• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- llvm/CodeGen/MachineRegisterInfo.h ----------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the MachineRegisterInfo class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CODEGEN_MACHINEREGISTERINFO_H
15 #define LLVM_CODEGEN_MACHINEREGISTERINFO_H
16 
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/IndexedMap.h"
19 #include "llvm/ADT/iterator_range.h"
20 #include "llvm/CodeGen/MachineInstrBundle.h"
21 #include "llvm/Target/TargetMachine.h"
22 #include "llvm/Target/TargetRegisterInfo.h"
23 #include <vector>
24 
25 namespace llvm {
26 class PSetIterator;
27 
28 /// MachineRegisterInfo - Keep track of information for virtual and physical
29 /// registers, including vreg register classes, use/def chains for registers,
30 /// etc.
31 class MachineRegisterInfo {
32 public:
33   class Delegate {
34     virtual void anchor();
35   public:
36     virtual void MRI_NoteNewVirtualRegister(unsigned Reg) = 0;
37 
~Delegate()38     virtual ~Delegate() {}
39   };
40 
41 private:
42   const TargetMachine &TM;
43   Delegate *TheDelegate;
44 
45   /// IsSSA - True when the machine function is in SSA form and virtual
46   /// registers have a single def.
47   bool IsSSA;
48 
49   /// TracksLiveness - True while register liveness is being tracked accurately.
50   /// Basic block live-in lists, kill flags, and implicit defs may not be
51   /// accurate when after this flag is cleared.
52   bool TracksLiveness;
53 
54   /// VRegInfo - Information we keep for each virtual register.
55   ///
56   /// Each element in this list contains the register class of the vreg and the
57   /// start of the use/def list for the register.
58   IndexedMap<std::pair<const TargetRegisterClass*, MachineOperand*>,
59              VirtReg2IndexFunctor> VRegInfo;
60 
61   /// RegAllocHints - This vector records register allocation hints for virtual
62   /// registers. For each virtual register, it keeps a register and hint type
63   /// pair making up the allocation hint. Hint type is target specific except
64   /// for the value 0 which means the second value of the pair is the preferred
65   /// register for allocation. For example, if the hint is <0, 1024>, it means
66   /// the allocator should prefer the physical register allocated to the virtual
67   /// register of the hint.
68   IndexedMap<std::pair<unsigned, unsigned>, VirtReg2IndexFunctor> RegAllocHints;
69 
70   /// PhysRegUseDefLists - This is an array of the head of the use/def list for
71   /// physical registers.
72   MachineOperand **PhysRegUseDefLists;
73 
74   /// getRegUseDefListHead - Return the head pointer for the register use/def
75   /// list for the specified virtual or physical register.
getRegUseDefListHead(unsigned RegNo)76   MachineOperand *&getRegUseDefListHead(unsigned RegNo) {
77     if (TargetRegisterInfo::isVirtualRegister(RegNo))
78       return VRegInfo[RegNo].second;
79     return PhysRegUseDefLists[RegNo];
80   }
81 
getRegUseDefListHead(unsigned RegNo)82   MachineOperand *getRegUseDefListHead(unsigned RegNo) const {
83     if (TargetRegisterInfo::isVirtualRegister(RegNo))
84       return VRegInfo[RegNo].second;
85     return PhysRegUseDefLists[RegNo];
86   }
87 
88   /// Get the next element in the use-def chain.
getNextOperandForReg(const MachineOperand * MO)89   static MachineOperand *getNextOperandForReg(const MachineOperand *MO) {
90     assert(MO && MO->isReg() && "This is not a register operand!");
91     return MO->Contents.Reg.Next;
92   }
93 
94   /// UsedRegUnits - This is a bit vector that is computed and set by the
95   /// register allocator, and must be kept up to date by passes that run after
96   /// register allocation (though most don't modify this).  This is used
97   /// so that the code generator knows which callee save registers to save and
98   /// for other target specific uses.
99   /// This vector has bits set for register units that are modified in the
100   /// current function. It doesn't include registers clobbered by function
101   /// calls with register mask operands.
102   BitVector UsedRegUnits;
103 
104   /// UsedPhysRegMask - Additional used physregs including aliases.
105   /// This bit vector represents all the registers clobbered by function calls.
106   /// It can model things that UsedRegUnits can't, such as function calls that
107   /// clobber ymm7 but preserve the low half in xmm7.
108   BitVector UsedPhysRegMask;
109 
110   /// ReservedRegs - This is a bit vector of reserved registers.  The target
111   /// may change its mind about which registers should be reserved.  This
112   /// vector is the frozen set of reserved registers when register allocation
113   /// started.
114   BitVector ReservedRegs;
115 
116   /// Keep track of the physical registers that are live in to the function.
117   /// Live in values are typically arguments in registers.  LiveIn values are
118   /// allowed to have virtual registers associated with them, stored in the
119   /// second element.
120   std::vector<std::pair<unsigned, unsigned> > LiveIns;
121 
122   MachineRegisterInfo(const MachineRegisterInfo&) LLVM_DELETED_FUNCTION;
123   void operator=(const MachineRegisterInfo&) LLVM_DELETED_FUNCTION;
124 public:
125   explicit MachineRegisterInfo(const TargetMachine &TM);
126   ~MachineRegisterInfo();
127 
getTargetRegisterInfo()128   const TargetRegisterInfo *getTargetRegisterInfo() const {
129     return TM.getRegisterInfo();
130   }
131 
resetDelegate(Delegate * delegate)132   void resetDelegate(Delegate *delegate) {
133     // Ensure another delegate does not take over unless the current
134     // delegate first unattaches itself. If we ever need to multicast
135     // notifications, we will need to change to using a list.
136     assert(TheDelegate == delegate &&
137            "Only the current delegate can perform reset!");
138     TheDelegate = nullptr;
139   }
140 
setDelegate(Delegate * delegate)141   void setDelegate(Delegate *delegate) {
142     assert(delegate && !TheDelegate &&
143            "Attempted to set delegate to null, or to change it without "
144            "first resetting it!");
145 
146     TheDelegate = delegate;
147   }
148 
149   //===--------------------------------------------------------------------===//
150   // Function State
151   //===--------------------------------------------------------------------===//
152 
153   // isSSA - Returns true when the machine function is in SSA form. Early
154   // passes require the machine function to be in SSA form where every virtual
155   // register has a single defining instruction.
156   //
157   // The TwoAddressInstructionPass and PHIElimination passes take the machine
158   // function out of SSA form when they introduce multiple defs per virtual
159   // register.
isSSA()160   bool isSSA() const { return IsSSA; }
161 
162   // leaveSSA - Indicates that the machine function is no longer in SSA form.
leaveSSA()163   void leaveSSA() { IsSSA = false; }
164 
165   /// tracksLiveness - Returns true when tracking register liveness accurately.
166   ///
167   /// While this flag is true, register liveness information in basic block
168   /// live-in lists and machine instruction operands is accurate. This means it
169   /// can be used to change the code in ways that affect the values in
170   /// registers, for example by the register scavenger.
171   ///
172   /// When this flag is false, liveness is no longer reliable.
tracksLiveness()173   bool tracksLiveness() const { return TracksLiveness; }
174 
175   /// invalidateLiveness - Indicates that register liveness is no longer being
176   /// tracked accurately.
177   ///
178   /// This should be called by late passes that invalidate the liveness
179   /// information.
invalidateLiveness()180   void invalidateLiveness() { TracksLiveness = false; }
181 
182   //===--------------------------------------------------------------------===//
183   // Register Info
184   //===--------------------------------------------------------------------===//
185 
186   // Strictly for use by MachineInstr.cpp.
187   void addRegOperandToUseList(MachineOperand *MO);
188 
189   // Strictly for use by MachineInstr.cpp.
190   void removeRegOperandFromUseList(MachineOperand *MO);
191 
192   // Strictly for use by MachineInstr.cpp.
193   void moveOperands(MachineOperand *Dst, MachineOperand *Src, unsigned NumOps);
194 
195   /// Verify the sanity of the use list for Reg.
196   void verifyUseList(unsigned Reg) const;
197 
198   /// Verify the use list of all registers.
199   void verifyUseLists() const;
200 
201   /// reg_begin/reg_end - Provide iteration support to walk over all definitions
202   /// and uses of a register within the MachineFunction that corresponds to this
203   /// MachineRegisterInfo object.
204   template<bool Uses, bool Defs, bool SkipDebug,
205            bool ByOperand, bool ByInstr, bool ByBundle>
206   class defusechain_iterator;
207   template<bool Uses, bool Defs, bool SkipDebug,
208            bool ByOperand, bool ByInstr, bool ByBundle>
209   class defusechain_instr_iterator;
210 
211   // Make it a friend so it can access getNextOperandForReg().
212   template<bool, bool, bool, bool, bool, bool>
213     friend class defusechain_iterator;
214   template<bool, bool, bool, bool, bool, bool>
215     friend class defusechain_instr_iterator;
216 
217 
218 
219   /// reg_iterator/reg_begin/reg_end - Walk all defs and uses of the specified
220   /// register.
221   typedef defusechain_iterator<true,true,false,true,false,false>
222           reg_iterator;
reg_begin(unsigned RegNo)223   reg_iterator reg_begin(unsigned RegNo) const {
224     return reg_iterator(getRegUseDefListHead(RegNo));
225   }
reg_end()226   static reg_iterator reg_end() { return reg_iterator(nullptr); }
227 
reg_operands(unsigned Reg)228   inline iterator_range<reg_iterator>  reg_operands(unsigned Reg) const {
229     return iterator_range<reg_iterator>(reg_begin(Reg), reg_end());
230   }
231 
232   /// reg_instr_iterator/reg_instr_begin/reg_instr_end - Walk all defs and uses
233   /// of the specified register, stepping by MachineInstr.
234   typedef defusechain_instr_iterator<true,true,false,false,true,false>
235           reg_instr_iterator;
reg_instr_begin(unsigned RegNo)236   reg_instr_iterator reg_instr_begin(unsigned RegNo) const {
237     return reg_instr_iterator(getRegUseDefListHead(RegNo));
238   }
reg_instr_end()239   static reg_instr_iterator reg_instr_end() {
240     return reg_instr_iterator(nullptr);
241   }
242 
243   inline iterator_range<reg_instr_iterator>
reg_instructions(unsigned Reg)244   reg_instructions(unsigned Reg) const {
245     return iterator_range<reg_instr_iterator>(reg_instr_begin(Reg),
246                                               reg_instr_end());
247   }
248 
249   /// reg_bundle_iterator/reg_bundle_begin/reg_bundle_end - Walk all defs and uses
250   /// of the specified register, stepping by bundle.
251   typedef defusechain_instr_iterator<true,true,false,false,false,true>
252           reg_bundle_iterator;
reg_bundle_begin(unsigned RegNo)253   reg_bundle_iterator reg_bundle_begin(unsigned RegNo) const {
254     return reg_bundle_iterator(getRegUseDefListHead(RegNo));
255   }
reg_bundle_end()256   static reg_bundle_iterator reg_bundle_end() {
257     return reg_bundle_iterator(nullptr);
258   }
259 
reg_bundles(unsigned Reg)260   inline iterator_range<reg_bundle_iterator> reg_bundles(unsigned Reg) const {
261     return iterator_range<reg_bundle_iterator>(reg_bundle_begin(Reg),
262                                                reg_bundle_end());
263   }
264 
265   /// reg_empty - Return true if there are no instructions using or defining the
266   /// specified register (it may be live-in).
reg_empty(unsigned RegNo)267   bool reg_empty(unsigned RegNo) const { return reg_begin(RegNo) == reg_end(); }
268 
269   /// reg_nodbg_iterator/reg_nodbg_begin/reg_nodbg_end - Walk all defs and uses
270   /// of the specified register, skipping those marked as Debug.
271   typedef defusechain_iterator<true,true,true,true,false,false>
272           reg_nodbg_iterator;
reg_nodbg_begin(unsigned RegNo)273   reg_nodbg_iterator reg_nodbg_begin(unsigned RegNo) const {
274     return reg_nodbg_iterator(getRegUseDefListHead(RegNo));
275   }
reg_nodbg_end()276   static reg_nodbg_iterator reg_nodbg_end() {
277     return reg_nodbg_iterator(nullptr);
278   }
279 
280   inline iterator_range<reg_nodbg_iterator>
reg_nodbg_operands(unsigned Reg)281   reg_nodbg_operands(unsigned Reg) const {
282     return iterator_range<reg_nodbg_iterator>(reg_nodbg_begin(Reg),
283                                               reg_nodbg_end());
284   }
285 
286   /// reg_instr_nodbg_iterator/reg_instr_nodbg_begin/reg_instr_nodbg_end - Walk
287   /// all defs and uses of the specified register, stepping by MachineInstr,
288   /// skipping those marked as Debug.
289   typedef defusechain_instr_iterator<true,true,true,false,true,false>
290           reg_instr_nodbg_iterator;
reg_instr_nodbg_begin(unsigned RegNo)291   reg_instr_nodbg_iterator reg_instr_nodbg_begin(unsigned RegNo) const {
292     return reg_instr_nodbg_iterator(getRegUseDefListHead(RegNo));
293   }
reg_instr_nodbg_end()294   static reg_instr_nodbg_iterator reg_instr_nodbg_end() {
295     return reg_instr_nodbg_iterator(nullptr);
296   }
297 
298   inline iterator_range<reg_instr_nodbg_iterator>
reg_nodbg_instructions(unsigned Reg)299   reg_nodbg_instructions(unsigned Reg) const {
300     return iterator_range<reg_instr_nodbg_iterator>(reg_instr_nodbg_begin(Reg),
301                                                     reg_instr_nodbg_end());
302   }
303 
304   /// reg_bundle_nodbg_iterator/reg_bundle_nodbg_begin/reg_bundle_nodbg_end - Walk
305   /// all defs and uses of the specified register, stepping by bundle,
306   /// skipping those marked as Debug.
307   typedef defusechain_instr_iterator<true,true,true,false,false,true>
308           reg_bundle_nodbg_iterator;
reg_bundle_nodbg_begin(unsigned RegNo)309   reg_bundle_nodbg_iterator reg_bundle_nodbg_begin(unsigned RegNo) const {
310     return reg_bundle_nodbg_iterator(getRegUseDefListHead(RegNo));
311   }
reg_bundle_nodbg_end()312   static reg_bundle_nodbg_iterator reg_bundle_nodbg_end() {
313     return reg_bundle_nodbg_iterator(nullptr);
314   }
315 
316   inline iterator_range<reg_bundle_nodbg_iterator>
reg_nodbg_bundles(unsigned Reg)317   reg_nodbg_bundles(unsigned Reg) const {
318     return iterator_range<reg_bundle_nodbg_iterator>(reg_bundle_nodbg_begin(Reg),
319                                                      reg_bundle_nodbg_end());
320   }
321 
322   /// reg_nodbg_empty - Return true if the only instructions using or defining
323   /// Reg are Debug instructions.
reg_nodbg_empty(unsigned RegNo)324   bool reg_nodbg_empty(unsigned RegNo) const {
325     return reg_nodbg_begin(RegNo) == reg_nodbg_end();
326   }
327 
328   /// def_iterator/def_begin/def_end - Walk all defs of the specified register.
329   typedef defusechain_iterator<false,true,false,true,false,false>
330           def_iterator;
def_begin(unsigned RegNo)331   def_iterator def_begin(unsigned RegNo) const {
332     return def_iterator(getRegUseDefListHead(RegNo));
333   }
def_end()334   static def_iterator def_end() { return def_iterator(nullptr); }
335 
def_operands(unsigned Reg)336   inline iterator_range<def_iterator> def_operands(unsigned Reg) const {
337     return iterator_range<def_iterator>(def_begin(Reg), def_end());
338   }
339 
340   /// def_instr_iterator/def_instr_begin/def_instr_end - Walk all defs of the
341   /// specified register, stepping by MachineInst.
342   typedef defusechain_instr_iterator<false,true,false,false,true,false>
343           def_instr_iterator;
def_instr_begin(unsigned RegNo)344   def_instr_iterator def_instr_begin(unsigned RegNo) const {
345     return def_instr_iterator(getRegUseDefListHead(RegNo));
346   }
def_instr_end()347   static def_instr_iterator def_instr_end() {
348     return def_instr_iterator(nullptr);
349   }
350 
351   inline iterator_range<def_instr_iterator>
def_instructions(unsigned Reg)352   def_instructions(unsigned Reg) const {
353     return iterator_range<def_instr_iterator>(def_instr_begin(Reg),
354                                               def_instr_end());
355   }
356 
357   /// def_bundle_iterator/def_bundle_begin/def_bundle_end - Walk all defs of the
358   /// specified register, stepping by bundle.
359   typedef defusechain_instr_iterator<false,true,false,false,false,true>
360           def_bundle_iterator;
def_bundle_begin(unsigned RegNo)361   def_bundle_iterator def_bundle_begin(unsigned RegNo) const {
362     return def_bundle_iterator(getRegUseDefListHead(RegNo));
363   }
def_bundle_end()364   static def_bundle_iterator def_bundle_end() {
365     return def_bundle_iterator(nullptr);
366   }
367 
def_bundles(unsigned Reg)368   inline iterator_range<def_bundle_iterator> def_bundles(unsigned Reg) const {
369     return iterator_range<def_bundle_iterator>(def_bundle_begin(Reg),
370                                                def_bundle_end());
371   }
372 
373   /// def_empty - Return true if there are no instructions defining the
374   /// specified register (it may be live-in).
def_empty(unsigned RegNo)375   bool def_empty(unsigned RegNo) const { return def_begin(RegNo) == def_end(); }
376 
377   /// hasOneDef - Return true if there is exactly one instruction defining the
378   /// specified register.
hasOneDef(unsigned RegNo)379   bool hasOneDef(unsigned RegNo) const {
380     def_iterator DI = def_begin(RegNo);
381     if (DI == def_end())
382       return false;
383     return ++DI == def_end();
384   }
385 
386   /// use_iterator/use_begin/use_end - Walk all uses of the specified register.
387   typedef defusechain_iterator<true,false,false,true,false,false>
388           use_iterator;
use_begin(unsigned RegNo)389   use_iterator use_begin(unsigned RegNo) const {
390     return use_iterator(getRegUseDefListHead(RegNo));
391   }
use_end()392   static use_iterator use_end() { return use_iterator(nullptr); }
393 
use_operands(unsigned Reg)394   inline iterator_range<use_iterator> use_operands(unsigned Reg) const {
395     return iterator_range<use_iterator>(use_begin(Reg), use_end());
396   }
397 
398   /// use_instr_iterator/use_instr_begin/use_instr_end - Walk all uses of the
399   /// specified register, stepping by MachineInstr.
400   typedef defusechain_instr_iterator<true,false,false,false,true,false>
401           use_instr_iterator;
use_instr_begin(unsigned RegNo)402   use_instr_iterator use_instr_begin(unsigned RegNo) const {
403     return use_instr_iterator(getRegUseDefListHead(RegNo));
404   }
use_instr_end()405   static use_instr_iterator use_instr_end() {
406     return use_instr_iterator(nullptr);
407   }
408 
409   inline iterator_range<use_instr_iterator>
use_instructions(unsigned Reg)410   use_instructions(unsigned Reg) const {
411     return iterator_range<use_instr_iterator>(use_instr_begin(Reg),
412                                               use_instr_end());
413   }
414 
415   /// use_bundle_iterator/use_bundle_begin/use_bundle_end - Walk all uses of the
416   /// specified register, stepping by bundle.
417   typedef defusechain_instr_iterator<true,false,false,false,false,true>
418           use_bundle_iterator;
use_bundle_begin(unsigned RegNo)419   use_bundle_iterator use_bundle_begin(unsigned RegNo) const {
420     return use_bundle_iterator(getRegUseDefListHead(RegNo));
421   }
use_bundle_end()422   static use_bundle_iterator use_bundle_end() {
423     return use_bundle_iterator(nullptr);
424   }
425 
use_bundles(unsigned Reg)426   inline iterator_range<use_bundle_iterator> use_bundles(unsigned Reg) const {
427     return iterator_range<use_bundle_iterator>(use_bundle_begin(Reg),
428                                                use_bundle_end());
429   }
430 
431   /// use_empty - Return true if there are no instructions using the specified
432   /// register.
use_empty(unsigned RegNo)433   bool use_empty(unsigned RegNo) const { return use_begin(RegNo) == use_end(); }
434 
435   /// hasOneUse - Return true if there is exactly one instruction using the
436   /// specified register.
hasOneUse(unsigned RegNo)437   bool hasOneUse(unsigned RegNo) const {
438     use_iterator UI = use_begin(RegNo);
439     if (UI == use_end())
440       return false;
441     return ++UI == use_end();
442   }
443 
444   /// use_nodbg_iterator/use_nodbg_begin/use_nodbg_end - Walk all uses of the
445   /// specified register, skipping those marked as Debug.
446   typedef defusechain_iterator<true,false,true,true,false,false>
447           use_nodbg_iterator;
use_nodbg_begin(unsigned RegNo)448   use_nodbg_iterator use_nodbg_begin(unsigned RegNo) const {
449     return use_nodbg_iterator(getRegUseDefListHead(RegNo));
450   }
use_nodbg_end()451   static use_nodbg_iterator use_nodbg_end() {
452     return use_nodbg_iterator(nullptr);
453   }
454 
455   inline iterator_range<use_nodbg_iterator>
use_nodbg_operands(unsigned Reg)456   use_nodbg_operands(unsigned Reg) const {
457     return iterator_range<use_nodbg_iterator>(use_nodbg_begin(Reg),
458                                               use_nodbg_end());
459   }
460 
461   /// use_instr_nodbg_iterator/use_instr_nodbg_begin/use_instr_nodbg_end - Walk
462   /// all uses of the specified register, stepping by MachineInstr, skipping
463   /// those marked as Debug.
464   typedef defusechain_instr_iterator<true,false,true,false,true,false>
465           use_instr_nodbg_iterator;
use_instr_nodbg_begin(unsigned RegNo)466   use_instr_nodbg_iterator use_instr_nodbg_begin(unsigned RegNo) const {
467     return use_instr_nodbg_iterator(getRegUseDefListHead(RegNo));
468   }
use_instr_nodbg_end()469   static use_instr_nodbg_iterator use_instr_nodbg_end() {
470     return use_instr_nodbg_iterator(nullptr);
471   }
472 
473   inline iterator_range<use_instr_nodbg_iterator>
use_nodbg_instructions(unsigned Reg)474   use_nodbg_instructions(unsigned Reg) const {
475     return iterator_range<use_instr_nodbg_iterator>(use_instr_nodbg_begin(Reg),
476                                                     use_instr_nodbg_end());
477   }
478 
479   /// use_bundle_nodbg_iterator/use_bundle_nodbg_begin/use_bundle_nodbg_end - Walk
480   /// all uses of the specified register, stepping by bundle, skipping
481   /// those marked as Debug.
482   typedef defusechain_instr_iterator<true,false,true,false,false,true>
483           use_bundle_nodbg_iterator;
use_bundle_nodbg_begin(unsigned RegNo)484   use_bundle_nodbg_iterator use_bundle_nodbg_begin(unsigned RegNo) const {
485     return use_bundle_nodbg_iterator(getRegUseDefListHead(RegNo));
486   }
use_bundle_nodbg_end()487   static use_bundle_nodbg_iterator use_bundle_nodbg_end() {
488     return use_bundle_nodbg_iterator(nullptr);
489   }
490 
491   inline iterator_range<use_bundle_nodbg_iterator>
use_nodbg_bundles(unsigned Reg)492   use_nodbg_bundles(unsigned Reg) const {
493     return iterator_range<use_bundle_nodbg_iterator>(use_bundle_nodbg_begin(Reg),
494                                                      use_bundle_nodbg_end());
495   }
496 
497   /// use_nodbg_empty - Return true if there are no non-Debug instructions
498   /// using the specified register.
use_nodbg_empty(unsigned RegNo)499   bool use_nodbg_empty(unsigned RegNo) const {
500     return use_nodbg_begin(RegNo) == use_nodbg_end();
501   }
502 
503   /// hasOneNonDBGUse - Return true if there is exactly one non-Debug
504   /// instruction using the specified register.
505   bool hasOneNonDBGUse(unsigned RegNo) const;
506 
507   /// replaceRegWith - Replace all instances of FromReg with ToReg in the
508   /// machine function.  This is like llvm-level X->replaceAllUsesWith(Y),
509   /// except that it also changes any definitions of the register as well.
510   ///
511   /// Note that it is usually necessary to first constrain ToReg's register
512   /// class to match the FromReg constraints using:
513   ///
514   ///   constrainRegClass(ToReg, getRegClass(FromReg))
515   ///
516   /// That function will return NULL if the virtual registers have incompatible
517   /// constraints.
518   void replaceRegWith(unsigned FromReg, unsigned ToReg);
519 
520   /// getVRegDef - Return the machine instr that defines the specified virtual
521   /// register or null if none is found.  This assumes that the code is in SSA
522   /// form, so there should only be one definition.
523   MachineInstr *getVRegDef(unsigned Reg) const;
524 
525   /// getUniqueVRegDef - Return the unique machine instr that defines the
526   /// specified virtual register or null if none is found.  If there are
527   /// multiple definitions or no definition, return null.
528   MachineInstr *getUniqueVRegDef(unsigned Reg) const;
529 
530   /// clearKillFlags - Iterate over all the uses of the given register and
531   /// clear the kill flag from the MachineOperand. This function is used by
532   /// optimization passes which extend register lifetimes and need only
533   /// preserve conservative kill flag information.
534   void clearKillFlags(unsigned Reg) const;
535 
536 #ifndef NDEBUG
537   void dumpUses(unsigned RegNo) const;
538 #endif
539 
540   /// isConstantPhysReg - Returns true if PhysReg is unallocatable and constant
541   /// throughout the function.  It is safe to move instructions that read such
542   /// a physreg.
543   bool isConstantPhysReg(unsigned PhysReg, const MachineFunction &MF) const;
544 
545   /// Get an iterator over the pressure sets affected by the given physical or
546   /// virtual register. If RegUnit is physical, it must be a register unit (from
547   /// MCRegUnitIterator).
548   PSetIterator getPressureSets(unsigned RegUnit) const;
549 
550   //===--------------------------------------------------------------------===//
551   // Virtual Register Info
552   //===--------------------------------------------------------------------===//
553 
554   /// getRegClass - Return the register class of the specified virtual register.
555   ///
getRegClass(unsigned Reg)556   const TargetRegisterClass *getRegClass(unsigned Reg) const {
557     return VRegInfo[Reg].first;
558   }
559 
560   /// setRegClass - Set the register class of the specified virtual register.
561   ///
562   void setRegClass(unsigned Reg, const TargetRegisterClass *RC);
563 
564   /// constrainRegClass - Constrain the register class of the specified virtual
565   /// register to be a common subclass of RC and the current register class,
566   /// but only if the new class has at least MinNumRegs registers.  Return the
567   /// new register class, or NULL if no such class exists.
568   /// This should only be used when the constraint is known to be trivial, like
569   /// GR32 -> GR32_NOSP. Beware of increasing register pressure.
570   ///
571   const TargetRegisterClass *constrainRegClass(unsigned Reg,
572                                                const TargetRegisterClass *RC,
573                                                unsigned MinNumRegs = 0);
574 
575   /// recomputeRegClass - Try to find a legal super-class of Reg's register
576   /// class that still satisfies the constraints from the instructions using
577   /// Reg.  Returns true if Reg was upgraded.
578   ///
579   /// This method can be used after constraints have been removed from a
580   /// virtual register, for example after removing instructions or splitting
581   /// the live range.
582   ///
583   bool recomputeRegClass(unsigned Reg, const TargetMachine&);
584 
585   /// createVirtualRegister - Create and return a new virtual register in the
586   /// function with the specified register class.
587   ///
588   unsigned createVirtualRegister(const TargetRegisterClass *RegClass);
589 
590   /// getNumVirtRegs - Return the number of virtual registers created.
591   ///
getNumVirtRegs()592   unsigned getNumVirtRegs() const { return VRegInfo.size(); }
593 
594   /// clearVirtRegs - Remove all virtual registers (after physreg assignment).
595   void clearVirtRegs();
596 
597   /// setRegAllocationHint - Specify a register allocation hint for the
598   /// specified virtual register.
setRegAllocationHint(unsigned Reg,unsigned Type,unsigned PrefReg)599   void setRegAllocationHint(unsigned Reg, unsigned Type, unsigned PrefReg) {
600     RegAllocHints[Reg].first  = Type;
601     RegAllocHints[Reg].second = PrefReg;
602   }
603 
604   /// getRegAllocationHint - Return the register allocation hint for the
605   /// specified virtual register.
606   std::pair<unsigned, unsigned>
getRegAllocationHint(unsigned Reg)607   getRegAllocationHint(unsigned Reg) const {
608     return RegAllocHints[Reg];
609   }
610 
611   /// getSimpleHint - Return the preferred register allocation hint, or 0 if a
612   /// standard simple hint (Type == 0) is not set.
getSimpleHint(unsigned Reg)613   unsigned getSimpleHint(unsigned Reg) const {
614     std::pair<unsigned, unsigned> Hint = getRegAllocationHint(Reg);
615     return Hint.first ? 0 : Hint.second;
616   }
617 
618   /// markUsesInDebugValueAsUndef - Mark every DBG_VALUE referencing the
619   /// specified register as undefined which causes the DBG_VALUE to be
620   /// deleted during LiveDebugVariables analysis.
621   void markUsesInDebugValueAsUndef(unsigned Reg) const;
622 
623   //===--------------------------------------------------------------------===//
624   // Physical Register Use Info
625   //===--------------------------------------------------------------------===//
626 
627   /// isPhysRegUsed - Return true if the specified register is used in this
628   /// function. Also check for clobbered aliases and registers clobbered by
629   /// function calls with register mask operands.
630   ///
631   /// This only works after register allocation. It is primarily used by
632   /// PrologEpilogInserter to determine which callee-saved registers need
633   /// spilling.
isPhysRegUsed(unsigned Reg)634   bool isPhysRegUsed(unsigned Reg) const {
635     if (UsedPhysRegMask.test(Reg))
636       return true;
637     for (MCRegUnitIterator Units(Reg, getTargetRegisterInfo());
638          Units.isValid(); ++Units)
639       if (UsedRegUnits.test(*Units))
640         return true;
641     return false;
642   }
643 
644   /// Mark the specified register unit as used in this function.
645   /// This should only be called during and after register allocation.
setRegUnitUsed(unsigned RegUnit)646   void setRegUnitUsed(unsigned RegUnit) {
647     UsedRegUnits.set(RegUnit);
648   }
649 
650   /// setPhysRegUsed - Mark the specified register used in this function.
651   /// This should only be called during and after register allocation.
setPhysRegUsed(unsigned Reg)652   void setPhysRegUsed(unsigned Reg) {
653     for (MCRegUnitIterator Units(Reg, getTargetRegisterInfo());
654          Units.isValid(); ++Units)
655       UsedRegUnits.set(*Units);
656   }
657 
658   /// addPhysRegsUsedFromRegMask - Mark any registers not in RegMask as used.
659   /// This corresponds to the bit mask attached to register mask operands.
addPhysRegsUsedFromRegMask(const uint32_t * RegMask)660   void addPhysRegsUsedFromRegMask(const uint32_t *RegMask) {
661     UsedPhysRegMask.setBitsNotInMask(RegMask);
662   }
663 
664   /// setPhysRegUnused - Mark the specified register unused in this function.
665   /// This should only be called during and after register allocation.
setPhysRegUnused(unsigned Reg)666   void setPhysRegUnused(unsigned Reg) {
667     UsedPhysRegMask.reset(Reg);
668     for (MCRegUnitIterator Units(Reg, getTargetRegisterInfo());
669          Units.isValid(); ++Units)
670       UsedRegUnits.reset(*Units);
671   }
672 
673 
674   //===--------------------------------------------------------------------===//
675   // Reserved Register Info
676   //===--------------------------------------------------------------------===//
677   //
678   // The set of reserved registers must be invariant during register
679   // allocation.  For example, the target cannot suddenly decide it needs a
680   // frame pointer when the register allocator has already used the frame
681   // pointer register for something else.
682   //
683   // These methods can be used by target hooks like hasFP() to avoid changing
684   // the reserved register set during register allocation.
685 
686   /// freezeReservedRegs - Called by the register allocator to freeze the set
687   /// of reserved registers before allocation begins.
688   void freezeReservedRegs(const MachineFunction&);
689 
690   /// reservedRegsFrozen - Returns true after freezeReservedRegs() was called
691   /// to ensure the set of reserved registers stays constant.
reservedRegsFrozen()692   bool reservedRegsFrozen() const {
693     return !ReservedRegs.empty();
694   }
695 
696   /// canReserveReg - Returns true if PhysReg can be used as a reserved
697   /// register.  Any register can be reserved before freezeReservedRegs() is
698   /// called.
canReserveReg(unsigned PhysReg)699   bool canReserveReg(unsigned PhysReg) const {
700     return !reservedRegsFrozen() || ReservedRegs.test(PhysReg);
701   }
702 
703   /// getReservedRegs - Returns a reference to the frozen set of reserved
704   /// registers. This method should always be preferred to calling
705   /// TRI::getReservedRegs() when possible.
getReservedRegs()706   const BitVector &getReservedRegs() const {
707     assert(reservedRegsFrozen() &&
708            "Reserved registers haven't been frozen yet. "
709            "Use TRI::getReservedRegs().");
710     return ReservedRegs;
711   }
712 
713   /// isReserved - Returns true when PhysReg is a reserved register.
714   ///
715   /// Reserved registers may belong to an allocatable register class, but the
716   /// target has explicitly requested that they are not used.
717   ///
isReserved(unsigned PhysReg)718   bool isReserved(unsigned PhysReg) const {
719     return getReservedRegs().test(PhysReg);
720   }
721 
722   /// isAllocatable - Returns true when PhysReg belongs to an allocatable
723   /// register class and it hasn't been reserved.
724   ///
725   /// Allocatable registers may show up in the allocation order of some virtual
726   /// register, so a register allocator needs to track its liveness and
727   /// availability.
isAllocatable(unsigned PhysReg)728   bool isAllocatable(unsigned PhysReg) const {
729     return getTargetRegisterInfo()->isInAllocatableClass(PhysReg) &&
730       !isReserved(PhysReg);
731   }
732 
733   //===--------------------------------------------------------------------===//
734   // LiveIn Management
735   //===--------------------------------------------------------------------===//
736 
737   /// addLiveIn - Add the specified register as a live-in.  Note that it
738   /// is an error to add the same register to the same set more than once.
739   void addLiveIn(unsigned Reg, unsigned vreg = 0) {
740     LiveIns.push_back(std::make_pair(Reg, vreg));
741   }
742 
743   // Iteration support for the live-ins set.  It's kept in sorted order
744   // by register number.
745   typedef std::vector<std::pair<unsigned,unsigned> >::const_iterator
746   livein_iterator;
livein_begin()747   livein_iterator livein_begin() const { return LiveIns.begin(); }
livein_end()748   livein_iterator livein_end()   const { return LiveIns.end(); }
livein_empty()749   bool            livein_empty() const { return LiveIns.empty(); }
750 
751   bool isLiveIn(unsigned Reg) const;
752 
753   /// getLiveInPhysReg - If VReg is a live-in virtual register, return the
754   /// corresponding live-in physical register.
755   unsigned getLiveInPhysReg(unsigned VReg) const;
756 
757   /// getLiveInVirtReg - If PReg is a live-in physical register, return the
758   /// corresponding live-in physical register.
759   unsigned getLiveInVirtReg(unsigned PReg) const;
760 
761   /// EmitLiveInCopies - Emit copies to initialize livein virtual registers
762   /// into the given entry block.
763   void EmitLiveInCopies(MachineBasicBlock *EntryMBB,
764                         const TargetRegisterInfo &TRI,
765                         const TargetInstrInfo &TII);
766 
767   /// defusechain_iterator - This class provides iterator support for machine
768   /// operands in the function that use or define a specific register.  If
769   /// ReturnUses is true it returns uses of registers, if ReturnDefs is true it
770   /// returns defs.  If neither are true then you are silly and it always
771   /// returns end().  If SkipDebug is true it skips uses marked Debug
772   /// when incrementing.
773   template<bool ReturnUses, bool ReturnDefs, bool SkipDebug,
774            bool ByOperand, bool ByInstr, bool ByBundle>
775   class defusechain_iterator
776     : public std::iterator<std::forward_iterator_tag, MachineInstr, ptrdiff_t> {
777     MachineOperand *Op;
defusechain_iterator(MachineOperand * op)778     explicit defusechain_iterator(MachineOperand *op) : Op(op) {
779       // If the first node isn't one we're interested in, advance to one that
780       // we are interested in.
781       if (op) {
782         if ((!ReturnUses && op->isUse()) ||
783             (!ReturnDefs && op->isDef()) ||
784             (SkipDebug && op->isDebug()))
785           advance();
786       }
787     }
788     friend class MachineRegisterInfo;
789 
advance()790     void advance() {
791       assert(Op && "Cannot increment end iterator!");
792       Op = getNextOperandForReg(Op);
793 
794       // All defs come before the uses, so stop def_iterator early.
795       if (!ReturnUses) {
796         if (Op) {
797           if (Op->isUse())
798             Op = nullptr;
799           else
800             assert(!Op->isDebug() && "Can't have debug defs");
801         }
802       } else {
803         // If this is an operand we don't care about, skip it.
804         while (Op && ((!ReturnDefs && Op->isDef()) ||
805                       (SkipDebug && Op->isDebug())))
806           Op = getNextOperandForReg(Op);
807       }
808     }
809   public:
810     typedef std::iterator<std::forward_iterator_tag,
811                           MachineInstr, ptrdiff_t>::reference reference;
812     typedef std::iterator<std::forward_iterator_tag,
813                           MachineInstr, ptrdiff_t>::pointer pointer;
814 
defusechain_iterator(const defusechain_iterator & I)815     defusechain_iterator(const defusechain_iterator &I) : Op(I.Op) {}
defusechain_iterator()816     defusechain_iterator() : Op(nullptr) {}
817 
818     bool operator==(const defusechain_iterator &x) const {
819       return Op == x.Op;
820     }
821     bool operator!=(const defusechain_iterator &x) const {
822       return !operator==(x);
823     }
824 
825     /// atEnd - return true if this iterator is equal to reg_end() on the value.
atEnd()826     bool atEnd() const { return Op == nullptr; }
827 
828     // Iterator traversal: forward iteration only
829     defusechain_iterator &operator++() {          // Preincrement
830       assert(Op && "Cannot increment end iterator!");
831       if (ByOperand)
832         advance();
833       else if (ByInstr) {
834         MachineInstr *P = Op->getParent();
835         do {
836           advance();
837         } while (Op && Op->getParent() == P);
838       } else if (ByBundle) {
839         MachineInstr *P = getBundleStart(Op->getParent());
840         do {
841           advance();
842         } while (Op && getBundleStart(Op->getParent()) == P);
843       }
844 
845       return *this;
846     }
847     defusechain_iterator operator++(int) {        // Postincrement
848       defusechain_iterator tmp = *this; ++*this; return tmp;
849     }
850 
851     /// getOperandNo - Return the operand # of this MachineOperand in its
852     /// MachineInstr.
getOperandNo()853     unsigned getOperandNo() const {
854       assert(Op && "Cannot dereference end iterator!");
855       return Op - &Op->getParent()->getOperand(0);
856     }
857 
858     // Retrieve a reference to the current operand.
859     MachineOperand &operator*() const {
860       assert(Op && "Cannot dereference end iterator!");
861       return *Op;
862     }
863 
864     MachineOperand *operator->() const {
865       assert(Op && "Cannot dereference end iterator!");
866       return Op;
867     }
868   };
869 
870   /// defusechain_iterator - This class provides iterator support for machine
871   /// operands in the function that use or define a specific register.  If
872   /// ReturnUses is true it returns uses of registers, if ReturnDefs is true it
873   /// returns defs.  If neither are true then you are silly and it always
874   /// returns end().  If SkipDebug is true it skips uses marked Debug
875   /// when incrementing.
876   template<bool ReturnUses, bool ReturnDefs, bool SkipDebug,
877            bool ByOperand, bool ByInstr, bool ByBundle>
878   class defusechain_instr_iterator
879     : public std::iterator<std::forward_iterator_tag, MachineInstr, ptrdiff_t> {
880     MachineOperand *Op;
defusechain_instr_iterator(MachineOperand * op)881     explicit defusechain_instr_iterator(MachineOperand *op) : Op(op) {
882       // If the first node isn't one we're interested in, advance to one that
883       // we are interested in.
884       if (op) {
885         if ((!ReturnUses && op->isUse()) ||
886             (!ReturnDefs && op->isDef()) ||
887             (SkipDebug && op->isDebug()))
888           advance();
889       }
890     }
891     friend class MachineRegisterInfo;
892 
advance()893     void advance() {
894       assert(Op && "Cannot increment end iterator!");
895       Op = getNextOperandForReg(Op);
896 
897       // All defs come before the uses, so stop def_iterator early.
898       if (!ReturnUses) {
899         if (Op) {
900           if (Op->isUse())
901             Op = nullptr;
902           else
903             assert(!Op->isDebug() && "Can't have debug defs");
904         }
905       } else {
906         // If this is an operand we don't care about, skip it.
907         while (Op && ((!ReturnDefs && Op->isDef()) ||
908                       (SkipDebug && Op->isDebug())))
909           Op = getNextOperandForReg(Op);
910       }
911     }
912   public:
913     typedef std::iterator<std::forward_iterator_tag,
914                           MachineInstr, ptrdiff_t>::reference reference;
915     typedef std::iterator<std::forward_iterator_tag,
916                           MachineInstr, ptrdiff_t>::pointer pointer;
917 
defusechain_instr_iterator(const defusechain_instr_iterator & I)918     defusechain_instr_iterator(const defusechain_instr_iterator &I) : Op(I.Op){}
defusechain_instr_iterator()919     defusechain_instr_iterator() : Op(nullptr) {}
920 
921     bool operator==(const defusechain_instr_iterator &x) const {
922       return Op == x.Op;
923     }
924     bool operator!=(const defusechain_instr_iterator &x) const {
925       return !operator==(x);
926     }
927 
928     /// atEnd - return true if this iterator is equal to reg_end() on the value.
atEnd()929     bool atEnd() const { return Op == nullptr; }
930 
931     // Iterator traversal: forward iteration only
932     defusechain_instr_iterator &operator++() {          // Preincrement
933       assert(Op && "Cannot increment end iterator!");
934       if (ByOperand)
935         advance();
936       else if (ByInstr) {
937         MachineInstr *P = Op->getParent();
938         do {
939           advance();
940         } while (Op && Op->getParent() == P);
941       } else if (ByBundle) {
942         MachineInstr *P = getBundleStart(Op->getParent());
943         do {
944           advance();
945         } while (Op && getBundleStart(Op->getParent()) == P);
946       }
947 
948       return *this;
949     }
950     defusechain_instr_iterator operator++(int) {        // Postincrement
951       defusechain_instr_iterator tmp = *this; ++*this; return tmp;
952     }
953 
954     // Retrieve a reference to the current operand.
955     MachineInstr &operator*() const {
956       assert(Op && "Cannot dereference end iterator!");
957       if (ByBundle) return *(getBundleStart(Op->getParent()));
958       return *Op->getParent();
959     }
960 
961     MachineInstr *operator->() const {
962       assert(Op && "Cannot dereference end iterator!");
963       if (ByBundle) return getBundleStart(Op->getParent());
964       return Op->getParent();
965     }
966   };
967 };
968 
969 /// Iterate over the pressure sets affected by the given physical or virtual
970 /// register. If Reg is physical, it must be a register unit (from
971 /// MCRegUnitIterator).
972 class PSetIterator {
973   const int *PSet;
974   unsigned Weight;
975 public:
PSetIterator()976   PSetIterator(): PSet(nullptr), Weight(0) {}
PSetIterator(unsigned RegUnit,const MachineRegisterInfo * MRI)977   PSetIterator(unsigned RegUnit, const MachineRegisterInfo *MRI) {
978     const TargetRegisterInfo *TRI = MRI->getTargetRegisterInfo();
979     if (TargetRegisterInfo::isVirtualRegister(RegUnit)) {
980       const TargetRegisterClass *RC = MRI->getRegClass(RegUnit);
981       PSet = TRI->getRegClassPressureSets(RC);
982       Weight = TRI->getRegClassWeight(RC).RegWeight;
983     }
984     else {
985       PSet = TRI->getRegUnitPressureSets(RegUnit);
986       Weight = TRI->getRegUnitWeight(RegUnit);
987     }
988     if (*PSet == -1)
989       PSet = nullptr;
990   }
isValid()991   bool isValid() const { return PSet; }
992 
getWeight()993   unsigned getWeight() const { return Weight; }
994 
995   unsigned operator*() const { return *PSet; }
996 
997   void operator++() {
998     assert(isValid() && "Invalid PSetIterator.");
999     ++PSet;
1000     if (*PSet == -1)
1001       PSet = nullptr;
1002   }
1003 };
1004 
1005 inline PSetIterator MachineRegisterInfo::
getPressureSets(unsigned RegUnit)1006 getPressureSets(unsigned RegUnit) const {
1007   return PSetIterator(RegUnit, this);
1008 }
1009 
1010 } // End llvm namespace
1011 
1012 #endif
1013