node.
269 //
addIndex(TOperator op,TIntermTyped * base,TIntermTyped * index,const TSourceLoc & line)270 TIntermTyped* TIntermediate::addIndex(TOperator op, TIntermTyped* base, TIntermTyped* index, const TSourceLoc& line)
271 {
272     TIntermBinary* node = new TIntermBinary(op);
273     node->setLine(line);
274     node->setLeft(base);
275     node->setRight(index);
276 
277     // caller should set the type
278 
279     return node;
280 }
281 
282 //
283 // Add one node as the parent of another that it operates on.
284 //
285 // Returns the added node.
286 //
addUnaryMath(TOperator op,TIntermNode * childNode,const TSourceLoc & line)287 TIntermTyped* TIntermediate::addUnaryMath(TOperator op, TIntermNode* childNode, const TSourceLoc& line)
288 {
289     TIntermUnary* node;
290     TIntermTyped* child = childNode->getAsTyped();
291 
292     if (child == 0) {
293         infoSink.info.message(EPrefixInternalError, line, "Bad type in AddUnaryMath");
294         return 0;
295     }
296 
297     switch (op) {
298         case EOpLogicalNot:
299             if (child->getType().getBasicType() != EbtBool || child->getType().isMatrix() || child->getType().isArray() || child->getType().isVector()) {
300                 return 0;
301             }
302             break;
303 
304         case EOpPostIncrement:
305         case EOpPreIncrement:
306         case EOpPostDecrement:
307         case EOpPreDecrement:
308         case EOpNegative:
309             if (child->getType().getBasicType() == EbtStruct || child->getType().isArray())
310                 return 0;
311         default: break;
312     }
313 
314     //
315     // Do we need to promote the operand?
316     //
317     // Note: Implicit promotions were removed from the language.
318     //
319     TBasicType newType = EbtVoid;
320     switch (op) {
321         case EOpConstructInt:   newType = EbtInt;   break;
322         case EOpConstructUInt:  newType = EbtUInt;  break;
323         case EOpConstructBool:  newType = EbtBool;  break;
324         case EOpConstructFloat: newType = EbtFloat; break;
325         default: break;
326     }
327 
328     if (newType != EbtVoid) {
329         child = addConversion(op, TType(newType, child->getPrecision(), EvqTemporary,
330             child->getNominalSize(),
331             child->getSecondarySize(),
332             child->isArray()),
333             child);
334         if (child == 0)
335             return 0;
336     }
337 
338     //
339     // For constructors, we are now done, it's all in the conversion.
340     //
341     switch (op) {
342         case EOpConstructInt:
343         case EOpConstructUInt:
344         case EOpConstructBool:
345         case EOpConstructFloat:
346             return child;
347         default: break;
348     }
349 
350     TIntermConstantUnion *childTempConstant = 0;
351     if (child->getAsConstantUnion())
352         childTempConstant = child->getAsConstantUnion();
353 
354     //
355     // Make a new node for the operator.
356     //
357     node = new TIntermUnary(op);
358     node->setLine(line);
359     node->setOperand(child);
360 
361     if (! node->promote(infoSink))
362         return 0;
363 
364     if (childTempConstant)  {
365         TIntermTyped* newChild = childTempConstant->fold(op, 0, infoSink);
366 
367         if (newChild)
368             return newChild;
369     }
370 
371     return node;
372 }
373 
374 //
375 // This is the safe way to change the operator on an aggregate, as it
376 // does lots of error checking and fixing.  Especially for establishing
377 // a function call's operation on it's set of parameters.  Sequences
378 // of instructions are also aggregates, but they just direnctly set
379 // their operator to EOpSequence.
380 //
381 // Returns an aggregate node, which could be the one passed in if
382 // it was already an aggregate but no operator was set.
383 //
setAggregateOperator(TIntermNode * node,TOperator op,const TSourceLoc & line)384 TIntermAggregate* TIntermediate::setAggregateOperator(TIntermNode* node, TOperator op, const TSourceLoc& line)
385 {
386     TIntermAggregate* aggNode;
387 
388     //
389     // Make sure we have an aggregate.  If not turn it into one.
390     //
391     if (node) {
392         aggNode = node->getAsAggregate();
393         if (aggNode == 0 || aggNode->getOp() != EOpNull) {
394             //
395             // Make an aggregate containing this node.
396             //
397             aggNode = new TIntermAggregate();
398             aggNode->getSequence().push_back(node);
399         }
400     } else
401         aggNode = new TIntermAggregate();
402 
403     //
404     // Set the operator.
405     //
406     aggNode->setOp(op);
407     aggNode->setLine(line);
408 
409     return aggNode;
410 }
411 
412 //
413 // Convert one type to another.
414 //
415 // Returns the node representing the conversion, which could be the same
416 // node passed in if no conversion was needed.
417 //
418 // Return 0 if a conversion can't be done.
419 //
addConversion(TOperator op,const TType & type,TIntermTyped * node)420 TIntermTyped* TIntermediate::addConversion(TOperator op, const TType& type, TIntermTyped* node)
421 {
422     //
423     // Does the base type allow operation?
424     //
425     if (node->getBasicType() == EbtVoid ||
426         IsSampler(node->getBasicType()))
427     {
428         return 0;
429     }
430 
431     //
432     // Otherwise, if types are identical, no problem
433     //
434     if (type == node->getType())
435         return node;
436 
437     //
438     // If one's a structure, then no conversions.
439     //
440     if (type.getStruct() || node->getType().getStruct())
441         return 0;
442 
443     //
444     // If one's an array, then no conversions.
445     //
446     if (type.isArray() || node->getType().isArray())
447         return 0;
448 
449     TBasicType promoteTo;
450 
451     switch (op) {
452         //
453         // Explicit conversions
454         //
455         case EOpConstructBool:
456             promoteTo = EbtBool;
457             break;
458         case EOpConstructFloat:
459             promoteTo = EbtFloat;
460             break;
461         case EOpConstructInt:
462             promoteTo = EbtInt;
463             break;
464         case EOpConstructUInt:
465             promoteTo = EbtUInt;
466             break;
467         default:
468             //
469             // implicit conversions were removed from the language.
470             //
471             if (type.getBasicType() != node->getType().getBasicType())
472                 return 0;
473             //
474             // Size and structure could still differ, but that's
475             // handled by operator promotion.
476             //
477             return node;
478     }
479 
480     if (node->getAsConstantUnion()) {
481 
482         return (promoteConstantUnion(promoteTo, node->getAsConstantUnion()));
483     } else {
484 
485         //
486         // Add a new newNode for the conversion.
487         //
488         TIntermUnary* newNode = 0;
489 
490         TOperator newOp = EOpNull;
491         switch (promoteTo) {
492             case EbtFloat:
493                 switch (node->getBasicType()) {
494                     case EbtInt:    newOp = EOpConvIntToFloat;  break;
495                     case EbtUInt:   newOp = EOpConvFloatToUInt; break;
496                     case EbtBool:   newOp = EOpConvBoolToFloat; break;
497                     default:
498                         infoSink.info.message(EPrefixInternalError, node->getLine(), "Bad promotion node");
499                         return 0;
500                 }
501                 break;
502             case EbtBool:
503                 switch (node->getBasicType()) {
504                     case EbtInt:    newOp = EOpConvIntToBool;   break;
505                     case EbtUInt:   newOp = EOpConvBoolToUInt;  break;
506                     case EbtFloat:  newOp = EOpConvFloatToBool; break;
507                     default:
508                         infoSink.info.message(EPrefixInternalError, node->getLine(), "Bad promotion node");
509                         return 0;
510                 }
511                 break;
512             case EbtInt:
513                 switch (node->getBasicType()) {
514                     case EbtUInt:   newOp = EOpConvUIntToInt;  break;
515                     case EbtBool:   newOp = EOpConvBoolToInt;  break;
516                     case EbtFloat:  newOp = EOpConvFloatToInt; break;
517                     default:
518                         infoSink.info.message(EPrefixInternalError, node->getLine(), "Bad promotion node");
519                         return 0;
520                 }
521                 break;
522             case EbtUInt:
523                 switch (node->getBasicType()) {
524                     case EbtInt:    newOp = EOpConvIntToUInt;   break;
525                     case EbtBool:   newOp = EOpConvBoolToUInt;  break;
526                     case EbtFloat:  newOp = EOpConvFloatToUInt; break;
527                     default:
528                         infoSink.info.message(EPrefixInternalError, node->getLine(), "Bad promotion node");
529                         return 0;
530                 }
531                 break;
532             default:
533                 infoSink.info.message(EPrefixInternalError, node->getLine(), "Bad promotion type");
534                 return 0;
535         }
536 
537         TType type(promoteTo, node->getPrecision(), EvqTemporary, node->getNominalSize(), node->getSecondarySize(), node->isArray());
538         newNode = new TIntermUnary(newOp, type);
539         newNode->setLine(node->getLine());
540         newNode->setOperand(node);
541 
542         return newNode;
543     }
544 }
545 
546 //
547 // Safe way to combine two nodes into an aggregate.  Works with null pointers,
548 // a node that's not a aggregate yet, etc.
549 //
550 // Returns the resulting aggregate, unless 0 was passed in for
551 // both existing nodes.
552 //
growAggregate(TIntermNode * left,TIntermNode * right,const TSourceLoc & line)553 TIntermAggregate* TIntermediate::growAggregate(TIntermNode* left, TIntermNode* right, const TSourceLoc& line)
554 {
555     if (left == 0 && right == 0)
556         return 0;
557 
558     TIntermAggregate* aggNode = 0;
559     if (left)
560         aggNode = left->getAsAggregate();
561     if (!aggNode || aggNode->getOp() != EOpNull) {
562         aggNode = new TIntermAggregate;
563         if (left)
564             aggNode->getSequence().push_back(left);
565     }
566 
567     if (right)
568         aggNode->getSequence().push_back(right);
569 
570     aggNode->setLine(line);
571 
572     return aggNode;
573 }
574 
575 //
576 // Turn an existing node into an aggregate.
577 //
578 // Returns an aggregate, unless 0 was passed in for the existing node.
579 //
makeAggregate(TIntermNode * node,const TSourceLoc & line)580 TIntermAggregate* TIntermediate::makeAggregate(TIntermNode* node, const TSourceLoc& line)
581 {
582     if (node == 0)
583         return 0;
584 
585     TIntermAggregate* aggNode = new TIntermAggregate;
586     aggNode->getSequence().push_back(node);
587 
588     aggNode->setLine(line);
589 
590     return aggNode;
591 }
592 
593 //
594 // For "if" test nodes.  There are three children; a condition,
595 // a true path, and a false path.  The two paths are in the
596 // nodePair.
597 //
598 // Returns the selection node created.
599 //
addSelection(TIntermTyped * cond,TIntermNodePair nodePair,const TSourceLoc & line)600 TIntermNode* TIntermediate::addSelection(TIntermTyped* cond, TIntermNodePair nodePair, const TSourceLoc& line)
601 {
602     //
603     // For compile time constant selections, prune the code and
604     // test now.
605     //
606 
607     if (cond->getAsTyped() && cond->getAsTyped()->getAsConstantUnion()) {
608         if (cond->getAsConstantUnion()->getBConst(0) == true)
609             return nodePair.node1 ? setAggregateOperator(nodePair.node1, EOpSequence, nodePair.node1->getLine()) : NULL;
610         else
611             return nodePair.node2 ? setAggregateOperator(nodePair.node2, EOpSequence, nodePair.node2->getLine()) : NULL;
612     }
613 
614     TIntermSelection* node = new TIntermSelection(cond, nodePair.node1, nodePair.node2);
615     node->setLine(line);
616 
617     return node;
618 }
619 
620 
addComma(TIntermTyped * left,TIntermTyped * right,const TSourceLoc & line)621 TIntermTyped* TIntermediate::addComma(TIntermTyped* left, TIntermTyped* right, const TSourceLoc& line)
622 {
623     if (left->getType().getQualifier() == EvqConst && right->getType().getQualifier() == EvqConst) {
624         return right;
625     } else {
626         TIntermTyped *commaAggregate = growAggregate(left, right, line);
627         commaAggregate->getAsAggregate()->setOp(EOpComma);
628         commaAggregate->setType(right->getType());
629         commaAggregate->getTypePointer()->setQualifier(EvqTemporary);
630         return commaAggregate;
631     }
632 }
633 
634 //
635 // For "?:" test nodes.  There are three children; a condition,
636 // a true path, and a false path.  The two paths are specified
637 // as separate parameters.
638 //
639 // Returns the selection node created, or 0 if one could not be.
640 //
addSelection(TIntermTyped * cond,TIntermTyped * trueBlock,TIntermTyped * falseBlock,const TSourceLoc & line)641 TIntermTyped* TIntermediate::addSelection(TIntermTyped* cond, TIntermTyped* trueBlock, TIntermTyped* falseBlock, const TSourceLoc& line)
642 {
643     //
644     // Get compatible types.
645     //
646     TIntermTyped* child = addConversion(EOpSequence, trueBlock->getType(), falseBlock);
647     if (child)
648         falseBlock = child;
649     else {
650         child = addConversion(EOpSequence, falseBlock->getType(), trueBlock);
651         if (child)
652             trueBlock = child;
653         else
654             return 0;
655     }
656 
657     //
658     // See if all the operands are constant, then fold it otherwise not.
659     //
660 
661     if (cond->getAsConstantUnion() && trueBlock->getAsConstantUnion() && falseBlock->getAsConstantUnion()) {
662         if (cond->getAsConstantUnion()->getBConst(0))
663             return trueBlock;
664         else
665             return falseBlock;
666     }
667 
668     //
669     // Make a selection node.
670     //
671     TIntermSelection* node = new TIntermSelection(cond, trueBlock, falseBlock, trueBlock->getType());
672     node->getTypePointer()->setQualifier(EvqTemporary);
673     node->setLine(line);
674 
675     return node;
676 }
677 
678 //
679 // Constant terminal nodes.  Has a union that contains bool, float or int constants
680 //
681 // Returns the constant union node created.
682 //
683 
addConstantUnion(ConstantUnion * unionArrayPointer,const TType & t,const TSourceLoc & line)684 TIntermConstantUnion* TIntermediate::addConstantUnion(ConstantUnion* unionArrayPointer, const TType& t, const TSourceLoc& line)
685 {
686     TIntermConstantUnion* node = new TIntermConstantUnion(unionArrayPointer, t);
687     node->setLine(line);
688 
689     return node;
690 }
691 
addSwizzle(TVectorFields & fields,const TSourceLoc & line)692 TIntermTyped* TIntermediate::addSwizzle(TVectorFields& fields, const TSourceLoc& line)
693 {
694 
695     TIntermAggregate* node = new TIntermAggregate(EOpSequence);
696 
697     node->setLine(line);
698     TIntermConstantUnion* constIntNode;
699     TIntermSequence &sequenceVector = node->getSequence();
700     ConstantUnion* unionArray;
701 
702     for (int i = 0; i < fields.num; i++) {
703         unionArray = new ConstantUnion[1];
704         unionArray->setIConst(fields.offsets[i]);
705         constIntNode = addConstantUnion(unionArray, TType(EbtInt, EbpUndefined, EvqConst), line);
706         sequenceVector.push_back(constIntNode);
707     }
708 
709     return node;
710 }
711 
712 //
713 // Create loop nodes.
714 //
addLoop(TLoopType type,TIntermNode * init,TIntermTyped * cond,TIntermTyped * expr,TIntermNode * body,const TSourceLoc & line)715 TIntermNode* TIntermediate::addLoop(TLoopType type, TIntermNode* init, TIntermTyped* cond, TIntermTyped* expr, TIntermNode* body, const TSourceLoc& line)
716 {
717     TIntermNode* node = new TIntermLoop(type, init, cond, expr, body);
718     node->setLine(line);
719 
720     return node;
721 }
722 
723 //
724 // Add branches.
725 //
addBranch(TOperator branchOp,const TSourceLoc & line)726 TIntermBranch* TIntermediate::addBranch(TOperator branchOp, const TSourceLoc& line)
727 {
728     return addBranch(branchOp, 0, line);
729 }
730 
addBranch(TOperator branchOp,TIntermTyped * expression,const TSourceLoc & line)731 TIntermBranch* TIntermediate::addBranch(TOperator branchOp, TIntermTyped* expression, const TSourceLoc& line)
732 {
733     TIntermBranch* node = new TIntermBranch(branchOp, expression);
734     node->setLine(line);
735 
736     return node;
737 }
738 
739 //
740 // This is to be executed once the final root is put on top by the parsing
741 // process.
742 //
postProcess(TIntermNode * root)743 bool TIntermediate::postProcess(TIntermNode* root)
744 {
745     if (root == 0)
746         return true;
747 
748     //
749     // First, finish off the top level sequence, if any
750     //
751     TIntermAggregate* aggRoot = root->getAsAggregate();
752     if (aggRoot && aggRoot->getOp() == EOpNull)
753         aggRoot->setOp(EOpSequence);
754 
755     return true;
756 }
757 
758 //
759 // This deletes the tree.
760 //
remove(TIntermNode * root)761 void TIntermediate::remove(TIntermNode* root)
762 {
763     if (root)
764         RemoveAllTreeNodes(root);
765 }
766 
767 ////////////////////////////////////////////////////////////////
768 //
769 // Member functions of the nodes used for building the tree.
770 //
771 ////////////////////////////////////////////////////////////////
772 
773 #define REPLACE_IF_IS(node, type, original, replacement) \
774     if (node == original) { \
775         node = static_cast<type *>(replacement); \
776         return true; \
777     }
778 
replaceChildNode(TIntermNode * original,TIntermNode * replacement)779 bool TIntermLoop::replaceChildNode(
780     TIntermNode *original, TIntermNode *replacement)
781 {
782     REPLACE_IF_IS(init, TIntermNode, original, replacement);
783     REPLACE_IF_IS(cond, TIntermTyped, original, replacement);
784     REPLACE_IF_IS(expr, TIntermTyped, original, replacement);
785     REPLACE_IF_IS(body, TIntermNode, original, replacement);
786     return false;
787 }
788 
enqueueChildren(std::queue<TIntermNode * > * nodeQueue) const789 void TIntermLoop::enqueueChildren(std::queue<TIntermNode*> *nodeQueue) const
790 {
791     if (init)
792     {
793         nodeQueue->push(init);
794     }
795     if (cond)
796     {
797         nodeQueue->push(cond);
798     }
799     if (expr)
800     {
801         nodeQueue->push(expr);
802     }
803     if (body)
804     {
805         nodeQueue->push(body);
806     }
807 }
808 
replaceChildNode(TIntermNode * original,TIntermNode * replacement)809 bool TIntermBranch::replaceChildNode(
810     TIntermNode *original, TIntermNode *replacement)
811 {
812     REPLACE_IF_IS(expression, TIntermTyped, original, replacement);
813     return false;
814 }
815 
enqueueChildren(std::queue<TIntermNode * > * nodeQueue) const816 void TIntermBranch::enqueueChildren(std::queue<TIntermNode*> *nodeQueue) const
817 {
818     if (expression)
819     {
820         nodeQueue->push(expression);
821     }
822 }
823 
replaceChildNode(TIntermNode * original,TIntermNode * replacement)824 bool TIntermBinary::replaceChildNode(
825     TIntermNode *original, TIntermNode *replacement)
826 {
827     REPLACE_IF_IS(left, TIntermTyped, original, replacement);
828     REPLACE_IF_IS(right, TIntermTyped, original, replacement);
829     return false;
830 }
831 
enqueueChildren(std::queue<TIntermNode * > * nodeQueue) const832 void TIntermBinary::enqueueChildren(std::queue<TIntermNode*> *nodeQueue) const
833 {
834     if (left)
835     {
836         nodeQueue->push(left);
837     }
838     if (right)
839     {
840         nodeQueue->push(right);
841     }
842 }
843 
replaceChildNode(TIntermNode * original,TIntermNode * replacement)844 bool TIntermUnary::replaceChildNode(
845     TIntermNode *original, TIntermNode *replacement)
846 {
847     REPLACE_IF_IS(operand, TIntermTyped, original, replacement);
848     return false;
849 }
850 
enqueueChildren(std::queue<TIntermNode * > * nodeQueue) const851 void TIntermUnary::enqueueChildren(std::queue<TIntermNode*> *nodeQueue) const
852 {
853     if (operand)
854     {
855         nodeQueue->push(operand);
856     }
857 }
858 
replaceChildNode(TIntermNode * original,TIntermNode * replacement)859 bool TIntermAggregate::replaceChildNode(
860     TIntermNode *original, TIntermNode *replacement)
861 {
862     for (size_t ii = 0; ii < sequence.size(); ++ii)
863     {
864         REPLACE_IF_IS(sequence[ii], TIntermNode, original, replacement);
865     }
866     return false;
867 }
868 
enqueueChildren(std::queue<TIntermNode * > * nodeQueue) const869 void TIntermAggregate::enqueueChildren(std::queue<TIntermNode*> *nodeQueue) const
870 {
871     for (size_t childIndex = 0; childIndex < sequence.size(); childIndex++)
872     {
873         nodeQueue->push(sequence[childIndex]);
874     }
875 }
876 
replaceChildNode(TIntermNode * original,TIntermNode * replacement)877 bool TIntermSelection::replaceChildNode(
878     TIntermNode *original, TIntermNode *replacement)
879 {
880     REPLACE_IF_IS(condition, TIntermTyped, original, replacement);
881     REPLACE_IF_IS(trueBlock, TIntermNode, original, replacement);
882     REPLACE_IF_IS(falseBlock, TIntermNode, original, replacement);
883     return false;
884 }
885 
enqueueChildren(std::queue<TIntermNode * > * nodeQueue) const886 void TIntermSelection::enqueueChildren(std::queue<TIntermNode*> *nodeQueue) const
887 {
888     if (condition)
889     {
890         nodeQueue->push(condition);
891     }
892     if (trueBlock)
893     {
894         nodeQueue->push(trueBlock);
895     }
896     if (falseBlock)
897     {
898         nodeQueue->push(falseBlock);
899     }
900 }
901 
902 //
903 // Say whether or not an operation node changes the value of a variable.
904 //
isAssignment() const905 bool TIntermOperator::isAssignment() const
906 {
907     switch (op) {
908         case EOpPostIncrement:
909         case EOpPostDecrement:
910         case EOpPreIncrement:
911         case EOpPreDecrement:
912         case EOpAssign:
913         case EOpAddAssign:
914         case EOpSubAssign:
915         case EOpMulAssign:
916         case EOpVectorTimesMatrixAssign:
917         case EOpVectorTimesScalarAssign:
918         case EOpMatrixTimesScalarAssign:
919         case EOpMatrixTimesMatrixAssign:
920         case EOpDivAssign:
921             return true;
922         default:
923             return false;
924     }
925 }
926 
927 //
928 // returns true if the operator is for one of the constructors
929 //
isConstructor() const930 bool TIntermOperator::isConstructor() const
931 {
932     switch (op) {
933         case EOpConstructVec2:
934         case EOpConstructVec3:
935         case EOpConstructVec4:
936         case EOpConstructMat2:
937         case EOpConstructMat3:
938         case EOpConstructMat4:
939         case EOpConstructFloat:
940         case EOpConstructIVec2:
941         case EOpConstructIVec3:
942         case EOpConstructIVec4:
943         case EOpConstructInt:
944         case EOpConstructUVec2:
945         case EOpConstructUVec3:
946         case EOpConstructUVec4:
947         case EOpConstructUInt:
948         case EOpConstructBVec2:
949         case EOpConstructBVec3:
950         case EOpConstructBVec4:
951         case EOpConstructBool:
952         case EOpConstructStruct:
953             return true;
954         default:
955             return false;
956     }
957 }
958 
959 //
960 // Make sure the type of a unary operator is appropriate for its
961 // combination of operation and operand type.
962 //
963 // Returns false in nothing makes sense.
964 //
promote(TInfoSink &)965 bool TIntermUnary::promote(TInfoSink&)
966 {
967     switch (op) {
968         case EOpLogicalNot:
969             if (operand->getBasicType() != EbtBool)
970                 return false;
971             break;
972         case EOpNegative:
973         case EOpPostIncrement:
974         case EOpPostDecrement:
975         case EOpPreIncrement:
976         case EOpPreDecrement:
977             if (operand->getBasicType() == EbtBool)
978                 return false;
979             break;
980 
981             // operators for built-ins are already type checked against their prototype
982         case EOpAny:
983         case EOpAll:
984         case EOpVectorLogicalNot:
985             return true;
986 
987         default:
988             if (operand->getBasicType() != EbtFloat)
989                 return false;
990     }
991 
992     setType(operand->getType());
993     type.setQualifier(EvqTemporary);
994 
995     return true;
996 }
997 
validateMultiplication(TOperator op,const TType & left,const TType & right)998 bool validateMultiplication(TOperator op, const TType &left, const TType &right)
999 {
1000     switch (op)
1001     {
1002       case EOpMul:
1003       case EOpMulAssign:
1004         return left.getNominalSize() == right.getNominalSize() && left.getSecondarySize() == right.getSecondarySize();
1005       case EOpVectorTimesScalar:
1006       case EOpVectorTimesScalarAssign:
1007         return true;
1008       case EOpVectorTimesMatrix:
1009         return left.getNominalSize() == right.getRows();
1010       case EOpVectorTimesMatrixAssign:
1011         return left.getNominalSize() == right.getRows() && left.getNominalSize() == right.getCols();
1012       case EOpMatrixTimesVector:
1013         return left.getCols() == right.getNominalSize();
1014       case EOpMatrixTimesScalar:
1015       case EOpMatrixTimesScalarAssign:
1016         return true;
1017       case EOpMatrixTimesMatrix:
1018         return left.getCols() == right.getRows();
1019       case EOpMatrixTimesMatrixAssign:
1020         return left.getCols() == right.getCols() && left.getRows() == right.getRows();
1021 
1022       default:
1023         UNREACHABLE();
1024         return false;
1025     }
1026 }
1027 
1028 //
1029 // Establishes the type of the resultant operation, as well as
1030 // makes the operator the correct one for the operands.
1031 //
1032 // Returns false if operator can't work on operands.
1033 //
promote(TInfoSink & infoSink)1034 bool TIntermBinary::promote(TInfoSink& infoSink)
1035 {
1036     // This function only handles scalars, vectors, and matrices.
1037     if (left->isArray() || right->isArray())
1038     {
1039         infoSink.info.message(EPrefixInternalError, getLine(), "Invalid operation for arrays");
1040         return false;
1041     }
1042 
1043     // GLSL ES 2.0 does not support implicit type casting.
1044     // So the basic type should always match.
1045     if (left->getBasicType() != right->getBasicType())
1046         return false;
1047 
1048     //
1049     // Base assumption:  just make the type the same as the left
1050     // operand.  Then only deviations from this need be coded.
1051     //
1052     setType(left->getType());
1053 
1054     // The result gets promoted to the highest precision.
1055     TPrecision higherPrecision = GetHigherPrecision(left->getPrecision(), right->getPrecision());
1056     getTypePointer()->setPrecision(higherPrecision);
1057 
1058     // Binary operations results in temporary variables unless both
1059     // operands are const.
1060     if (left->getQualifier() != EvqConst || right->getQualifier() != EvqConst)
1061     {
1062         getTypePointer()->setQualifier(EvqTemporary);
1063     }
1064 
1065     const int nominalSize = std::max(left->getNominalSize(), right->getNominalSize());
1066 
1067     //
1068     // All scalars or structs. Code after this test assumes this case is removed!
1069     //
1070     if (nominalSize == 1)
1071     {
1072         switch (op)
1073         {
1074             //
1075             // Promote to conditional
1076             //
1077             case EOpEqual:
1078             case EOpNotEqual:
1079             case EOpLessThan:
1080             case EOpGreaterThan:
1081             case EOpLessThanEqual:
1082             case EOpGreaterThanEqual:
1083                 setType(TType(EbtBool, EbpUndefined));
1084                 break;
1085 
1086             //
1087             // And and Or operate on conditionals
1088             //
1089             case EOpLogicalAnd:
1090             case EOpLogicalOr:
1091                 // Both operands must be of type bool.
1092                 if (left->getBasicType() != EbtBool || right->getBasicType() != EbtBool)
1093                 {
1094                     return false;
1095                 }
1096                 setType(TType(EbtBool, EbpUndefined));
1097                 break;
1098 
1099             default:
1100                 break;
1101         }
1102         return true;
1103     }
1104 
1105     // If we reach here, at least one of the operands is vector or matrix.
1106     // The other operand could be a scalar, vector, or matrix.
1107     // Can these two operands be combined?
1108     //
1109     TBasicType basicType = left->getBasicType();
1110     switch (op)
1111     {
1112         case EOpMul:
1113             if (!left->isMatrix() && right->isMatrix())
1114             {
1115                 if (left->isVector())
1116                 {
1117                     op = EOpVectorTimesMatrix;
1118                     setType(TType(basicType, higherPrecision, EvqTemporary, right->getCols(), 1));
1119                 }
1120                 else
1121                 {
1122                     op = EOpMatrixTimesScalar;
1123                     setType(TType(basicType, higherPrecision, EvqTemporary, right->getCols(), right->getRows()));
1124                 }
1125             }
1126             else if (left->isMatrix() && !right->isMatrix())
1127             {
1128                 if (right->isVector())
1129                 {
1130                     op = EOpMatrixTimesVector;
1131                     setType(TType(basicType, higherPrecision, EvqTemporary, left->getRows(), 1));
1132                 }
1133                 else
1134                 {
1135                     op = EOpMatrixTimesScalar;
1136                 }
1137             }
1138             else if (left->isMatrix() && right->isMatrix())
1139             {
1140                 op = EOpMatrixTimesMatrix;
1141                 setType(TType(basicType, higherPrecision, EvqTemporary, right->getCols(), left->getRows()));
1142             }
1143             else if (!left->isMatrix() && !right->isMatrix())
1144             {
1145                 if (left->isVector() && right->isVector())
1146                 {
1147                     // leave as component product
1148                 }
1149                 else if (left->isVector() || right->isVector())
1150                 {
1151                     op = EOpVectorTimesScalar;
1152                     setType(TType(basicType, higherPrecision, EvqTemporary, nominalSize, 1));
1153                 }
1154             }
1155             else
1156             {
1157                 infoSink.info.message(EPrefixInternalError, getLine(), "Missing elses");
1158                 return false;
1159             }
1160 
1161             if (!validateMultiplication(op, left->getType(), right->getType()))
1162             {
1163                 return false;
1164             }
1165             break;
1166 
1167         case EOpMulAssign:
1168             if (!left->isMatrix() && right->isMatrix())
1169             {
1170                 if (left->isVector())
1171                 {
1172                     op = EOpVectorTimesMatrixAssign;
1173                 }
1174                 else
1175                 {
1176                     return false;
1177                 }
1178             }
1179             else if (left->isMatrix() && !right->isMatrix())
1180             {
1181                 if (right->isVector())
1182                 {
1183                     return false;
1184                 }
1185                 else
1186                 {
1187                     op = EOpMatrixTimesScalarAssign;
1188                 }
1189             }
1190             else if (left->isMatrix() && right->isMatrix())
1191             {
1192                 op = EOpMatrixTimesMatrixAssign;
1193                 setType(TType(basicType, higherPrecision, EvqTemporary, right->getCols(), left->getRows()));
1194             }
1195             else if (!left->isMatrix() && !right->isMatrix())
1196             {
1197                 if (left->isVector() && right->isVector())
1198                 {
1199                     // leave as component product
1200                 }
1201                 else if (left->isVector() || right->isVector())
1202                 {
1203                     if (! left->isVector())
1204                         return false;
1205                     op = EOpVectorTimesScalarAssign;
1206                     setType(TType(basicType, higherPrecision, EvqTemporary, left->getNominalSize(), 1));
1207                 }
1208             }
1209             else
1210             {
1211                 infoSink.info.message(EPrefixInternalError, getLine(), "Missing elses");
1212                 return false;
1213             }
1214 
1215             if (!validateMultiplication(op, left->getType(), right->getType()))
1216             {
1217                 return false;
1218             }
1219             break;
1220 
1221         case EOpAssign:
1222         case EOpInitialize:
1223         case EOpAdd:
1224         case EOpSub:
1225         case EOpDiv:
1226         case EOpAddAssign:
1227         case EOpSubAssign:
1228         case EOpDivAssign:
1229             {
1230                 if ((left->isMatrix() && right->isVector()) ||
1231                     (left->isVector() && right->isMatrix()))
1232                     return false;
1233 
1234                 // Are the sizes compatible?
1235                 if (left->getNominalSize() != right->getNominalSize() || left->getSecondarySize() != right->getSecondarySize())
1236                 {
1237                     // If the nominal size of operands do not match:
1238                     // One of them must be scalar.
1239                     if (!left->isScalar() && !right->isScalar())
1240                         return false;
1241 
1242                     // Operator cannot be of type pure assignment.
1243                     if (op == EOpAssign || op == EOpInitialize)
1244                         return false;
1245                 }
1246 
1247                 const int secondarySize = std::max(left->getSecondarySize(), right->getSecondarySize());
1248 
1249                 setType(TType(basicType, higherPrecision, EvqTemporary, nominalSize, secondarySize));
1250             }
1251             break;
1252 
1253         case EOpEqual:
1254         case EOpNotEqual:
1255         case EOpLessThan:
1256         case EOpGreaterThan:
1257         case EOpLessThanEqual:
1258         case EOpGreaterThanEqual:
1259             if ((left->getNominalSize() != right->getNominalSize()) ||
1260                 (left->getSecondarySize() != right->getSecondarySize()))
1261                 return false;
1262             setType(TType(EbtBool, EbpUndefined));
1263             break;
1264 
1265         default:
1266             return false;
1267     }
1268 
1269     return true;
1270 }
1271 
CompareStruct(const TType & leftNodeType,ConstantUnion * rightUnionArray,ConstantUnion * leftUnionArray)1272 bool CompareStruct(const TType& leftNodeType, ConstantUnion* rightUnionArray, ConstantUnion* leftUnionArray)
1273 {
1274     const TFieldList& fields = leftNodeType.getStruct()->fields();
1275 
1276     size_t structSize = fields.size();
1277     size_t index = 0;
1278 
1279     for (size_t j = 0; j < structSize; j++) {
1280         size_t size = fields[j]->type()->getObjectSize();
1281         for (size_t i = 0; i < size; i++) {
1282             if (fields[j]->type()->getBasicType() == EbtStruct) {
1283                 if (!CompareStructure(*fields[j]->type(), &rightUnionArray[index], &leftUnionArray[index]))
1284                     return false;
1285             } else {
1286                 if (leftUnionArray[index] != rightUnionArray[index])
1287                     return false;
1288                 index++;
1289             }
1290 
1291         }
1292     }
1293     return true;
1294 }
1295 
CompareStructure(const TType & leftNodeType,ConstantUnion * rightUnionArray,ConstantUnion * leftUnionArray)1296 bool CompareStructure(const TType& leftNodeType, ConstantUnion* rightUnionArray, ConstantUnion* leftUnionArray)
1297 {
1298     if (leftNodeType.isArray()) {
1299         TType typeWithoutArrayness = leftNodeType;
1300         typeWithoutArrayness.clearArrayness();
1301 
1302         size_t arraySize = leftNodeType.getArraySize();
1303 
1304         for (size_t i = 0; i < arraySize; ++i) {
1305             size_t offset = typeWithoutArrayness.getObjectSize() * i;
1306             if (!CompareStruct(typeWithoutArrayness, &rightUnionArray[offset], &leftUnionArray[offset]))
1307                 return false;
1308         }
1309     } else
1310         return CompareStruct(leftNodeType, rightUnionArray, leftUnionArray);
1311 
1312     return true;
1313 }
1314 
1315 //
1316 // The fold functions see if an operation on a constant can be done in place,
1317 // without generating run-time code.
1318 //
1319 // Returns the node to keep using, which may or may not be the node passed in.
1320 //
1321 
fold(TOperator op,TIntermTyped * constantNode,TInfoSink & infoSink)1322 TIntermTyped* TIntermConstantUnion::fold(TOperator op, TIntermTyped* constantNode, TInfoSink& infoSink)
1323 {
1324     ConstantUnion *unionArray = getUnionArrayPointer();
1325 
1326     if (!unionArray)
1327         return 0;
1328 
1329     size_t objectSize = getType().getObjectSize();
1330 
1331     if (constantNode)
1332     {
1333         // binary operations
1334         TIntermConstantUnion *node = constantNode->getAsConstantUnion();
1335         ConstantUnion *rightUnionArray = node->getUnionArrayPointer();
1336         TType returnType = getType();
1337 
1338         if (!rightUnionArray)
1339             return 0;
1340 
1341         // for a case like float f = 1.2 + vec4(2,3,4,5);
1342         if (constantNode->getType().getObjectSize() == 1 && objectSize > 1)
1343         {
1344             rightUnionArray = new ConstantUnion[objectSize];
1345             for (size_t i = 0; i < objectSize; ++i)
1346             {
1347                 rightUnionArray[i] = *node->getUnionArrayPointer();
1348             }
1349             returnType = getType();
1350         }
1351         else if (constantNode->getType().getObjectSize() > 1 && objectSize == 1)
1352         {
1353             // for a case like float f = vec4(2,3,4,5) + 1.2;
1354             unionArray = new ConstantUnion[constantNode->getType().getObjectSize()];
1355             for (size_t i = 0; i < constantNode->getType().getObjectSize(); ++i)
1356             {
1357                 unionArray[i] = *getUnionArrayPointer();
1358             }
1359             returnType = node->getType();
1360             objectSize = constantNode->getType().getObjectSize();
1361         }
1362 
1363         ConstantUnion* tempConstArray = 0;
1364         TIntermConstantUnion *tempNode;
1365 
1366         bool boolNodeFlag = false;
1367         switch(op) {
1368           case EOpAdd:
1369             tempConstArray = new ConstantUnion[objectSize];
1370             {
1371                 for (size_t i = 0; i < objectSize; i++)
1372                     tempConstArray[i] = unionArray[i] + rightUnionArray[i];
1373             }
1374             break;
1375           case EOpSub:
1376             tempConstArray = new ConstantUnion[objectSize];
1377             {
1378                 for (size_t i = 0; i < objectSize; i++)
1379                     tempConstArray[i] = unionArray[i] - rightUnionArray[i];
1380             }
1381             break;
1382 
1383           case EOpMul:
1384           case EOpVectorTimesScalar:
1385           case EOpMatrixTimesScalar:
1386             tempConstArray = new ConstantUnion[objectSize];
1387             {
1388                 for (size_t i = 0; i < objectSize; i++)
1389                     tempConstArray[i] = unionArray[i] * rightUnionArray[i];
1390             }
1391             break;
1392 
1393           case EOpMatrixTimesMatrix:
1394             {
1395                 if (getType().getBasicType() != EbtFloat || node->getBasicType() != EbtFloat)
1396                 {
1397                     infoSink.info.message(EPrefixInternalError, getLine(), "Constant Folding cannot be done for matrix multiply");
1398                     return 0;
1399                 }
1400 
1401                 const int leftCols = getCols();
1402                 const int leftRows = getRows();
1403                 const int rightCols = constantNode->getType().getCols();
1404                 const int rightRows = constantNode->getType().getRows();
1405                 const int resultCols = rightCols;
1406                 const int resultRows = leftRows;
1407 
1408                 tempConstArray = new ConstantUnion[resultCols*resultRows];
1409                 for (int row = 0; row < resultRows; row++)
1410                 {
1411                     for (int column = 0; column < resultCols; column++)
1412                     {
1413                         tempConstArray[resultRows * column + row].setFConst(0.0f);
1414                         for (int i = 0; i < leftCols; i++)
1415                         {
1416                             tempConstArray[resultRows * column + row].setFConst(tempConstArray[resultRows * column + row].getFConst() + unionArray[i * leftRows + row].getFConst() * (rightUnionArray[column * rightRows + i].getFConst()));
1417                         }
1418                     }
1419                 }
1420 
1421                 // update return type for matrix product
1422                 returnType.setPrimarySize(resultCols);
1423                 returnType.setSecondarySize(resultRows);
1424             }
1425             break;
1426 
1427           case EOpDiv:
1428             {
1429                 tempConstArray = new ConstantUnion[objectSize];
1430                 for (size_t i = 0; i < objectSize; i++)
1431                 {
1432                     switch (getType().getBasicType())
1433                     {
1434                       case EbtFloat:
1435                         if (rightUnionArray[i] == 0.0f)
1436                         {
1437                             infoSink.info.message(EPrefixWarning, getLine(), "Divide by zero error during constant folding");
1438                             tempConstArray[i].setFConst(unionArray[i].getFConst() < 0 ? -FLT_MAX : FLT_MAX);
1439                         }
1440                         else
1441                         {
1442                             tempConstArray[i].setFConst(unionArray[i].getFConst() / rightUnionArray[i].getFConst());
1443                         }
1444                         break;
1445 
1446                       case EbtInt:
1447                         if (rightUnionArray[i] == 0)
1448                         {
1449                             infoSink.info.message(EPrefixWarning, getLine(), "Divide by zero error during constant folding");
1450                             tempConstArray[i].setIConst(INT_MAX);
1451                         }
1452                         else
1453                         {
1454                             tempConstArray[i].setIConst(unionArray[i].getIConst() / rightUnionArray[i].getIConst());
1455                         }
1456                         break;
1457 
1458                       case EbtUInt:
1459                         if (rightUnionArray[i] == 0)
1460                         {
1461                             infoSink.info.message(EPrefixWarning, getLine(), "Divide by zero error during constant folding");
1462                             tempConstArray[i].setUConst(UINT_MAX);
1463                         }
1464                         else
1465                         {
1466                             tempConstArray[i].setUConst(unionArray[i].getUConst() / rightUnionArray[i].getUConst());
1467                         }
1468                         break;
1469 
1470                       default:
1471                         infoSink.info.message(EPrefixInternalError, getLine(), "Constant folding cannot be done for \"/\"");
1472                         return 0;
1473                     }
1474                 }
1475             }
1476             break;
1477 
1478           case EOpMatrixTimesVector:
1479             {
1480                 if (node->getBasicType() != EbtFloat)
1481                 {
1482                     infoSink.info.message(EPrefixInternalError, getLine(), "Constant Folding cannot be done for matrix times vector");
1483                     return 0;
1484                 }
1485 
1486                 const int matrixCols = getCols();
1487                 const int matrixRows = getRows();
1488 
1489                 tempConstArray = new ConstantUnion[matrixRows];
1490 
1491                 for (int matrixRow = 0; matrixRow < matrixRows; matrixRow++)
1492                 {
1493                     tempConstArray[matrixRow].setFConst(0.0f);
1494                     for (int col = 0; col < matrixCols; col++)
1495                     {
1496                         tempConstArray[matrixRow].setFConst(tempConstArray[matrixRow].getFConst() + ((unionArray[col * matrixRows + matrixRow].getFConst()) * rightUnionArray[col].getFConst()));
1497                     }
1498                 }
1499 
1500                 returnType = node->getType();
1501                 returnType.setPrimarySize(matrixRows);
1502 
1503                 tempNode = new TIntermConstantUnion(tempConstArray, returnType);
1504                 tempNode->setLine(getLine());
1505 
1506                 return tempNode;
1507             }
1508 
1509           case EOpVectorTimesMatrix:
1510             {
1511                 if (getType().getBasicType() != EbtFloat)
1512                 {
1513                     infoSink.info.message(EPrefixInternalError, getLine(), "Constant Folding cannot be done for vector times matrix");
1514                     return 0;
1515                 }
1516 
1517                 const int matrixCols = constantNode->getType().getCols();
1518                 const int matrixRows = constantNode->getType().getRows();
1519 
1520                 tempConstArray = new ConstantUnion[matrixCols];
1521 
1522                 for (int matrixCol = 0; matrixCol < matrixCols; matrixCol++)
1523                 {
1524                     tempConstArray[matrixCol].setFConst(0.0f);
1525                     for (int matrixRow = 0; matrixRow < matrixRows; matrixRow++)
1526                     {
1527                         tempConstArray[matrixCol].setFConst(tempConstArray[matrixCol].getFConst() + ((unionArray[matrixRow].getFConst()) * rightUnionArray[matrixCol * matrixRows + matrixRow].getFConst()));
1528                     }
1529                 }
1530 
1531                 returnType.setPrimarySize(matrixCols);
1532             }
1533             break;
1534 
1535           case EOpLogicalAnd: // this code is written for possible future use, will not get executed currently
1536             {
1537                 tempConstArray = new ConstantUnion[objectSize];
1538                 for (size_t i = 0; i < objectSize; i++)
1539                 {
1540                     tempConstArray[i] = unionArray[i] && rightUnionArray[i];
1541                 }
1542             }
1543             break;
1544 
1545           case EOpLogicalOr: // this code is written for possible future use, will not get executed currently
1546             {
1547                 tempConstArray = new ConstantUnion[objectSize];
1548                 for (size_t i = 0; i < objectSize; i++)
1549                 {
1550                     tempConstArray[i] = unionArray[i] || rightUnionArray[i];
1551                 }
1552             }
1553             break;
1554 
1555           case EOpLogicalXor:
1556             {
1557                 tempConstArray = new ConstantUnion[objectSize];
1558                 for (size_t i = 0; i < objectSize; i++)
1559                 {
1560                     switch (getType().getBasicType())
1561                     {
1562                       case EbtBool:
1563                         tempConstArray[i].setBConst((unionArray[i] == rightUnionArray[i]) ? false : true);
1564                         break;
1565                       default:
1566                         UNREACHABLE();
1567                         break;
1568                     }
1569                 }
1570             }
1571             break;
1572 
1573           case EOpLessThan:
1574             assert(objectSize == 1);
1575             tempConstArray = new ConstantUnion[1];
1576             tempConstArray->setBConst(*unionArray < *rightUnionArray);
1577             returnType = TType(EbtBool, EbpUndefined, EvqConst);
1578             break;
1579 
1580           case EOpGreaterThan:
1581             assert(objectSize == 1);
1582             tempConstArray = new ConstantUnion[1];
1583             tempConstArray->setBConst(*unionArray > *rightUnionArray);
1584             returnType = TType(EbtBool, EbpUndefined, EvqConst);
1585             break;
1586 
1587           case EOpLessThanEqual:
1588             {
1589                 assert(objectSize == 1);
1590                 ConstantUnion constant;
1591                 constant.setBConst(*unionArray > *rightUnionArray);
1592                 tempConstArray = new ConstantUnion[1];
1593                 tempConstArray->setBConst(!constant.getBConst());
1594                 returnType = TType(EbtBool, EbpUndefined, EvqConst);
1595                 break;
1596             }
1597 
1598           case EOpGreaterThanEqual:
1599             {
1600                 assert(objectSize == 1);
1601                 ConstantUnion constant;
1602                 constant.setBConst(*unionArray < *rightUnionArray);
1603                 tempConstArray = new ConstantUnion[1];
1604                 tempConstArray->setBConst(!constant.getBConst());
1605                 returnType = TType(EbtBool, EbpUndefined, EvqConst);
1606                 break;
1607             }
1608 
1609           case EOpEqual:
1610             if (getType().getBasicType() == EbtStruct)
1611             {
1612                 if (!CompareStructure(node->getType(), node->getUnionArrayPointer(), unionArray))
1613                     boolNodeFlag = true;
1614             }
1615             else
1616             {
1617                 for (size_t i = 0; i < objectSize; i++)
1618                 {
1619                     if (unionArray[i] != rightUnionArray[i])
1620                     {
1621                         boolNodeFlag = true;
1622                         break;  // break out of for loop
1623                     }
1624                 }
1625             }
1626 
1627             tempConstArray = new ConstantUnion[1];
1628             if (!boolNodeFlag)
1629             {
1630                 tempConstArray->setBConst(true);
1631             }
1632             else
1633             {
1634                 tempConstArray->setBConst(false);
1635             }
1636 
1637             tempNode = new TIntermConstantUnion(tempConstArray, TType(EbtBool, EbpUndefined, EvqConst));
1638             tempNode->setLine(getLine());
1639 
1640             return tempNode;
1641 
1642           case EOpNotEqual:
1643             if (getType().getBasicType() == EbtStruct)
1644             {
1645                 if (CompareStructure(node->getType(), node->getUnionArrayPointer(), unionArray))
1646                     boolNodeFlag = true;
1647             }
1648             else
1649             {
1650                 for (size_t i = 0; i < objectSize; i++)
1651                 {
1652                     if (unionArray[i] == rightUnionArray[i])
1653                     {
1654                         boolNodeFlag = true;
1655                         break;  // break out of for loop
1656                     }
1657                 }
1658             }
1659 
1660             tempConstArray = new ConstantUnion[1];
1661             if (!boolNodeFlag)
1662             {
1663                 tempConstArray->setBConst(true);
1664             }
1665             else
1666             {
1667                 tempConstArray->setBConst(false);
1668             }
1669 
1670             tempNode = new TIntermConstantUnion(tempConstArray, TType(EbtBool, EbpUndefined, EvqConst));
1671             tempNode->setLine(getLine());
1672 
1673             return tempNode;
1674 
1675           default:
1676             infoSink.info.message(EPrefixInternalError, getLine(), "Invalid operator for constant folding");
1677             return 0;
1678         }
1679         tempNode = new TIntermConstantUnion(tempConstArray, returnType);
1680         tempNode->setLine(getLine());
1681 
1682         return tempNode;
1683     }
1684     else
1685     {
1686         //
1687         // Do unary operations
1688         //
1689         TIntermConstantUnion *newNode = 0;
1690         ConstantUnion* tempConstArray = new ConstantUnion[objectSize];
1691         for (size_t i = 0; i < objectSize; i++)
1692         {
1693             switch(op)
1694             {
1695               case EOpNegative:
1696                 switch (getType().getBasicType())
1697                 {
1698                   case EbtFloat: tempConstArray[i].setFConst(-unionArray[i].getFConst()); break;
1699                   case EbtInt:   tempConstArray[i].setIConst(-unionArray[i].getIConst()); break;
1700                   case EbtUInt:  tempConstArray[i].setUConst(static_cast<unsigned int>(-static_cast<int>(unionArray[i].getUConst()))); break;
1701                   default:
1702                     infoSink.info.message(EPrefixInternalError, getLine(), "Unary operation not folded into constant");
1703                     return 0;
1704                 }
1705                 break;
1706 
1707               case EOpLogicalNot: // this code is written for possible future use, will not get executed currently
1708                 switch (getType().getBasicType())
1709                 {
1710                   case EbtBool:  tempConstArray[i].setBConst(!unionArray[i].getBConst()); break;
1711                   default:
1712                     infoSink.info.message(EPrefixInternalError, getLine(), "Unary operation not folded into constant");
1713                     return 0;
1714                 }
1715                 break;
1716 
1717               default:
1718                 return 0;
1719             }
1720         }
1721         newNode = new TIntermConstantUnion(tempConstArray, getType());
1722         newNode->setLine(getLine());
1723         return newNode;
1724     }
1725 }
1726 
promoteConstantUnion(TBasicType promoteTo,TIntermConstantUnion * node)1727 TIntermTyped* TIntermediate::promoteConstantUnion(TBasicType promoteTo, TIntermConstantUnion* node)
1728 {
1729     size_t size = node->getType().getObjectSize();
1730 
1731     ConstantUnion *leftUnionArray = new ConstantUnion[size];
1732 
1733     for (size_t i=0; i < size; i++) {
1734 
1735         switch (promoteTo) {
1736             case EbtFloat:
1737                 switch (node->getType().getBasicType()) {
1738                     case EbtInt:
1739                         leftUnionArray[i].setFConst(static_cast<float>(node->getIConst(i)));
1740                         break;
1741                     case EbtUInt:
1742                         leftUnionArray[i].setFConst(static_cast<float>(node->getUConst(i)));
1743                         break;
1744                     case EbtBool:
1745                         leftUnionArray[i].setFConst(static_cast<float>(node->getBConst(i)));
1746                         break;
1747                     case EbtFloat:
1748                         leftUnionArray[i].setFConst(static_cast<float>(node->getFConst(i)));
1749                         break;
1750                     default:
1751                         infoSink.info.message(EPrefixInternalError, node->getLine(), "Cannot promote");
1752                         return 0;
1753                 }
1754                 break;
1755             case EbtInt:
1756                 switch (node->getType().getBasicType()) {
1757                     case EbtInt:
1758                         leftUnionArray[i].setIConst(static_cast<int>(node->getIConst(i)));
1759                         break;
1760                     case EbtUInt:
1761                         leftUnionArray[i].setIConst(static_cast<int>(node->getUConst(i)));
1762                         break;
1763                     case EbtBool:
1764                         leftUnionArray[i].setIConst(static_cast<int>(node->getBConst(i)));
1765                         break;
1766                     case EbtFloat:
1767                         leftUnionArray[i].setIConst(static_cast<int>(node->getFConst(i)));
1768                         break;
1769                     default:
1770                         infoSink.info.message(EPrefixInternalError, node->getLine(), "Cannot promote");
1771                         return 0;
1772                 }
1773                 break;
1774             case EbtUInt:
1775                 switch (node->getType().getBasicType()) {
1776                     case EbtInt:
1777                         leftUnionArray[i].setUConst(static_cast<unsigned int>(node->getIConst(i)));
1778                         break;
1779                     case EbtUInt:
1780                         leftUnionArray[i].setUConst(static_cast<unsigned int>(node->getUConst(i)));
1781                         break;
1782                     case EbtBool:
1783                         leftUnionArray[i].setUConst(static_cast<unsigned int>(node->getBConst(i)));
1784                         break;
1785                     case EbtFloat:
1786                         leftUnionArray[i].setUConst(static_cast<unsigned int>(node->getFConst(i)));
1787                         break;
1788                     default:
1789                         infoSink.info.message(EPrefixInternalError, node->getLine(), "Cannot promote");
1790                         return 0;
1791                 }
1792                 break;
1793             case EbtBool:
1794                 switch (node->getType().getBasicType()) {
1795                     case EbtInt:
1796                         leftUnionArray[i].setBConst(node->getIConst(i) != 0);
1797                         break;
1798                     case EbtUInt:
1799                         leftUnionArray[i].setBConst(node->getUConst(i) != 0);
1800                         break;
1801                     case EbtBool:
1802                         leftUnionArray[i].setBConst(node->getBConst(i));
1803                         break;
1804                     case EbtFloat:
1805                         leftUnionArray[i].setBConst(node->getFConst(i) != 0.0f);
1806                         break;
1807                     default:
1808                         infoSink.info.message(EPrefixInternalError, node->getLine(), "Cannot promote");
1809                         return 0;
1810                 }
1811 
1812                 break;
1813             default:
1814                 infoSink.info.message(EPrefixInternalError, node->getLine(), "Incorrect data type found");
1815                 return 0;
1816         }
1817 
1818     }
1819 
1820     const TType& t = node->getType();
1821 
1822     return addConstantUnion(leftUnionArray, TType(promoteTo, t.getPrecision(), t.getQualifier(), t.getNominalSize(), t.getSecondarySize(), t.isArray()), node->getLine());
1823 }
1824 
1825 // static
hash(const TString & name,ShHashFunction64 hashFunction)1826 TString TIntermTraverser::hash(const TString& name, ShHashFunction64 hashFunction)
1827 {
1828     if (hashFunction == NULL || name.empty())
1829         return name;
1830     khronos_uint64_t number = (*hashFunction)(name.c_str(), name.length());
1831     TStringStream stream;
1832     stream << HASHED_NAME_PREFIX << std::hex << number;
1833     TString hashedName = stream.str();
1834     return hashedName;
1835 }
1836