• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2 *******************************************************************************
3 * Copyright (C) 1997-2010, International Business Machines Corporation and    *
4 * others. All Rights Reserved.                                                *
5 *******************************************************************************
6 *
7 * File DECIMFMT.CPP
8 *
9 * Modification History:
10 *
11 *   Date        Name        Description
12 *   02/19/97    aliu        Converted from java.
13 *   03/20/97    clhuang     Implemented with new APIs.
14 *   03/31/97    aliu        Moved isLONG_MIN to DigitList, and fixed it.
15 *   04/3/97     aliu        Rewrote parsing and formatting completely, and
16 *                           cleaned up and debugged.  Actually works now.
17 *                           Implemented NAN and INF handling, for both parsing
18 *                           and formatting.  Extensive testing & debugging.
19 *   04/10/97    aliu        Modified to compile on AIX.
20 *   04/16/97    aliu        Rewrote to use DigitList, which has been resurrected.
21 *                           Changed DigitCount to int per code review.
22 *   07/09/97    helena      Made ParsePosition into a class.
23 *   08/26/97    aliu        Extensive changes to applyPattern; completely
24 *                           rewritten from the Java.
25 *   09/09/97    aliu        Ported over support for exponential formats.
26 *   07/20/98    stephen     JDK 1.2 sync up.
27 *                             Various instances of '0' replaced with 'NULL'
28 *                             Check for grouping size in subFormat()
29 *                             Brought subParse() in line with Java 1.2
30 *                             Added method appendAffix()
31 *   08/24/1998  srl         Removed Mutex calls. This is not a thread safe class!
32 *   02/22/99    stephen     Removed character literals for EBCDIC safety
33 *   06/24/99    helena      Integrated Alan's NF enhancements and Java2 bug fixes
34 *   06/28/99    stephen     Fixed bugs in toPattern().
35 *   06/29/99    stephen     Fixed operator= to copy fFormatWidth, fPad,
36 *                             fPadPosition
37 ********************************************************************************
38 */
39 
40 #include "unicode/utypes.h"
41 
42 #if !UCONFIG_NO_FORMATTING
43 
44 #include "fphdlimp.h"
45 #include "unicode/decimfmt.h"
46 #include "unicode/choicfmt.h"
47 #include "unicode/ucurr.h"
48 #include "unicode/ustring.h"
49 #include "unicode/dcfmtsym.h"
50 #include "unicode/ures.h"
51 #include "unicode/uchar.h"
52 #include "unicode/curramt.h"
53 #include "unicode/currpinf.h"
54 #include "unicode/plurrule.h"
55 #include "ucurrimp.h"
56 #include "charstr.h"
57 #include "cmemory.h"
58 #include "util.h"
59 #include "digitlst.h"
60 #include "cstring.h"
61 #include "umutex.h"
62 #include "uassert.h"
63 #include "putilimp.h"
64 #include <math.h>
65 #include "hash.h"
66 
67 
68 U_NAMESPACE_BEGIN
69 
70 /* For currency parsing purose,
71  * Need to remember all prefix patterns and suffix patterns of
72  * every currency format pattern,
73  * including the pattern of default currecny style
74  * and plural currency style. And the patterns are set through applyPattern.
75  */
76 struct AffixPatternsForCurrency : public UMemory {
77 	// negative prefix pattern
78 	UnicodeString negPrefixPatternForCurrency;
79 	// negative suffix pattern
80 	UnicodeString negSuffixPatternForCurrency;
81 	// positive prefix pattern
82 	UnicodeString posPrefixPatternForCurrency;
83 	// positive suffix pattern
84 	UnicodeString posSuffixPatternForCurrency;
85 	int8_t patternType;
86 
AffixPatternsForCurrencyAffixPatternsForCurrency87 	AffixPatternsForCurrency(const UnicodeString& negPrefix,
88 							 const UnicodeString& negSuffix,
89 							 const UnicodeString& posPrefix,
90 							 const UnicodeString& posSuffix,
91 							 int8_t type) {
92 		negPrefixPatternForCurrency = negPrefix;
93 		negSuffixPatternForCurrency = negSuffix;
94 		posPrefixPatternForCurrency = posPrefix;
95 		posSuffixPatternForCurrency = posSuffix;
96 		patternType = type;
97 	}
98 };
99 
100 /* affix for currency formatting when the currency sign in the pattern
101  * equals to 3, such as the pattern contains 3 currency sign or
102  * the formatter style is currency plural format style.
103  */
104 struct AffixesForCurrency : public UMemory {
105 	// negative prefix
106 	UnicodeString negPrefixForCurrency;
107 	// negative suffix
108 	UnicodeString negSuffixForCurrency;
109 	// positive prefix
110 	UnicodeString posPrefixForCurrency;
111 	// positive suffix
112 	UnicodeString posSuffixForCurrency;
113 
114 	int32_t formatWidth;
115 
AffixesForCurrencyAffixesForCurrency116 	AffixesForCurrency(const UnicodeString& negPrefix,
117 					   const UnicodeString& negSuffix,
118 					   const UnicodeString& posPrefix,
119 					   const UnicodeString& posSuffix) {
120 		negPrefixForCurrency = negPrefix;
121 		negSuffixForCurrency = negSuffix;
122 		posPrefixForCurrency = posPrefix;
123 		posSuffixForCurrency = posSuffix;
124 	}
125 };
126 
127 U_CDECL_BEGIN
128 
129 /**
130  * @internal ICU 4.2
131  */
132 static UBool U_CALLCONV decimfmtAffixValueComparator(UHashTok val1, UHashTok val2);
133 
134 /**
135  * @internal ICU 4.2
136  */
137 static UBool U_CALLCONV decimfmtAffixPatternValueComparator(UHashTok val1, UHashTok val2);
138 
139 
140 static UBool
decimfmtAffixValueComparator(UHashTok val1,UHashTok val2)141 U_CALLCONV decimfmtAffixValueComparator(UHashTok val1, UHashTok val2) {
142     const AffixesForCurrency* affix_1 =
143         (AffixesForCurrency*)val1.pointer;
144     const AffixesForCurrency* affix_2 =
145         (AffixesForCurrency*)val2.pointer;
146     return affix_1->negPrefixForCurrency == affix_2->negPrefixForCurrency &&
147            affix_1->negSuffixForCurrency == affix_2->negSuffixForCurrency &&
148            affix_1->posPrefixForCurrency == affix_2->posPrefixForCurrency &&
149            affix_1->posSuffixForCurrency == affix_2->posSuffixForCurrency;
150 }
151 
152 
153 static UBool
decimfmtAffixPatternValueComparator(UHashTok val1,UHashTok val2)154 U_CALLCONV decimfmtAffixPatternValueComparator(UHashTok val1, UHashTok val2) {
155     const AffixPatternsForCurrency* affix_1 =
156         (AffixPatternsForCurrency*)val1.pointer;
157     const AffixPatternsForCurrency* affix_2 =
158         (AffixPatternsForCurrency*)val2.pointer;
159     return affix_1->negPrefixPatternForCurrency ==
160            affix_2->negPrefixPatternForCurrency &&
161            affix_1->negSuffixPatternForCurrency ==
162            affix_2->negSuffixPatternForCurrency &&
163            affix_1->posPrefixPatternForCurrency ==
164            affix_2->posPrefixPatternForCurrency &&
165            affix_1->posSuffixPatternForCurrency ==
166            affix_2->posSuffixPatternForCurrency &&
167            affix_1->patternType == affix_2->patternType;
168 }
169 
170 U_CDECL_END
171 
172 
173 //#define FMT_DEBUG
174 
175 #ifdef FMT_DEBUG
176 #include <stdio.h>
debugout(UnicodeString s)177 static void debugout(UnicodeString s) {
178     char buf[2000];
179     s.extract((int32_t) 0, s.length(), buf);
180     printf("%s\n", buf);
181 }
182 #define debug(x) printf("%s\n", x);
183 #else
184 #define debugout(x)
185 #define debug(x)
186 #endif
187 
188 
189 
190 // *****************************************************************************
191 // class DecimalFormat
192 // *****************************************************************************
193 
194 UOBJECT_DEFINE_RTTI_IMPLEMENTATION(DecimalFormat)
195 
196 // Constants for characters used in programmatic (unlocalized) patterns.
197 #define kPatternZeroDigit            ((UChar)0x0030) /*'0'*/
198 #define kPatternSignificantDigit     ((UChar)0x0040) /*'@'*/
199 #define kPatternGroupingSeparator    ((UChar)0x002C) /*','*/
200 #define kPatternDecimalSeparator     ((UChar)0x002E) /*'.'*/
201 #define kPatternPerMill              ((UChar)0x2030)
202 #define kPatternPercent              ((UChar)0x0025) /*'%'*/
203 #define kPatternDigit                ((UChar)0x0023) /*'#'*/
204 #define kPatternSeparator            ((UChar)0x003B) /*';'*/
205 #define kPatternExponent             ((UChar)0x0045) /*'E'*/
206 #define kPatternPlus                 ((UChar)0x002B) /*'+'*/
207 #define kPatternMinus                ((UChar)0x002D) /*'-'*/
208 #define kPatternPadEscape            ((UChar)0x002A) /*'*'*/
209 #define kQuote                       ((UChar)0x0027) /*'\''*/
210 /**
211  * The CURRENCY_SIGN is the standard Unicode symbol for currency.  It
212  * is used in patterns and substitued with either the currency symbol,
213  * or if it is doubled, with the international currency symbol.  If the
214  * CURRENCY_SIGN is seen in a pattern, then the decimal separator is
215  * replaced with the monetary decimal separator.
216  */
217 #define kCurrencySign                ((UChar)0x00A4)
218 #define kDefaultPad                  ((UChar)0x0020) /* */
219 
220 const int32_t DecimalFormat::kDoubleIntegerDigits  = 309;
221 const int32_t DecimalFormat::kDoubleFractionDigits = 340;
222 
223 const int32_t DecimalFormat::kMaxScientificIntegerDigits = 8;
224 
225 /**
226  * These are the tags we expect to see in normal resource bundle files associated
227  * with a locale.
228  */
229 const char DecimalFormat::fgNumberPatterns[]="NumberPatterns"; // Deprecated - not used
230 static const char fgNumberElements[]="NumberElements";
231 static const char fgLatn[]="latn";
232 static const char fgPatterns[]="patterns";
233 static const char fgDecimalFormat[]="decimalFormat";
234 static const char fgCurrencyFormat[]="currencyFormat";
235 static const UChar fgTripleCurrencySign[] = {0xA4, 0xA4, 0xA4, 0};
236 
_min(int32_t a,int32_t b)237 inline int32_t _min(int32_t a, int32_t b) { return (a<b) ? a : b; }
_max(int32_t a,int32_t b)238 inline int32_t _max(int32_t a, int32_t b) { return (a<b) ? b : a; }
239 
240 //------------------------------------------------------------------------------
241 // Constructs a DecimalFormat instance in the default locale.
242 
DecimalFormat(UErrorCode & status)243 DecimalFormat::DecimalFormat(UErrorCode& status) {
244     init();
245     UParseError parseError;
246     construct(status, parseError);
247 }
248 
249 //------------------------------------------------------------------------------
250 // Constructs a DecimalFormat instance with the specified number format
251 // pattern in the default locale.
252 
DecimalFormat(const UnicodeString & pattern,UErrorCode & status)253 DecimalFormat::DecimalFormat(const UnicodeString& pattern,
254                              UErrorCode& status) {
255     init();
256     UParseError parseError;
257     construct(status, parseError, &pattern);
258 }
259 
260 //------------------------------------------------------------------------------
261 // Constructs a DecimalFormat instance with the specified number format
262 // pattern and the number format symbols in the default locale.  The
263 // created instance owns the symbols.
264 
DecimalFormat(const UnicodeString & pattern,DecimalFormatSymbols * symbolsToAdopt,UErrorCode & status)265 DecimalFormat::DecimalFormat(const UnicodeString& pattern,
266                              DecimalFormatSymbols* symbolsToAdopt,
267                              UErrorCode& status) {
268     init();
269     UParseError parseError;
270     if (symbolsToAdopt == NULL)
271         status = U_ILLEGAL_ARGUMENT_ERROR;
272     construct(status, parseError, &pattern, symbolsToAdopt);
273 }
274 
DecimalFormat(const UnicodeString & pattern,DecimalFormatSymbols * symbolsToAdopt,UParseError & parseErr,UErrorCode & status)275 DecimalFormat::DecimalFormat(  const UnicodeString& pattern,
276                     DecimalFormatSymbols* symbolsToAdopt,
277                     UParseError& parseErr,
278                     UErrorCode& status) {
279     init();
280     if (symbolsToAdopt == NULL)
281         status = U_ILLEGAL_ARGUMENT_ERROR;
282     construct(status,parseErr, &pattern, symbolsToAdopt);
283 }
284 
285 //------------------------------------------------------------------------------
286 // Constructs a DecimalFormat instance with the specified number format
287 // pattern and the number format symbols in the default locale.  The
288 // created instance owns the clone of the symbols.
289 
DecimalFormat(const UnicodeString & pattern,const DecimalFormatSymbols & symbols,UErrorCode & status)290 DecimalFormat::DecimalFormat(const UnicodeString& pattern,
291                              const DecimalFormatSymbols& symbols,
292                              UErrorCode& status) {
293     init();
294     UParseError parseError;
295     construct(status, parseError, &pattern, new DecimalFormatSymbols(symbols));
296 }
297 
298 //------------------------------------------------------------------------------
299 // Constructs a DecimalFormat instance with the specified number format
300 // pattern, the number format symbols, and the number format style.
301 // The created instance owns the clone of the symbols.
302 
DecimalFormat(const UnicodeString & pattern,DecimalFormatSymbols * symbolsToAdopt,NumberFormat::EStyles style,UErrorCode & status)303 DecimalFormat::DecimalFormat(const UnicodeString& pattern,
304                              DecimalFormatSymbols* symbolsToAdopt,
305                              NumberFormat::EStyles style,
306                              UErrorCode& status) {
307     init();
308     fStyle = style;
309     UParseError parseError;
310     construct(status, parseError, &pattern, symbolsToAdopt);
311 }
312 
313 //-----------------------------------------------------------------------------
314 // Common DecimalFormat initialization.
315 //    Put all fields of an uninitialized object into a known state.
316 //    Common code, shared by all constructors.
317 void
init()318 DecimalFormat::init() {
319     fPosPrefixPattern = 0;
320     fPosSuffixPattern = 0;
321     fNegPrefixPattern = 0;
322     fNegSuffixPattern = 0;
323     fCurrencyChoice = 0;
324     fMultiplier = NULL;
325     fGroupingSize = 0;
326     fGroupingSize2 = 0;
327     fDecimalSeparatorAlwaysShown = FALSE;
328     fSymbols = NULL;
329     fUseSignificantDigits = FALSE;
330     fMinSignificantDigits = 1;
331     fMaxSignificantDigits = 6;
332     fUseExponentialNotation = FALSE;
333     fMinExponentDigits = 0;
334     fExponentSignAlwaysShown = FALSE;
335     fRoundingIncrement = 0;
336     fRoundingMode = kRoundHalfEven;
337     fPad = 0;
338     fFormatWidth = 0;
339     fPadPosition = kPadBeforePrefix;
340     fStyle = NumberFormat::kNumberStyle;
341     fCurrencySignCount = 0;
342     fAffixPatternsForCurrency = NULL;
343     fAffixesForCurrency = NULL;
344     fPluralAffixesForCurrency = NULL;
345     fCurrencyPluralInfo = NULL;
346 }
347 
348 //------------------------------------------------------------------------------
349 // Constructs a DecimalFormat instance with the specified number format
350 // pattern and the number format symbols in the desired locale.  The
351 // created instance owns the symbols.
352 
353 void
construct(UErrorCode & status,UParseError & parseErr,const UnicodeString * pattern,DecimalFormatSymbols * symbolsToAdopt)354 DecimalFormat::construct(UErrorCode&             status,
355                          UParseError&           parseErr,
356                          const UnicodeString*   pattern,
357                          DecimalFormatSymbols*  symbolsToAdopt)
358 {
359     fSymbols = symbolsToAdopt; // Do this BEFORE aborting on status failure!!!
360     fRoundingIncrement = NULL;
361     fRoundingMode = kRoundHalfEven;
362     fPad = kPatternPadEscape;
363     fPadPosition = kPadBeforePrefix;
364     if (U_FAILURE(status))
365         return;
366 
367     fPosPrefixPattern = fPosSuffixPattern = NULL;
368     fNegPrefixPattern = fNegSuffixPattern = NULL;
369     setMultiplier(1);
370     fGroupingSize = 3;
371     fGroupingSize2 = 0;
372     fDecimalSeparatorAlwaysShown = FALSE;
373     fUseExponentialNotation = FALSE;
374     fMinExponentDigits = 0;
375 
376     if (fSymbols == NULL)
377     {
378         fSymbols = new DecimalFormatSymbols(Locale::getDefault(), status);
379         /* test for NULL */
380         if (fSymbols == 0) {
381             status = U_MEMORY_ALLOCATION_ERROR;
382             return;
383         }
384     }
385 
386     UnicodeString str;
387     // Uses the default locale's number format pattern if there isn't
388     // one specified.
389     if (pattern == NULL)
390     {
391         int32_t len = 0;
392         UResourceBundle *resource = ures_open(NULL, Locale::getDefault().getName(), &status);
393 
394         resource = ures_getByKey(resource, fgNumberElements, resource, &status);
395         // TODO : Get the pattern based on the active numbering system for the locale. Right now assumes "latn".
396         resource = ures_getByKey(resource, fgLatn, resource, &status);
397         resource = ures_getByKey(resource, fgPatterns, resource, &status);
398         const UChar *resStr = ures_getStringByKey(resource, fgDecimalFormat, &len, &status);
399         str.setTo(TRUE, resStr, len);
400         pattern = &str;
401         ures_close(resource);
402     }
403 
404     if (U_FAILURE(status))
405     {
406         return;
407     }
408 
409     if (pattern->indexOf((UChar)kCurrencySign) >= 0) {
410         // If it looks like we are going to use a currency pattern
411         // then do the time consuming lookup.
412         setCurrencyForSymbols();
413     } else {
414         setCurrencyInternally(NULL, status);
415     }
416 
417     const UnicodeString* patternUsed;
418     UnicodeString currencyPluralPatternForOther;
419     // apply pattern
420     if (fStyle == NumberFormat::kPluralCurrencyStyle) {
421         fCurrencyPluralInfo = new CurrencyPluralInfo(fSymbols->getLocale(), status);
422         if (U_FAILURE(status)) {
423             return;
424         }
425 
426         // the pattern used in format is not fixed until formatting,
427         // in which, the number is known and
428         // will be used to pick the right pattern based on plural count.
429         // Here, set the pattern as the pattern of plural count == "other".
430         // For most locale, the patterns are probably the same for all
431         // plural count. If not, the right pattern need to be re-applied
432         // during format.
433         fCurrencyPluralInfo->getCurrencyPluralPattern("other", currencyPluralPatternForOther);
434         patternUsed = &currencyPluralPatternForOther;
435         // TODO: not needed?
436         setCurrencyForSymbols();
437 
438     } else {
439         patternUsed = pattern;
440     }
441 
442     if (patternUsed->indexOf(kCurrencySign) != -1) {
443         // initialize for currency, not only for plural format,
444         // but also for mix parsing
445         if (fCurrencyPluralInfo == NULL) {
446            fCurrencyPluralInfo = new CurrencyPluralInfo(fSymbols->getLocale(), status);
447            if (U_FAILURE(status)) {
448                return;
449            }
450         }
451         // need it for mix parsing
452         setupCurrencyAffixPatterns(status);
453         // expanded affixes for plural names
454         if (patternUsed->indexOf(fgTripleCurrencySign) != -1) {
455             setupCurrencyAffixes(*patternUsed, TRUE, TRUE, status);
456         }
457     }
458 
459     applyPatternWithoutExpandAffix(*patternUsed,FALSE, parseErr, status);
460 
461     // expand affixes
462     if (fCurrencySignCount != fgCurrencySignCountInPluralFormat) {
463         expandAffixAdjustWidth(NULL);
464     }
465 
466     // If it was a currency format, apply the appropriate rounding by
467     // resetting the currency. NOTE: this copies fCurrency on top of itself.
468     if (fCurrencySignCount > fgCurrencySignCountZero) {
469         setCurrencyInternally(getCurrency(), status);
470     }
471 }
472 
473 
474 void
setupCurrencyAffixPatterns(UErrorCode & status)475 DecimalFormat::setupCurrencyAffixPatterns(UErrorCode& status) {
476     if (U_FAILURE(status)) {
477         return;
478     }
479     UParseError parseErr;
480     fAffixPatternsForCurrency = initHashForAffixPattern(status);
481     if (U_FAILURE(status)) {
482         return;
483     }
484 
485     // Save the default currency patterns of this locale.
486     // Here, chose onlyApplyPatternWithoutExpandAffix without
487     // expanding the affix patterns into affixes.
488     UnicodeString currencyPattern;
489     UErrorCode error = U_ZERO_ERROR;
490 
491     UResourceBundle *resource = ures_open(NULL, fSymbols->getLocale().getName(), &error);
492     resource = ures_getByKey(resource, fgNumberElements, resource, &error);
493     // TODO : Get the pattern based on the active numbering system for the locale. Right now assumes "latn".
494     resource = ures_getByKey(resource, fgLatn, resource, &error);
495     resource = ures_getByKey(resource, fgPatterns, resource, &error);
496     int32_t patLen = 0;
497     const UChar *patResStr = ures_getStringByKey(resource, fgCurrencyFormat,  &patLen, &error);
498     ures_close(resource);
499 
500     if (U_SUCCESS(error)) {
501         applyPatternWithoutExpandAffix(UnicodeString(patResStr, patLen), false,
502                                        parseErr, status);
503         AffixPatternsForCurrency* affixPtn = new AffixPatternsForCurrency(
504                                                     *fNegPrefixPattern,
505                                                     *fNegSuffixPattern,
506                                                     *fPosPrefixPattern,
507                                                     *fPosSuffixPattern,
508                                                     UCURR_SYMBOL_NAME);
509         fAffixPatternsForCurrency->put("default", affixPtn, status);
510     }
511 
512     // save the unique currency plural patterns of this locale.
513     Hashtable* pluralPtn = fCurrencyPluralInfo->fPluralCountToCurrencyUnitPattern;
514     const UHashElement* element = NULL;
515     int32_t pos = -1;
516     Hashtable pluralPatternSet;
517     while ((element = pluralPtn->nextElement(pos)) != NULL) {
518         const UHashTok valueTok = element->value;
519         const UnicodeString* value = (UnicodeString*)valueTok.pointer;
520         const UHashTok keyTok = element->key;
521         const UnicodeString* key = (UnicodeString*)keyTok.pointer;
522         if (pluralPatternSet.geti(*value) != 1) {
523             pluralPatternSet.puti(*value, 1, status);
524             applyPatternWithoutExpandAffix(*value, false, parseErr, status);
525             AffixPatternsForCurrency* affixPtn = new AffixPatternsForCurrency(
526                                                     *fNegPrefixPattern,
527                                                     *fNegSuffixPattern,
528                                                     *fPosPrefixPattern,
529                                                     *fPosSuffixPattern,
530                                                     UCURR_LONG_NAME);
531             fAffixPatternsForCurrency->put(*key, affixPtn, status);
532         }
533     }
534 }
535 
536 
537 void
setupCurrencyAffixes(const UnicodeString & pattern,UBool setupForCurrentPattern,UBool setupForPluralPattern,UErrorCode & status)538 DecimalFormat::setupCurrencyAffixes(const UnicodeString& pattern,
539                                     UBool setupForCurrentPattern,
540                                     UBool setupForPluralPattern,
541                                     UErrorCode& status) {
542     if (U_FAILURE(status)) {
543         return;
544     }
545     UParseError parseErr;
546     if (setupForCurrentPattern) {
547         if (fAffixesForCurrency) {
548             deleteHashForAffix(fAffixesForCurrency);
549         }
550         fAffixesForCurrency = initHashForAffix(status);
551         if (U_SUCCESS(status)) {
552             applyPatternWithoutExpandAffix(pattern, false, parseErr, status);
553             const PluralRules* pluralRules = fCurrencyPluralInfo->getPluralRules();
554             StringEnumeration* keywords = pluralRules->getKeywords(status);
555             if (U_SUCCESS(status)) {
556                 const char* pluralCountCh;
557                 while ((pluralCountCh = keywords->next(NULL, status)) != NULL) {
558                     if ( U_SUCCESS(status) ) {
559                         UnicodeString pluralCount = UnicodeString(pluralCountCh);
560                         expandAffixAdjustWidth(&pluralCount);
561                         AffixesForCurrency* affix = new AffixesForCurrency(
562                             fNegativePrefix, fNegativeSuffix, fPositivePrefix, fPositiveSuffix);
563                         fAffixesForCurrency->put(pluralCount, affix, status);
564                     }
565                 }
566             }
567             delete keywords;
568         }
569     }
570 
571     if (U_FAILURE(status)) {
572         return;
573     }
574 
575     if (setupForPluralPattern) {
576         if (fPluralAffixesForCurrency) {
577             deleteHashForAffix(fPluralAffixesForCurrency);
578         }
579         fPluralAffixesForCurrency = initHashForAffix(status);
580         if (U_SUCCESS(status)) {
581             const PluralRules* pluralRules = fCurrencyPluralInfo->getPluralRules();
582             StringEnumeration* keywords = pluralRules->getKeywords(status);
583             if (U_SUCCESS(status)) {
584                 const char* pluralCountCh;
585                 while ((pluralCountCh = keywords->next(NULL, status)) != NULL) {
586                     if ( U_SUCCESS(status) ) {
587                         UnicodeString pluralCount = UnicodeString(pluralCountCh);
588                         UnicodeString ptn;
589                         fCurrencyPluralInfo->getCurrencyPluralPattern(pluralCount, ptn);
590                         applyPatternInternally(pluralCount, ptn, false, parseErr, status);
591                         AffixesForCurrency* affix = new AffixesForCurrency(
592                             fNegativePrefix, fNegativeSuffix, fPositivePrefix, fPositiveSuffix);
593                         fPluralAffixesForCurrency->put(pluralCount, affix, status);
594                     }
595                 }
596             }
597             delete keywords;
598         }
599     }
600 }
601 
602 
603 //------------------------------------------------------------------------------
604 
~DecimalFormat()605 DecimalFormat::~DecimalFormat()
606 {
607     delete fPosPrefixPattern;
608     delete fPosSuffixPattern;
609     delete fNegPrefixPattern;
610     delete fNegSuffixPattern;
611     delete fCurrencyChoice;
612     delete fMultiplier;
613     delete fSymbols;
614     delete fRoundingIncrement;
615     deleteHashForAffixPattern();
616     deleteHashForAffix(fAffixesForCurrency);
617     deleteHashForAffix(fPluralAffixesForCurrency);
618     delete fCurrencyPluralInfo;
619 }
620 
621 //------------------------------------------------------------------------------
622 // copy constructor
623 
DecimalFormat(const DecimalFormat & source)624 DecimalFormat::DecimalFormat(const DecimalFormat &source) :
625     NumberFormat(source) {
626     init();
627     *this = source;
628 }
629 
630 //------------------------------------------------------------------------------
631 // assignment operator
632 
_copy_us_ptr(UnicodeString ** pdest,const UnicodeString * source)633 static void _copy_us_ptr(UnicodeString** pdest, const UnicodeString* source) {
634     if (source == NULL) {
635         delete *pdest;
636         *pdest = NULL;
637     } else if (*pdest == NULL) {
638         *pdest = new UnicodeString(*source);
639     } else {
640         **pdest  = *source;
641     }
642 }
643 
644 DecimalFormat&
operator =(const DecimalFormat & rhs)645 DecimalFormat::operator=(const DecimalFormat& rhs)
646 {
647     if(this != &rhs) {
648         NumberFormat::operator=(rhs);
649         fPositivePrefix = rhs.fPositivePrefix;
650         fPositiveSuffix = rhs.fPositiveSuffix;
651         fNegativePrefix = rhs.fNegativePrefix;
652         fNegativeSuffix = rhs.fNegativeSuffix;
653         _copy_us_ptr(&fPosPrefixPattern, rhs.fPosPrefixPattern);
654         _copy_us_ptr(&fPosSuffixPattern, rhs.fPosSuffixPattern);
655         _copy_us_ptr(&fNegPrefixPattern, rhs.fNegPrefixPattern);
656         _copy_us_ptr(&fNegSuffixPattern, rhs.fNegSuffixPattern);
657         if (rhs.fCurrencyChoice == 0) {
658             delete fCurrencyChoice;
659             fCurrencyChoice = 0;
660         } else {
661             fCurrencyChoice = (ChoiceFormat*) rhs.fCurrencyChoice->clone();
662         }
663         setRoundingIncrement(rhs.getRoundingIncrement());
664         fRoundingMode = rhs.fRoundingMode;
665         setMultiplier(rhs.getMultiplier());
666         fGroupingSize = rhs.fGroupingSize;
667         fGroupingSize2 = rhs.fGroupingSize2;
668         fDecimalSeparatorAlwaysShown = rhs.fDecimalSeparatorAlwaysShown;
669         if(fSymbols == NULL) {
670             fSymbols = new DecimalFormatSymbols(*rhs.fSymbols);
671         } else {
672             *fSymbols = *rhs.fSymbols;
673         }
674         fUseExponentialNotation = rhs.fUseExponentialNotation;
675         fExponentSignAlwaysShown = rhs.fExponentSignAlwaysShown;
676         /*Bertrand A. D. Update 98.03.17*/
677         fCurrencySignCount = rhs.fCurrencySignCount;
678         /*end of Update*/
679         fMinExponentDigits = rhs.fMinExponentDigits;
680 
681         /* sfb 990629 */
682         fFormatWidth = rhs.fFormatWidth;
683         fPad = rhs.fPad;
684         fPadPosition = rhs.fPadPosition;
685         /* end sfb */
686         fMinSignificantDigits = rhs.fMinSignificantDigits;
687         fMaxSignificantDigits = rhs.fMaxSignificantDigits;
688         fUseSignificantDigits = rhs.fUseSignificantDigits;
689         fFormatPattern = rhs.fFormatPattern;
690         fStyle = rhs.fStyle;
691         fCurrencySignCount = rhs.fCurrencySignCount;
692         if (rhs.fCurrencyPluralInfo) {
693             delete fCurrencyPluralInfo;
694             fCurrencyPluralInfo = rhs.fCurrencyPluralInfo->clone();
695         }
696         if (rhs.fAffixPatternsForCurrency) {
697             UErrorCode status = U_ZERO_ERROR;
698             deleteHashForAffixPattern();
699             fAffixPatternsForCurrency = initHashForAffixPattern(status);
700             copyHashForAffixPattern(rhs.fAffixPatternsForCurrency,
701                                     fAffixPatternsForCurrency, status);
702         }
703         if (rhs.fAffixesForCurrency) {
704             UErrorCode status = U_ZERO_ERROR;
705             deleteHashForAffix(fAffixesForCurrency);
706             fAffixesForCurrency = initHashForAffixPattern(status);
707             copyHashForAffix(rhs.fAffixesForCurrency, fAffixesForCurrency, status);
708         }
709         if (rhs.fPluralAffixesForCurrency) {
710             UErrorCode status = U_ZERO_ERROR;
711             deleteHashForAffix(fPluralAffixesForCurrency);
712             fPluralAffixesForCurrency = initHashForAffixPattern(status);
713             copyHashForAffix(rhs.fPluralAffixesForCurrency, fPluralAffixesForCurrency, status);
714         }
715     }
716     return *this;
717 }
718 
719 //------------------------------------------------------------------------------
720 
721 UBool
operator ==(const Format & that) const722 DecimalFormat::operator==(const Format& that) const
723 {
724     if (this == &that)
725         return TRUE;
726 
727     // NumberFormat::operator== guarantees this cast is safe
728     const DecimalFormat* other = (DecimalFormat*)&that;
729 
730 #ifdef FMT_DEBUG
731     // This code makes it easy to determine why two format objects that should
732     // be equal aren't.
733     UBool first = TRUE;
734     if (!NumberFormat::operator==(that)) {
735         if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
736         debug("NumberFormat::!=");
737     } else {
738     if (!((fPosPrefixPattern == other->fPosPrefixPattern && // both null
739               fPositivePrefix == other->fPositivePrefix)
740            || (fPosPrefixPattern != 0 && other->fPosPrefixPattern != 0 &&
741                *fPosPrefixPattern  == *other->fPosPrefixPattern))) {
742         if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
743         debug("Pos Prefix !=");
744     }
745     if (!((fPosSuffixPattern == other->fPosSuffixPattern && // both null
746            fPositiveSuffix == other->fPositiveSuffix)
747           || (fPosSuffixPattern != 0 && other->fPosSuffixPattern != 0 &&
748               *fPosSuffixPattern  == *other->fPosSuffixPattern))) {
749         if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
750         debug("Pos Suffix !=");
751     }
752     if (!((fNegPrefixPattern == other->fNegPrefixPattern && // both null
753            fNegativePrefix == other->fNegativePrefix)
754           || (fNegPrefixPattern != 0 && other->fNegPrefixPattern != 0 &&
755               *fNegPrefixPattern  == *other->fNegPrefixPattern))) {
756         if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
757         debug("Neg Prefix ");
758         if (fNegPrefixPattern == NULL) {
759             debug("NULL(");
760             debugout(fNegativePrefix);
761             debug(")");
762         } else {
763             debugout(*fNegPrefixPattern);
764         }
765         debug(" != ");
766         if (other->fNegPrefixPattern == NULL) {
767             debug("NULL(");
768             debugout(other->fNegativePrefix);
769             debug(")");
770         } else {
771             debugout(*other->fNegPrefixPattern);
772         }
773     }
774     if (!((fNegSuffixPattern == other->fNegSuffixPattern && // both null
775            fNegativeSuffix == other->fNegativeSuffix)
776           || (fNegSuffixPattern != 0 && other->fNegSuffixPattern != 0 &&
777               *fNegSuffixPattern  == *other->fNegSuffixPattern))) {
778         if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
779         debug("Neg Suffix ");
780         if (fNegSuffixPattern == NULL) {
781             debug("NULL(");
782             debugout(fNegativeSuffix);
783             debug(")");
784         } else {
785             debugout(*fNegSuffixPattern);
786         }
787         debug(" != ");
788         if (other->fNegSuffixPattern == NULL) {
789             debug("NULL(");
790             debugout(other->fNegativeSuffix);
791             debug(")");
792         } else {
793             debugout(*other->fNegSuffixPattern);
794         }
795     }
796     if (!((fRoundingIncrement == other->fRoundingIncrement) // both null
797           || (fRoundingIncrement != NULL &&
798               other->fRoundingIncrement != NULL &&
799               *fRoundingIncrement == *other->fRoundingIncrement))) {
800         if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
801         debug("Rounding Increment !=");
802               }
803     if (getMultiplier() != other->getMultiplier()) {
804         if (first) { printf("[ "); first = FALSE; }
805         printf("Multiplier %ld != %ld", getMultiplier(), other->getMultiplier());
806     }
807     if (fGroupingSize != other->fGroupingSize) {
808         if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
809         printf("Grouping Size %ld != %ld", fGroupingSize, other->fGroupingSize);
810     }
811     if (fGroupingSize2 != other->fGroupingSize2) {
812         if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
813         printf("Secondary Grouping Size %ld != %ld", fGroupingSize2, other->fGroupingSize2);
814     }
815     if (fDecimalSeparatorAlwaysShown != other->fDecimalSeparatorAlwaysShown) {
816         if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
817         printf("Dec Sep Always %d != %d", fDecimalSeparatorAlwaysShown, other->fDecimalSeparatorAlwaysShown);
818     }
819     if (fUseExponentialNotation != other->fUseExponentialNotation) {
820         if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
821         debug("Use Exp !=");
822     }
823     if (!(!fUseExponentialNotation ||
824           fMinExponentDigits != other->fMinExponentDigits)) {
825         if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
826         debug("Exp Digits !=");
827     }
828     if (*fSymbols != *(other->fSymbols)) {
829         if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
830         debug("Symbols !=");
831     }
832     // TODO Add debug stuff for significant digits here
833     if (fUseSignificantDigits != other->fUseSignificantDigits) {
834         debug("fUseSignificantDigits !=");
835     }
836     if (fUseSignificantDigits &&
837         fMinSignificantDigits != other->fMinSignificantDigits) {
838         debug("fMinSignificantDigits !=");
839     }
840     if (fUseSignificantDigits &&
841         fMaxSignificantDigits != other->fMaxSignificantDigits) {
842         debug("fMaxSignificantDigits !=");
843     }
844 
845     if (!first) { printf(" ]"); }
846     if (fCurrencySignCount != other->fCurrencySignCount) {
847         debug("fCurrencySignCount !=");
848     }
849     if (fCurrencyPluralInfo == other->fCurrencyPluralInfo) {
850         debug("fCurrencyPluralInfo == ");
851         if (fCurrencyPluralInfo == NULL) {
852             debug("fCurrencyPluralInfo == NULL");
853         }
854     }
855     if (fCurrencyPluralInfo != NULL && other->fCurrencyPluralInfo != NULL &&
856          *fCurrencyPluralInfo != *(other->fCurrencyPluralInfo)) {
857         debug("fCurrencyPluralInfo !=");
858     }
859     if (fCurrencyPluralInfo != NULL && other->fCurrencyPluralInfo == NULL ||
860         fCurrencyPluralInfo == NULL && other->fCurrencyPluralInfo != NULL) {
861         debug("fCurrencyPluralInfo one NULL, the other not");
862     }
863     if (fCurrencyPluralInfo == NULL && other->fCurrencyPluralInfo == NULL) {
864         debug("fCurrencyPluralInfo == ");
865     }
866     }
867 #endif
868 
869     return (NumberFormat::operator==(that) &&
870             ((fCurrencySignCount == fgCurrencySignCountInPluralFormat) ?
871             (fAffixPatternsForCurrency->equals(*other->fAffixPatternsForCurrency)) :
872             (((fPosPrefixPattern == other->fPosPrefixPattern && // both null
873               fPositivePrefix == other->fPositivePrefix)
874              || (fPosPrefixPattern != 0 && other->fPosPrefixPattern != 0 &&
875                  *fPosPrefixPattern  == *other->fPosPrefixPattern)) &&
876             ((fPosSuffixPattern == other->fPosSuffixPattern && // both null
877               fPositiveSuffix == other->fPositiveSuffix)
878              || (fPosSuffixPattern != 0 && other->fPosSuffixPattern != 0 &&
879                  *fPosSuffixPattern  == *other->fPosSuffixPattern)) &&
880             ((fNegPrefixPattern == other->fNegPrefixPattern && // both null
881               fNegativePrefix == other->fNegativePrefix)
882              || (fNegPrefixPattern != 0 && other->fNegPrefixPattern != 0 &&
883                  *fNegPrefixPattern  == *other->fNegPrefixPattern)) &&
884             ((fNegSuffixPattern == other->fNegSuffixPattern && // both null
885               fNegativeSuffix == other->fNegativeSuffix)
886              || (fNegSuffixPattern != 0 && other->fNegSuffixPattern != 0 &&
887                  *fNegSuffixPattern  == *other->fNegSuffixPattern)))) &&
888             ((fRoundingIncrement == other->fRoundingIncrement) // both null
889              || (fRoundingIncrement != NULL &&
890                  other->fRoundingIncrement != NULL &&
891                  *fRoundingIncrement == *other->fRoundingIncrement)) &&
892         getMultiplier() == other->getMultiplier() &&
893         fGroupingSize == other->fGroupingSize &&
894         fGroupingSize2 == other->fGroupingSize2 &&
895         fDecimalSeparatorAlwaysShown == other->fDecimalSeparatorAlwaysShown &&
896         fUseExponentialNotation == other->fUseExponentialNotation &&
897         (!fUseExponentialNotation ||
898          fMinExponentDigits == other->fMinExponentDigits) &&
899         *fSymbols == *(other->fSymbols) &&
900         fUseSignificantDigits == other->fUseSignificantDigits &&
901         (!fUseSignificantDigits ||
902          (fMinSignificantDigits == other->fMinSignificantDigits &&
903           fMaxSignificantDigits == other->fMaxSignificantDigits)) &&
904         fCurrencySignCount == other->fCurrencySignCount &&
905         ((fCurrencyPluralInfo == other->fCurrencyPluralInfo &&
906           fCurrencyPluralInfo == NULL) ||
907          (fCurrencyPluralInfo != NULL && other->fCurrencyPluralInfo != NULL &&
908          *fCurrencyPluralInfo == *(other->fCurrencyPluralInfo))));
909 }
910 
911 //------------------------------------------------------------------------------
912 
913 Format*
clone() const914 DecimalFormat::clone() const
915 {
916     return new DecimalFormat(*this);
917 }
918 
919 //------------------------------------------------------------------------------
920 
921 UnicodeString&
format(int32_t number,UnicodeString & appendTo,FieldPosition & fieldPosition) const922 DecimalFormat::format(int32_t number,
923                       UnicodeString& appendTo,
924                       FieldPosition& fieldPosition) const
925 {
926     return format((int64_t)number, appendTo, fieldPosition);
927 }
928 
929 UnicodeString&
format(int32_t number,UnicodeString & appendTo,FieldPositionIterator * posIter,UErrorCode & status) const930 DecimalFormat::format(int32_t number,
931                       UnicodeString& appendTo,
932                       FieldPositionIterator* posIter,
933                       UErrorCode& status) const
934 {
935     return format((int64_t)number, appendTo, posIter, status);
936 }
937 
938 //------------------------------------------------------------------------------
939 
940 UnicodeString&
format(int64_t number,UnicodeString & appendTo,FieldPosition & fieldPosition) const941 DecimalFormat::format(int64_t number,
942                       UnicodeString& appendTo,
943                       FieldPosition& fieldPosition) const
944 {
945     FieldPositionOnlyHandler handler(fieldPosition);
946     return _format(number, appendTo, handler);
947 }
948 
949 UnicodeString&
format(int64_t number,UnicodeString & appendTo,FieldPositionIterator * posIter,UErrorCode & status) const950 DecimalFormat::format(int64_t number,
951                       UnicodeString& appendTo,
952                       FieldPositionIterator* posIter,
953                       UErrorCode& status) const
954 {
955     FieldPositionIteratorHandler handler(posIter, status);
956     return _format(number, appendTo, handler);
957 }
958 
959 UnicodeString&
_format(int64_t number,UnicodeString & appendTo,FieldPositionHandler & handler) const960 DecimalFormat::_format(int64_t number,
961                        UnicodeString& appendTo,
962                        FieldPositionHandler& handler) const
963 {
964     UErrorCode status = U_ZERO_ERROR;
965     DigitList digits;
966     digits.set(number);
967     return _format(digits, appendTo, handler, status);
968 }
969 
970 //------------------------------------------------------------------------------
971 
972 UnicodeString&
format(double number,UnicodeString & appendTo,FieldPosition & fieldPosition) const973 DecimalFormat::format(  double number,
974                         UnicodeString& appendTo,
975                         FieldPosition& fieldPosition) const
976 {
977     FieldPositionOnlyHandler handler(fieldPosition);
978     return _format(number, appendTo, handler);
979 }
980 
981 UnicodeString&
format(double number,UnicodeString & appendTo,FieldPositionIterator * posIter,UErrorCode & status) const982 DecimalFormat::format(  double number,
983                         UnicodeString& appendTo,
984                         FieldPositionIterator* posIter,
985                         UErrorCode& status) const
986 {
987   FieldPositionIteratorHandler handler(posIter, status);
988   return _format(number, appendTo, handler);
989 }
990 
991 UnicodeString&
_format(double number,UnicodeString & appendTo,FieldPositionHandler & handler) const992 DecimalFormat::_format( double number,
993                         UnicodeString& appendTo,
994                         FieldPositionHandler& handler) const
995 {
996     // Special case for NaN, sets the begin and end index to be the
997     // the string length of localized name of NaN.
998     // TODO:  let NaNs go through DigitList.
999     if (uprv_isNaN(number))
1000     {
1001         int begin = appendTo.length();
1002         appendTo += getConstSymbol(DecimalFormatSymbols::kNaNSymbol);
1003 
1004         handler.addAttribute(kIntegerField, begin, appendTo.length());
1005 
1006         addPadding(appendTo, handler, 0, 0);
1007         return appendTo;
1008     }
1009 
1010     UErrorCode status = U_ZERO_ERROR;
1011     DigitList digits;
1012     digits.set(number);
1013     _format(digits, appendTo, handler, status);
1014     // No way to return status from here.
1015     return appendTo;
1016 }
1017 
1018 //------------------------------------------------------------------------------
1019 
1020 
1021 UnicodeString&
format(const StringPiece & number,UnicodeString & toAppendTo,FieldPositionIterator * posIter,UErrorCode & status) const1022 DecimalFormat::format(const StringPiece &number,
1023                       UnicodeString &toAppendTo,
1024                       FieldPositionIterator *posIter,
1025                       UErrorCode &status) const
1026 {
1027     DigitList   dnum;
1028     dnum.set(number, status);
1029     if (U_FAILURE(status)) {
1030         return toAppendTo;
1031     }
1032     FieldPositionIteratorHandler handler(posIter, status);
1033     _format(dnum, toAppendTo, handler, status);
1034     return toAppendTo;
1035 }
1036 
1037 
1038 UnicodeString&
format(const DigitList & number,UnicodeString & appendTo,FieldPositionIterator * posIter,UErrorCode & status) const1039 DecimalFormat::format(const DigitList &number,
1040                       UnicodeString &appendTo,
1041                       FieldPositionIterator *posIter,
1042                       UErrorCode &status) const {
1043     FieldPositionIteratorHandler handler(posIter, status);
1044     _format(number, appendTo, handler, status);
1045     return appendTo;
1046 }
1047 
1048 
1049 
1050 UnicodeString&
format(const DigitList & number,UnicodeString & appendTo,FieldPosition & pos,UErrorCode & status) const1051 DecimalFormat::format(const DigitList &number,
1052                      UnicodeString& appendTo,
1053                      FieldPosition& pos,
1054                      UErrorCode &status) const {
1055     FieldPositionOnlyHandler handler(pos);
1056     _format(number, appendTo, handler, status);
1057     return appendTo;
1058 }
1059 
1060 
1061 
1062 UnicodeString&
_format(const DigitList & number,UnicodeString & appendTo,FieldPositionHandler & handler,UErrorCode & status) const1063 DecimalFormat::_format(const DigitList &number,
1064                         UnicodeString& appendTo,
1065                         FieldPositionHandler& handler,
1066                         UErrorCode &status) const
1067 {
1068     // Special case for NaN, sets the begin and end index to be the
1069     // the string length of localized name of NaN.
1070     if (number.isNaN())
1071     {
1072         int begin = appendTo.length();
1073         appendTo += getConstSymbol(DecimalFormatSymbols::kNaNSymbol);
1074 
1075         handler.addAttribute(kIntegerField, begin, appendTo.length());
1076 
1077         addPadding(appendTo, handler, 0, 0);
1078         return appendTo;
1079     }
1080 
1081     // Do this BEFORE checking to see if value is infinite or negative! Sets the
1082     // begin and end index to be length of the string composed of
1083     // localized name of Infinite and the positive/negative localized
1084     // signs.
1085 
1086     DigitList adjustedNum(number);  // Copy, so we do not alter the original.
1087     adjustedNum.setRoundingMode(fRoundingMode);
1088     if (fMultiplier != NULL) {
1089         adjustedNum.mult(*fMultiplier, status);
1090     }
1091 
1092     /*
1093      * Note: sign is important for zero as well as non-zero numbers.
1094      * Proper detection of -0.0 is needed to deal with the
1095      * issues raised by bugs 4106658, 4106667, and 4147706.  Liu 7/6/98.
1096      */
1097     UBool isNegative = !adjustedNum.isPositive();
1098 
1099     // Apply rounding after multiplier
1100     if (fRoundingIncrement != NULL) {
1101         adjustedNum.div(*fRoundingIncrement, status);
1102         adjustedNum.toIntegralValue();
1103         adjustedNum.mult(*fRoundingIncrement, status);
1104         adjustedNum.trim();
1105     }
1106 
1107     // Special case for INFINITE,
1108     if (adjustedNum.isInfinite()) {
1109         int32_t prefixLen = appendAffix(appendTo, adjustedNum.getDouble(), handler, isNegative, TRUE);
1110 
1111         int begin = appendTo.length();
1112         appendTo += getConstSymbol(DecimalFormatSymbols::kInfinitySymbol);
1113 
1114         handler.addAttribute(kIntegerField, begin, appendTo.length());
1115 
1116         int32_t suffixLen = appendAffix(appendTo, adjustedNum.getDouble(), handler, isNegative, FALSE);
1117 
1118         addPadding(appendTo, handler, prefixLen, suffixLen);
1119         return appendTo;
1120     }
1121 
1122     if (fUseExponentialNotation || areSignificantDigitsUsed()) {
1123         int32_t sigDigits = precision();
1124         if (sigDigits > 0) {
1125             adjustedNum.round(sigDigits);
1126         }
1127     } else {
1128         // Fixed point format.  Round to a set number of fraction digits.
1129         int32_t numFractionDigits = precision();
1130         adjustedNum.roundFixedPoint(numFractionDigits);
1131     }
1132 
1133     return subformat(appendTo, handler, adjustedNum, FALSE);
1134 }
1135 
1136 
1137 UnicodeString&
format(const Formattable & obj,UnicodeString & appendTo,FieldPosition & fieldPosition,UErrorCode & status) const1138 DecimalFormat::format(  const Formattable& obj,
1139                         UnicodeString& appendTo,
1140                         FieldPosition& fieldPosition,
1141                         UErrorCode& status) const
1142 {
1143     return NumberFormat::format(obj, appendTo, fieldPosition, status);
1144 }
1145 
1146 /**
1147  * Return true if a grouping separator belongs at the given
1148  * position, based on whether grouping is in use and the values of
1149  * the primary and secondary grouping interval.
1150  * @param pos the number of integer digits to the right of
1151  * the current position.  Zero indicates the position after the
1152  * rightmost integer digit.
1153  * @return true if a grouping character belongs at the current
1154  * position.
1155  */
isGroupingPosition(int32_t pos) const1156 UBool DecimalFormat::isGroupingPosition(int32_t pos) const {
1157     UBool result = FALSE;
1158     if (isGroupingUsed() && (pos > 0) && (fGroupingSize > 0)) {
1159         if ((fGroupingSize2 > 0) && (pos > fGroupingSize)) {
1160             result = ((pos - fGroupingSize) % fGroupingSize2) == 0;
1161         } else {
1162             result = pos % fGroupingSize == 0;
1163         }
1164     }
1165     return result;
1166 }
1167 
1168 //------------------------------------------------------------------------------
1169 
1170 /**
1171  * Complete the formatting of a finite number.  On entry, the DigitList must
1172  * be filled in with the correct digits.
1173  */
1174 UnicodeString&
subformat(UnicodeString & appendTo,FieldPositionHandler & handler,DigitList & digits,UBool isInteger) const1175 DecimalFormat::subformat(UnicodeString& appendTo,
1176                          FieldPositionHandler& handler,
1177                          DigitList&     digits,
1178                          UBool          isInteger) const
1179 {
1180     // char zero = '0';
1181     // DigitList returns digits as '0' thru '9', so we will need to
1182     // always need to subtract the character 0 to get the numeric value to use for indexing.
1183 
1184     UChar32 localizedDigits[10];
1185     localizedDigits[0] = getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol).char32At(0);
1186     localizedDigits[1] = getConstSymbol(DecimalFormatSymbols::kOneDigitSymbol).char32At(0);
1187     localizedDigits[2] = getConstSymbol(DecimalFormatSymbols::kTwoDigitSymbol).char32At(0);
1188     localizedDigits[3] = getConstSymbol(DecimalFormatSymbols::kThreeDigitSymbol).char32At(0);
1189     localizedDigits[4] = getConstSymbol(DecimalFormatSymbols::kFourDigitSymbol).char32At(0);
1190     localizedDigits[5] = getConstSymbol(DecimalFormatSymbols::kFiveDigitSymbol).char32At(0);
1191     localizedDigits[6] = getConstSymbol(DecimalFormatSymbols::kSixDigitSymbol).char32At(0);
1192     localizedDigits[7] = getConstSymbol(DecimalFormatSymbols::kSevenDigitSymbol).char32At(0);
1193     localizedDigits[8] = getConstSymbol(DecimalFormatSymbols::kEightDigitSymbol).char32At(0);
1194     localizedDigits[9] = getConstSymbol(DecimalFormatSymbols::kNineDigitSymbol).char32At(0);
1195 
1196     const UnicodeString *grouping ;
1197     if(fCurrencySignCount > fgCurrencySignCountZero) {
1198         grouping = &getConstSymbol(DecimalFormatSymbols::kMonetaryGroupingSeparatorSymbol);
1199     }else{
1200         grouping = &getConstSymbol(DecimalFormatSymbols::kGroupingSeparatorSymbol);
1201     }
1202     const UnicodeString *decimal;
1203     if(fCurrencySignCount > fgCurrencySignCountZero) {
1204         decimal = &getConstSymbol(DecimalFormatSymbols::kMonetarySeparatorSymbol);
1205     } else {
1206         decimal = &getConstSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol);
1207     }
1208     UBool useSigDig = areSignificantDigitsUsed();
1209     int32_t maxIntDig = getMaximumIntegerDigits();
1210     int32_t minIntDig = getMinimumIntegerDigits();
1211 
1212     // Appends the prefix.
1213     double doubleValue = digits.getDouble();
1214     int32_t prefixLen = appendAffix(appendTo, doubleValue, handler, !digits.isPositive(), TRUE);
1215 
1216     if (fUseExponentialNotation)
1217     {
1218         int currentLength = appendTo.length();
1219         int intBegin = currentLength;
1220         int intEnd = -1;
1221         int fracBegin = -1;
1222 
1223         int32_t minFracDig = 0;
1224         if (useSigDig) {
1225             maxIntDig = minIntDig = 1;
1226             minFracDig = getMinimumSignificantDigits() - 1;
1227         } else {
1228             minFracDig = getMinimumFractionDigits();
1229             if (maxIntDig > kMaxScientificIntegerDigits) {
1230                 maxIntDig = 1;
1231                 if (maxIntDig < minIntDig) {
1232                     maxIntDig = minIntDig;
1233                 }
1234             }
1235             if (maxIntDig > minIntDig) {
1236                 minIntDig = 1;
1237             }
1238         }
1239 
1240         // Minimum integer digits are handled in exponential format by
1241         // adjusting the exponent.  For example, 0.01234 with 3 minimum
1242         // integer digits is "123.4E-4".
1243 
1244         // Maximum integer digits are interpreted as indicating the
1245         // repeating range.  This is useful for engineering notation, in
1246         // which the exponent is restricted to a multiple of 3.  For
1247         // example, 0.01234 with 3 maximum integer digits is "12.34e-3".
1248         // If maximum integer digits are defined and are larger than
1249         // minimum integer digits, then minimum integer digits are
1250         // ignored.
1251         digits.reduce();   // Removes trailing zero digits.
1252         int32_t exponent = digits.getDecimalAt();
1253         if (maxIntDig > 1 && maxIntDig != minIntDig) {
1254             // A exponent increment is defined; adjust to it.
1255             exponent = (exponent > 0) ? (exponent - 1) / maxIntDig
1256                                       : (exponent / maxIntDig) - 1;
1257             exponent *= maxIntDig;
1258         } else {
1259             // No exponent increment is defined; use minimum integer digits.
1260             // If none is specified, as in "#E0", generate 1 integer digit.
1261             exponent -= (minIntDig > 0 || minFracDig > 0)
1262                         ? minIntDig : 1;
1263         }
1264 
1265         // We now output a minimum number of digits, and more if there
1266         // are more digits, up to the maximum number of digits.  We
1267         // place the decimal point after the "integer" digits, which
1268         // are the first (decimalAt - exponent) digits.
1269         int32_t minimumDigits =  minIntDig + minFracDig;
1270         // The number of integer digits is handled specially if the number
1271         // is zero, since then there may be no digits.
1272         int32_t integerDigits = digits.isZero() ? minIntDig :
1273             digits.getDecimalAt() - exponent;
1274         int32_t totalDigits = digits.getCount();
1275         if (minimumDigits > totalDigits)
1276             totalDigits = minimumDigits;
1277         if (integerDigits > totalDigits)
1278             totalDigits = integerDigits;
1279 
1280         // totalDigits records total number of digits needs to be processed
1281         int32_t i;
1282         for (i=0; i<totalDigits; ++i)
1283         {
1284             if (i == integerDigits)
1285             {
1286                 intEnd = appendTo.length();
1287                 handler.addAttribute(kIntegerField, intBegin, intEnd);
1288 
1289                 appendTo += *decimal;
1290 
1291                 fracBegin = appendTo.length();
1292                 handler.addAttribute(kDecimalSeparatorField, fracBegin - 1, fracBegin);
1293             }
1294             // Restores the digit character or pads the buffer with zeros.
1295             UChar32 c = (UChar32)((i < digits.getCount()) ?
1296                           localizedDigits[digits.getDigitValue(i)] :
1297                           localizedDigits[0]);
1298             appendTo += c;
1299         }
1300 
1301         currentLength = appendTo.length();
1302 
1303         if (intEnd < 0) {
1304             handler.addAttribute(kIntegerField, intBegin, currentLength);
1305         }
1306         if (fracBegin > 0) {
1307             handler.addAttribute(kFractionField, fracBegin, currentLength);
1308         }
1309 
1310         // The exponent is output using the pattern-specified minimum
1311         // exponent digits.  There is no maximum limit to the exponent
1312         // digits, since truncating the exponent would appendTo in an
1313         // unacceptable inaccuracy.
1314         appendTo += getConstSymbol(DecimalFormatSymbols::kExponentialSymbol);
1315 
1316         handler.addAttribute(kExponentSymbolField, currentLength, appendTo.length());
1317         currentLength = appendTo.length();
1318 
1319         // For zero values, we force the exponent to zero.  We
1320         // must do this here, and not earlier, because the value
1321         // is used to determine integer digit count above.
1322         if (digits.isZero())
1323             exponent = 0;
1324 
1325         if (exponent < 0) {
1326             appendTo += getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol);
1327             handler.addAttribute(kExponentSignField, currentLength, appendTo.length());
1328         } else if (fExponentSignAlwaysShown) {
1329             appendTo += getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol);
1330             handler.addAttribute(kExponentSignField, currentLength, appendTo.length());
1331         }
1332 
1333         currentLength = appendTo.length();
1334 
1335         DigitList expDigits;
1336         expDigits.set(exponent);
1337         {
1338             int expDig = fMinExponentDigits;
1339             if (fUseExponentialNotation && expDig < 1) {
1340                 expDig = 1;
1341             }
1342             for (i=expDigits.getDecimalAt(); i<expDig; ++i)
1343                 appendTo += (localizedDigits[0]);
1344         }
1345         for (i=0; i<expDigits.getDecimalAt(); ++i)
1346         {
1347             UChar32 c = (UChar32)((i < expDigits.getCount()) ?
1348                           localizedDigits[expDigits.getDigitValue(i)] :
1349                           localizedDigits[0]);
1350             appendTo += c;
1351         }
1352 
1353         handler.addAttribute(kExponentField, currentLength, appendTo.length());
1354     }
1355     else  // Not using exponential notation
1356     {
1357         int currentLength = appendTo.length();
1358         int intBegin = currentLength;
1359 
1360         int32_t sigCount = 0;
1361         int32_t minSigDig = getMinimumSignificantDigits();
1362         int32_t maxSigDig = getMaximumSignificantDigits();
1363         if (!useSigDig) {
1364             minSigDig = 0;
1365             maxSigDig = INT32_MAX;
1366         }
1367 
1368         // Output the integer portion.  Here 'count' is the total
1369         // number of integer digits we will display, including both
1370         // leading zeros required to satisfy getMinimumIntegerDigits,
1371         // and actual digits present in the number.
1372         int32_t count = useSigDig ?
1373             _max(1, digits.getDecimalAt()) : minIntDig;
1374         if (digits.getDecimalAt() > 0 && count < digits.getDecimalAt()) {
1375             count = digits.getDecimalAt();
1376         }
1377 
1378         // Handle the case where getMaximumIntegerDigits() is smaller
1379         // than the real number of integer digits.  If this is so, we
1380         // output the least significant max integer digits.  For example,
1381         // the value 1997 printed with 2 max integer digits is just "97".
1382 
1383         int32_t digitIndex = 0; // Index into digitList.fDigits[]
1384         if (count > maxIntDig && maxIntDig >= 0) {
1385             count = maxIntDig;
1386             digitIndex = digits.getDecimalAt() - count;
1387         }
1388 
1389         int32_t sizeBeforeIntegerPart = appendTo.length();
1390 
1391         int32_t i;
1392         for (i=count-1; i>=0; --i)
1393         {
1394             if (i < digits.getDecimalAt() && digitIndex < digits.getCount() &&
1395                 sigCount < maxSigDig) {
1396                 // Output a real digit
1397                 appendTo += (UChar32)localizedDigits[digits.getDigitValue(digitIndex++)];
1398                 ++sigCount;
1399             }
1400             else
1401             {
1402                 // Output a zero (leading or trailing)
1403                 appendTo += localizedDigits[0];
1404                 if (sigCount > 0) {
1405                     ++sigCount;
1406                 }
1407             }
1408 
1409             // Output grouping separator if necessary.
1410             if (isGroupingPosition(i)) {
1411                 currentLength = appendTo.length();
1412                 appendTo.append(*grouping);
1413                 handler.addAttribute(kGroupingSeparatorField, currentLength, appendTo.length());
1414             }
1415         }
1416 
1417         // TODO(dlf): this looks like it was a bug, we marked the int field as ending
1418         // before the zero was generated.
1419         // Record field information for caller.
1420         // if (fieldPosition.getField() == NumberFormat::kIntegerField)
1421         //     fieldPosition.setEndIndex(appendTo.length());
1422 
1423         // Determine whether or not there are any printable fractional
1424         // digits.  If we've used up the digits we know there aren't.
1425         UBool fractionPresent = (!isInteger && digitIndex < digits.getCount()) ||
1426             (useSigDig ? (sigCount < minSigDig) : (getMinimumFractionDigits() > 0));
1427 
1428         // If there is no fraction present, and we haven't printed any
1429         // integer digits, then print a zero.  Otherwise we won't print
1430         // _any_ digits, and we won't be able to parse this string.
1431         if (!fractionPresent && appendTo.length() == sizeBeforeIntegerPart)
1432             appendTo += localizedDigits[0];
1433 
1434         currentLength = appendTo.length();
1435         handler.addAttribute(kIntegerField, intBegin, currentLength);
1436 
1437         // Output the decimal separator if we always do so.
1438         if (fDecimalSeparatorAlwaysShown || fractionPresent) {
1439             appendTo += *decimal;
1440             handler.addAttribute(kDecimalSeparatorField, currentLength, appendTo.length());
1441             currentLength = appendTo.length();
1442         }
1443 
1444         int fracBegin = currentLength;
1445 
1446         count = useSigDig ? INT32_MAX : getMaximumFractionDigits();
1447         if (useSigDig && (sigCount == maxSigDig ||
1448                           (sigCount >= minSigDig && digitIndex == digits.getCount()))) {
1449             count = 0;
1450         }
1451 
1452         for (i=0; i < count; ++i) {
1453             // Here is where we escape from the loop.  We escape
1454             // if we've output the maximum fraction digits
1455             // (specified in the for expression above).  We also
1456             // stop when we've output the minimum digits and
1457             // either: we have an integer, so there is no
1458             // fractional stuff to display, or we're out of
1459             // significant digits.
1460             if (!useSigDig && i >= getMinimumFractionDigits() &&
1461                 (isInteger || digitIndex >= digits.getCount())) {
1462                 break;
1463             }
1464 
1465             // Output leading fractional zeros.  These are zeros
1466             // that come after the decimal but before any
1467             // significant digits.  These are only output if
1468             // abs(number being formatted) < 1.0.
1469             if (-1-i > (digits.getDecimalAt()-1)) {
1470                 appendTo += localizedDigits[0];
1471                 continue;
1472             }
1473 
1474             // Output a digit, if we have any precision left, or a
1475             // zero if we don't.  We don't want to output noise digits.
1476             if (!isInteger && digitIndex < digits.getCount()) {
1477                 appendTo += (UChar32)localizedDigits[digits.getDigitValue(digitIndex++)];
1478             } else {
1479                 appendTo += localizedDigits[0];
1480             }
1481 
1482             // If we reach the maximum number of significant
1483             // digits, or if we output all the real digits and
1484             // reach the minimum, then we are done.
1485             ++sigCount;
1486             if (useSigDig &&
1487                 (sigCount == maxSigDig ||
1488                  (digitIndex == digits.getCount() && sigCount >= minSigDig))) {
1489                 break;
1490             }
1491         }
1492 
1493         handler.addAttribute(kFractionField, fracBegin, appendTo.length());
1494     }
1495 
1496     int32_t suffixLen = appendAffix(appendTo, doubleValue, handler, !digits.isPositive(), FALSE);
1497 
1498     addPadding(appendTo, handler, prefixLen, suffixLen);
1499     return appendTo;
1500 }
1501 
1502 /**
1503  * Inserts the character fPad as needed to expand result to fFormatWidth.
1504  * @param result the string to be padded
1505  */
addPadding(UnicodeString & appendTo,FieldPositionHandler & handler,int32_t prefixLen,int32_t suffixLen) const1506 void DecimalFormat::addPadding(UnicodeString& appendTo,
1507                                FieldPositionHandler& handler,
1508                                int32_t prefixLen,
1509                                int32_t suffixLen) const
1510 {
1511     if (fFormatWidth > 0) {
1512         int32_t len = fFormatWidth - appendTo.length();
1513         if (len > 0) {
1514             UnicodeString padding;
1515             for (int32_t i=0; i<len; ++i) {
1516                 padding += fPad;
1517             }
1518             switch (fPadPosition) {
1519             case kPadAfterPrefix:
1520                 appendTo.insert(prefixLen, padding);
1521                 break;
1522             case kPadBeforePrefix:
1523                 appendTo.insert(0, padding);
1524                 break;
1525             case kPadBeforeSuffix:
1526                 appendTo.insert(appendTo.length() - suffixLen, padding);
1527                 break;
1528             case kPadAfterSuffix:
1529                 appendTo += padding;
1530                 break;
1531             }
1532             if (fPadPosition == kPadBeforePrefix || fPadPosition == kPadAfterPrefix) {
1533                 handler.shiftLast(len);
1534             }
1535         }
1536     }
1537 }
1538 
1539 //------------------------------------------------------------------------------
1540 
1541 void
parse(const UnicodeString & text,Formattable & result,UErrorCode & status) const1542 DecimalFormat::parse(const UnicodeString& text,
1543                      Formattable& result,
1544                      UErrorCode& status) const
1545 {
1546     NumberFormat::parse(text, result, status);
1547 }
1548 
1549 void
parse(const UnicodeString & text,Formattable & result,ParsePosition & parsePosition) const1550 DecimalFormat::parse(const UnicodeString& text,
1551                      Formattable& result,
1552                      ParsePosition& parsePosition) const {
1553     parse(text, result, parsePosition, FALSE);
1554 }
1555 
parseCurrency(const UnicodeString & text,Formattable & result,ParsePosition & pos) const1556 Formattable& DecimalFormat::parseCurrency(const UnicodeString& text,
1557                                           Formattable& result,
1558                                           ParsePosition& pos) const {
1559     parse(text, result, pos, TRUE);
1560     return result;
1561 }
1562 
1563 /**
1564  * Parses the given text as either a number or a currency amount.
1565  * @param text the string to parse
1566  * @param result output parameter for the result
1567  * @param parsePosition input-output position; on input, the
1568  * position within text to match; must have 0 <= pos.getIndex() <
1569  * text.length(); on output, the position after the last matched
1570  * character. If the parse fails, the position in unchanged upon
1571  * output.
1572  * @param parseCurrency if true, a currency amount is parsed;
1573  * otherwise a Number is parsed
1574  */
parse(const UnicodeString & text,Formattable & result,ParsePosition & parsePosition,UBool parseCurrency) const1575 void DecimalFormat::parse(const UnicodeString& text,
1576                           Formattable& result,
1577                           ParsePosition& parsePosition,
1578                           UBool parseCurrency) const {
1579     int32_t backup;
1580     int32_t i = backup = parsePosition.getIndex();
1581 
1582     // clear any old contents in the result.  In particular, clears any DigitList
1583     //   that it may be holding.
1584     result.setLong(0);
1585 
1586     // Handle NaN as a special case:
1587 
1588     // Skip padding characters, if around prefix
1589     if (fFormatWidth > 0 && (fPadPosition == kPadBeforePrefix ||
1590                              fPadPosition == kPadAfterPrefix)) {
1591         i = skipPadding(text, i);
1592     }
1593     // If the text is composed of the representation of NaN, returns NaN.length
1594     const UnicodeString *nan = &getConstSymbol(DecimalFormatSymbols::kNaNSymbol);
1595     int32_t nanLen = (text.compare(i, nan->length(), *nan)
1596                       ? 0 : nan->length());
1597     if (nanLen) {
1598         i += nanLen;
1599         if (fFormatWidth > 0 && (fPadPosition == kPadBeforeSuffix ||
1600                                  fPadPosition == kPadAfterSuffix)) {
1601             i = skipPadding(text, i);
1602         }
1603         parsePosition.setIndex(i);
1604         result.setDouble(uprv_getNaN());
1605         return;
1606     }
1607 
1608     // NaN parse failed; start over
1609     i = backup;
1610 
1611     // status is used to record whether a number is infinite.
1612     UBool status[fgStatusLength];
1613     UChar curbuf[4];
1614     UChar* currency = parseCurrency ? curbuf : NULL;
1615     DigitList *digits = new DigitList;
1616     if (digits == NULL) {
1617         return;    // no way to report error from here.
1618     }
1619 
1620     if (fCurrencySignCount > fgCurrencySignCountZero) {
1621         if (!parseForCurrency(text, parsePosition, *digits,
1622                               status, currency)) {
1623             delete digits;
1624             return;
1625         }
1626     } else {
1627         if (!subparse(text,
1628                       fNegPrefixPattern, fNegSuffixPattern,
1629                       fPosPrefixPattern, fPosSuffixPattern,
1630                       FALSE, UCURR_SYMBOL_NAME,
1631                       parsePosition, *digits, status, currency)) {
1632             parsePosition.setIndex(backup);
1633             delete digits;
1634             return;
1635         }
1636     }
1637 
1638     // Handle infinity
1639     if (status[fgStatusInfinite]) {
1640         double inf = uprv_getInfinity();
1641         result.setDouble(digits->isPositive() ? inf : -inf);
1642         delete digits;    // TODO:  set the dl to infinity, and let it fall into the code below.
1643     }
1644 
1645     else {
1646 
1647         if (fMultiplier != NULL) {
1648             UErrorCode ec = U_ZERO_ERROR;
1649             digits->div(*fMultiplier, ec);
1650         }
1651 
1652         // Negative zero special case:
1653         //    if parsing integerOnly, change to +0, which goes into an int32 in a Formattable.
1654         //    if not parsing integerOnly, leave as -0, which a double can represent.
1655         if (digits->isZero() && !digits->isPositive() && isParseIntegerOnly()) {
1656             digits->setPositive(TRUE);
1657         }
1658         result.adoptDigitList(digits);
1659     }
1660 
1661     if (parseCurrency) {
1662         UErrorCode ec = U_ZERO_ERROR;
1663         Formattable n(result);
1664         result.adoptObject(new CurrencyAmount(n, curbuf, ec));
1665         U_ASSERT(U_SUCCESS(ec)); // should always succeed
1666     }
1667 }
1668 
1669 
1670 
1671 UBool
parseForCurrency(const UnicodeString & text,ParsePosition & parsePosition,DigitList & digits,UBool * status,UChar * currency) const1672 DecimalFormat::parseForCurrency(const UnicodeString& text,
1673                                 ParsePosition& parsePosition,
1674                                 DigitList& digits,
1675                                 UBool* status,
1676                                 UChar* currency) const {
1677     int origPos = parsePosition.getIndex();
1678     int maxPosIndex = origPos;
1679     int maxErrorPos = -1;
1680     // First, parse against current pattern.
1681     // Since current pattern could be set by applyPattern(),
1682     // it could be an arbitrary pattern, and it may not be the one
1683     // defined in current locale.
1684     UBool tmpStatus[fgStatusLength];
1685     ParsePosition tmpPos(origPos);
1686     DigitList tmpDigitList;
1687     UBool found;
1688     if (fStyle == NumberFormat::kPluralCurrencyStyle) {
1689         found = subparse(text,
1690                          fNegPrefixPattern, fNegSuffixPattern,
1691                          fPosPrefixPattern, fPosSuffixPattern,
1692                          TRUE, UCURR_LONG_NAME,
1693                          tmpPos, tmpDigitList, tmpStatus, currency);
1694     } else {
1695         found = subparse(text,
1696                          fNegPrefixPattern, fNegSuffixPattern,
1697                          fPosPrefixPattern, fPosSuffixPattern,
1698                          TRUE, UCURR_SYMBOL_NAME,
1699                          tmpPos, tmpDigitList, tmpStatus, currency);
1700     }
1701     if (found) {
1702         if (tmpPos.getIndex() > maxPosIndex) {
1703             maxPosIndex = tmpPos.getIndex();
1704             for (int32_t i = 0; i < fgStatusLength; ++i) {
1705                 status[i] = tmpStatus[i];
1706             }
1707             digits = tmpDigitList;
1708         }
1709     } else {
1710         maxErrorPos = tmpPos.getErrorIndex();
1711     }
1712     // Then, parse against affix patterns.
1713     // Those are currency patterns and currency plural patterns.
1714     int32_t pos = -1;
1715     const UHashElement* element = NULL;
1716     while ( (element = fAffixPatternsForCurrency->nextElement(pos)) != NULL ) {
1717         const UHashTok keyTok = element->key;
1718         const UHashTok valueTok = element->value;
1719         const AffixPatternsForCurrency* affixPtn = (AffixPatternsForCurrency*)valueTok.pointer;
1720         UBool tmpStatus[fgStatusLength];
1721         ParsePosition tmpPos(origPos);
1722         DigitList tmpDigitList;
1723         UBool result = subparse(text,
1724                                 &affixPtn->negPrefixPatternForCurrency,
1725                                 &affixPtn->negSuffixPatternForCurrency,
1726                                 &affixPtn->posPrefixPatternForCurrency,
1727                                 &affixPtn->posSuffixPatternForCurrency,
1728                                 TRUE, affixPtn->patternType,
1729                                 tmpPos, tmpDigitList, tmpStatus, currency);
1730         if (result) {
1731             found = true;
1732             if (tmpPos.getIndex() > maxPosIndex) {
1733                 maxPosIndex = tmpPos.getIndex();
1734                 for (int32_t i = 0; i < fgStatusLength; ++i) {
1735                     status[i] = tmpStatus[i];
1736                 }
1737                 digits = tmpDigitList;
1738             }
1739         } else {
1740             maxErrorPos = (tmpPos.getErrorIndex() > maxErrorPos) ?
1741                           tmpPos.getErrorIndex() : maxErrorPos;
1742         }
1743     }
1744     // Finally, parse against simple affix to find the match.
1745     // For example, in TestMonster suite,
1746     // if the to-be-parsed text is "-\u00A40,00".
1747     // complexAffixCompare will not find match,
1748     // since there is no ISO code matches "\u00A4",
1749     // and the parse stops at "\u00A4".
1750     // We will just use simple affix comparison (look for exact match)
1751     // to pass it.
1752     UBool tmpStatus_2[fgStatusLength];
1753     ParsePosition tmpPos_2(origPos);
1754     DigitList tmpDigitList_2;
1755     // set currencySignCount to 0 so that compareAffix function will
1756     // fall to compareSimpleAffix path, not compareComplexAffix path.
1757     // ?? TODO: is it right? need "false"?
1758     UBool result = subparse(text,
1759                             &fNegativePrefix, &fNegativeSuffix,
1760                             &fPositivePrefix, &fPositiveSuffix,
1761                             FALSE, UCURR_SYMBOL_NAME,
1762                             tmpPos_2, tmpDigitList_2, tmpStatus_2,
1763                             currency);
1764     if (result) {
1765         if (tmpPos_2.getIndex() > maxPosIndex) {
1766             maxPosIndex = tmpPos_2.getIndex();
1767             for (int32_t i = 0; i < fgStatusLength; ++i) {
1768                 status[i] = tmpStatus_2[i];
1769             }
1770             digits = tmpDigitList_2;
1771         }
1772         found = true;
1773     } else {
1774             maxErrorPos = (tmpPos_2.getErrorIndex() > maxErrorPos) ?
1775                           tmpPos_2.getErrorIndex() : maxErrorPos;
1776     }
1777 
1778     if (!found) {
1779         //parsePosition.setIndex(origPos);
1780         parsePosition.setErrorIndex(maxErrorPos);
1781     } else {
1782         parsePosition.setIndex(maxPosIndex);
1783         parsePosition.setErrorIndex(-1);
1784     }
1785     return found;
1786 }
1787 
1788 
1789 /**
1790  * Parse the given text into a number.  The text is parsed beginning at
1791  * parsePosition, until an unparseable character is seen.
1792  * @param text the string to parse.
1793  * @param negPrefix negative prefix.
1794  * @param negSuffix negative suffix.
1795  * @param posPrefix positive prefix.
1796  * @param posSuffix positive suffix.
1797  * @param currencyParsing whether it is currency parsing or not.
1798  * @param type the currency type to parse against, LONG_NAME only or not.
1799  * @param parsePosition The position at which to being parsing.  Upon
1800  * return, the first unparsed character.
1801  * @param digits the DigitList to set to the parsed value.
1802  * @param status output param containing boolean status flags indicating
1803  * whether the value was infinite and whether it was positive.
1804  * @param currency return value for parsed currency, for generic
1805  * currency parsing mode, or NULL for normal parsing. In generic
1806  * currency parsing mode, any currency is parsed, not just the
1807  * currency that this formatter is set to.
1808  */
subparse(const UnicodeString & text,const UnicodeString * negPrefix,const UnicodeString * negSuffix,const UnicodeString * posPrefix,const UnicodeString * posSuffix,UBool currencyParsing,int8_t type,ParsePosition & parsePosition,DigitList & digits,UBool * status,UChar * currency) const1809 UBool DecimalFormat::subparse(const UnicodeString& text,
1810                               const UnicodeString* negPrefix,
1811                               const UnicodeString* negSuffix,
1812                               const UnicodeString* posPrefix,
1813                               const UnicodeString* posSuffix,
1814                               UBool currencyParsing,
1815                               int8_t type,
1816                               ParsePosition& parsePosition,
1817                               DigitList& digits, UBool* status,
1818                               UChar* currency) const
1819 {
1820     //  The parsing process builds up the number as char string, in the neutral format that
1821     //  will be acceptable to the decNumber library, then at the end passes that string
1822     //  off for conversion to a decNumber.
1823     UErrorCode err = U_ZERO_ERROR;
1824     CharString parsedNum;
1825     digits.setToZero();
1826 
1827     int32_t position = parsePosition.getIndex();
1828     int32_t oldStart = position;
1829 
1830     // Match padding before prefix
1831     if (fFormatWidth > 0 && fPadPosition == kPadBeforePrefix) {
1832         position = skipPadding(text, position);
1833     }
1834 
1835     // Match positive and negative prefixes; prefer longest match.
1836     int32_t posMatch = compareAffix(text, position, FALSE, TRUE, posPrefix, currencyParsing, type, currency);
1837     int32_t negMatch = compareAffix(text, position, TRUE, TRUE, negPrefix,currencyParsing,  type, currency);
1838     if (posMatch >= 0 && negMatch >= 0) {
1839         if (posMatch > negMatch) {
1840             negMatch = -1;
1841         } else if (negMatch > posMatch) {
1842             posMatch = -1;
1843         }
1844     }
1845     if (posMatch >= 0) {
1846         position += posMatch;
1847         parsedNum.append('+', err);
1848     } else if (negMatch >= 0) {
1849         position += negMatch;
1850         parsedNum.append('-', err);
1851     } else {
1852         parsePosition.setErrorIndex(position);
1853         return FALSE;
1854     }
1855 
1856     // Match padding before prefix
1857     if (fFormatWidth > 0 && fPadPosition == kPadAfterPrefix) {
1858         position = skipPadding(text, position);
1859     }
1860 
1861     // process digits or Inf, find decimal position
1862     const UnicodeString *inf = &getConstSymbol(DecimalFormatSymbols::kInfinitySymbol);
1863     int32_t infLen = (text.compare(position, inf->length(), *inf)
1864         ? 0 : inf->length());
1865     position += infLen; // infLen is non-zero when it does equal to infinity
1866     status[fgStatusInfinite] = (UBool)infLen;
1867     if (infLen) {
1868         parsedNum.append("Infinity", err);
1869     } else {
1870         // We now have a string of digits, possibly with grouping symbols,
1871         // and decimal points.  We want to process these into a DigitList.
1872         // We don't want to put a bunch of leading zeros into the DigitList
1873         // though, so we keep track of the location of the decimal point,
1874         // put only significant digits into the DigitList, and adjust the
1875         // exponent as needed.
1876 
1877         UChar32 zero = getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol).char32At(0);
1878 
1879         const UnicodeString *decimal;
1880         if(fCurrencySignCount > fgCurrencySignCountZero) {
1881             decimal = &getConstSymbol(DecimalFormatSymbols::kMonetarySeparatorSymbol);
1882         } else {
1883             decimal = &getConstSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol);
1884         }
1885         const UnicodeString *grouping = &getConstSymbol(DecimalFormatSymbols::kGroupingSeparatorSymbol);
1886         UBool sawDecimal = FALSE;
1887         UBool sawDigit = FALSE;
1888         int32_t backup = -1;
1889         int32_t digit;
1890         int32_t textLength = text.length(); // One less pointer to follow
1891         int32_t groupingLen = grouping->length();
1892         int32_t decimalLen = decimal->length();
1893 
1894         // We have to track digitCount ourselves, because digits.fCount will
1895         // pin when the maximum allowable digits is reached.
1896         int32_t digitCount = 0;
1897 
1898         for (; position < textLength; )
1899         {
1900             UChar32 ch = text.char32At(position);
1901 
1902             /* We recognize all digit ranges, not only the Latin digit range
1903              * '0'..'9'.  We do so by using the Character.digit() method,
1904              * which converts a valid Unicode digit to the range 0..9.
1905              *
1906              * The character 'ch' may be a digit.  If so, place its value
1907              * from 0 to 9 in 'digit'.  First try using the locale digit,
1908              * which may or MAY NOT be a standard Unicode digit range.  If
1909              * this fails, try using the standard Unicode digit ranges by
1910              * calling Character.digit().  If this also fails, digit will
1911              * have a value outside the range 0..9.
1912              */
1913             digit = ch - zero;
1914             if (digit < 0 || digit > 9)
1915             {
1916                 digit = u_charDigitValue(ch);
1917             }
1918 
1919             // As a last resort, look through the localized digits if the zero digit
1920             // is not a "standard" Unicode digit.
1921             if ( (digit < 0 || digit > 9) && u_charDigitValue(zero) != 0) {
1922                 digit = 0;
1923                 if ( getConstSymbol((DecimalFormatSymbols::ENumberFormatSymbol)(DecimalFormatSymbols::kZeroDigitSymbol)).char32At(0) == ch ) {
1924                     break;
1925                 }
1926                 for (digit = 1 ; digit < 10 ; digit++ ) {
1927                     if ( getConstSymbol((DecimalFormatSymbols::ENumberFormatSymbol)(DecimalFormatSymbols::kOneDigitSymbol+digit-1)).char32At(0) == ch ) {
1928                         break;
1929                     }
1930                 }
1931             }
1932 
1933             if (digit >= 0 && digit <= 9)
1934             {
1935                 // Cancel out backup setting (see grouping handler below)
1936                 backup = -1;
1937 
1938                 sawDigit = TRUE;
1939                 // output a regular non-zero digit.
1940                 ++digitCount;
1941                 parsedNum.append((char)(digit + '0'), err);
1942                 position += U16_LENGTH(ch);
1943             }
1944             else if (groupingLen > 0 && !text.compare(position, groupingLen, *grouping) && isGroupingUsed())
1945             {
1946                 // Ignore grouping characters, if we are using them, but require
1947                 // that they be followed by a digit.  Otherwise we backup and
1948                 // reprocess them.
1949                 backup = position;
1950                 position += groupingLen;
1951             }
1952             else if (!text.compare(position, decimalLen, *decimal) && !isParseIntegerOnly() && !sawDecimal)
1953             {
1954                 // If we're only parsing integers, or if we ALREADY saw the
1955                 // decimal, then don't parse this one.
1956 
1957                 parsedNum.append('.', err);
1958                 sawDecimal = TRUE;
1959                 position += decimalLen;
1960             }
1961             else {
1962                 const UnicodeString *tmp;
1963                 tmp = &getConstSymbol(DecimalFormatSymbols::kExponentialSymbol);
1964                 if (!text.compare(position, tmp->length(), *tmp))    // error code is set below if !sawDigit
1965                 {
1966                     // Parse sign, if present
1967                     int32_t pos = position + tmp->length();
1968                     char exponentSign = '+';
1969 
1970                     if (pos < textLength)
1971                     {
1972                         tmp = &getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol);
1973                         if (!text.compare(pos, tmp->length(), *tmp))
1974                         {
1975                             pos += tmp->length();
1976                         }
1977                         else {
1978                             tmp = &getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol);
1979                             if (!text.compare(pos, tmp->length(), *tmp))
1980                             {
1981                                 exponentSign = '-';
1982                                 pos += tmp->length();
1983                             }
1984                         }
1985                     }
1986 
1987                     UBool sawExponentDigit = FALSE;
1988                     while (pos < textLength) {
1989                         ch = text[(int32_t)pos];
1990                         digit = ch - zero;
1991 
1992                         if (digit < 0 || digit > 9) {
1993                             digit = u_charDigitValue(ch);
1994                         }
1995                         if (0 <= digit && digit <= 9) {
1996                             if (!sawExponentDigit) {
1997                                 parsedNum.append('E', err);
1998                                 parsedNum.append(exponentSign, err);
1999                                 sawExponentDigit = TRUE;
2000                             }
2001                             ++pos;
2002                             parsedNum.append((char)(digit + '0'), err);
2003                         } else {
2004                             break;
2005                         }
2006                     }
2007 
2008                     if (sawExponentDigit) {
2009                         position = pos; // Advance past the exponent
2010                     }
2011 
2012                     break; // Whether we fail or succeed, we exit this loop
2013                 }
2014                 else {
2015                     break;
2016                 }
2017             }
2018         }
2019 
2020         if (backup != -1)
2021         {
2022             position = backup;
2023         }
2024 
2025         // If there was no decimal point we have an integer
2026 
2027         // If none of the text string was recognized.  For example, parse
2028         // "x" with pattern "#0.00" (return index and error index both 0)
2029         // parse "$" with pattern "$#0.00". (return index 0 and error index
2030         // 1).
2031         if (!sawDigit && digitCount == 0) {
2032             parsePosition.setIndex(oldStart);
2033             parsePosition.setErrorIndex(oldStart);
2034             return FALSE;
2035         }
2036     }
2037 
2038     // Match padding before suffix
2039     if (fFormatWidth > 0 && fPadPosition == kPadBeforeSuffix) {
2040         position = skipPadding(text, position);
2041     }
2042 
2043     // Match positive and negative suffixes; prefer longest match.
2044     if (posMatch >= 0) {
2045         posMatch = compareAffix(text, position, FALSE, FALSE, posSuffix, currencyParsing, type, currency);
2046     }
2047     if (negMatch >= 0) {
2048         negMatch = compareAffix(text, position, TRUE, FALSE, negSuffix, currencyParsing, type, currency);
2049     }
2050     if (posMatch >= 0 && negMatch >= 0) {
2051         if (posMatch > negMatch) {
2052             negMatch = -1;
2053         } else if (negMatch > posMatch) {
2054             posMatch = -1;
2055         }
2056     }
2057 
2058     // Fail if neither or both
2059     if ((posMatch >= 0) == (negMatch >= 0)) {
2060         parsePosition.setErrorIndex(position);
2061         return FALSE;
2062     }
2063 
2064     position += (posMatch>=0 ? posMatch : negMatch);
2065 
2066     // Match padding before suffix
2067     if (fFormatWidth > 0 && fPadPosition == kPadAfterSuffix) {
2068         position = skipPadding(text, position);
2069     }
2070 
2071     parsePosition.setIndex(position);
2072 
2073     parsedNum.data()[0] = (posMatch >= 0) ? '+' : '-';
2074 
2075     if(parsePosition.getIndex() == oldStart)
2076     {
2077         parsePosition.setErrorIndex(position);
2078         return FALSE;
2079     }
2080     digits.set(parsedNum.toStringPiece(), err);
2081 
2082     if (U_FAILURE(err)) {
2083         parsePosition.setErrorIndex(position);
2084         return FALSE;
2085     }
2086     return TRUE;
2087 }
2088 
2089 /**
2090  * Starting at position, advance past a run of pad characters, if any.
2091  * Return the index of the first character after position that is not a pad
2092  * character.  Result is >= position.
2093  */
skipPadding(const UnicodeString & text,int32_t position) const2094 int32_t DecimalFormat::skipPadding(const UnicodeString& text, int32_t position) const {
2095     int32_t padLen = U16_LENGTH(fPad);
2096     while (position < text.length() &&
2097            text.char32At(position) == fPad) {
2098         position += padLen;
2099     }
2100     return position;
2101 }
2102 
2103 /**
2104  * Return the length matched by the given affix, or -1 if none.
2105  * Runs of white space in the affix, match runs of white space in
2106  * the input.  Pattern white space and input white space are
2107  * determined differently; see code.
2108  * @param text input text
2109  * @param pos offset into input at which to begin matching
2110  * @param isNegative
2111  * @param isPrefix
2112  * @param affixPat affix pattern used for currency affix comparison.
2113  * @param currencyParsing whether it is currency parsing or not
2114  * @param type the currency type to parse against, LONG_NAME only or not.
2115  * @param currency return value for parsed currency, for generic
2116  * currency parsing mode, or null for normal parsing. In generic
2117  * currency parsing mode, any currency is parsed, not just the
2118  * currency that this formatter is set to.
2119  * @return length of input that matches, or -1 if match failure
2120  */
compareAffix(const UnicodeString & text,int32_t pos,UBool isNegative,UBool isPrefix,const UnicodeString * affixPat,UBool currencyParsing,int8_t type,UChar * currency) const2121 int32_t DecimalFormat::compareAffix(const UnicodeString& text,
2122                                     int32_t pos,
2123                                     UBool isNegative,
2124                                     UBool isPrefix,
2125                                     const UnicodeString* affixPat,
2126                                     UBool currencyParsing,
2127                                     int8_t type,
2128                                     UChar* currency) const
2129 {
2130     const UnicodeString *patternToCompare;
2131     if (fCurrencyChoice != NULL || currency != NULL ||
2132         (fCurrencySignCount > fgCurrencySignCountZero && currencyParsing)) {
2133 
2134         if (affixPat != NULL) {
2135             return compareComplexAffix(*affixPat, text, pos, type, currency);
2136         }
2137     }
2138 
2139     if (isNegative) {
2140         if (isPrefix) {
2141             patternToCompare = &fNegativePrefix;
2142         }
2143         else {
2144             patternToCompare = &fNegativeSuffix;
2145         }
2146     }
2147     else {
2148         if (isPrefix) {
2149             patternToCompare = &fPositivePrefix;
2150         }
2151         else {
2152             patternToCompare = &fPositiveSuffix;
2153         }
2154     }
2155     return compareSimpleAffix(*patternToCompare, text, pos);
2156 }
2157 
2158 /**
2159  * Return the length matched by the given affix, or -1 if none.
2160  * Runs of white space in the affix, match runs of white space in
2161  * the input.  Pattern white space and input white space are
2162  * determined differently; see code.
2163  * @param affix pattern string, taken as a literal
2164  * @param input input text
2165  * @param pos offset into input at which to begin matching
2166  * @return length of input that matches, or -1 if match failure
2167  */
compareSimpleAffix(const UnicodeString & affix,const UnicodeString & input,int32_t pos)2168 int32_t DecimalFormat::compareSimpleAffix(const UnicodeString& affix,
2169                                           const UnicodeString& input,
2170                                           int32_t pos) {
2171     int32_t start = pos;
2172     for (int32_t i=0; i<affix.length(); ) {
2173         UChar32 c = affix.char32At(i);
2174         int32_t len = U16_LENGTH(c);
2175         if (uprv_isRuleWhiteSpace(c)) {
2176             // We may have a pattern like: \u200F \u0020
2177             //        and input text like: \u200F \u0020
2178             // Note that U+200F and U+0020 are RuleWhiteSpace but only
2179             // U+0020 is UWhiteSpace.  So we have to first do a direct
2180             // match of the run of RULE whitespace in the pattern,
2181             // then match any extra characters.
2182             UBool literalMatch = FALSE;
2183             while (pos < input.length() &&
2184                    input.char32At(pos) == c) {
2185                 literalMatch = TRUE;
2186                 i += len;
2187                 pos += len;
2188                 if (i == affix.length()) {
2189                     break;
2190                 }
2191                 c = affix.char32At(i);
2192                 len = U16_LENGTH(c);
2193                 if (!uprv_isRuleWhiteSpace(c)) {
2194                     break;
2195                 }
2196             }
2197 
2198             // Advance over run in pattern
2199             i = skipRuleWhiteSpace(affix, i);
2200 
2201             // Advance over run in input text
2202             // Must see at least one white space char in input,
2203             // unless we've already matched some characters literally.
2204             int32_t s = pos;
2205             pos = skipUWhiteSpace(input, pos);
2206             if (pos == s && !literalMatch) {
2207                 return -1;
2208             }
2209 
2210             // If we skip UWhiteSpace in the input text, we need to skip it in the pattern.
2211             // Otherwise, the previous lines may have skipped over text (such as U+00A0) that
2212             // is also in the affix.
2213             i = skipUWhiteSpace(affix, i);
2214         } else {
2215             if (pos < input.length() &&
2216                 input.char32At(pos) == c) {
2217                 i += len;
2218                 pos += len;
2219             } else {
2220                 return -1;
2221             }
2222         }
2223     }
2224     return pos - start;
2225 }
2226 
2227 /**
2228  * Skip over a run of zero or more isRuleWhiteSpace() characters at
2229  * pos in text.
2230  */
skipRuleWhiteSpace(const UnicodeString & text,int32_t pos)2231 int32_t DecimalFormat::skipRuleWhiteSpace(const UnicodeString& text, int32_t pos) {
2232     while (pos < text.length()) {
2233         UChar32 c = text.char32At(pos);
2234         if (!uprv_isRuleWhiteSpace(c)) {
2235             break;
2236         }
2237         pos += U16_LENGTH(c);
2238     }
2239     return pos;
2240 }
2241 
2242 /**
2243  * Skip over a run of zero or more isUWhiteSpace() characters at pos
2244  * in text.
2245  */
skipUWhiteSpace(const UnicodeString & text,int32_t pos)2246 int32_t DecimalFormat::skipUWhiteSpace(const UnicodeString& text, int32_t pos) {
2247     while (pos < text.length()) {
2248         UChar32 c = text.char32At(pos);
2249         if (!u_isUWhiteSpace(c)) {
2250             break;
2251         }
2252         pos += U16_LENGTH(c);
2253     }
2254     return pos;
2255 }
2256 
2257 /**
2258  * Return the length matched by the given affix, or -1 if none.
2259  * @param affixPat pattern string
2260  * @param input input text
2261  * @param pos offset into input at which to begin matching
2262  * @param type the currency type to parse against, LONG_NAME only or not.
2263  * @param currency return value for parsed currency, for generic
2264  * currency parsing mode, or null for normal parsing. In generic
2265  * currency parsing mode, any currency is parsed, not just the
2266  * currency that this formatter is set to.
2267  * @return length of input that matches, or -1 if match failure
2268  */
compareComplexAffix(const UnicodeString & affixPat,const UnicodeString & text,int32_t pos,int8_t type,UChar * currency) const2269 int32_t DecimalFormat::compareComplexAffix(const UnicodeString& affixPat,
2270                                            const UnicodeString& text,
2271                                            int32_t pos,
2272                                            int8_t type,
2273                                            UChar* currency) const
2274 {
2275     int32_t start = pos;
2276     U_ASSERT(currency != NULL ||
2277              (fCurrencyChoice != NULL && *getCurrency() != 0) ||
2278              fCurrencySignCount > fgCurrencySignCountZero);
2279 
2280     for (int32_t i=0;
2281          i<affixPat.length() && pos >= 0; ) {
2282         UChar32 c = affixPat.char32At(i);
2283         i += U16_LENGTH(c);
2284 
2285         if (c == kQuote) {
2286             U_ASSERT(i <= affixPat.length());
2287             c = affixPat.char32At(i);
2288             i += U16_LENGTH(c);
2289 
2290             const UnicodeString* affix = NULL;
2291 
2292             switch (c) {
2293             case kCurrencySign: {
2294                 // since the currency names in choice format is saved
2295                 // the same way as other currency names,
2296                 // do not need to do currency choice parsing here.
2297                 // the general currency parsing parse against all names,
2298                 // including names in choice format.
2299                 UBool intl = i<affixPat.length() &&
2300                     affixPat.char32At(i) == kCurrencySign;
2301                 if (intl) {
2302                     ++i;
2303                 }
2304                 UBool plural = i<affixPat.length() &&
2305                     affixPat.char32At(i) == kCurrencySign;
2306                 if (plural) {
2307                     ++i;
2308                     intl = FALSE;
2309                 }
2310                 // Parse generic currency -- anything for which we
2311                 // have a display name, or any 3-letter ISO code.
2312                 // Try to parse display name for our locale; first
2313                 // determine our locale.
2314                 const char* loc = fCurrencyPluralInfo->getLocale().getName();
2315                 ParsePosition ppos(pos);
2316                 UChar curr[4];
2317                 UErrorCode ec = U_ZERO_ERROR;
2318                 // Delegate parse of display name => ISO code to Currency
2319                 uprv_parseCurrency(loc, text, ppos, type, curr, ec);
2320 
2321                 // If parse succeeds, populate currency[0]
2322                 if (U_SUCCESS(ec) && ppos.getIndex() != pos) {
2323                     if (currency) {
2324                         u_strcpy(currency, curr);
2325                     }
2326                     pos = ppos.getIndex();
2327                 } else {
2328                     pos = -1;
2329                 }
2330                 continue;
2331             }
2332             case kPatternPercent:
2333                 affix = &getConstSymbol(DecimalFormatSymbols::kPercentSymbol);
2334                 break;
2335             case kPatternPerMill:
2336                 affix = &getConstSymbol(DecimalFormatSymbols::kPerMillSymbol);
2337                 break;
2338             case kPatternPlus:
2339                 affix = &getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol);
2340                 break;
2341             case kPatternMinus:
2342                 affix = &getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol);
2343                 break;
2344             default:
2345                 // fall through to affix!=0 test, which will fail
2346                 break;
2347             }
2348 
2349             if (affix != NULL) {
2350                 pos = match(text, pos, *affix);
2351                 continue;
2352             }
2353         }
2354 
2355         pos = match(text, pos, c);
2356         if (uprv_isRuleWhiteSpace(c)) {
2357             i = skipRuleWhiteSpace(affixPat, i);
2358         }
2359     }
2360     return pos - start;
2361 }
2362 
2363 /**
2364  * Match a single character at text[pos] and return the index of the
2365  * next character upon success.  Return -1 on failure.  If
2366  * isRuleWhiteSpace(ch) then match a run of white space in text.
2367  */
match(const UnicodeString & text,int32_t pos,UChar32 ch)2368 int32_t DecimalFormat::match(const UnicodeString& text, int32_t pos, UChar32 ch) {
2369     if (uprv_isRuleWhiteSpace(ch)) {
2370         // Advance over run of white space in input text
2371         // Must see at least one white space char in input
2372         int32_t s = pos;
2373         pos = skipRuleWhiteSpace(text, pos);
2374         if (pos == s) {
2375             return -1;
2376         }
2377         return pos;
2378     }
2379     return (pos >= 0 && text.char32At(pos) == ch) ?
2380         (pos + U16_LENGTH(ch)) : -1;
2381 }
2382 
2383 /**
2384  * Match a string at text[pos] and return the index of the next
2385  * character upon success.  Return -1 on failure.  Match a run of
2386  * white space in str with a run of white space in text.
2387  */
match(const UnicodeString & text,int32_t pos,const UnicodeString & str)2388 int32_t DecimalFormat::match(const UnicodeString& text, int32_t pos, const UnicodeString& str) {
2389     for (int32_t i=0; i<str.length() && pos >= 0; ) {
2390         UChar32 ch = str.char32At(i);
2391         i += U16_LENGTH(ch);
2392         if (uprv_isRuleWhiteSpace(ch)) {
2393             i = skipRuleWhiteSpace(str, i);
2394         }
2395         pos = match(text, pos, ch);
2396     }
2397     return pos;
2398 }
2399 
2400 //------------------------------------------------------------------------------
2401 // Gets the pointer to the localized decimal format symbols
2402 
2403 const DecimalFormatSymbols*
getDecimalFormatSymbols() const2404 DecimalFormat::getDecimalFormatSymbols() const
2405 {
2406     return fSymbols;
2407 }
2408 
2409 //------------------------------------------------------------------------------
2410 // De-owning the current localized symbols and adopt the new symbols.
2411 
2412 void
adoptDecimalFormatSymbols(DecimalFormatSymbols * symbolsToAdopt)2413 DecimalFormat::adoptDecimalFormatSymbols(DecimalFormatSymbols* symbolsToAdopt)
2414 {
2415     if (symbolsToAdopt == NULL) {
2416         return; // do not allow caller to set fSymbols to NULL
2417     }
2418 
2419     UBool sameSymbols = FALSE;
2420     if (fSymbols != NULL) {
2421         sameSymbols = (UBool)(getConstSymbol(DecimalFormatSymbols::kCurrencySymbol) ==
2422             symbolsToAdopt->getConstSymbol(DecimalFormatSymbols::kCurrencySymbol) &&
2423             getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol) ==
2424             symbolsToAdopt->getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol));
2425         delete fSymbols;
2426     }
2427 
2428     fSymbols = symbolsToAdopt;
2429     if (!sameSymbols) {
2430         // If the currency symbols are the same, there is no need to recalculate.
2431         setCurrencyForSymbols();
2432     }
2433     expandAffixes(NULL);
2434 }
2435 //------------------------------------------------------------------------------
2436 // Setting the symbols is equlivalent to adopting a newly created localized
2437 // symbols.
2438 
2439 void
setDecimalFormatSymbols(const DecimalFormatSymbols & symbols)2440 DecimalFormat::setDecimalFormatSymbols(const DecimalFormatSymbols& symbols)
2441 {
2442     adoptDecimalFormatSymbols(new DecimalFormatSymbols(symbols));
2443 }
2444 
2445 
2446 const CurrencyPluralInfo*
getCurrencyPluralInfo(void) const2447 DecimalFormat::getCurrencyPluralInfo(void) const
2448 {
2449     return fCurrencyPluralInfo;
2450 }
2451 
2452 
2453 void
adoptCurrencyPluralInfo(CurrencyPluralInfo * toAdopt)2454 DecimalFormat::adoptCurrencyPluralInfo(CurrencyPluralInfo* toAdopt)
2455 {
2456     if (toAdopt != NULL) {
2457         delete fCurrencyPluralInfo;
2458         fCurrencyPluralInfo = toAdopt;
2459         // re-set currency affix patterns and currency affixes.
2460         if (fCurrencySignCount > fgCurrencySignCountZero) {
2461             UErrorCode status = U_ZERO_ERROR;
2462             if (fAffixPatternsForCurrency) {
2463                 deleteHashForAffixPattern();
2464             }
2465             setupCurrencyAffixPatterns(status);
2466             if (fCurrencySignCount == fgCurrencySignCountInPluralFormat) {
2467                 // only setup the affixes of the plural pattern.
2468                 setupCurrencyAffixes(fFormatPattern, FALSE, TRUE, status);
2469             }
2470         }
2471     }
2472 }
2473 
2474 void
setCurrencyPluralInfo(const CurrencyPluralInfo & info)2475 DecimalFormat::setCurrencyPluralInfo(const CurrencyPluralInfo& info)
2476 {
2477     adoptCurrencyPluralInfo(info.clone());
2478 }
2479 
2480 
2481 /**
2482  * Update the currency object to match the symbols.  This method
2483  * is used only when the caller has passed in a symbols object
2484  * that may not be the default object for its locale.
2485  */
2486 void
setCurrencyForSymbols()2487 DecimalFormat::setCurrencyForSymbols() {
2488     /*Bug 4212072
2489       Update the affix strings accroding to symbols in order to keep
2490       the affix strings up to date.
2491       [Richard/GCL]
2492     */
2493 
2494     // With the introduction of the Currency object, the currency
2495     // symbols in the DFS object are ignored.  For backward
2496     // compatibility, we check any explicitly set DFS object.  If it
2497     // is a default symbols object for its locale, we change the
2498     // currency object to one for that locale.  If it is custom,
2499     // we set the currency to null.
2500     UErrorCode ec = U_ZERO_ERROR;
2501     const UChar* c = NULL;
2502     const char* loc = fSymbols->getLocale().getName();
2503     UChar intlCurrencySymbol[4];
2504     ucurr_forLocale(loc, intlCurrencySymbol, 4, &ec);
2505     UnicodeString currencySymbol;
2506 
2507     uprv_getStaticCurrencyName(intlCurrencySymbol, loc, currencySymbol, ec);
2508     if (U_SUCCESS(ec)
2509         && getConstSymbol(DecimalFormatSymbols::kCurrencySymbol) == currencySymbol
2510         && getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol) == intlCurrencySymbol)
2511     {
2512         // Trap an error in mapping locale to currency.  If we can't
2513         // map, then don't fail and set the currency to "".
2514         c = intlCurrencySymbol;
2515     }
2516     ec = U_ZERO_ERROR; // reset local error code!
2517     setCurrencyInternally(c, ec);
2518 }
2519 
2520 
2521 //------------------------------------------------------------------------------
2522 // Gets the positive prefix of the number pattern.
2523 
2524 UnicodeString&
getPositivePrefix(UnicodeString & result) const2525 DecimalFormat::getPositivePrefix(UnicodeString& result) const
2526 {
2527     result = fPositivePrefix;
2528     return result;
2529 }
2530 
2531 //------------------------------------------------------------------------------
2532 // Sets the positive prefix of the number pattern.
2533 
2534 void
setPositivePrefix(const UnicodeString & newValue)2535 DecimalFormat::setPositivePrefix(const UnicodeString& newValue)
2536 {
2537     fPositivePrefix = newValue;
2538     delete fPosPrefixPattern;
2539     fPosPrefixPattern = 0;
2540 }
2541 
2542 //------------------------------------------------------------------------------
2543 // Gets the negative prefix  of the number pattern.
2544 
2545 UnicodeString&
getNegativePrefix(UnicodeString & result) const2546 DecimalFormat::getNegativePrefix(UnicodeString& result) const
2547 {
2548     result = fNegativePrefix;
2549     return result;
2550 }
2551 
2552 //------------------------------------------------------------------------------
2553 // Gets the negative prefix  of the number pattern.
2554 
2555 void
setNegativePrefix(const UnicodeString & newValue)2556 DecimalFormat::setNegativePrefix(const UnicodeString& newValue)
2557 {
2558     fNegativePrefix = newValue;
2559     delete fNegPrefixPattern;
2560     fNegPrefixPattern = 0;
2561 }
2562 
2563 //------------------------------------------------------------------------------
2564 // Gets the positive suffix of the number pattern.
2565 
2566 UnicodeString&
getPositiveSuffix(UnicodeString & result) const2567 DecimalFormat::getPositiveSuffix(UnicodeString& result) const
2568 {
2569     result = fPositiveSuffix;
2570     return result;
2571 }
2572 
2573 //------------------------------------------------------------------------------
2574 // Sets the positive suffix of the number pattern.
2575 
2576 void
setPositiveSuffix(const UnicodeString & newValue)2577 DecimalFormat::setPositiveSuffix(const UnicodeString& newValue)
2578 {
2579     fPositiveSuffix = newValue;
2580     delete fPosSuffixPattern;
2581     fPosSuffixPattern = 0;
2582 }
2583 
2584 //------------------------------------------------------------------------------
2585 // Gets the negative suffix of the number pattern.
2586 
2587 UnicodeString&
getNegativeSuffix(UnicodeString & result) const2588 DecimalFormat::getNegativeSuffix(UnicodeString& result) const
2589 {
2590     result = fNegativeSuffix;
2591     return result;
2592 }
2593 
2594 //------------------------------------------------------------------------------
2595 // Sets the negative suffix of the number pattern.
2596 
2597 void
setNegativeSuffix(const UnicodeString & newValue)2598 DecimalFormat::setNegativeSuffix(const UnicodeString& newValue)
2599 {
2600     fNegativeSuffix = newValue;
2601     delete fNegSuffixPattern;
2602     fNegSuffixPattern = 0;
2603 }
2604 
2605 //------------------------------------------------------------------------------
2606 // Gets the multiplier of the number pattern.
2607 //   Multipliers are stored as decimal numbers (DigitLists) because that
2608 //      is the most convenient for muliplying or dividing the numbers to be formatted.
2609 //   A NULL multiplier implies one, and the scaling operations are skipped.
2610 
2611 int32_t
getMultiplier() const2612 DecimalFormat::getMultiplier() const
2613 {
2614     if (fMultiplier == NULL) {
2615         return 1;
2616     } else {
2617         return fMultiplier->getLong();
2618     }
2619 }
2620 
2621 //------------------------------------------------------------------------------
2622 // Sets the multiplier of the number pattern.
2623 void
setMultiplier(int32_t newValue)2624 DecimalFormat::setMultiplier(int32_t newValue)
2625 {
2626 //  if (newValue == 0) {
2627 //      throw new IllegalArgumentException("Bad multiplier: " + newValue);
2628 //  }
2629     if (newValue == 0) {
2630         newValue = 1;     // one being the benign default value for a multiplier.
2631     }
2632     if (newValue == 1) {
2633         delete fMultiplier;
2634         fMultiplier = NULL;
2635     } else {
2636         if (fMultiplier == NULL) {
2637             fMultiplier = new DigitList;
2638         }
2639         if (fMultiplier != NULL) {
2640             fMultiplier->set(newValue);
2641         }
2642     }
2643 }
2644 
2645 /**
2646  * Get the rounding increment.
2647  * @return A positive rounding increment, or 0.0 if rounding
2648  * is not in effect.
2649  * @see #setRoundingIncrement
2650  * @see #getRoundingMode
2651  * @see #setRoundingMode
2652  */
getRoundingIncrement() const2653 double DecimalFormat::getRoundingIncrement() const {
2654     if (fRoundingIncrement == NULL) {
2655         return 0.0;
2656     } else {
2657         return fRoundingIncrement->getDouble();
2658     }
2659 }
2660 
2661 /**
2662  * Set the rounding increment.  This method also controls whether
2663  * rounding is enabled.
2664  * @param newValue A positive rounding increment, or 0.0 to disable rounding.
2665  * Negative increments are equivalent to 0.0.
2666  * @see #getRoundingIncrement
2667  * @see #getRoundingMode
2668  * @see #setRoundingMode
2669  */
setRoundingIncrement(double newValue)2670 void DecimalFormat::setRoundingIncrement(double newValue) {
2671     if (newValue > 0.0) {
2672         if (fRoundingIncrement == NULL) {
2673             fRoundingIncrement = new DigitList();
2674         }
2675         if (fRoundingIncrement != NULL) {
2676             fRoundingIncrement->set(newValue);
2677             return;
2678         }
2679     }
2680     // These statements are executed if newValue is less than 0.0
2681     // or fRoundingIncrement could not be created.
2682     delete fRoundingIncrement;
2683     fRoundingIncrement = NULL;
2684 }
2685 
2686 /**
2687  * Get the rounding mode.
2688  * @return A rounding mode
2689  * @see #setRoundingIncrement
2690  * @see #getRoundingIncrement
2691  * @see #setRoundingMode
2692  */
getRoundingMode() const2693 DecimalFormat::ERoundingMode DecimalFormat::getRoundingMode() const {
2694     return fRoundingMode;
2695 }
2696 
2697 /**
2698  * Set the rounding mode.  This has no effect unless the rounding
2699  * increment is greater than zero.
2700  * @param roundingMode A rounding mode
2701  * @see #setRoundingIncrement
2702  * @see #getRoundingIncrement
2703  * @see #getRoundingMode
2704  */
setRoundingMode(ERoundingMode roundingMode)2705 void DecimalFormat::setRoundingMode(ERoundingMode roundingMode) {
2706     fRoundingMode = roundingMode;
2707 }
2708 
2709 /**
2710  * Get the width to which the output of <code>format()</code> is padded.
2711  * @return the format width, or zero if no padding is in effect
2712  * @see #setFormatWidth
2713  * @see #getPadCharacter
2714  * @see #setPadCharacter
2715  * @see #getPadPosition
2716  * @see #setPadPosition
2717  */
getFormatWidth() const2718 int32_t DecimalFormat::getFormatWidth() const {
2719     return fFormatWidth;
2720 }
2721 
2722 /**
2723  * Set the width to which the output of <code>format()</code> is padded.
2724  * This method also controls whether padding is enabled.
2725  * @param width the width to which to pad the result of
2726  * <code>format()</code>, or zero to disable padding.  A negative
2727  * width is equivalent to 0.
2728  * @see #getFormatWidth
2729  * @see #getPadCharacter
2730  * @see #setPadCharacter
2731  * @see #getPadPosition
2732  * @see #setPadPosition
2733  */
setFormatWidth(int32_t width)2734 void DecimalFormat::setFormatWidth(int32_t width) {
2735     fFormatWidth = (width > 0) ? width : 0;
2736 }
2737 
getPadCharacterString() const2738 UnicodeString DecimalFormat::getPadCharacterString() const {
2739     return fPad;
2740 }
2741 
setPadCharacter(const UnicodeString & padChar)2742 void DecimalFormat::setPadCharacter(const UnicodeString &padChar) {
2743     if (padChar.length() > 0) {
2744         fPad = padChar.char32At(0);
2745     }
2746     else {
2747         fPad = kDefaultPad;
2748     }
2749 }
2750 
2751 /**
2752  * Get the position at which padding will take place.  This is the location
2753  * at which padding will be inserted if the result of <code>format()</code>
2754  * is shorter than the format width.
2755  * @return the pad position, one of <code>kPadBeforePrefix</code>,
2756  * <code>kPadAfterPrefix</code>, <code>kPadBeforeSuffix</code>, or
2757  * <code>kPadAfterSuffix</code>.
2758  * @see #setFormatWidth
2759  * @see #getFormatWidth
2760  * @see #setPadCharacter
2761  * @see #getPadCharacter
2762  * @see #setPadPosition
2763  * @see #kPadBeforePrefix
2764  * @see #kPadAfterPrefix
2765  * @see #kPadBeforeSuffix
2766  * @see #kPadAfterSuffix
2767  */
getPadPosition() const2768 DecimalFormat::EPadPosition DecimalFormat::getPadPosition() const {
2769     return fPadPosition;
2770 }
2771 
2772 /**
2773  * <strong><font face=helvetica color=red>NEW</font></strong>
2774  * Set the position at which padding will take place.  This is the location
2775  * at which padding will be inserted if the result of <code>format()</code>
2776  * is shorter than the format width.  This has no effect unless padding is
2777  * enabled.
2778  * @param padPos the pad position, one of <code>kPadBeforePrefix</code>,
2779  * <code>kPadAfterPrefix</code>, <code>kPadBeforeSuffix</code>, or
2780  * <code>kPadAfterSuffix</code>.
2781  * @see #setFormatWidth
2782  * @see #getFormatWidth
2783  * @see #setPadCharacter
2784  * @see #getPadCharacter
2785  * @see #getPadPosition
2786  * @see #kPadBeforePrefix
2787  * @see #kPadAfterPrefix
2788  * @see #kPadBeforeSuffix
2789  * @see #kPadAfterSuffix
2790  */
setPadPosition(EPadPosition padPos)2791 void DecimalFormat::setPadPosition(EPadPosition padPos) {
2792     fPadPosition = padPos;
2793 }
2794 
2795 /**
2796  * Return whether or not scientific notation is used.
2797  * @return TRUE if this object formats and parses scientific notation
2798  * @see #setScientificNotation
2799  * @see #getMinimumExponentDigits
2800  * @see #setMinimumExponentDigits
2801  * @see #isExponentSignAlwaysShown
2802  * @see #setExponentSignAlwaysShown
2803  */
isScientificNotation()2804 UBool DecimalFormat::isScientificNotation() {
2805     return fUseExponentialNotation;
2806 }
2807 
2808 /**
2809  * Set whether or not scientific notation is used.
2810  * @param useScientific TRUE if this object formats and parses scientific
2811  * notation
2812  * @see #isScientificNotation
2813  * @see #getMinimumExponentDigits
2814  * @see #setMinimumExponentDigits
2815  * @see #isExponentSignAlwaysShown
2816  * @see #setExponentSignAlwaysShown
2817  */
setScientificNotation(UBool useScientific)2818 void DecimalFormat::setScientificNotation(UBool useScientific) {
2819     fUseExponentialNotation = useScientific;
2820 }
2821 
2822 /**
2823  * Return the minimum exponent digits that will be shown.
2824  * @return the minimum exponent digits that will be shown
2825  * @see #setScientificNotation
2826  * @see #isScientificNotation
2827  * @see #setMinimumExponentDigits
2828  * @see #isExponentSignAlwaysShown
2829  * @see #setExponentSignAlwaysShown
2830  */
getMinimumExponentDigits() const2831 int8_t DecimalFormat::getMinimumExponentDigits() const {
2832     return fMinExponentDigits;
2833 }
2834 
2835 /**
2836  * Set the minimum exponent digits that will be shown.  This has no
2837  * effect unless scientific notation is in use.
2838  * @param minExpDig a value >= 1 indicating the fewest exponent digits
2839  * that will be shown.  Values less than 1 will be treated as 1.
2840  * @see #setScientificNotation
2841  * @see #isScientificNotation
2842  * @see #getMinimumExponentDigits
2843  * @see #isExponentSignAlwaysShown
2844  * @see #setExponentSignAlwaysShown
2845  */
setMinimumExponentDigits(int8_t minExpDig)2846 void DecimalFormat::setMinimumExponentDigits(int8_t minExpDig) {
2847     fMinExponentDigits = (int8_t)((minExpDig > 0) ? minExpDig : 1);
2848 }
2849 
2850 /**
2851  * Return whether the exponent sign is always shown.
2852  * @return TRUE if the exponent is always prefixed with either the
2853  * localized minus sign or the localized plus sign, false if only negative
2854  * exponents are prefixed with the localized minus sign.
2855  * @see #setScientificNotation
2856  * @see #isScientificNotation
2857  * @see #setMinimumExponentDigits
2858  * @see #getMinimumExponentDigits
2859  * @see #setExponentSignAlwaysShown
2860  */
isExponentSignAlwaysShown()2861 UBool DecimalFormat::isExponentSignAlwaysShown() {
2862     return fExponentSignAlwaysShown;
2863 }
2864 
2865 /**
2866  * Set whether the exponent sign is always shown.  This has no effect
2867  * unless scientific notation is in use.
2868  * @param expSignAlways TRUE if the exponent is always prefixed with either
2869  * the localized minus sign or the localized plus sign, false if only
2870  * negative exponents are prefixed with the localized minus sign.
2871  * @see #setScientificNotation
2872  * @see #isScientificNotation
2873  * @see #setMinimumExponentDigits
2874  * @see #getMinimumExponentDigits
2875  * @see #isExponentSignAlwaysShown
2876  */
setExponentSignAlwaysShown(UBool expSignAlways)2877 void DecimalFormat::setExponentSignAlwaysShown(UBool expSignAlways) {
2878     fExponentSignAlwaysShown = expSignAlways;
2879 }
2880 
2881 //------------------------------------------------------------------------------
2882 // Gets the grouping size of the number pattern.  For example, thousand or 10
2883 // thousand groupings.
2884 
2885 int32_t
getGroupingSize() const2886 DecimalFormat::getGroupingSize() const
2887 {
2888     return fGroupingSize;
2889 }
2890 
2891 //------------------------------------------------------------------------------
2892 // Gets the grouping size of the number pattern.
2893 
2894 void
setGroupingSize(int32_t newValue)2895 DecimalFormat::setGroupingSize(int32_t newValue)
2896 {
2897     fGroupingSize = newValue;
2898 }
2899 
2900 //------------------------------------------------------------------------------
2901 
2902 int32_t
getSecondaryGroupingSize() const2903 DecimalFormat::getSecondaryGroupingSize() const
2904 {
2905     return fGroupingSize2;
2906 }
2907 
2908 //------------------------------------------------------------------------------
2909 
2910 void
setSecondaryGroupingSize(int32_t newValue)2911 DecimalFormat::setSecondaryGroupingSize(int32_t newValue)
2912 {
2913     fGroupingSize2 = newValue;
2914 }
2915 
2916 //------------------------------------------------------------------------------
2917 // Checks if to show the decimal separator.
2918 
2919 UBool
isDecimalSeparatorAlwaysShown() const2920 DecimalFormat::isDecimalSeparatorAlwaysShown() const
2921 {
2922     return fDecimalSeparatorAlwaysShown;
2923 }
2924 
2925 //------------------------------------------------------------------------------
2926 // Sets to always show the decimal separator.
2927 
2928 void
setDecimalSeparatorAlwaysShown(UBool newValue)2929 DecimalFormat::setDecimalSeparatorAlwaysShown(UBool newValue)
2930 {
2931     fDecimalSeparatorAlwaysShown = newValue;
2932 }
2933 
2934 //------------------------------------------------------------------------------
2935 // Emits the pattern of this DecimalFormat instance.
2936 
2937 UnicodeString&
toPattern(UnicodeString & result) const2938 DecimalFormat::toPattern(UnicodeString& result) const
2939 {
2940     return toPattern(result, FALSE);
2941 }
2942 
2943 //------------------------------------------------------------------------------
2944 // Emits the localized pattern this DecimalFormat instance.
2945 
2946 UnicodeString&
toLocalizedPattern(UnicodeString & result) const2947 DecimalFormat::toLocalizedPattern(UnicodeString& result) const
2948 {
2949     return toPattern(result, TRUE);
2950 }
2951 
2952 //------------------------------------------------------------------------------
2953 /**
2954  * Expand the affix pattern strings into the expanded affix strings.  If any
2955  * affix pattern string is null, do not expand it.  This method should be
2956  * called any time the symbols or the affix patterns change in order to keep
2957  * the expanded affix strings up to date.
2958  * This method also will be called before formatting if format currency
2959  * plural names, since the plural name is not a static one, it is
2960  * based on the currency plural count, the affix will be known only
2961  * after the currency plural count is know.
2962  * In which case, the parameter
2963  * 'pluralCount' will be a non-null currency plural count.
2964  * In all other cases, the 'pluralCount' is null, which means it is not needed.
2965  */
expandAffixes(const UnicodeString * pluralCount)2966 void DecimalFormat::expandAffixes(const UnicodeString* pluralCount) {
2967     FieldPositionHandler none;
2968     if (fPosPrefixPattern != 0) {
2969       expandAffix(*fPosPrefixPattern, fPositivePrefix, 0, none, FALSE, pluralCount);
2970     }
2971     if (fPosSuffixPattern != 0) {
2972       expandAffix(*fPosSuffixPattern, fPositiveSuffix, 0, none, FALSE, pluralCount);
2973     }
2974     if (fNegPrefixPattern != 0) {
2975       expandAffix(*fNegPrefixPattern, fNegativePrefix, 0, none, FALSE, pluralCount);
2976     }
2977     if (fNegSuffixPattern != 0) {
2978       expandAffix(*fNegSuffixPattern, fNegativeSuffix, 0, none, FALSE, pluralCount);
2979     }
2980 #ifdef FMT_DEBUG
2981     UnicodeString s;
2982     s.append("[")
2983         .append(*fPosPrefixPattern).append("|").append(*fPosSuffixPattern)
2984         .append(";") .append(*fNegPrefixPattern).append("|").append(*fNegSuffixPattern)
2985         .append("]->[")
2986         .append(fPositivePrefix).append("|").append(fPositiveSuffix)
2987         .append(";") .append(fNegativePrefix).append("|").append(fNegativeSuffix)
2988         .append("]\n");
2989     debugout(s);
2990 #endif
2991 }
2992 
2993 /**
2994  * Expand an affix pattern into an affix string.  All characters in the
2995  * pattern are literal unless prefixed by kQuote.  The following characters
2996  * after kQuote are recognized: PATTERN_PERCENT, PATTERN_PER_MILLE,
2997  * PATTERN_MINUS, and kCurrencySign.  If kCurrencySign is doubled (kQuote +
2998  * kCurrencySign + kCurrencySign), it is interpreted as an international
2999  * currency sign. If CURRENCY_SIGN is tripled, it is interpreted as
3000  * currency plural long names, such as "US Dollars".
3001  * Any other character after a kQuote represents itself.
3002  * kQuote must be followed by another character; kQuote may not occur by
3003  * itself at the end of the pattern.
3004  *
3005  * This method is used in two distinct ways.  First, it is used to expand
3006  * the stored affix patterns into actual affixes.  For this usage, doFormat
3007  * must be false.  Second, it is used to expand the stored affix patterns
3008  * given a specific number (doFormat == true), for those rare cases in
3009  * which a currency format references a ChoiceFormat (e.g., en_IN display
3010  * name for INR).  The number itself is taken from digitList.
3011  *
3012  * When used in the first way, this method has a side effect: It sets
3013  * currencyChoice to a ChoiceFormat object, if the currency's display name
3014  * in this locale is a ChoiceFormat pattern (very rare).  It only does this
3015  * if currencyChoice is null to start with.
3016  *
3017  * @param pattern the non-null, fPossibly empty pattern
3018  * @param affix string to receive the expanded equivalent of pattern.
3019  * Previous contents are deleted.
3020  * @param doFormat if false, then the pattern will be expanded, and if a
3021  * currency symbol is encountered that expands to a ChoiceFormat, the
3022  * currencyChoice member variable will be initialized if it is null.  If
3023  * doFormat is true, then it is assumed that the currencyChoice has been
3024  * created, and it will be used to format the value in digitList.
3025  * @param pluralCount the plural count. It is only used for currency
3026  *                    plural format. In which case, it is the plural
3027  *                    count of the currency amount. For example,
3028  *                    in en_US, it is the singular "one", or the plural
3029  *                    "other". For all other cases, it is null, and
3030  *                    is not being used.
3031  */
expandAffix(const UnicodeString & pattern,UnicodeString & affix,double number,FieldPositionHandler & handler,UBool doFormat,const UnicodeString * pluralCount) const3032 void DecimalFormat::expandAffix(const UnicodeString& pattern,
3033                                 UnicodeString& affix,
3034                                 double number,
3035                                 FieldPositionHandler& handler,
3036                                 UBool doFormat,
3037                                 const UnicodeString* pluralCount) const {
3038     affix.remove();
3039     for (int i=0; i<pattern.length(); ) {
3040         UChar32 c = pattern.char32At(i);
3041         i += U16_LENGTH(c);
3042         if (c == kQuote) {
3043             c = pattern.char32At(i);
3044             i += U16_LENGTH(c);
3045             int beginIdx = affix.length();
3046             switch (c) {
3047             case kCurrencySign: {
3048                 // As of ICU 2.2 we use the currency object, and
3049                 // ignore the currency symbols in the DFS, unless
3050                 // we have a null currency object.  This occurs if
3051                 // resurrecting a pre-2.2 object or if the user
3052                 // sets a custom DFS.
3053                 UBool intl = i<pattern.length() &&
3054                     pattern.char32At(i) == kCurrencySign;
3055                 UBool plural = FALSE;
3056                 if (intl) {
3057                     ++i;
3058                     plural = i<pattern.length() &&
3059                         pattern.char32At(i) == kCurrencySign;
3060                     if (plural) {
3061                         intl = FALSE;
3062                         ++i;
3063                     }
3064                 }
3065                 const UChar* currencyUChars = getCurrency();
3066                 if (currencyUChars[0] != 0) {
3067                     UErrorCode ec = U_ZERO_ERROR;
3068                     if (plural && pluralCount != NULL) {
3069                         // plural name is only needed when pluralCount != null,
3070                         // which means when formatting currency plural names.
3071                         // For other cases, pluralCount == null,
3072                         // and plural names are not needed.
3073                         int32_t len;
3074                         // TODO: num of char in plural count
3075                         char pluralCountChar[10];
3076                         if (pluralCount->length() >= 10) {
3077                             break;
3078                         }
3079                         pluralCount->extract(0, pluralCount->length(), pluralCountChar);
3080                         UBool isChoiceFormat;
3081                         const UChar* s = ucurr_getPluralName(currencyUChars,
3082                             fSymbols != NULL ? fSymbols->getLocale().getName() :
3083                             Locale::getDefault().getName(), &isChoiceFormat,
3084                             pluralCountChar, &len, &ec);
3085                         affix += UnicodeString(s, len);
3086                         handler.addAttribute(kCurrencyField, beginIdx, affix.length());
3087                     } else if(intl) {
3088                         affix += currencyUChars;
3089                         handler.addAttribute(kCurrencyField, beginIdx, affix.length());
3090                     } else {
3091                         int32_t len;
3092                         UBool isChoiceFormat;
3093                         // If fSymbols is NULL, use default locale
3094                         const UChar* s = ucurr_getName(currencyUChars,
3095                             fSymbols != NULL ? fSymbols->getLocale().getName() : Locale::getDefault().getName(),
3096                             UCURR_SYMBOL_NAME, &isChoiceFormat, &len, &ec);
3097                         if (isChoiceFormat) {
3098                             // Two modes here: If doFormat is false, we set up
3099                             // currencyChoice.  If doFormat is true, we use the
3100                             // previously created currencyChoice to format the
3101                             // value in digitList.
3102                             if (!doFormat) {
3103                                 // If the currency is handled by a ChoiceFormat,
3104                                 // then we're not going to use the expanded
3105                                 // patterns.  Instantiate the ChoiceFormat and
3106                                 // return.
3107                                 if (fCurrencyChoice == NULL) {
3108                                     // TODO Replace double-check with proper thread-safe code
3109                                     ChoiceFormat* fmt = new ChoiceFormat(s, ec);
3110                                     if (U_SUCCESS(ec)) {
3111                                         umtx_lock(NULL);
3112                                         if (fCurrencyChoice == NULL) {
3113                                             // Cast away const
3114                                             ((DecimalFormat*)this)->fCurrencyChoice = fmt;
3115                                             fmt = NULL;
3116                                         }
3117                                         umtx_unlock(NULL);
3118                                         delete fmt;
3119                                     }
3120                                 }
3121                                 // We could almost return null or "" here, since the
3122                                 // expanded affixes are almost not used at all
3123                                 // in this situation.  However, one method --
3124                                 // toPattern() -- still does use the expanded
3125                                 // affixes, in order to set up a padding
3126                                 // pattern.  We use the CURRENCY_SIGN as a
3127                                 // placeholder.
3128                                 affix.append(kCurrencySign);
3129                             } else {
3130                                 if (fCurrencyChoice != NULL) {
3131                                     FieldPosition pos(0); // ignored
3132                                     if (number < 0) {
3133                                         number = -number;
3134                                     }
3135                                     fCurrencyChoice->format(number, affix, pos);
3136                                 } else {
3137                                     // We only arrive here if the currency choice
3138                                     // format in the locale data is INVALID.
3139                                     affix += currencyUChars;
3140                                     handler.addAttribute(kCurrencyField, beginIdx, affix.length());
3141                                 }
3142                             }
3143                             continue;
3144                         }
3145                         affix += UnicodeString(s, len);
3146                         handler.addAttribute(kCurrencyField, beginIdx, affix.length());
3147                     }
3148                 } else {
3149                     if(intl) {
3150                         affix += getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol);
3151                     } else {
3152                         affix += getConstSymbol(DecimalFormatSymbols::kCurrencySymbol);
3153                     }
3154                     handler.addAttribute(kCurrencyField, beginIdx, affix.length());
3155                 }
3156                 break;
3157             }
3158             case kPatternPercent:
3159                 affix += getConstSymbol(DecimalFormatSymbols::kPercentSymbol);
3160                 handler.addAttribute(kPercentField, beginIdx, affix.length());
3161                 break;
3162             case kPatternPerMill:
3163                 affix += getConstSymbol(DecimalFormatSymbols::kPerMillSymbol);
3164                 handler.addAttribute(kPermillField, beginIdx, affix.length());
3165                 break;
3166             case kPatternPlus:
3167                 affix += getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol);
3168                 handler.addAttribute(kSignField, beginIdx, affix.length());
3169                 break;
3170             case kPatternMinus:
3171                 affix += getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol);
3172                 handler.addAttribute(kSignField, beginIdx, affix.length());
3173                 break;
3174             default:
3175                 affix.append(c);
3176                 break;
3177             }
3178         }
3179         else {
3180             affix.append(c);
3181         }
3182     }
3183 }
3184 
3185 /**
3186  * Append an affix to the given StringBuffer.
3187  * @param buf buffer to append to
3188  * @param isNegative
3189  * @param isPrefix
3190  */
appendAffix(UnicodeString & buf,double number,FieldPositionHandler & handler,UBool isNegative,UBool isPrefix) const3191 int32_t DecimalFormat::appendAffix(UnicodeString& buf, double number,
3192                                    FieldPositionHandler& handler,
3193                                    UBool isNegative, UBool isPrefix) const {
3194     // plural format precedes choice format
3195     if (fCurrencyChoice != 0 &&
3196         fCurrencySignCount != fgCurrencySignCountInPluralFormat) {
3197         const UnicodeString* affixPat;
3198         if (isPrefix) {
3199             affixPat = isNegative ? fNegPrefixPattern : fPosPrefixPattern;
3200         } else {
3201             affixPat = isNegative ? fNegSuffixPattern : fPosSuffixPattern;
3202         }
3203         if (affixPat) {
3204             UnicodeString affixBuf;
3205             expandAffix(*affixPat, affixBuf, number, handler, TRUE, NULL);
3206             buf.append(affixBuf);
3207             return affixBuf.length();
3208         }
3209         // else someone called a function that reset the pattern.
3210     }
3211 
3212     const UnicodeString* affix;
3213     if (fCurrencySignCount == fgCurrencySignCountInPluralFormat) {
3214         UnicodeString pluralCount = fCurrencyPluralInfo->getPluralRules()->select(number);
3215         AffixesForCurrency* oneSet;
3216         if (fStyle == NumberFormat::kPluralCurrencyStyle) {
3217             oneSet = (AffixesForCurrency*)fPluralAffixesForCurrency->get(pluralCount);
3218         } else {
3219             oneSet = (AffixesForCurrency*)fAffixesForCurrency->get(pluralCount);
3220         }
3221         if (isPrefix) {
3222             affix = isNegative ? &oneSet->negPrefixForCurrency :
3223                                  &oneSet->posPrefixForCurrency;
3224         } else {
3225             affix = isNegative ? &oneSet->negSuffixForCurrency :
3226                                  &oneSet->posSuffixForCurrency;
3227         }
3228     } else {
3229         if (isPrefix) {
3230             affix = isNegative ? &fNegativePrefix : &fPositivePrefix;
3231         } else {
3232             affix = isNegative ? &fNegativeSuffix : &fPositiveSuffix;
3233         }
3234     }
3235 
3236     int32_t begin = (int) buf.length();
3237 
3238     buf.append(*affix);
3239 
3240     if (handler.isRecording()) {
3241       int32_t offset = (int) (*affix).indexOf(getConstSymbol(DecimalFormatSymbols::kCurrencySymbol));
3242       if (offset > -1) {
3243         UnicodeString aff = getConstSymbol(DecimalFormatSymbols::kCurrencySymbol);
3244         handler.addAttribute(kCurrencyField, begin + offset, begin + offset + aff.length());
3245       }
3246 
3247       offset = (int) (*affix).indexOf(getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol));
3248       if (offset > -1) {
3249         UnicodeString aff = getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol);
3250         handler.addAttribute(kCurrencyField, begin + offset, begin + offset + aff.length());
3251       }
3252 
3253       offset = (int) (*affix).indexOf(getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol));
3254       if (offset > -1) {
3255         UnicodeString aff = getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol);
3256         handler.addAttribute(kSignField, begin + offset, begin + offset + aff.length());
3257       }
3258 
3259       offset = (int) (*affix).indexOf(getConstSymbol(DecimalFormatSymbols::kPercentSymbol));
3260       if (offset > -1) {
3261         UnicodeString aff = getConstSymbol(DecimalFormatSymbols::kPercentSymbol);
3262         handler.addAttribute(kPercentField, begin + offset, begin + offset + aff.length());
3263       }
3264 
3265       offset = (int) (*affix).indexOf(getConstSymbol(DecimalFormatSymbols::kPerMillSymbol));
3266       if (offset > -1) {
3267         UnicodeString aff = getConstSymbol(DecimalFormatSymbols::kPerMillSymbol);
3268         handler.addAttribute(kPermillField, begin + offset, begin + offset + aff.length());
3269       }
3270     }
3271     return affix->length();
3272 }
3273 
3274 /**
3275  * Appends an affix pattern to the given StringBuffer, quoting special
3276  * characters as needed.  Uses the internal affix pattern, if that exists,
3277  * or the literal affix, if the internal affix pattern is null.  The
3278  * appended string will generate the same affix pattern (or literal affix)
3279  * when passed to toPattern().
3280  *
3281  * @param appendTo the affix string is appended to this
3282  * @param affixPattern a pattern such as fPosPrefixPattern; may be null
3283  * @param expAffix a corresponding expanded affix, such as fPositivePrefix.
3284  * Ignored unless affixPattern is null.  If affixPattern is null, then
3285  * expAffix is appended as a literal affix.
3286  * @param localized true if the appended pattern should contain localized
3287  * pattern characters; otherwise, non-localized pattern chars are appended
3288  */
appendAffixPattern(UnicodeString & appendTo,const UnicodeString * affixPattern,const UnicodeString & expAffix,UBool localized) const3289 void DecimalFormat::appendAffixPattern(UnicodeString& appendTo,
3290                                        const UnicodeString* affixPattern,
3291                                        const UnicodeString& expAffix,
3292                                        UBool localized) const {
3293     if (affixPattern == 0) {
3294         appendAffixPattern(appendTo, expAffix, localized);
3295     } else {
3296         int i;
3297         for (int pos=0; pos<affixPattern->length(); pos=i) {
3298             i = affixPattern->indexOf(kQuote, pos);
3299             if (i < 0) {
3300                 UnicodeString s;
3301                 affixPattern->extractBetween(pos, affixPattern->length(), s);
3302                 appendAffixPattern(appendTo, s, localized);
3303                 break;
3304             }
3305             if (i > pos) {
3306                 UnicodeString s;
3307                 affixPattern->extractBetween(pos, i, s);
3308                 appendAffixPattern(appendTo, s, localized);
3309             }
3310             UChar32 c = affixPattern->char32At(++i);
3311             ++i;
3312             if (c == kQuote) {
3313                 appendTo.append(c).append(c);
3314                 // Fall through and append another kQuote below
3315             } else if (c == kCurrencySign &&
3316                        i<affixPattern->length() &&
3317                        affixPattern->char32At(i) == kCurrencySign) {
3318                 ++i;
3319                 appendTo.append(c).append(c);
3320             } else if (localized) {
3321                 switch (c) {
3322                 case kPatternPercent:
3323                     appendTo += getConstSymbol(DecimalFormatSymbols::kPercentSymbol);
3324                     break;
3325                 case kPatternPerMill:
3326                     appendTo += getConstSymbol(DecimalFormatSymbols::kPerMillSymbol);
3327                     break;
3328                 case kPatternPlus:
3329                     appendTo += getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol);
3330                     break;
3331                 case kPatternMinus:
3332                     appendTo += getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol);
3333                     break;
3334                 default:
3335                     appendTo.append(c);
3336                 }
3337             } else {
3338                 appendTo.append(c);
3339             }
3340         }
3341     }
3342 }
3343 
3344 /**
3345  * Append an affix to the given StringBuffer, using quotes if
3346  * there are special characters.  Single quotes themselves must be
3347  * escaped in either case.
3348  */
3349 void
appendAffixPattern(UnicodeString & appendTo,const UnicodeString & affix,UBool localized) const3350 DecimalFormat::appendAffixPattern(UnicodeString& appendTo,
3351                                   const UnicodeString& affix,
3352                                   UBool localized) const {
3353     UBool needQuote;
3354     if(localized) {
3355         needQuote = affix.indexOf(getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol)) >= 0
3356             || affix.indexOf(getConstSymbol(DecimalFormatSymbols::kGroupingSeparatorSymbol)) >= 0
3357             || affix.indexOf(getConstSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol)) >= 0
3358             || affix.indexOf(getConstSymbol(DecimalFormatSymbols::kPercentSymbol)) >= 0
3359             || affix.indexOf(getConstSymbol(DecimalFormatSymbols::kPerMillSymbol)) >= 0
3360             || affix.indexOf(getConstSymbol(DecimalFormatSymbols::kDigitSymbol)) >= 0
3361             || affix.indexOf(getConstSymbol(DecimalFormatSymbols::kPatternSeparatorSymbol)) >= 0
3362             || affix.indexOf(getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol)) >= 0
3363             || affix.indexOf(getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol)) >= 0
3364             || affix.indexOf(kCurrencySign) >= 0;
3365     }
3366     else {
3367         needQuote = affix.indexOf(kPatternZeroDigit) >= 0
3368             || affix.indexOf(kPatternGroupingSeparator) >= 0
3369             || affix.indexOf(kPatternDecimalSeparator) >= 0
3370             || affix.indexOf(kPatternPercent) >= 0
3371             || affix.indexOf(kPatternPerMill) >= 0
3372             || affix.indexOf(kPatternDigit) >= 0
3373             || affix.indexOf(kPatternSeparator) >= 0
3374             || affix.indexOf(kPatternExponent) >= 0
3375             || affix.indexOf(kPatternPlus) >= 0
3376             || affix.indexOf(kPatternMinus) >= 0
3377             || affix.indexOf(kCurrencySign) >= 0;
3378     }
3379     if (needQuote)
3380         appendTo += (UChar)0x0027 /*'\''*/;
3381     if (affix.indexOf((UChar)0x0027 /*'\''*/) < 0)
3382         appendTo += affix;
3383     else {
3384         for (int32_t j = 0; j < affix.length(); ) {
3385             UChar32 c = affix.char32At(j);
3386             j += U16_LENGTH(c);
3387             appendTo += c;
3388             if (c == 0x0027 /*'\''*/)
3389                 appendTo += c;
3390         }
3391     }
3392     if (needQuote)
3393         appendTo += (UChar)0x0027 /*'\''*/;
3394 }
3395 
3396 //------------------------------------------------------------------------------
3397 
3398 UnicodeString&
toPattern(UnicodeString & result,UBool localized) const3399 DecimalFormat::toPattern(UnicodeString& result, UBool localized) const
3400 {
3401     if (fStyle == NumberFormat::kPluralCurrencyStyle) {
3402         // the prefix or suffix pattern might not be defined yet,
3403         // so they can not be synthesized,
3404         // instead, get them directly.
3405         // but it might not be the actual pattern used in formatting.
3406         // the actual pattern used in formatting depends on the
3407         // formatted number's plural count.
3408         result = fFormatPattern;
3409         return result;
3410     }
3411     result.remove();
3412     UChar32 zero, sigDigit = kPatternSignificantDigit;
3413     UnicodeString digit, group;
3414     int32_t i;
3415     int32_t roundingDecimalPos = 0; // Pos of decimal in roundingDigits
3416     UnicodeString roundingDigits;
3417     int32_t padPos = (fFormatWidth > 0) ? fPadPosition : -1;
3418     UnicodeString padSpec;
3419     UBool useSigDig = areSignificantDigitsUsed();
3420 
3421     if (localized) {
3422         digit.append(getConstSymbol(DecimalFormatSymbols::kDigitSymbol));
3423         group.append(getConstSymbol(DecimalFormatSymbols::kGroupingSeparatorSymbol));
3424         zero = getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol).char32At(0);
3425         if (useSigDig) {
3426             sigDigit = getConstSymbol(DecimalFormatSymbols::kSignificantDigitSymbol).char32At(0);
3427         }
3428     }
3429     else {
3430         digit.append((UChar)kPatternDigit);
3431         group.append((UChar)kPatternGroupingSeparator);
3432         zero = (UChar32)kPatternZeroDigit;
3433     }
3434     if (fFormatWidth > 0) {
3435         if (localized) {
3436             padSpec.append(getConstSymbol(DecimalFormatSymbols::kPadEscapeSymbol));
3437         }
3438         else {
3439             padSpec.append((UChar)kPatternPadEscape);
3440         }
3441         padSpec.append(fPad);
3442     }
3443     if (fRoundingIncrement != NULL) {
3444         for(i=0; i<fRoundingIncrement->getCount(); ++i) {
3445           roundingDigits.append(zero+(fRoundingIncrement->getDigitValue(i))); // Convert to Unicode digit
3446         }
3447         roundingDecimalPos = fRoundingIncrement->getDecimalAt();
3448     }
3449     for (int32_t part=0; part<2; ++part) {
3450         if (padPos == kPadBeforePrefix) {
3451             result.append(padSpec);
3452         }
3453         appendAffixPattern(result,
3454                     (part==0 ? fPosPrefixPattern : fNegPrefixPattern),
3455                     (part==0 ? fPositivePrefix : fNegativePrefix),
3456                     localized);
3457         if (padPos == kPadAfterPrefix && ! padSpec.isEmpty()) {
3458             result.append(padSpec);
3459         }
3460         int32_t sub0Start = result.length();
3461         int32_t g = isGroupingUsed() ? _max(0, fGroupingSize) : 0;
3462         if (g > 0 && fGroupingSize2 > 0 && fGroupingSize2 != fGroupingSize) {
3463             g += fGroupingSize2;
3464         }
3465         int32_t maxDig = 0, minDig = 0, maxSigDig = 0;
3466         if (useSigDig) {
3467             minDig = getMinimumSignificantDigits();
3468             maxDig = maxSigDig = getMaximumSignificantDigits();
3469         } else {
3470             minDig = getMinimumIntegerDigits();
3471             maxDig = getMaximumIntegerDigits();
3472         }
3473         if (fUseExponentialNotation) {
3474             if (maxDig > kMaxScientificIntegerDigits) {
3475                 maxDig = 1;
3476             }
3477         } else if (useSigDig) {
3478             maxDig = _max(maxDig, g+1);
3479         } else {
3480             maxDig = _max(_max(g, getMinimumIntegerDigits()),
3481                           roundingDecimalPos) + 1;
3482         }
3483         for (i = maxDig; i > 0; --i) {
3484             if (!fUseExponentialNotation && i<maxDig &&
3485                 isGroupingPosition(i)) {
3486                 result.append(group);
3487             }
3488             if (useSigDig) {
3489                 //  #@,@###   (maxSigDig == 5, minSigDig == 2)
3490                 //  65 4321   (1-based pos, count from the right)
3491                 // Use # if pos > maxSigDig or 1 <= pos <= (maxSigDig - minSigDig)
3492                 // Use @ if (maxSigDig - minSigDig) < pos <= maxSigDig
3493                 if (maxSigDig >= i && i > (maxSigDig - minDig)) {
3494                     result.append(sigDigit);
3495                 } else {
3496                     result.append(digit);
3497                 }
3498             } else {
3499                 if (! roundingDigits.isEmpty()) {
3500                     int32_t pos = roundingDecimalPos - i;
3501                     if (pos >= 0 && pos < roundingDigits.length()) {
3502                         result.append((UChar) (roundingDigits.char32At(pos) - kPatternZeroDigit + zero));
3503                         continue;
3504                     }
3505                 }
3506                 if (i<=minDig) {
3507                     result.append(zero);
3508                 } else {
3509                     result.append(digit);
3510                 }
3511             }
3512         }
3513         if (!useSigDig) {
3514             if (getMaximumFractionDigits() > 0 || fDecimalSeparatorAlwaysShown) {
3515                 if (localized) {
3516                     result += getConstSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol);
3517                 }
3518                 else {
3519                     result.append((UChar)kPatternDecimalSeparator);
3520                 }
3521             }
3522             int32_t pos = roundingDecimalPos;
3523             for (i = 0; i < getMaximumFractionDigits(); ++i) {
3524                 if (! roundingDigits.isEmpty() && pos < roundingDigits.length()) {
3525                     if (pos < 0) {
3526                         result.append(zero);
3527                     }
3528                     else {
3529                         result.append((UChar)(roundingDigits.char32At(pos) - kPatternZeroDigit + zero));
3530                     }
3531                     ++pos;
3532                     continue;
3533                 }
3534                 if (i<getMinimumFractionDigits()) {
3535                     result.append(zero);
3536                 }
3537                 else {
3538                     result.append(digit);
3539                 }
3540             }
3541         }
3542         if (fUseExponentialNotation) {
3543             if (localized) {
3544                 result += getConstSymbol(DecimalFormatSymbols::kExponentialSymbol);
3545             }
3546             else {
3547                 result.append((UChar)kPatternExponent);
3548             }
3549             if (fExponentSignAlwaysShown) {
3550                 if (localized) {
3551                     result += getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol);
3552                 }
3553                 else {
3554                     result.append((UChar)kPatternPlus);
3555                 }
3556             }
3557             for (i=0; i<fMinExponentDigits; ++i) {
3558                 result.append(zero);
3559             }
3560         }
3561         if (! padSpec.isEmpty() && !fUseExponentialNotation) {
3562             int32_t add = fFormatWidth - result.length() + sub0Start
3563                 - ((part == 0)
3564                    ? fPositivePrefix.length() + fPositiveSuffix.length()
3565                    : fNegativePrefix.length() + fNegativeSuffix.length());
3566             while (add > 0) {
3567                 result.insert(sub0Start, digit);
3568                 ++maxDig;
3569                 --add;
3570                 // Only add a grouping separator if we have at least
3571                 // 2 additional characters to be added, so we don't
3572                 // end up with ",###".
3573                 if (add>1 && isGroupingPosition(maxDig)) {
3574                     result.insert(sub0Start, group);
3575                     --add;
3576                 }
3577             }
3578         }
3579         if (fPadPosition == kPadBeforeSuffix && ! padSpec.isEmpty()) {
3580             result.append(padSpec);
3581         }
3582         if (part == 0) {
3583             appendAffixPattern(result, fPosSuffixPattern, fPositiveSuffix, localized);
3584             if (fPadPosition == kPadAfterSuffix && ! padSpec.isEmpty()) {
3585                 result.append(padSpec);
3586             }
3587             UBool isDefault = FALSE;
3588             if ((fNegSuffixPattern == fPosSuffixPattern && // both null
3589                  fNegativeSuffix == fPositiveSuffix)
3590                 || (fNegSuffixPattern != 0 && fPosSuffixPattern != 0 &&
3591                     *fNegSuffixPattern == *fPosSuffixPattern))
3592             {
3593                 if (fNegPrefixPattern != NULL && fPosPrefixPattern != NULL)
3594                 {
3595                     int32_t length = fPosPrefixPattern->length();
3596                     isDefault = fNegPrefixPattern->length() == (length+2) &&
3597                         (*fNegPrefixPattern)[(int32_t)0] == kQuote &&
3598                         (*fNegPrefixPattern)[(int32_t)1] == kPatternMinus &&
3599                         fNegPrefixPattern->compare(2, length, *fPosPrefixPattern, 0, length) == 0;
3600                 }
3601                 if (!isDefault &&
3602                     fNegPrefixPattern == NULL && fPosPrefixPattern == NULL)
3603                 {
3604                     int32_t length = fPositivePrefix.length();
3605                     isDefault = fNegativePrefix.length() == (length+1) &&
3606                         fNegativePrefix.compare(getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol)) == 0 &&
3607                         fNegativePrefix.compare(1, length, fPositivePrefix, 0, length) == 0;
3608                 }
3609             }
3610             if (isDefault) {
3611                 break; // Don't output default negative subpattern
3612             } else {
3613                 if (localized) {
3614                     result += getConstSymbol(DecimalFormatSymbols::kPatternSeparatorSymbol);
3615                 }
3616                 else {
3617                     result.append((UChar)kPatternSeparator);
3618                 }
3619             }
3620         } else {
3621             appendAffixPattern(result, fNegSuffixPattern, fNegativeSuffix, localized);
3622             if (fPadPosition == kPadAfterSuffix && ! padSpec.isEmpty()) {
3623                 result.append(padSpec);
3624             }
3625         }
3626     }
3627 
3628     return result;
3629 }
3630 
3631 //------------------------------------------------------------------------------
3632 
3633 void
applyPattern(const UnicodeString & pattern,UErrorCode & status)3634 DecimalFormat::applyPattern(const UnicodeString& pattern, UErrorCode& status)
3635 {
3636     UParseError parseError;
3637     applyPattern(pattern, FALSE, parseError, status);
3638 }
3639 
3640 //------------------------------------------------------------------------------
3641 
3642 void
applyPattern(const UnicodeString & pattern,UParseError & parseError,UErrorCode & status)3643 DecimalFormat::applyPattern(const UnicodeString& pattern,
3644                             UParseError& parseError,
3645                             UErrorCode& status)
3646 {
3647     applyPattern(pattern, FALSE, parseError, status);
3648 }
3649 //------------------------------------------------------------------------------
3650 
3651 void
applyLocalizedPattern(const UnicodeString & pattern,UErrorCode & status)3652 DecimalFormat::applyLocalizedPattern(const UnicodeString& pattern, UErrorCode& status)
3653 {
3654     UParseError parseError;
3655     applyPattern(pattern, TRUE,parseError,status);
3656 }
3657 
3658 //------------------------------------------------------------------------------
3659 
3660 void
applyLocalizedPattern(const UnicodeString & pattern,UParseError & parseError,UErrorCode & status)3661 DecimalFormat::applyLocalizedPattern(const UnicodeString& pattern,
3662                                      UParseError& parseError,
3663                                      UErrorCode& status)
3664 {
3665     applyPattern(pattern, TRUE,parseError,status);
3666 }
3667 
3668 //------------------------------------------------------------------------------
3669 
3670 void
applyPatternWithoutExpandAffix(const UnicodeString & pattern,UBool localized,UParseError & parseError,UErrorCode & status)3671 DecimalFormat::applyPatternWithoutExpandAffix(const UnicodeString& pattern,
3672                                               UBool localized,
3673                                               UParseError& parseError,
3674                                               UErrorCode& status)
3675 {
3676     if (U_FAILURE(status))
3677     {
3678         return;
3679     }
3680     // Clear error struct
3681     parseError.offset = -1;
3682     parseError.preContext[0] = parseError.postContext[0] = (UChar)0;
3683 
3684     // Set the significant pattern symbols
3685     UChar32 zeroDigit               = kPatternZeroDigit; // '0'
3686     UChar32 sigDigit                = kPatternSignificantDigit; // '@'
3687     UnicodeString groupingSeparator ((UChar)kPatternGroupingSeparator);
3688     UnicodeString decimalSeparator  ((UChar)kPatternDecimalSeparator);
3689     UnicodeString percent           ((UChar)kPatternPercent);
3690     UnicodeString perMill           ((UChar)kPatternPerMill);
3691     UnicodeString digit             ((UChar)kPatternDigit); // '#'
3692     UnicodeString separator         ((UChar)kPatternSeparator);
3693     UnicodeString exponent          ((UChar)kPatternExponent);
3694     UnicodeString plus              ((UChar)kPatternPlus);
3695     UnicodeString minus             ((UChar)kPatternMinus);
3696     UnicodeString padEscape         ((UChar)kPatternPadEscape);
3697     // Substitute with the localized symbols if necessary
3698     if (localized) {
3699         zeroDigit = getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol).char32At(0);
3700         sigDigit = getConstSymbol(DecimalFormatSymbols::kSignificantDigitSymbol).char32At(0);
3701         groupingSeparator.  remove().append(getConstSymbol(DecimalFormatSymbols::kGroupingSeparatorSymbol));
3702         decimalSeparator.   remove().append(getConstSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol));
3703         percent.            remove().append(getConstSymbol(DecimalFormatSymbols::kPercentSymbol));
3704         perMill.            remove().append(getConstSymbol(DecimalFormatSymbols::kPerMillSymbol));
3705         digit.              remove().append(getConstSymbol(DecimalFormatSymbols::kDigitSymbol));
3706         separator.          remove().append(getConstSymbol(DecimalFormatSymbols::kPatternSeparatorSymbol));
3707         exponent.           remove().append(getConstSymbol(DecimalFormatSymbols::kExponentialSymbol));
3708         plus.               remove().append(getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol));
3709         minus.              remove().append(getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol));
3710         padEscape.          remove().append(getConstSymbol(DecimalFormatSymbols::kPadEscapeSymbol));
3711     }
3712     UChar nineDigit = (UChar)(zeroDigit + 9);
3713     int32_t digitLen = digit.length();
3714     int32_t groupSepLen = groupingSeparator.length();
3715     int32_t decimalSepLen = decimalSeparator.length();
3716 
3717     int32_t pos = 0;
3718     int32_t patLen = pattern.length();
3719     // Part 0 is the positive pattern.  Part 1, if present, is the negative
3720     // pattern.
3721     for (int32_t part=0; part<2 && pos<patLen; ++part) {
3722         // The subpart ranges from 0 to 4: 0=pattern proper, 1=prefix,
3723         // 2=suffix, 3=prefix in quote, 4=suffix in quote.  Subpart 0 is
3724         // between the prefix and suffix, and consists of pattern
3725         // characters.  In the prefix and suffix, percent, perMill, and
3726         // currency symbols are recognized and translated.
3727         int32_t subpart = 1, sub0Start = 0, sub0Limit = 0, sub2Limit = 0;
3728 
3729         // It's important that we don't change any fields of this object
3730         // prematurely.  We set the following variables for the multiplier,
3731         // grouping, etc., and then only change the actual object fields if
3732         // everything parses correctly.  This also lets us register
3733         // the data from part 0 and ignore the part 1, except for the
3734         // prefix and suffix.
3735         UnicodeString prefix;
3736         UnicodeString suffix;
3737         int32_t decimalPos = -1;
3738         int32_t multiplier = 1;
3739         int32_t digitLeftCount = 0, zeroDigitCount = 0, digitRightCount = 0, sigDigitCount = 0;
3740         int8_t groupingCount = -1;
3741         int8_t groupingCount2 = -1;
3742         int32_t padPos = -1;
3743         UChar32 padChar = 0;
3744         int32_t roundingPos = -1;
3745         DigitList roundingInc;
3746         int8_t expDigits = -1;
3747         UBool expSignAlways = FALSE;
3748 
3749         // The affix is either the prefix or the suffix.
3750         UnicodeString* affix = &prefix;
3751 
3752         int32_t start = pos;
3753         UBool isPartDone = FALSE;
3754         UChar32 ch;
3755 
3756         for (; !isPartDone && pos < patLen; ) {
3757             // Todo: account for surrogate pairs
3758             ch = pattern.char32At(pos);
3759             switch (subpart) {
3760             case 0: // Pattern proper subpart (between prefix & suffix)
3761                 // Process the digits, decimal, and grouping characters.  We
3762                 // record five pieces of information.  We expect the digits
3763                 // to occur in the pattern ####00.00####, and we record the
3764                 // number of left digits, zero (central) digits, and right
3765                 // digits.  The position of the last grouping character is
3766                 // recorded (should be somewhere within the first two blocks
3767                 // of characters), as is the position of the decimal point,
3768                 // if any (should be in the zero digits).  If there is no
3769                 // decimal point, then there should be no right digits.
3770                 if (pattern.compare(pos, digitLen, digit) == 0) {
3771                     if (zeroDigitCount > 0 || sigDigitCount > 0) {
3772                         ++digitRightCount;
3773                     } else {
3774                         ++digitLeftCount;
3775                     }
3776                     if (groupingCount >= 0 && decimalPos < 0) {
3777                         ++groupingCount;
3778                     }
3779                     pos += digitLen;
3780                 } else if ((ch >= zeroDigit && ch <= nineDigit) ||
3781                            ch == sigDigit) {
3782                     if (digitRightCount > 0) {
3783                         // Unexpected '0'
3784                         debug("Unexpected '0'")
3785                         status = U_UNEXPECTED_TOKEN;
3786                         syntaxError(pattern,pos,parseError);
3787                         return;
3788                     }
3789                     if (ch == sigDigit) {
3790                         ++sigDigitCount;
3791                     } else {
3792                         ++zeroDigitCount;
3793                         if (ch != zeroDigit && roundingPos < 0) {
3794                             roundingPos = digitLeftCount + zeroDigitCount;
3795                         }
3796                         if (roundingPos >= 0) {
3797                             roundingInc.append((char)(ch - zeroDigit + '0'));
3798                         }
3799                     }
3800                     if (groupingCount >= 0 && decimalPos < 0) {
3801                         ++groupingCount;
3802                     }
3803                     pos += U16_LENGTH(ch);
3804                 } else if (pattern.compare(pos, groupSepLen, groupingSeparator) == 0) {
3805                     if (decimalPos >= 0) {
3806                         // Grouping separator after decimal
3807                         debug("Grouping separator after decimal")
3808                         status = U_UNEXPECTED_TOKEN;
3809                         syntaxError(pattern,pos,parseError);
3810                         return;
3811                     }
3812                     groupingCount2 = groupingCount;
3813                     groupingCount = 0;
3814                     pos += groupSepLen;
3815                 } else if (pattern.compare(pos, decimalSepLen, decimalSeparator) == 0) {
3816                     if (decimalPos >= 0) {
3817                         // Multiple decimal separators
3818                         debug("Multiple decimal separators")
3819                         status = U_MULTIPLE_DECIMAL_SEPARATORS;
3820                         syntaxError(pattern,pos,parseError);
3821                         return;
3822                     }
3823                     // Intentionally incorporate the digitRightCount,
3824                     // even though it is illegal for this to be > 0
3825                     // at this point.  We check pattern syntax below.
3826                     decimalPos = digitLeftCount + zeroDigitCount + digitRightCount;
3827                     pos += decimalSepLen;
3828                 } else {
3829                     if (pattern.compare(pos, exponent.length(), exponent) == 0) {
3830                         if (expDigits >= 0) {
3831                             // Multiple exponential symbols
3832                             debug("Multiple exponential symbols")
3833                             status = U_MULTIPLE_EXPONENTIAL_SYMBOLS;
3834                             syntaxError(pattern,pos,parseError);
3835                             return;
3836                         }
3837                         if (groupingCount >= 0) {
3838                             // Grouping separator in exponential pattern
3839                             debug("Grouping separator in exponential pattern")
3840                             status = U_MALFORMED_EXPONENTIAL_PATTERN;
3841                             syntaxError(pattern,pos,parseError);
3842                             return;
3843                         }
3844                         pos += exponent.length();
3845                         // Check for positive prefix
3846                         if (pos < patLen
3847                             && pattern.compare(pos, plus.length(), plus) == 0) {
3848                             expSignAlways = TRUE;
3849                             pos += plus.length();
3850                         }
3851                         // Use lookahead to parse out the exponential part of the
3852                         // pattern, then jump into suffix subpart.
3853                         expDigits = 0;
3854                         while (pos < patLen &&
3855                                pattern.char32At(pos) == zeroDigit) {
3856                             ++expDigits;
3857                             pos += U16_LENGTH(zeroDigit);
3858                         }
3859 
3860                         // 1. Require at least one mantissa pattern digit
3861                         // 2. Disallow "#+ @" in mantissa
3862                         // 3. Require at least one exponent pattern digit
3863                         if (((digitLeftCount + zeroDigitCount) < 1 &&
3864                              (sigDigitCount + digitRightCount) < 1) ||
3865                             (sigDigitCount > 0 && digitLeftCount > 0) ||
3866                             expDigits < 1) {
3867                             // Malformed exponential pattern
3868                             debug("Malformed exponential pattern")
3869                             status = U_MALFORMED_EXPONENTIAL_PATTERN;
3870                             syntaxError(pattern,pos,parseError);
3871                             return;
3872                         }
3873                     }
3874                     // Transition to suffix subpart
3875                     subpart = 2; // suffix subpart
3876                     affix = &suffix;
3877                     sub0Limit = pos;
3878                     continue;
3879                 }
3880                 break;
3881             case 1: // Prefix subpart
3882             case 2: // Suffix subpart
3883                 // Process the prefix / suffix characters
3884                 // Process unquoted characters seen in prefix or suffix
3885                 // subpart.
3886 
3887                 // Several syntax characters implicitly begins the
3888                 // next subpart if we are in the prefix; otherwise
3889                 // they are illegal if unquoted.
3890                 if (!pattern.compare(pos, digitLen, digit) ||
3891                     !pattern.compare(pos, groupSepLen, groupingSeparator) ||
3892                     !pattern.compare(pos, decimalSepLen, decimalSeparator) ||
3893                     (ch >= zeroDigit && ch <= nineDigit) ||
3894                     ch == sigDigit) {
3895                     if (subpart == 1) { // prefix subpart
3896                         subpart = 0; // pattern proper subpart
3897                         sub0Start = pos; // Reprocess this character
3898                         continue;
3899                     } else {
3900                         status = U_UNQUOTED_SPECIAL;
3901                         syntaxError(pattern,pos,parseError);
3902                         return;
3903                     }
3904                 } else if (ch == kCurrencySign) {
3905                     affix->append(kQuote); // Encode currency
3906                     // Use lookahead to determine if the currency sign is
3907                     // doubled or not.
3908                     U_ASSERT(U16_LENGTH(kCurrencySign) == 1);
3909                     if ((pos+1) < pattern.length() && pattern[pos+1] == kCurrencySign) {
3910                         affix->append(kCurrencySign);
3911                         ++pos; // Skip over the doubled character
3912                         if ((pos+1) < pattern.length() &&
3913                             pattern[pos+1] == kCurrencySign) {
3914                             affix->append(kCurrencySign);
3915                             ++pos; // Skip over the doubled character
3916                             fCurrencySignCount = fgCurrencySignCountInPluralFormat;
3917                         } else {
3918                             fCurrencySignCount = fgCurrencySignCountInISOFormat;
3919                         }
3920                     } else {
3921                         fCurrencySignCount = fgCurrencySignCountInSymbolFormat;
3922                     }
3923                     // Fall through to append(ch)
3924                 } else if (ch == kQuote) {
3925                     // A quote outside quotes indicates either the opening
3926                     // quote or two quotes, which is a quote literal.  That is,
3927                     // we have the first quote in 'do' or o''clock.
3928                     U_ASSERT(U16_LENGTH(kQuote) == 1);
3929                     ++pos;
3930                     if (pos < pattern.length() && pattern[pos] == kQuote) {
3931                         affix->append(kQuote); // Encode quote
3932                         // Fall through to append(ch)
3933                     } else {
3934                         subpart += 2; // open quote
3935                         continue;
3936                     }
3937                 } else if (pattern.compare(pos, separator.length(), separator) == 0) {
3938                     // Don't allow separators in the prefix, and don't allow
3939                     // separators in the second pattern (part == 1).
3940                     if (subpart == 1 || part == 1) {
3941                         // Unexpected separator
3942                         debug("Unexpected separator")
3943                         status = U_UNEXPECTED_TOKEN;
3944                         syntaxError(pattern,pos,parseError);
3945                         return;
3946                     }
3947                     sub2Limit = pos;
3948                     isPartDone = TRUE; // Go to next part
3949                     pos += separator.length();
3950                     break;
3951                 } else if (pattern.compare(pos, percent.length(), percent) == 0) {
3952                     // Next handle characters which are appended directly.
3953                     if (multiplier != 1) {
3954                         // Too many percent/perMill characters
3955                         debug("Too many percent characters")
3956                         status = U_MULTIPLE_PERCENT_SYMBOLS;
3957                         syntaxError(pattern,pos,parseError);
3958                         return;
3959                     }
3960                     affix->append(kQuote); // Encode percent/perMill
3961                     affix->append(kPatternPercent); // Use unlocalized pattern char
3962                     multiplier = 100;
3963                     pos += percent.length();
3964                     break;
3965                 } else if (pattern.compare(pos, perMill.length(), perMill) == 0) {
3966                     // Next handle characters which are appended directly.
3967                     if (multiplier != 1) {
3968                         // Too many percent/perMill characters
3969                         debug("Too many perMill characters")
3970                         status = U_MULTIPLE_PERMILL_SYMBOLS;
3971                         syntaxError(pattern,pos,parseError);
3972                         return;
3973                     }
3974                     affix->append(kQuote); // Encode percent/perMill
3975                     affix->append(kPatternPerMill); // Use unlocalized pattern char
3976                     multiplier = 1000;
3977                     pos += perMill.length();
3978                     break;
3979                 } else if (pattern.compare(pos, padEscape.length(), padEscape) == 0) {
3980                     if (padPos >= 0 ||               // Multiple pad specifiers
3981                         (pos+1) == pattern.length()) { // Nothing after padEscape
3982                         debug("Multiple pad specifiers")
3983                         status = U_MULTIPLE_PAD_SPECIFIERS;
3984                         syntaxError(pattern,pos,parseError);
3985                         return;
3986                     }
3987                     padPos = pos;
3988                     pos += padEscape.length();
3989                     padChar = pattern.char32At(pos);
3990                     pos += U16_LENGTH(padChar);
3991                     break;
3992                 } else if (pattern.compare(pos, minus.length(), minus) == 0) {
3993                     affix->append(kQuote); // Encode minus
3994                     affix->append(kPatternMinus);
3995                     pos += minus.length();
3996                     break;
3997                 } else if (pattern.compare(pos, plus.length(), plus) == 0) {
3998                     affix->append(kQuote); // Encode plus
3999                     affix->append(kPatternPlus);
4000                     pos += plus.length();
4001                     break;
4002                 }
4003                 // Unquoted, non-special characters fall through to here, as
4004                 // well as other code which needs to append something to the
4005                 // affix.
4006                 affix->append(ch);
4007                 pos += U16_LENGTH(ch);
4008                 break;
4009             case 3: // Prefix subpart, in quote
4010             case 4: // Suffix subpart, in quote
4011                 // A quote within quotes indicates either the closing
4012                 // quote or two quotes, which is a quote literal.  That is,
4013                 // we have the second quote in 'do' or 'don''t'.
4014                 if (ch == kQuote) {
4015                     ++pos;
4016                     if (pos < pattern.length() && pattern[pos] == kQuote) {
4017                         affix->append(kQuote); // Encode quote
4018                         // Fall through to append(ch)
4019                     } else {
4020                         subpart -= 2; // close quote
4021                         continue;
4022                     }
4023                 }
4024                 affix->append(ch);
4025                 pos += U16_LENGTH(ch);
4026                 break;
4027             }
4028         }
4029 
4030         if (sub0Limit == 0) {
4031             sub0Limit = pattern.length();
4032         }
4033 
4034         if (sub2Limit == 0) {
4035             sub2Limit = pattern.length();
4036         }
4037 
4038         /* Handle patterns with no '0' pattern character.  These patterns
4039          * are legal, but must be recodified to make sense.  "##.###" ->
4040          * "#0.###".  ".###" -> ".0##".
4041          *
4042          * We allow patterns of the form "####" to produce a zeroDigitCount
4043          * of zero (got that?); although this seems like it might make it
4044          * possible for format() to produce empty strings, format() checks
4045          * for this condition and outputs a zero digit in this situation.
4046          * Having a zeroDigitCount of zero yields a minimum integer digits
4047          * of zero, which allows proper round-trip patterns.  We don't want
4048          * "#" to become "#0" when toPattern() is called (even though that's
4049          * what it really is, semantically).
4050          */
4051         if (zeroDigitCount == 0 && sigDigitCount == 0 &&
4052             digitLeftCount > 0 && decimalPos >= 0) {
4053             // Handle "###.###" and "###." and ".###"
4054             int n = decimalPos;
4055             if (n == 0)
4056                 ++n; // Handle ".###"
4057             digitRightCount = digitLeftCount - n;
4058             digitLeftCount = n - 1;
4059             zeroDigitCount = 1;
4060         }
4061 
4062         // Do syntax checking on the digits, decimal points, and quotes.
4063         if ((decimalPos < 0 && digitRightCount > 0 && sigDigitCount == 0) ||
4064             (decimalPos >= 0 &&
4065              (sigDigitCount > 0 ||
4066               decimalPos < digitLeftCount ||
4067               decimalPos > (digitLeftCount + zeroDigitCount))) ||
4068             groupingCount == 0 || groupingCount2 == 0 ||
4069             (sigDigitCount > 0 && zeroDigitCount > 0) ||
4070             subpart > 2)
4071         { // subpart > 2 == unmatched quote
4072             debug("Syntax error")
4073             status = U_PATTERN_SYNTAX_ERROR;
4074             syntaxError(pattern,pos,parseError);
4075             return;
4076         }
4077 
4078         // Make sure pad is at legal position before or after affix.
4079         if (padPos >= 0) {
4080             if (padPos == start) {
4081                 padPos = kPadBeforePrefix;
4082             } else if (padPos+2 == sub0Start) {
4083                 padPos = kPadAfterPrefix;
4084             } else if (padPos == sub0Limit) {
4085                 padPos = kPadBeforeSuffix;
4086             } else if (padPos+2 == sub2Limit) {
4087                 padPos = kPadAfterSuffix;
4088             } else {
4089                 // Illegal pad position
4090                 debug("Illegal pad position")
4091                 status = U_ILLEGAL_PAD_POSITION;
4092                 syntaxError(pattern,pos,parseError);
4093                 return;
4094             }
4095         }
4096 
4097         if (part == 0) {
4098             delete fPosPrefixPattern;
4099             delete fPosSuffixPattern;
4100             delete fNegPrefixPattern;
4101             delete fNegSuffixPattern;
4102             fPosPrefixPattern = new UnicodeString(prefix);
4103             /* test for NULL */
4104             if (fPosPrefixPattern == 0) {
4105                 status = U_MEMORY_ALLOCATION_ERROR;
4106                 return;
4107             }
4108             fPosSuffixPattern = new UnicodeString(suffix);
4109             /* test for NULL */
4110             if (fPosSuffixPattern == 0) {
4111                 status = U_MEMORY_ALLOCATION_ERROR;
4112                 delete fPosPrefixPattern;
4113                 return;
4114             }
4115             fNegPrefixPattern = 0;
4116             fNegSuffixPattern = 0;
4117 
4118             fUseExponentialNotation = (expDigits >= 0);
4119             if (fUseExponentialNotation) {
4120                 fMinExponentDigits = expDigits;
4121             }
4122             fExponentSignAlwaysShown = expSignAlways;
4123             int32_t digitTotalCount = digitLeftCount + zeroDigitCount + digitRightCount;
4124             // The effectiveDecimalPos is the position the decimal is at or
4125             // would be at if there is no decimal.  Note that if
4126             // decimalPos<0, then digitTotalCount == digitLeftCount +
4127             // zeroDigitCount.
4128             int32_t effectiveDecimalPos = decimalPos >= 0 ? decimalPos : digitTotalCount;
4129             UBool isSigDig = (sigDigitCount > 0);
4130             setSignificantDigitsUsed(isSigDig);
4131             if (isSigDig) {
4132                 setMinimumSignificantDigits(sigDigitCount);
4133                 setMaximumSignificantDigits(sigDigitCount + digitRightCount);
4134             } else {
4135                 int32_t minInt = effectiveDecimalPos - digitLeftCount;
4136                 setMinimumIntegerDigits(minInt);
4137                 setMaximumIntegerDigits(fUseExponentialNotation
4138                     ? digitLeftCount + getMinimumIntegerDigits()
4139                     : kDoubleIntegerDigits);
4140                 setMaximumFractionDigits(decimalPos >= 0
4141                     ? (digitTotalCount - decimalPos) : 0);
4142                 setMinimumFractionDigits(decimalPos >= 0
4143                     ? (digitLeftCount + zeroDigitCount - decimalPos) : 0);
4144             }
4145             setGroupingUsed(groupingCount > 0);
4146             fGroupingSize = (groupingCount > 0) ? groupingCount : 0;
4147             fGroupingSize2 = (groupingCount2 > 0 && groupingCount2 != groupingCount)
4148                 ? groupingCount2 : 0;
4149             setMultiplier(multiplier);
4150             setDecimalSeparatorAlwaysShown(decimalPos == 0
4151                     || decimalPos == digitTotalCount);
4152             if (padPos >= 0) {
4153                 fPadPosition = (EPadPosition) padPos;
4154                 // To compute the format width, first set up sub0Limit -
4155                 // sub0Start.  Add in prefix/suffix length later.
4156 
4157                 // fFormatWidth = prefix.length() + suffix.length() +
4158                 //    sub0Limit - sub0Start;
4159                 fFormatWidth = sub0Limit - sub0Start;
4160                 fPad = padChar;
4161             } else {
4162                 fFormatWidth = 0;
4163             }
4164             if (roundingPos >= 0) {
4165                 roundingInc.setDecimalAt(effectiveDecimalPos - roundingPos);
4166                 if (fRoundingIncrement != NULL) {
4167                     *fRoundingIncrement = roundingInc;
4168                 } else {
4169                     fRoundingIncrement = new DigitList(roundingInc);
4170                     /* test for NULL */
4171                     if (fRoundingIncrement == NULL) {
4172                         status = U_MEMORY_ALLOCATION_ERROR;
4173                         delete fPosPrefixPattern;
4174                         delete fPosSuffixPattern;
4175                         return;
4176                     }
4177                 }
4178                 fRoundingIncrement->getDouble();   // forces caching of double in the DigitList,
4179                                                    //    makes getting it thread safe.
4180                 fRoundingMode = kRoundHalfEven;
4181             } else {
4182                 setRoundingIncrement(0.0);
4183             }
4184         } else {
4185             fNegPrefixPattern = new UnicodeString(prefix);
4186             /* test for NULL */
4187             if (fNegPrefixPattern == 0) {
4188                 status = U_MEMORY_ALLOCATION_ERROR;
4189                 return;
4190             }
4191             fNegSuffixPattern = new UnicodeString(suffix);
4192             /* test for NULL */
4193             if (fNegSuffixPattern == 0) {
4194                 delete fNegPrefixPattern;
4195                 status = U_MEMORY_ALLOCATION_ERROR;
4196                 return;
4197             }
4198         }
4199     }
4200 
4201     if (pattern.length() == 0) {
4202         delete fNegPrefixPattern;
4203         delete fNegSuffixPattern;
4204         fNegPrefixPattern = NULL;
4205         fNegSuffixPattern = NULL;
4206         if (fPosPrefixPattern != NULL) {
4207             fPosPrefixPattern->remove();
4208         } else {
4209             fPosPrefixPattern = new UnicodeString();
4210             /* test for NULL */
4211             if (fPosPrefixPattern == 0) {
4212                 status = U_MEMORY_ALLOCATION_ERROR;
4213                 return;
4214             }
4215         }
4216         if (fPosSuffixPattern != NULL) {
4217             fPosSuffixPattern->remove();
4218         } else {
4219             fPosSuffixPattern = new UnicodeString();
4220             /* test for NULL */
4221             if (fPosSuffixPattern == 0) {
4222                 delete fPosPrefixPattern;
4223                 status = U_MEMORY_ALLOCATION_ERROR;
4224                 return;
4225             }
4226         }
4227 
4228         setMinimumIntegerDigits(0);
4229         setMaximumIntegerDigits(kDoubleIntegerDigits);
4230         setMinimumFractionDigits(0);
4231         setMaximumFractionDigits(kDoubleFractionDigits);
4232 
4233         fUseExponentialNotation = FALSE;
4234         fCurrencySignCount = 0;
4235         setGroupingUsed(FALSE);
4236         fGroupingSize = 0;
4237         fGroupingSize2 = 0;
4238         setMultiplier(1);
4239         setDecimalSeparatorAlwaysShown(FALSE);
4240         fFormatWidth = 0;
4241         setRoundingIncrement(0.0);
4242     }
4243 
4244     // If there was no negative pattern, or if the negative pattern is
4245     // identical to the positive pattern, then prepend the minus sign to the
4246     // positive pattern to form the negative pattern.
4247     if (fNegPrefixPattern == NULL ||
4248         (*fNegPrefixPattern == *fPosPrefixPattern
4249          && *fNegSuffixPattern == *fPosSuffixPattern)) {
4250         _copy_us_ptr(&fNegSuffixPattern, fPosSuffixPattern);
4251         if (fNegPrefixPattern == NULL) {
4252             fNegPrefixPattern = new UnicodeString();
4253             /* test for NULL */
4254             if (fNegPrefixPattern == 0) {
4255                 status = U_MEMORY_ALLOCATION_ERROR;
4256                 return;
4257             }
4258         } else {
4259             fNegPrefixPattern->remove();
4260         }
4261         fNegPrefixPattern->append(kQuote).append(kPatternMinus)
4262             .append(*fPosPrefixPattern);
4263     }
4264 #ifdef FMT_DEBUG
4265     UnicodeString s;
4266     s.append("\"").append(pattern).append("\"->");
4267     debugout(s);
4268 #endif
4269 
4270     // save the pattern
4271     fFormatPattern = pattern;
4272 }
4273 
4274 
4275 void
expandAffixAdjustWidth(const UnicodeString * pluralCount)4276 DecimalFormat::expandAffixAdjustWidth(const UnicodeString* pluralCount) {
4277     expandAffixes(pluralCount);
4278     if (fFormatWidth > 0) {
4279         // Finish computing format width (see above)
4280             // TODO: how to handle fFormatWidth,
4281             // need to save in f(Plural)AffixesForCurrecy?
4282             fFormatWidth += fPositivePrefix.length() + fPositiveSuffix.length();
4283     }
4284 }
4285 
4286 
4287 void
applyPattern(const UnicodeString & pattern,UBool localized,UParseError & parseError,UErrorCode & status)4288 DecimalFormat::applyPattern(const UnicodeString& pattern,
4289                             UBool localized,
4290                             UParseError& parseError,
4291                             UErrorCode& status)
4292 {
4293     // do the following re-set first. since they change private data by
4294     // apply pattern again.
4295     if (pattern.indexOf(kCurrencySign) != -1) {
4296         if (fCurrencyPluralInfo == NULL) {
4297             // initialize currencyPluralInfo if needed
4298             fCurrencyPluralInfo = new CurrencyPluralInfo(fSymbols->getLocale(), status);
4299         }
4300         if (fAffixPatternsForCurrency == NULL) {
4301             setupCurrencyAffixPatterns(status);
4302         }
4303         if (pattern.indexOf(fgTripleCurrencySign) != -1) {
4304             // only setup the affixes of the current pattern.
4305             setupCurrencyAffixes(pattern, TRUE, FALSE, status);
4306         }
4307     }
4308     applyPatternWithoutExpandAffix(pattern, localized, parseError, status);
4309     expandAffixAdjustWidth(NULL);
4310 }
4311 
4312 
4313 void
applyPatternInternally(const UnicodeString & pluralCount,const UnicodeString & pattern,UBool localized,UParseError & parseError,UErrorCode & status)4314 DecimalFormat::applyPatternInternally(const UnicodeString& pluralCount,
4315                                       const UnicodeString& pattern,
4316                                       UBool localized,
4317                                       UParseError& parseError,
4318                                       UErrorCode& status) {
4319     applyPatternWithoutExpandAffix(pattern, localized, parseError, status);
4320     expandAffixAdjustWidth(&pluralCount);
4321 }
4322 
4323 
4324 /**
4325  * Sets the maximum number of digits allowed in the integer portion of a
4326  * number. This override limits the integer digit count to 309.
4327  * @see NumberFormat#setMaximumIntegerDigits
4328  */
setMaximumIntegerDigits(int32_t newValue)4329 void DecimalFormat::setMaximumIntegerDigits(int32_t newValue) {
4330     NumberFormat::setMaximumIntegerDigits(_min(newValue, kDoubleIntegerDigits));
4331 }
4332 
4333 /**
4334  * Sets the minimum number of digits allowed in the integer portion of a
4335  * number. This override limits the integer digit count to 309.
4336  * @see NumberFormat#setMinimumIntegerDigits
4337  */
setMinimumIntegerDigits(int32_t newValue)4338 void DecimalFormat::setMinimumIntegerDigits(int32_t newValue) {
4339     NumberFormat::setMinimumIntegerDigits(_min(newValue, kDoubleIntegerDigits));
4340 }
4341 
4342 /**
4343  * Sets the maximum number of digits allowed in the fraction portion of a
4344  * number. This override limits the fraction digit count to 340.
4345  * @see NumberFormat#setMaximumFractionDigits
4346  */
setMaximumFractionDigits(int32_t newValue)4347 void DecimalFormat::setMaximumFractionDigits(int32_t newValue) {
4348     NumberFormat::setMaximumFractionDigits(_min(newValue, kDoubleFractionDigits));
4349 }
4350 
4351 /**
4352  * Sets the minimum number of digits allowed in the fraction portion of a
4353  * number. This override limits the fraction digit count to 340.
4354  * @see NumberFormat#setMinimumFractionDigits
4355  */
setMinimumFractionDigits(int32_t newValue)4356 void DecimalFormat::setMinimumFractionDigits(int32_t newValue) {
4357     NumberFormat::setMinimumFractionDigits(_min(newValue, kDoubleFractionDigits));
4358 }
4359 
getMinimumSignificantDigits() const4360 int32_t DecimalFormat::getMinimumSignificantDigits() const {
4361     return fMinSignificantDigits;
4362 }
4363 
getMaximumSignificantDigits() const4364 int32_t DecimalFormat::getMaximumSignificantDigits() const {
4365     return fMaxSignificantDigits;
4366 }
4367 
setMinimumSignificantDigits(int32_t min)4368 void DecimalFormat::setMinimumSignificantDigits(int32_t min) {
4369     if (min < 1) {
4370         min = 1;
4371     }
4372     // pin max sig dig to >= min
4373     int32_t max = _max(fMaxSignificantDigits, min);
4374     fMinSignificantDigits = min;
4375     fMaxSignificantDigits = max;
4376 }
4377 
setMaximumSignificantDigits(int32_t max)4378 void DecimalFormat::setMaximumSignificantDigits(int32_t max) {
4379     if (max < 1) {
4380         max = 1;
4381     }
4382     // pin min sig dig to 1..max
4383     U_ASSERT(fMinSignificantDigits >= 1);
4384     int32_t min = _min(fMinSignificantDigits, max);
4385     fMinSignificantDigits = min;
4386     fMaxSignificantDigits = max;
4387 }
4388 
areSignificantDigitsUsed() const4389 UBool DecimalFormat::areSignificantDigitsUsed() const {
4390     return fUseSignificantDigits;
4391 }
4392 
setSignificantDigitsUsed(UBool useSignificantDigits)4393 void DecimalFormat::setSignificantDigitsUsed(UBool useSignificantDigits) {
4394     fUseSignificantDigits = useSignificantDigits;
4395 }
4396 
setCurrencyInternally(const UChar * theCurrency,UErrorCode & ec)4397 void DecimalFormat::setCurrencyInternally(const UChar* theCurrency,
4398                                           UErrorCode& ec) {
4399     // If we are a currency format, then modify our affixes to
4400     // encode the currency symbol for the given currency in our
4401     // locale, and adjust the decimal digits and rounding for the
4402     // given currency.
4403 
4404     // Note: The code is ordered so that this object is *not changed*
4405     // until we are sure we are going to succeed.
4406 
4407     // NULL or empty currency is *legal* and indicates no currency.
4408     UBool isCurr = (theCurrency && *theCurrency);
4409 
4410     double rounding = 0.0;
4411     int32_t frac = 0;
4412     if (fCurrencySignCount > fgCurrencySignCountZero && isCurr) {
4413         rounding = ucurr_getRoundingIncrement(theCurrency, &ec);
4414         frac = ucurr_getDefaultFractionDigits(theCurrency, &ec);
4415     }
4416 
4417     NumberFormat::setCurrency(theCurrency, ec);
4418     if (U_FAILURE(ec)) return;
4419 
4420     if (fCurrencySignCount > fgCurrencySignCountZero) {
4421         // NULL or empty currency is *legal* and indicates no currency.
4422         if (isCurr) {
4423             setRoundingIncrement(rounding);
4424             setMinimumFractionDigits(frac);
4425             setMaximumFractionDigits(frac);
4426         }
4427         expandAffixes(NULL);
4428     }
4429 }
4430 
setCurrency(const UChar * theCurrency,UErrorCode & ec)4431 void DecimalFormat::setCurrency(const UChar* theCurrency, UErrorCode& ec) {
4432     // set the currency before compute affixes to get the right currency names
4433     NumberFormat::setCurrency(theCurrency, ec);
4434     if (fFormatPattern.indexOf(fgTripleCurrencySign) != -1) {
4435         UnicodeString savedPtn = fFormatPattern;
4436         setupCurrencyAffixes(fFormatPattern, TRUE, TRUE, ec);
4437         UParseError parseErr;
4438         applyPattern(savedPtn, FALSE, parseErr, ec);
4439     }
4440     // set the currency after apply pattern to get the correct rounding/fraction
4441     setCurrencyInternally(theCurrency, ec);
4442 }
4443 
4444 // Deprecated variant with no UErrorCode parameter
setCurrency(const UChar * theCurrency)4445 void DecimalFormat::setCurrency(const UChar* theCurrency) {
4446     UErrorCode ec = U_ZERO_ERROR;
4447     setCurrency(theCurrency, ec);
4448 }
4449 
getEffectiveCurrency(UChar * result,UErrorCode & ec) const4450 void DecimalFormat::getEffectiveCurrency(UChar* result, UErrorCode& ec) const {
4451     if (fSymbols == NULL) {
4452         ec = U_MEMORY_ALLOCATION_ERROR;
4453         return;
4454     }
4455     ec = U_ZERO_ERROR;
4456     const UChar* c = getCurrency();
4457     if (*c == 0) {
4458         const UnicodeString &intl =
4459             fSymbols->getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol);
4460         c = intl.getBuffer(); // ok for intl to go out of scope
4461     }
4462     u_strncpy(result, c, 3);
4463     result[3] = 0;
4464 }
4465 
4466 /**
4467  * Return the number of fraction digits to display, or the total
4468  * number of digits for significant digit formats and exponential
4469  * formats.
4470  */
4471 int32_t
precision() const4472 DecimalFormat::precision() const {
4473     if (areSignificantDigitsUsed()) {
4474         return getMaximumSignificantDigits();
4475     } else if (fUseExponentialNotation) {
4476         return getMinimumIntegerDigits() + getMaximumFractionDigits();
4477     } else {
4478         return getMaximumFractionDigits();
4479     }
4480 }
4481 
4482 
4483 // TODO: template algorithm
4484 Hashtable*
initHashForAffix(UErrorCode & status)4485 DecimalFormat::initHashForAffix(UErrorCode& status) {
4486     if ( U_FAILURE(status) ) {
4487         return NULL;
4488     }
4489     Hashtable* hTable;
4490     if ( (hTable = new Hashtable(TRUE, status)) == NULL ) {
4491         status = U_MEMORY_ALLOCATION_ERROR;
4492         return NULL;
4493     }
4494     hTable->setValueComparator(decimfmtAffixValueComparator);
4495     return hTable;
4496 }
4497 
4498 Hashtable*
initHashForAffixPattern(UErrorCode & status)4499 DecimalFormat::initHashForAffixPattern(UErrorCode& status) {
4500     if ( U_FAILURE(status) ) {
4501         return NULL;
4502     }
4503     Hashtable* hTable;
4504     if ( (hTable = new Hashtable(TRUE, status)) == NULL ) {
4505         status = U_MEMORY_ALLOCATION_ERROR;
4506         return NULL;
4507     }
4508     hTable->setValueComparator(decimfmtAffixPatternValueComparator);
4509     return hTable;
4510 }
4511 
4512 void
deleteHashForAffix(Hashtable * & table)4513 DecimalFormat::deleteHashForAffix(Hashtable*& table)
4514 {
4515     if ( table == NULL ) {
4516         return;
4517     }
4518     int32_t pos = -1;
4519     const UHashElement* element = NULL;
4520     while ( (element = table->nextElement(pos)) != NULL ) {
4521         const UHashTok keyTok = element->key;
4522         const UHashTok valueTok = element->value;
4523         const AffixesForCurrency* value = (AffixesForCurrency*)valueTok.pointer;
4524         delete value;
4525     }
4526     delete table;
4527     table = NULL;
4528 }
4529 
4530 
4531 
4532 void
deleteHashForAffixPattern()4533 DecimalFormat::deleteHashForAffixPattern()
4534 {
4535     if ( fAffixPatternsForCurrency == NULL ) {
4536         return;
4537     }
4538     int32_t pos = -1;
4539     const UHashElement* element = NULL;
4540     while ( (element = fAffixPatternsForCurrency->nextElement(pos)) != NULL ) {
4541         const UHashTok keyTok = element->key;
4542         const UHashTok valueTok = element->value;
4543         const AffixPatternsForCurrency* value = (AffixPatternsForCurrency*)valueTok.pointer;
4544         delete value;
4545     }
4546     delete fAffixPatternsForCurrency;
4547     fAffixPatternsForCurrency = NULL;
4548 }
4549 
4550 
4551 void
copyHashForAffixPattern(const Hashtable * source,Hashtable * target,UErrorCode & status)4552 DecimalFormat::copyHashForAffixPattern(const Hashtable* source,
4553                                        Hashtable* target,
4554                                        UErrorCode& status) {
4555     if ( U_FAILURE(status) ) {
4556         return;
4557     }
4558     int32_t pos = -1;
4559     const UHashElement* element = NULL;
4560     if ( source ) {
4561         while ( (element = source->nextElement(pos)) != NULL ) {
4562             const UHashTok keyTok = element->key;
4563             const UnicodeString* key = (UnicodeString*)keyTok.pointer;
4564             const UHashTok valueTok = element->value;
4565             const AffixPatternsForCurrency* value = (AffixPatternsForCurrency*)valueTok.pointer;
4566             AffixPatternsForCurrency* copy = new AffixPatternsForCurrency(
4567                 value->negPrefixPatternForCurrency,
4568                 value->negSuffixPatternForCurrency,
4569                 value->posPrefixPatternForCurrency,
4570                 value->posSuffixPatternForCurrency,
4571                 value->patternType);
4572             target->put(UnicodeString(*key), copy, status);
4573             if ( U_FAILURE(status) ) {
4574                 return;
4575             }
4576         }
4577     }
4578 }
4579 
4580 
4581 
4582 void
copyHashForAffix(const Hashtable * source,Hashtable * target,UErrorCode & status)4583 DecimalFormat::copyHashForAffix(const Hashtable* source,
4584                                 Hashtable* target,
4585                                 UErrorCode& status) {
4586     if ( U_FAILURE(status) ) {
4587         return;
4588     }
4589     int32_t pos = -1;
4590     const UHashElement* element = NULL;
4591     if ( source ) {
4592         while ( (element = source->nextElement(pos)) != NULL ) {
4593             const UHashTok keyTok = element->key;
4594             const UnicodeString* key = (UnicodeString*)keyTok.pointer;
4595 
4596             const UHashTok valueTok = element->value;
4597             const AffixesForCurrency* value = (AffixesForCurrency*)valueTok.pointer;
4598             AffixesForCurrency* copy = new AffixesForCurrency(
4599                 value->negPrefixForCurrency,
4600                 value->negSuffixForCurrency,
4601                 value->posPrefixForCurrency,
4602                 value->posSuffixForCurrency);
4603             target->put(UnicodeString(*key), copy, status);
4604             if ( U_FAILURE(status) ) {
4605                 return;
4606             }
4607         }
4608     }
4609 }
4610 
4611 U_NAMESPACE_END
4612 
4613 #endif /* #if !UCONFIG_NO_FORMATTING */
4614 
4615 //eof
4616