1 //===-- llvm/CodeGen/MachineRegisterInfo.h ----------------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the MachineRegisterInfo class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #ifndef LLVM_CODEGEN_MACHINEREGISTERINFO_H
15 #define LLVM_CODEGEN_MACHINEREGISTERINFO_H
16
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/IndexedMap.h"
19 #include "llvm/ADT/iterator_range.h"
20 #include "llvm/CodeGen/MachineInstrBundle.h"
21 #include "llvm/Target/TargetMachine.h"
22 #include "llvm/Target/TargetRegisterInfo.h"
23 #include <vector>
24
25 namespace llvm {
26 class PSetIterator;
27
28 /// MachineRegisterInfo - Keep track of information for virtual and physical
29 /// registers, including vreg register classes, use/def chains for registers,
30 /// etc.
31 class MachineRegisterInfo {
32 public:
33 class Delegate {
34 virtual void anchor();
35 public:
36 virtual void MRI_NoteNewVirtualRegister(unsigned Reg) = 0;
37
~Delegate()38 virtual ~Delegate() {}
39 };
40
41 private:
42 const TargetMachine &TM;
43 Delegate *TheDelegate;
44
45 /// IsSSA - True when the machine function is in SSA form and virtual
46 /// registers have a single def.
47 bool IsSSA;
48
49 /// TracksLiveness - True while register liveness is being tracked accurately.
50 /// Basic block live-in lists, kill flags, and implicit defs may not be
51 /// accurate when after this flag is cleared.
52 bool TracksLiveness;
53
54 /// VRegInfo - Information we keep for each virtual register.
55 ///
56 /// Each element in this list contains the register class of the vreg and the
57 /// start of the use/def list for the register.
58 IndexedMap<std::pair<const TargetRegisterClass*, MachineOperand*>,
59 VirtReg2IndexFunctor> VRegInfo;
60
61 /// RegAllocHints - This vector records register allocation hints for virtual
62 /// registers. For each virtual register, it keeps a register and hint type
63 /// pair making up the allocation hint. Hint type is target specific except
64 /// for the value 0 which means the second value of the pair is the preferred
65 /// register for allocation. For example, if the hint is <0, 1024>, it means
66 /// the allocator should prefer the physical register allocated to the virtual
67 /// register of the hint.
68 IndexedMap<std::pair<unsigned, unsigned>, VirtReg2IndexFunctor> RegAllocHints;
69
70 /// PhysRegUseDefLists - This is an array of the head of the use/def list for
71 /// physical registers.
72 MachineOperand **PhysRegUseDefLists;
73
74 /// getRegUseDefListHead - Return the head pointer for the register use/def
75 /// list for the specified virtual or physical register.
getRegUseDefListHead(unsigned RegNo)76 MachineOperand *&getRegUseDefListHead(unsigned RegNo) {
77 if (TargetRegisterInfo::isVirtualRegister(RegNo))
78 return VRegInfo[RegNo].second;
79 return PhysRegUseDefLists[RegNo];
80 }
81
getRegUseDefListHead(unsigned RegNo)82 MachineOperand *getRegUseDefListHead(unsigned RegNo) const {
83 if (TargetRegisterInfo::isVirtualRegister(RegNo))
84 return VRegInfo[RegNo].second;
85 return PhysRegUseDefLists[RegNo];
86 }
87
88 /// Get the next element in the use-def chain.
getNextOperandForReg(const MachineOperand * MO)89 static MachineOperand *getNextOperandForReg(const MachineOperand *MO) {
90 assert(MO && MO->isReg() && "This is not a register operand!");
91 return MO->Contents.Reg.Next;
92 }
93
94 /// UsedRegUnits - This is a bit vector that is computed and set by the
95 /// register allocator, and must be kept up to date by passes that run after
96 /// register allocation (though most don't modify this). This is used
97 /// so that the code generator knows which callee save registers to save and
98 /// for other target specific uses.
99 /// This vector has bits set for register units that are modified in the
100 /// current function. It doesn't include registers clobbered by function
101 /// calls with register mask operands.
102 BitVector UsedRegUnits;
103
104 /// UsedPhysRegMask - Additional used physregs including aliases.
105 /// This bit vector represents all the registers clobbered by function calls.
106 /// It can model things that UsedRegUnits can't, such as function calls that
107 /// clobber ymm7 but preserve the low half in xmm7.
108 BitVector UsedPhysRegMask;
109
110 /// ReservedRegs - This is a bit vector of reserved registers. The target
111 /// may change its mind about which registers should be reserved. This
112 /// vector is the frozen set of reserved registers when register allocation
113 /// started.
114 BitVector ReservedRegs;
115
116 /// Keep track of the physical registers that are live in to the function.
117 /// Live in values are typically arguments in registers. LiveIn values are
118 /// allowed to have virtual registers associated with them, stored in the
119 /// second element.
120 std::vector<std::pair<unsigned, unsigned> > LiveIns;
121
122 MachineRegisterInfo(const MachineRegisterInfo&) LLVM_DELETED_FUNCTION;
123 void operator=(const MachineRegisterInfo&) LLVM_DELETED_FUNCTION;
124 public:
125 explicit MachineRegisterInfo(const TargetMachine &TM);
126 ~MachineRegisterInfo();
127
getTargetRegisterInfo()128 const TargetRegisterInfo *getTargetRegisterInfo() const {
129 return TM.getRegisterInfo();
130 }
131
resetDelegate(Delegate * delegate)132 void resetDelegate(Delegate *delegate) {
133 // Ensure another delegate does not take over unless the current
134 // delegate first unattaches itself. If we ever need to multicast
135 // notifications, we will need to change to using a list.
136 assert(TheDelegate == delegate &&
137 "Only the current delegate can perform reset!");
138 TheDelegate = nullptr;
139 }
140
setDelegate(Delegate * delegate)141 void setDelegate(Delegate *delegate) {
142 assert(delegate && !TheDelegate &&
143 "Attempted to set delegate to null, or to change it without "
144 "first resetting it!");
145
146 TheDelegate = delegate;
147 }
148
149 //===--------------------------------------------------------------------===//
150 // Function State
151 //===--------------------------------------------------------------------===//
152
153 // isSSA - Returns true when the machine function is in SSA form. Early
154 // passes require the machine function to be in SSA form where every virtual
155 // register has a single defining instruction.
156 //
157 // The TwoAddressInstructionPass and PHIElimination passes take the machine
158 // function out of SSA form when they introduce multiple defs per virtual
159 // register.
isSSA()160 bool isSSA() const { return IsSSA; }
161
162 // leaveSSA - Indicates that the machine function is no longer in SSA form.
leaveSSA()163 void leaveSSA() { IsSSA = false; }
164
165 /// tracksLiveness - Returns true when tracking register liveness accurately.
166 ///
167 /// While this flag is true, register liveness information in basic block
168 /// live-in lists and machine instruction operands is accurate. This means it
169 /// can be used to change the code in ways that affect the values in
170 /// registers, for example by the register scavenger.
171 ///
172 /// When this flag is false, liveness is no longer reliable.
tracksLiveness()173 bool tracksLiveness() const { return TracksLiveness; }
174
175 /// invalidateLiveness - Indicates that register liveness is no longer being
176 /// tracked accurately.
177 ///
178 /// This should be called by late passes that invalidate the liveness
179 /// information.
invalidateLiveness()180 void invalidateLiveness() { TracksLiveness = false; }
181
182 //===--------------------------------------------------------------------===//
183 // Register Info
184 //===--------------------------------------------------------------------===//
185
186 // Strictly for use by MachineInstr.cpp.
187 void addRegOperandToUseList(MachineOperand *MO);
188
189 // Strictly for use by MachineInstr.cpp.
190 void removeRegOperandFromUseList(MachineOperand *MO);
191
192 // Strictly for use by MachineInstr.cpp.
193 void moveOperands(MachineOperand *Dst, MachineOperand *Src, unsigned NumOps);
194
195 /// Verify the sanity of the use list for Reg.
196 void verifyUseList(unsigned Reg) const;
197
198 /// Verify the use list of all registers.
199 void verifyUseLists() const;
200
201 /// reg_begin/reg_end - Provide iteration support to walk over all definitions
202 /// and uses of a register within the MachineFunction that corresponds to this
203 /// MachineRegisterInfo object.
204 template<bool Uses, bool Defs, bool SkipDebug,
205 bool ByOperand, bool ByInstr, bool ByBundle>
206 class defusechain_iterator;
207 template<bool Uses, bool Defs, bool SkipDebug,
208 bool ByOperand, bool ByInstr, bool ByBundle>
209 class defusechain_instr_iterator;
210
211 // Make it a friend so it can access getNextOperandForReg().
212 template<bool, bool, bool, bool, bool, bool>
213 friend class defusechain_iterator;
214 template<bool, bool, bool, bool, bool, bool>
215 friend class defusechain_instr_iterator;
216
217
218
219 /// reg_iterator/reg_begin/reg_end - Walk all defs and uses of the specified
220 /// register.
221 typedef defusechain_iterator<true,true,false,true,false,false>
222 reg_iterator;
reg_begin(unsigned RegNo)223 reg_iterator reg_begin(unsigned RegNo) const {
224 return reg_iterator(getRegUseDefListHead(RegNo));
225 }
reg_end()226 static reg_iterator reg_end() { return reg_iterator(nullptr); }
227
reg_operands(unsigned Reg)228 inline iterator_range<reg_iterator> reg_operands(unsigned Reg) const {
229 return iterator_range<reg_iterator>(reg_begin(Reg), reg_end());
230 }
231
232 /// reg_instr_iterator/reg_instr_begin/reg_instr_end - Walk all defs and uses
233 /// of the specified register, stepping by MachineInstr.
234 typedef defusechain_instr_iterator<true,true,false,false,true,false>
235 reg_instr_iterator;
reg_instr_begin(unsigned RegNo)236 reg_instr_iterator reg_instr_begin(unsigned RegNo) const {
237 return reg_instr_iterator(getRegUseDefListHead(RegNo));
238 }
reg_instr_end()239 static reg_instr_iterator reg_instr_end() {
240 return reg_instr_iterator(nullptr);
241 }
242
243 inline iterator_range<reg_instr_iterator>
reg_instructions(unsigned Reg)244 reg_instructions(unsigned Reg) const {
245 return iterator_range<reg_instr_iterator>(reg_instr_begin(Reg),
246 reg_instr_end());
247 }
248
249 /// reg_bundle_iterator/reg_bundle_begin/reg_bundle_end - Walk all defs and uses
250 /// of the specified register, stepping by bundle.
251 typedef defusechain_instr_iterator<true,true,false,false,false,true>
252 reg_bundle_iterator;
reg_bundle_begin(unsigned RegNo)253 reg_bundle_iterator reg_bundle_begin(unsigned RegNo) const {
254 return reg_bundle_iterator(getRegUseDefListHead(RegNo));
255 }
reg_bundle_end()256 static reg_bundle_iterator reg_bundle_end() {
257 return reg_bundle_iterator(nullptr);
258 }
259
reg_bundles(unsigned Reg)260 inline iterator_range<reg_bundle_iterator> reg_bundles(unsigned Reg) const {
261 return iterator_range<reg_bundle_iterator>(reg_bundle_begin(Reg),
262 reg_bundle_end());
263 }
264
265 /// reg_empty - Return true if there are no instructions using or defining the
266 /// specified register (it may be live-in).
reg_empty(unsigned RegNo)267 bool reg_empty(unsigned RegNo) const { return reg_begin(RegNo) == reg_end(); }
268
269 /// reg_nodbg_iterator/reg_nodbg_begin/reg_nodbg_end - Walk all defs and uses
270 /// of the specified register, skipping those marked as Debug.
271 typedef defusechain_iterator<true,true,true,true,false,false>
272 reg_nodbg_iterator;
reg_nodbg_begin(unsigned RegNo)273 reg_nodbg_iterator reg_nodbg_begin(unsigned RegNo) const {
274 return reg_nodbg_iterator(getRegUseDefListHead(RegNo));
275 }
reg_nodbg_end()276 static reg_nodbg_iterator reg_nodbg_end() {
277 return reg_nodbg_iterator(nullptr);
278 }
279
280 inline iterator_range<reg_nodbg_iterator>
reg_nodbg_operands(unsigned Reg)281 reg_nodbg_operands(unsigned Reg) const {
282 return iterator_range<reg_nodbg_iterator>(reg_nodbg_begin(Reg),
283 reg_nodbg_end());
284 }
285
286 /// reg_instr_nodbg_iterator/reg_instr_nodbg_begin/reg_instr_nodbg_end - Walk
287 /// all defs and uses of the specified register, stepping by MachineInstr,
288 /// skipping those marked as Debug.
289 typedef defusechain_instr_iterator<true,true,true,false,true,false>
290 reg_instr_nodbg_iterator;
reg_instr_nodbg_begin(unsigned RegNo)291 reg_instr_nodbg_iterator reg_instr_nodbg_begin(unsigned RegNo) const {
292 return reg_instr_nodbg_iterator(getRegUseDefListHead(RegNo));
293 }
reg_instr_nodbg_end()294 static reg_instr_nodbg_iterator reg_instr_nodbg_end() {
295 return reg_instr_nodbg_iterator(nullptr);
296 }
297
298 inline iterator_range<reg_instr_nodbg_iterator>
reg_nodbg_instructions(unsigned Reg)299 reg_nodbg_instructions(unsigned Reg) const {
300 return iterator_range<reg_instr_nodbg_iterator>(reg_instr_nodbg_begin(Reg),
301 reg_instr_nodbg_end());
302 }
303
304 /// reg_bundle_nodbg_iterator/reg_bundle_nodbg_begin/reg_bundle_nodbg_end - Walk
305 /// all defs and uses of the specified register, stepping by bundle,
306 /// skipping those marked as Debug.
307 typedef defusechain_instr_iterator<true,true,true,false,false,true>
308 reg_bundle_nodbg_iterator;
reg_bundle_nodbg_begin(unsigned RegNo)309 reg_bundle_nodbg_iterator reg_bundle_nodbg_begin(unsigned RegNo) const {
310 return reg_bundle_nodbg_iterator(getRegUseDefListHead(RegNo));
311 }
reg_bundle_nodbg_end()312 static reg_bundle_nodbg_iterator reg_bundle_nodbg_end() {
313 return reg_bundle_nodbg_iterator(nullptr);
314 }
315
316 inline iterator_range<reg_bundle_nodbg_iterator>
reg_nodbg_bundles(unsigned Reg)317 reg_nodbg_bundles(unsigned Reg) const {
318 return iterator_range<reg_bundle_nodbg_iterator>(reg_bundle_nodbg_begin(Reg),
319 reg_bundle_nodbg_end());
320 }
321
322 /// reg_nodbg_empty - Return true if the only instructions using or defining
323 /// Reg are Debug instructions.
reg_nodbg_empty(unsigned RegNo)324 bool reg_nodbg_empty(unsigned RegNo) const {
325 return reg_nodbg_begin(RegNo) == reg_nodbg_end();
326 }
327
328 /// def_iterator/def_begin/def_end - Walk all defs of the specified register.
329 typedef defusechain_iterator<false,true,false,true,false,false>
330 def_iterator;
def_begin(unsigned RegNo)331 def_iterator def_begin(unsigned RegNo) const {
332 return def_iterator(getRegUseDefListHead(RegNo));
333 }
def_end()334 static def_iterator def_end() { return def_iterator(nullptr); }
335
def_operands(unsigned Reg)336 inline iterator_range<def_iterator> def_operands(unsigned Reg) const {
337 return iterator_range<def_iterator>(def_begin(Reg), def_end());
338 }
339
340 /// def_instr_iterator/def_instr_begin/def_instr_end - Walk all defs of the
341 /// specified register, stepping by MachineInst.
342 typedef defusechain_instr_iterator<false,true,false,false,true,false>
343 def_instr_iterator;
def_instr_begin(unsigned RegNo)344 def_instr_iterator def_instr_begin(unsigned RegNo) const {
345 return def_instr_iterator(getRegUseDefListHead(RegNo));
346 }
def_instr_end()347 static def_instr_iterator def_instr_end() {
348 return def_instr_iterator(nullptr);
349 }
350
351 inline iterator_range<def_instr_iterator>
def_instructions(unsigned Reg)352 def_instructions(unsigned Reg) const {
353 return iterator_range<def_instr_iterator>(def_instr_begin(Reg),
354 def_instr_end());
355 }
356
357 /// def_bundle_iterator/def_bundle_begin/def_bundle_end - Walk all defs of the
358 /// specified register, stepping by bundle.
359 typedef defusechain_instr_iterator<false,true,false,false,false,true>
360 def_bundle_iterator;
def_bundle_begin(unsigned RegNo)361 def_bundle_iterator def_bundle_begin(unsigned RegNo) const {
362 return def_bundle_iterator(getRegUseDefListHead(RegNo));
363 }
def_bundle_end()364 static def_bundle_iterator def_bundle_end() {
365 return def_bundle_iterator(nullptr);
366 }
367
def_bundles(unsigned Reg)368 inline iterator_range<def_bundle_iterator> def_bundles(unsigned Reg) const {
369 return iterator_range<def_bundle_iterator>(def_bundle_begin(Reg),
370 def_bundle_end());
371 }
372
373 /// def_empty - Return true if there are no instructions defining the
374 /// specified register (it may be live-in).
def_empty(unsigned RegNo)375 bool def_empty(unsigned RegNo) const { return def_begin(RegNo) == def_end(); }
376
377 /// hasOneDef - Return true if there is exactly one instruction defining the
378 /// specified register.
hasOneDef(unsigned RegNo)379 bool hasOneDef(unsigned RegNo) const {
380 def_iterator DI = def_begin(RegNo);
381 if (DI == def_end())
382 return false;
383 return ++DI == def_end();
384 }
385
386 /// use_iterator/use_begin/use_end - Walk all uses of the specified register.
387 typedef defusechain_iterator<true,false,false,true,false,false>
388 use_iterator;
use_begin(unsigned RegNo)389 use_iterator use_begin(unsigned RegNo) const {
390 return use_iterator(getRegUseDefListHead(RegNo));
391 }
use_end()392 static use_iterator use_end() { return use_iterator(nullptr); }
393
use_operands(unsigned Reg)394 inline iterator_range<use_iterator> use_operands(unsigned Reg) const {
395 return iterator_range<use_iterator>(use_begin(Reg), use_end());
396 }
397
398 /// use_instr_iterator/use_instr_begin/use_instr_end - Walk all uses of the
399 /// specified register, stepping by MachineInstr.
400 typedef defusechain_instr_iterator<true,false,false,false,true,false>
401 use_instr_iterator;
use_instr_begin(unsigned RegNo)402 use_instr_iterator use_instr_begin(unsigned RegNo) const {
403 return use_instr_iterator(getRegUseDefListHead(RegNo));
404 }
use_instr_end()405 static use_instr_iterator use_instr_end() {
406 return use_instr_iterator(nullptr);
407 }
408
409 inline iterator_range<use_instr_iterator>
use_instructions(unsigned Reg)410 use_instructions(unsigned Reg) const {
411 return iterator_range<use_instr_iterator>(use_instr_begin(Reg),
412 use_instr_end());
413 }
414
415 /// use_bundle_iterator/use_bundle_begin/use_bundle_end - Walk all uses of the
416 /// specified register, stepping by bundle.
417 typedef defusechain_instr_iterator<true,false,false,false,false,true>
418 use_bundle_iterator;
use_bundle_begin(unsigned RegNo)419 use_bundle_iterator use_bundle_begin(unsigned RegNo) const {
420 return use_bundle_iterator(getRegUseDefListHead(RegNo));
421 }
use_bundle_end()422 static use_bundle_iterator use_bundle_end() {
423 return use_bundle_iterator(nullptr);
424 }
425
use_bundles(unsigned Reg)426 inline iterator_range<use_bundle_iterator> use_bundles(unsigned Reg) const {
427 return iterator_range<use_bundle_iterator>(use_bundle_begin(Reg),
428 use_bundle_end());
429 }
430
431 /// use_empty - Return true if there are no instructions using the specified
432 /// register.
use_empty(unsigned RegNo)433 bool use_empty(unsigned RegNo) const { return use_begin(RegNo) == use_end(); }
434
435 /// hasOneUse - Return true if there is exactly one instruction using the
436 /// specified register.
hasOneUse(unsigned RegNo)437 bool hasOneUse(unsigned RegNo) const {
438 use_iterator UI = use_begin(RegNo);
439 if (UI == use_end())
440 return false;
441 return ++UI == use_end();
442 }
443
444 /// use_nodbg_iterator/use_nodbg_begin/use_nodbg_end - Walk all uses of the
445 /// specified register, skipping those marked as Debug.
446 typedef defusechain_iterator<true,false,true,true,false,false>
447 use_nodbg_iterator;
use_nodbg_begin(unsigned RegNo)448 use_nodbg_iterator use_nodbg_begin(unsigned RegNo) const {
449 return use_nodbg_iterator(getRegUseDefListHead(RegNo));
450 }
use_nodbg_end()451 static use_nodbg_iterator use_nodbg_end() {
452 return use_nodbg_iterator(nullptr);
453 }
454
455 inline iterator_range<use_nodbg_iterator>
use_nodbg_operands(unsigned Reg)456 use_nodbg_operands(unsigned Reg) const {
457 return iterator_range<use_nodbg_iterator>(use_nodbg_begin(Reg),
458 use_nodbg_end());
459 }
460
461 /// use_instr_nodbg_iterator/use_instr_nodbg_begin/use_instr_nodbg_end - Walk
462 /// all uses of the specified register, stepping by MachineInstr, skipping
463 /// those marked as Debug.
464 typedef defusechain_instr_iterator<true,false,true,false,true,false>
465 use_instr_nodbg_iterator;
use_instr_nodbg_begin(unsigned RegNo)466 use_instr_nodbg_iterator use_instr_nodbg_begin(unsigned RegNo) const {
467 return use_instr_nodbg_iterator(getRegUseDefListHead(RegNo));
468 }
use_instr_nodbg_end()469 static use_instr_nodbg_iterator use_instr_nodbg_end() {
470 return use_instr_nodbg_iterator(nullptr);
471 }
472
473 inline iterator_range<use_instr_nodbg_iterator>
use_nodbg_instructions(unsigned Reg)474 use_nodbg_instructions(unsigned Reg) const {
475 return iterator_range<use_instr_nodbg_iterator>(use_instr_nodbg_begin(Reg),
476 use_instr_nodbg_end());
477 }
478
479 /// use_bundle_nodbg_iterator/use_bundle_nodbg_begin/use_bundle_nodbg_end - Walk
480 /// all uses of the specified register, stepping by bundle, skipping
481 /// those marked as Debug.
482 typedef defusechain_instr_iterator<true,false,true,false,false,true>
483 use_bundle_nodbg_iterator;
use_bundle_nodbg_begin(unsigned RegNo)484 use_bundle_nodbg_iterator use_bundle_nodbg_begin(unsigned RegNo) const {
485 return use_bundle_nodbg_iterator(getRegUseDefListHead(RegNo));
486 }
use_bundle_nodbg_end()487 static use_bundle_nodbg_iterator use_bundle_nodbg_end() {
488 return use_bundle_nodbg_iterator(nullptr);
489 }
490
491 inline iterator_range<use_bundle_nodbg_iterator>
use_nodbg_bundles(unsigned Reg)492 use_nodbg_bundles(unsigned Reg) const {
493 return iterator_range<use_bundle_nodbg_iterator>(use_bundle_nodbg_begin(Reg),
494 use_bundle_nodbg_end());
495 }
496
497 /// use_nodbg_empty - Return true if there are no non-Debug instructions
498 /// using the specified register.
use_nodbg_empty(unsigned RegNo)499 bool use_nodbg_empty(unsigned RegNo) const {
500 return use_nodbg_begin(RegNo) == use_nodbg_end();
501 }
502
503 /// hasOneNonDBGUse - Return true if there is exactly one non-Debug
504 /// instruction using the specified register.
505 bool hasOneNonDBGUse(unsigned RegNo) const;
506
507 /// replaceRegWith - Replace all instances of FromReg with ToReg in the
508 /// machine function. This is like llvm-level X->replaceAllUsesWith(Y),
509 /// except that it also changes any definitions of the register as well.
510 ///
511 /// Note that it is usually necessary to first constrain ToReg's register
512 /// class to match the FromReg constraints using:
513 ///
514 /// constrainRegClass(ToReg, getRegClass(FromReg))
515 ///
516 /// That function will return NULL if the virtual registers have incompatible
517 /// constraints.
518 void replaceRegWith(unsigned FromReg, unsigned ToReg);
519
520 /// getVRegDef - Return the machine instr that defines the specified virtual
521 /// register or null if none is found. This assumes that the code is in SSA
522 /// form, so there should only be one definition.
523 MachineInstr *getVRegDef(unsigned Reg) const;
524
525 /// getUniqueVRegDef - Return the unique machine instr that defines the
526 /// specified virtual register or null if none is found. If there are
527 /// multiple definitions or no definition, return null.
528 MachineInstr *getUniqueVRegDef(unsigned Reg) const;
529
530 /// clearKillFlags - Iterate over all the uses of the given register and
531 /// clear the kill flag from the MachineOperand. This function is used by
532 /// optimization passes which extend register lifetimes and need only
533 /// preserve conservative kill flag information.
534 void clearKillFlags(unsigned Reg) const;
535
536 #ifndef NDEBUG
537 void dumpUses(unsigned RegNo) const;
538 #endif
539
540 /// isConstantPhysReg - Returns true if PhysReg is unallocatable and constant
541 /// throughout the function. It is safe to move instructions that read such
542 /// a physreg.
543 bool isConstantPhysReg(unsigned PhysReg, const MachineFunction &MF) const;
544
545 /// Get an iterator over the pressure sets affected by the given physical or
546 /// virtual register. If RegUnit is physical, it must be a register unit (from
547 /// MCRegUnitIterator).
548 PSetIterator getPressureSets(unsigned RegUnit) const;
549
550 //===--------------------------------------------------------------------===//
551 // Virtual Register Info
552 //===--------------------------------------------------------------------===//
553
554 /// getRegClass - Return the register class of the specified virtual register.
555 ///
getRegClass(unsigned Reg)556 const TargetRegisterClass *getRegClass(unsigned Reg) const {
557 return VRegInfo[Reg].first;
558 }
559
560 /// setRegClass - Set the register class of the specified virtual register.
561 ///
562 void setRegClass(unsigned Reg, const TargetRegisterClass *RC);
563
564 /// constrainRegClass - Constrain the register class of the specified virtual
565 /// register to be a common subclass of RC and the current register class,
566 /// but only if the new class has at least MinNumRegs registers. Return the
567 /// new register class, or NULL if no such class exists.
568 /// This should only be used when the constraint is known to be trivial, like
569 /// GR32 -> GR32_NOSP. Beware of increasing register pressure.
570 ///
571 const TargetRegisterClass *constrainRegClass(unsigned Reg,
572 const TargetRegisterClass *RC,
573 unsigned MinNumRegs = 0);
574
575 /// recomputeRegClass - Try to find a legal super-class of Reg's register
576 /// class that still satisfies the constraints from the instructions using
577 /// Reg. Returns true if Reg was upgraded.
578 ///
579 /// This method can be used after constraints have been removed from a
580 /// virtual register, for example after removing instructions or splitting
581 /// the live range.
582 ///
583 bool recomputeRegClass(unsigned Reg, const TargetMachine&);
584
585 /// createVirtualRegister - Create and return a new virtual register in the
586 /// function with the specified register class.
587 ///
588 unsigned createVirtualRegister(const TargetRegisterClass *RegClass);
589
590 /// getNumVirtRegs - Return the number of virtual registers created.
591 ///
getNumVirtRegs()592 unsigned getNumVirtRegs() const { return VRegInfo.size(); }
593
594 /// clearVirtRegs - Remove all virtual registers (after physreg assignment).
595 void clearVirtRegs();
596
597 /// setRegAllocationHint - Specify a register allocation hint for the
598 /// specified virtual register.
setRegAllocationHint(unsigned Reg,unsigned Type,unsigned PrefReg)599 void setRegAllocationHint(unsigned Reg, unsigned Type, unsigned PrefReg) {
600 RegAllocHints[Reg].first = Type;
601 RegAllocHints[Reg].second = PrefReg;
602 }
603
604 /// getRegAllocationHint - Return the register allocation hint for the
605 /// specified virtual register.
606 std::pair<unsigned, unsigned>
getRegAllocationHint(unsigned Reg)607 getRegAllocationHint(unsigned Reg) const {
608 return RegAllocHints[Reg];
609 }
610
611 /// getSimpleHint - Return the preferred register allocation hint, or 0 if a
612 /// standard simple hint (Type == 0) is not set.
getSimpleHint(unsigned Reg)613 unsigned getSimpleHint(unsigned Reg) const {
614 std::pair<unsigned, unsigned> Hint = getRegAllocationHint(Reg);
615 return Hint.first ? 0 : Hint.second;
616 }
617
618 /// markUsesInDebugValueAsUndef - Mark every DBG_VALUE referencing the
619 /// specified register as undefined which causes the DBG_VALUE to be
620 /// deleted during LiveDebugVariables analysis.
621 void markUsesInDebugValueAsUndef(unsigned Reg) const;
622
623 //===--------------------------------------------------------------------===//
624 // Physical Register Use Info
625 //===--------------------------------------------------------------------===//
626
627 /// isPhysRegUsed - Return true if the specified register is used in this
628 /// function. Also check for clobbered aliases and registers clobbered by
629 /// function calls with register mask operands.
630 ///
631 /// This only works after register allocation. It is primarily used by
632 /// PrologEpilogInserter to determine which callee-saved registers need
633 /// spilling.
isPhysRegUsed(unsigned Reg)634 bool isPhysRegUsed(unsigned Reg) const {
635 if (UsedPhysRegMask.test(Reg))
636 return true;
637 for (MCRegUnitIterator Units(Reg, getTargetRegisterInfo());
638 Units.isValid(); ++Units)
639 if (UsedRegUnits.test(*Units))
640 return true;
641 return false;
642 }
643
644 /// Mark the specified register unit as used in this function.
645 /// This should only be called during and after register allocation.
setRegUnitUsed(unsigned RegUnit)646 void setRegUnitUsed(unsigned RegUnit) {
647 UsedRegUnits.set(RegUnit);
648 }
649
650 /// setPhysRegUsed - Mark the specified register used in this function.
651 /// This should only be called during and after register allocation.
setPhysRegUsed(unsigned Reg)652 void setPhysRegUsed(unsigned Reg) {
653 for (MCRegUnitIterator Units(Reg, getTargetRegisterInfo());
654 Units.isValid(); ++Units)
655 UsedRegUnits.set(*Units);
656 }
657
658 /// addPhysRegsUsedFromRegMask - Mark any registers not in RegMask as used.
659 /// This corresponds to the bit mask attached to register mask operands.
addPhysRegsUsedFromRegMask(const uint32_t * RegMask)660 void addPhysRegsUsedFromRegMask(const uint32_t *RegMask) {
661 UsedPhysRegMask.setBitsNotInMask(RegMask);
662 }
663
664 /// setPhysRegUnused - Mark the specified register unused in this function.
665 /// This should only be called during and after register allocation.
setPhysRegUnused(unsigned Reg)666 void setPhysRegUnused(unsigned Reg) {
667 UsedPhysRegMask.reset(Reg);
668 for (MCRegUnitIterator Units(Reg, getTargetRegisterInfo());
669 Units.isValid(); ++Units)
670 UsedRegUnits.reset(*Units);
671 }
672
673
674 //===--------------------------------------------------------------------===//
675 // Reserved Register Info
676 //===--------------------------------------------------------------------===//
677 //
678 // The set of reserved registers must be invariant during register
679 // allocation. For example, the target cannot suddenly decide it needs a
680 // frame pointer when the register allocator has already used the frame
681 // pointer register for something else.
682 //
683 // These methods can be used by target hooks like hasFP() to avoid changing
684 // the reserved register set during register allocation.
685
686 /// freezeReservedRegs - Called by the register allocator to freeze the set
687 /// of reserved registers before allocation begins.
688 void freezeReservedRegs(const MachineFunction&);
689
690 /// reservedRegsFrozen - Returns true after freezeReservedRegs() was called
691 /// to ensure the set of reserved registers stays constant.
reservedRegsFrozen()692 bool reservedRegsFrozen() const {
693 return !ReservedRegs.empty();
694 }
695
696 /// canReserveReg - Returns true if PhysReg can be used as a reserved
697 /// register. Any register can be reserved before freezeReservedRegs() is
698 /// called.
canReserveReg(unsigned PhysReg)699 bool canReserveReg(unsigned PhysReg) const {
700 return !reservedRegsFrozen() || ReservedRegs.test(PhysReg);
701 }
702
703 /// getReservedRegs - Returns a reference to the frozen set of reserved
704 /// registers. This method should always be preferred to calling
705 /// TRI::getReservedRegs() when possible.
getReservedRegs()706 const BitVector &getReservedRegs() const {
707 assert(reservedRegsFrozen() &&
708 "Reserved registers haven't been frozen yet. "
709 "Use TRI::getReservedRegs().");
710 return ReservedRegs;
711 }
712
713 /// isReserved - Returns true when PhysReg is a reserved register.
714 ///
715 /// Reserved registers may belong to an allocatable register class, but the
716 /// target has explicitly requested that they are not used.
717 ///
isReserved(unsigned PhysReg)718 bool isReserved(unsigned PhysReg) const {
719 return getReservedRegs().test(PhysReg);
720 }
721
722 /// isAllocatable - Returns true when PhysReg belongs to an allocatable
723 /// register class and it hasn't been reserved.
724 ///
725 /// Allocatable registers may show up in the allocation order of some virtual
726 /// register, so a register allocator needs to track its liveness and
727 /// availability.
isAllocatable(unsigned PhysReg)728 bool isAllocatable(unsigned PhysReg) const {
729 return getTargetRegisterInfo()->isInAllocatableClass(PhysReg) &&
730 !isReserved(PhysReg);
731 }
732
733 //===--------------------------------------------------------------------===//
734 // LiveIn Management
735 //===--------------------------------------------------------------------===//
736
737 /// addLiveIn - Add the specified register as a live-in. Note that it
738 /// is an error to add the same register to the same set more than once.
739 void addLiveIn(unsigned Reg, unsigned vreg = 0) {
740 LiveIns.push_back(std::make_pair(Reg, vreg));
741 }
742
743 // Iteration support for the live-ins set. It's kept in sorted order
744 // by register number.
745 typedef std::vector<std::pair<unsigned,unsigned> >::const_iterator
746 livein_iterator;
livein_begin()747 livein_iterator livein_begin() const { return LiveIns.begin(); }
livein_end()748 livein_iterator livein_end() const { return LiveIns.end(); }
livein_empty()749 bool livein_empty() const { return LiveIns.empty(); }
750
751 bool isLiveIn(unsigned Reg) const;
752
753 /// getLiveInPhysReg - If VReg is a live-in virtual register, return the
754 /// corresponding live-in physical register.
755 unsigned getLiveInPhysReg(unsigned VReg) const;
756
757 /// getLiveInVirtReg - If PReg is a live-in physical register, return the
758 /// corresponding live-in physical register.
759 unsigned getLiveInVirtReg(unsigned PReg) const;
760
761 /// EmitLiveInCopies - Emit copies to initialize livein virtual registers
762 /// into the given entry block.
763 void EmitLiveInCopies(MachineBasicBlock *EntryMBB,
764 const TargetRegisterInfo &TRI,
765 const TargetInstrInfo &TII);
766
767 /// defusechain_iterator - This class provides iterator support for machine
768 /// operands in the function that use or define a specific register. If
769 /// ReturnUses is true it returns uses of registers, if ReturnDefs is true it
770 /// returns defs. If neither are true then you are silly and it always
771 /// returns end(). If SkipDebug is true it skips uses marked Debug
772 /// when incrementing.
773 template<bool ReturnUses, bool ReturnDefs, bool SkipDebug,
774 bool ByOperand, bool ByInstr, bool ByBundle>
775 class defusechain_iterator
776 : public std::iterator<std::forward_iterator_tag, MachineInstr, ptrdiff_t> {
777 MachineOperand *Op;
defusechain_iterator(MachineOperand * op)778 explicit defusechain_iterator(MachineOperand *op) : Op(op) {
779 // If the first node isn't one we're interested in, advance to one that
780 // we are interested in.
781 if (op) {
782 if ((!ReturnUses && op->isUse()) ||
783 (!ReturnDefs && op->isDef()) ||
784 (SkipDebug && op->isDebug()))
785 advance();
786 }
787 }
788 friend class MachineRegisterInfo;
789
advance()790 void advance() {
791 assert(Op && "Cannot increment end iterator!");
792 Op = getNextOperandForReg(Op);
793
794 // All defs come before the uses, so stop def_iterator early.
795 if (!ReturnUses) {
796 if (Op) {
797 if (Op->isUse())
798 Op = nullptr;
799 else
800 assert(!Op->isDebug() && "Can't have debug defs");
801 }
802 } else {
803 // If this is an operand we don't care about, skip it.
804 while (Op && ((!ReturnDefs && Op->isDef()) ||
805 (SkipDebug && Op->isDebug())))
806 Op = getNextOperandForReg(Op);
807 }
808 }
809 public:
810 typedef std::iterator<std::forward_iterator_tag,
811 MachineInstr, ptrdiff_t>::reference reference;
812 typedef std::iterator<std::forward_iterator_tag,
813 MachineInstr, ptrdiff_t>::pointer pointer;
814
defusechain_iterator(const defusechain_iterator & I)815 defusechain_iterator(const defusechain_iterator &I) : Op(I.Op) {}
defusechain_iterator()816 defusechain_iterator() : Op(nullptr) {}
817
818 bool operator==(const defusechain_iterator &x) const {
819 return Op == x.Op;
820 }
821 bool operator!=(const defusechain_iterator &x) const {
822 return !operator==(x);
823 }
824
825 /// atEnd - return true if this iterator is equal to reg_end() on the value.
atEnd()826 bool atEnd() const { return Op == nullptr; }
827
828 // Iterator traversal: forward iteration only
829 defusechain_iterator &operator++() { // Preincrement
830 assert(Op && "Cannot increment end iterator!");
831 if (ByOperand)
832 advance();
833 else if (ByInstr) {
834 MachineInstr *P = Op->getParent();
835 do {
836 advance();
837 } while (Op && Op->getParent() == P);
838 } else if (ByBundle) {
839 MachineInstr *P = getBundleStart(Op->getParent());
840 do {
841 advance();
842 } while (Op && getBundleStart(Op->getParent()) == P);
843 }
844
845 return *this;
846 }
847 defusechain_iterator operator++(int) { // Postincrement
848 defusechain_iterator tmp = *this; ++*this; return tmp;
849 }
850
851 /// getOperandNo - Return the operand # of this MachineOperand in its
852 /// MachineInstr.
getOperandNo()853 unsigned getOperandNo() const {
854 assert(Op && "Cannot dereference end iterator!");
855 return Op - &Op->getParent()->getOperand(0);
856 }
857
858 // Retrieve a reference to the current operand.
859 MachineOperand &operator*() const {
860 assert(Op && "Cannot dereference end iterator!");
861 return *Op;
862 }
863
864 MachineOperand *operator->() const {
865 assert(Op && "Cannot dereference end iterator!");
866 return Op;
867 }
868 };
869
870 /// defusechain_iterator - This class provides iterator support for machine
871 /// operands in the function that use or define a specific register. If
872 /// ReturnUses is true it returns uses of registers, if ReturnDefs is true it
873 /// returns defs. If neither are true then you are silly and it always
874 /// returns end(). If SkipDebug is true it skips uses marked Debug
875 /// when incrementing.
876 template<bool ReturnUses, bool ReturnDefs, bool SkipDebug,
877 bool ByOperand, bool ByInstr, bool ByBundle>
878 class defusechain_instr_iterator
879 : public std::iterator<std::forward_iterator_tag, MachineInstr, ptrdiff_t> {
880 MachineOperand *Op;
defusechain_instr_iterator(MachineOperand * op)881 explicit defusechain_instr_iterator(MachineOperand *op) : Op(op) {
882 // If the first node isn't one we're interested in, advance to one that
883 // we are interested in.
884 if (op) {
885 if ((!ReturnUses && op->isUse()) ||
886 (!ReturnDefs && op->isDef()) ||
887 (SkipDebug && op->isDebug()))
888 advance();
889 }
890 }
891 friend class MachineRegisterInfo;
892
advance()893 void advance() {
894 assert(Op && "Cannot increment end iterator!");
895 Op = getNextOperandForReg(Op);
896
897 // All defs come before the uses, so stop def_iterator early.
898 if (!ReturnUses) {
899 if (Op) {
900 if (Op->isUse())
901 Op = nullptr;
902 else
903 assert(!Op->isDebug() && "Can't have debug defs");
904 }
905 } else {
906 // If this is an operand we don't care about, skip it.
907 while (Op && ((!ReturnDefs && Op->isDef()) ||
908 (SkipDebug && Op->isDebug())))
909 Op = getNextOperandForReg(Op);
910 }
911 }
912 public:
913 typedef std::iterator<std::forward_iterator_tag,
914 MachineInstr, ptrdiff_t>::reference reference;
915 typedef std::iterator<std::forward_iterator_tag,
916 MachineInstr, ptrdiff_t>::pointer pointer;
917
defusechain_instr_iterator(const defusechain_instr_iterator & I)918 defusechain_instr_iterator(const defusechain_instr_iterator &I) : Op(I.Op){}
defusechain_instr_iterator()919 defusechain_instr_iterator() : Op(nullptr) {}
920
921 bool operator==(const defusechain_instr_iterator &x) const {
922 return Op == x.Op;
923 }
924 bool operator!=(const defusechain_instr_iterator &x) const {
925 return !operator==(x);
926 }
927
928 /// atEnd - return true if this iterator is equal to reg_end() on the value.
atEnd()929 bool atEnd() const { return Op == nullptr; }
930
931 // Iterator traversal: forward iteration only
932 defusechain_instr_iterator &operator++() { // Preincrement
933 assert(Op && "Cannot increment end iterator!");
934 if (ByOperand)
935 advance();
936 else if (ByInstr) {
937 MachineInstr *P = Op->getParent();
938 do {
939 advance();
940 } while (Op && Op->getParent() == P);
941 } else if (ByBundle) {
942 MachineInstr *P = getBundleStart(Op->getParent());
943 do {
944 advance();
945 } while (Op && getBundleStart(Op->getParent()) == P);
946 }
947
948 return *this;
949 }
950 defusechain_instr_iterator operator++(int) { // Postincrement
951 defusechain_instr_iterator tmp = *this; ++*this; return tmp;
952 }
953
954 // Retrieve a reference to the current operand.
955 MachineInstr &operator*() const {
956 assert(Op && "Cannot dereference end iterator!");
957 if (ByBundle) return *(getBundleStart(Op->getParent()));
958 return *Op->getParent();
959 }
960
961 MachineInstr *operator->() const {
962 assert(Op && "Cannot dereference end iterator!");
963 if (ByBundle) return getBundleStart(Op->getParent());
964 return Op->getParent();
965 }
966 };
967 };
968
969 /// Iterate over the pressure sets affected by the given physical or virtual
970 /// register. If Reg is physical, it must be a register unit (from
971 /// MCRegUnitIterator).
972 class PSetIterator {
973 const int *PSet;
974 unsigned Weight;
975 public:
PSetIterator()976 PSetIterator(): PSet(nullptr), Weight(0) {}
PSetIterator(unsigned RegUnit,const MachineRegisterInfo * MRI)977 PSetIterator(unsigned RegUnit, const MachineRegisterInfo *MRI) {
978 const TargetRegisterInfo *TRI = MRI->getTargetRegisterInfo();
979 if (TargetRegisterInfo::isVirtualRegister(RegUnit)) {
980 const TargetRegisterClass *RC = MRI->getRegClass(RegUnit);
981 PSet = TRI->getRegClassPressureSets(RC);
982 Weight = TRI->getRegClassWeight(RC).RegWeight;
983 }
984 else {
985 PSet = TRI->getRegUnitPressureSets(RegUnit);
986 Weight = TRI->getRegUnitWeight(RegUnit);
987 }
988 if (*PSet == -1)
989 PSet = nullptr;
990 }
isValid()991 bool isValid() const { return PSet; }
992
getWeight()993 unsigned getWeight() const { return Weight; }
994
995 unsigned operator*() const { return *PSet; }
996
997 void operator++() {
998 assert(isValid() && "Invalid PSetIterator.");
999 ++PSet;
1000 if (*PSet == -1)
1001 PSet = nullptr;
1002 }
1003 };
1004
1005 inline PSetIterator MachineRegisterInfo::
getPressureSets(unsigned RegUnit)1006 getPressureSets(unsigned RegUnit) const {
1007 return PSetIterator(RegUnit, this);
1008 }
1009
1010 } // End llvm namespace
1011
1012 #endif
1013