1 //===-- Constants.cpp - Implement Constant nodes --------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Constant* classes.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/IR/Constants.h"
15 #include "ConstantFold.h"
16 #include "LLVMContextImpl.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/FoldingSet.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringMap.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/GetElementPtrTypeIterator.h"
25 #include "llvm/IR/GlobalValue.h"
26 #include "llvm/IR/Instructions.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/IR/Operator.h"
29 #include "llvm/Support/Compiler.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/ManagedStatic.h"
33 #include "llvm/Support/MathExtras.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include <algorithm>
36 #include <cstdarg>
37 using namespace llvm;
38
39 //===----------------------------------------------------------------------===//
40 // Constant Class
41 //===----------------------------------------------------------------------===//
42
anchor()43 void Constant::anchor() { }
44
isNegativeZeroValue() const45 bool Constant::isNegativeZeroValue() const {
46 // Floating point values have an explicit -0.0 value.
47 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
48 return CFP->isZero() && CFP->isNegative();
49
50 // Equivalent for a vector of -0.0's.
51 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
52 if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue()))
53 if (SplatCFP && SplatCFP->isZero() && SplatCFP->isNegative())
54 return true;
55
56 // We've already handled true FP case; any other FP vectors can't represent -0.0.
57 if (getType()->isFPOrFPVectorTy())
58 return false;
59
60 // Otherwise, just use +0.0.
61 return isNullValue();
62 }
63
64 // Return true iff this constant is positive zero (floating point), negative
65 // zero (floating point), or a null value.
isZeroValue() const66 bool Constant::isZeroValue() const {
67 // Floating point values have an explicit -0.0 value.
68 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
69 return CFP->isZero();
70
71 // Otherwise, just use +0.0.
72 return isNullValue();
73 }
74
isNullValue() const75 bool Constant::isNullValue() const {
76 // 0 is null.
77 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
78 return CI->isZero();
79
80 // +0.0 is null.
81 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
82 return CFP->isZero() && !CFP->isNegative();
83
84 // constant zero is zero for aggregates and cpnull is null for pointers.
85 return isa<ConstantAggregateZero>(this) || isa<ConstantPointerNull>(this);
86 }
87
isAllOnesValue() const88 bool Constant::isAllOnesValue() const {
89 // Check for -1 integers
90 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
91 return CI->isMinusOne();
92
93 // Check for FP which are bitcasted from -1 integers
94 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
95 return CFP->getValueAPF().bitcastToAPInt().isAllOnesValue();
96
97 // Check for constant vectors which are splats of -1 values.
98 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
99 if (Constant *Splat = CV->getSplatValue())
100 return Splat->isAllOnesValue();
101
102 // Check for constant vectors which are splats of -1 values.
103 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
104 if (Constant *Splat = CV->getSplatValue())
105 return Splat->isAllOnesValue();
106
107 return false;
108 }
109
isMinSignedValue() const110 bool Constant::isMinSignedValue() const {
111 // Check for INT_MIN integers
112 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
113 return CI->isMinValue(/*isSigned=*/true);
114
115 // Check for FP which are bitcasted from INT_MIN integers
116 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
117 return CFP->getValueAPF().bitcastToAPInt().isMinSignedValue();
118
119 // Check for constant vectors which are splats of INT_MIN values.
120 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
121 if (Constant *Splat = CV->getSplatValue())
122 return Splat->isMinSignedValue();
123
124 // Check for constant vectors which are splats of INT_MIN values.
125 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
126 if (Constant *Splat = CV->getSplatValue())
127 return Splat->isMinSignedValue();
128
129 return false;
130 }
131
132 // Constructor to create a '0' constant of arbitrary type...
getNullValue(Type * Ty)133 Constant *Constant::getNullValue(Type *Ty) {
134 switch (Ty->getTypeID()) {
135 case Type::IntegerTyID:
136 return ConstantInt::get(Ty, 0);
137 case Type::HalfTyID:
138 return ConstantFP::get(Ty->getContext(),
139 APFloat::getZero(APFloat::IEEEhalf));
140 case Type::FloatTyID:
141 return ConstantFP::get(Ty->getContext(),
142 APFloat::getZero(APFloat::IEEEsingle));
143 case Type::DoubleTyID:
144 return ConstantFP::get(Ty->getContext(),
145 APFloat::getZero(APFloat::IEEEdouble));
146 case Type::X86_FP80TyID:
147 return ConstantFP::get(Ty->getContext(),
148 APFloat::getZero(APFloat::x87DoubleExtended));
149 case Type::FP128TyID:
150 return ConstantFP::get(Ty->getContext(),
151 APFloat::getZero(APFloat::IEEEquad));
152 case Type::PPC_FP128TyID:
153 return ConstantFP::get(Ty->getContext(),
154 APFloat(APFloat::PPCDoubleDouble,
155 APInt::getNullValue(128)));
156 case Type::PointerTyID:
157 return ConstantPointerNull::get(cast<PointerType>(Ty));
158 case Type::StructTyID:
159 case Type::ArrayTyID:
160 case Type::VectorTyID:
161 return ConstantAggregateZero::get(Ty);
162 default:
163 // Function, Label, or Opaque type?
164 llvm_unreachable("Cannot create a null constant of that type!");
165 }
166 }
167
getIntegerValue(Type * Ty,const APInt & V)168 Constant *Constant::getIntegerValue(Type *Ty, const APInt &V) {
169 Type *ScalarTy = Ty->getScalarType();
170
171 // Create the base integer constant.
172 Constant *C = ConstantInt::get(Ty->getContext(), V);
173
174 // Convert an integer to a pointer, if necessary.
175 if (PointerType *PTy = dyn_cast<PointerType>(ScalarTy))
176 C = ConstantExpr::getIntToPtr(C, PTy);
177
178 // Broadcast a scalar to a vector, if necessary.
179 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
180 C = ConstantVector::getSplat(VTy->getNumElements(), C);
181
182 return C;
183 }
184
getAllOnesValue(Type * Ty)185 Constant *Constant::getAllOnesValue(Type *Ty) {
186 if (IntegerType *ITy = dyn_cast<IntegerType>(Ty))
187 return ConstantInt::get(Ty->getContext(),
188 APInt::getAllOnesValue(ITy->getBitWidth()));
189
190 if (Ty->isFloatingPointTy()) {
191 APFloat FL = APFloat::getAllOnesValue(Ty->getPrimitiveSizeInBits(),
192 !Ty->isPPC_FP128Ty());
193 return ConstantFP::get(Ty->getContext(), FL);
194 }
195
196 VectorType *VTy = cast<VectorType>(Ty);
197 return ConstantVector::getSplat(VTy->getNumElements(),
198 getAllOnesValue(VTy->getElementType()));
199 }
200
201 /// getAggregateElement - For aggregates (struct/array/vector) return the
202 /// constant that corresponds to the specified element if possible, or null if
203 /// not. This can return null if the element index is a ConstantExpr, or if
204 /// 'this' is a constant expr.
getAggregateElement(unsigned Elt) const205 Constant *Constant::getAggregateElement(unsigned Elt) const {
206 if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(this))
207 return Elt < CS->getNumOperands() ? CS->getOperand(Elt) : nullptr;
208
209 if (const ConstantArray *CA = dyn_cast<ConstantArray>(this))
210 return Elt < CA->getNumOperands() ? CA->getOperand(Elt) : nullptr;
211
212 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
213 return Elt < CV->getNumOperands() ? CV->getOperand(Elt) : nullptr;
214
215 if (const ConstantAggregateZero *CAZ =dyn_cast<ConstantAggregateZero>(this))
216 return CAZ->getElementValue(Elt);
217
218 if (const UndefValue *UV = dyn_cast<UndefValue>(this))
219 return UV->getElementValue(Elt);
220
221 if (const ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(this))
222 return Elt < CDS->getNumElements() ? CDS->getElementAsConstant(Elt)
223 : nullptr;
224 return nullptr;
225 }
226
getAggregateElement(Constant * Elt) const227 Constant *Constant::getAggregateElement(Constant *Elt) const {
228 assert(isa<IntegerType>(Elt->getType()) && "Index must be an integer");
229 if (ConstantInt *CI = dyn_cast<ConstantInt>(Elt))
230 return getAggregateElement(CI->getZExtValue());
231 return nullptr;
232 }
233
234
destroyConstantImpl()235 void Constant::destroyConstantImpl() {
236 // When a Constant is destroyed, there may be lingering
237 // references to the constant by other constants in the constant pool. These
238 // constants are implicitly dependent on the module that is being deleted,
239 // but they don't know that. Because we only find out when the CPV is
240 // deleted, we must now notify all of our users (that should only be
241 // Constants) that they are, in fact, invalid now and should be deleted.
242 //
243 while (!use_empty()) {
244 Value *V = user_back();
245 #ifndef NDEBUG // Only in -g mode...
246 if (!isa<Constant>(V)) {
247 dbgs() << "While deleting: " << *this
248 << "\n\nUse still stuck around after Def is destroyed: "
249 << *V << "\n\n";
250 }
251 #endif
252 assert(isa<Constant>(V) && "References remain to Constant being destroyed");
253 cast<Constant>(V)->destroyConstant();
254
255 // The constant should remove itself from our use list...
256 assert((use_empty() || user_back() != V) && "Constant not removed!");
257 }
258
259 // Value has no outstanding references it is safe to delete it now...
260 delete this;
261 }
262
canTrapImpl(const Constant * C,SmallPtrSet<const ConstantExpr *,4> & NonTrappingOps)263 static bool canTrapImpl(const Constant *C,
264 SmallPtrSet<const ConstantExpr *, 4> &NonTrappingOps) {
265 assert(C->getType()->isFirstClassType() && "Cannot evaluate aggregate vals!");
266 // The only thing that could possibly trap are constant exprs.
267 const ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
268 if (!CE)
269 return false;
270
271 // ConstantExpr traps if any operands can trap.
272 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) {
273 if (ConstantExpr *Op = dyn_cast<ConstantExpr>(CE->getOperand(i))) {
274 if (NonTrappingOps.insert(Op) && canTrapImpl(Op, NonTrappingOps))
275 return true;
276 }
277 }
278
279 // Otherwise, only specific operations can trap.
280 switch (CE->getOpcode()) {
281 default:
282 return false;
283 case Instruction::UDiv:
284 case Instruction::SDiv:
285 case Instruction::FDiv:
286 case Instruction::URem:
287 case Instruction::SRem:
288 case Instruction::FRem:
289 // Div and rem can trap if the RHS is not known to be non-zero.
290 if (!isa<ConstantInt>(CE->getOperand(1)) ||CE->getOperand(1)->isNullValue())
291 return true;
292 return false;
293 }
294 }
295
296 /// canTrap - Return true if evaluation of this constant could trap. This is
297 /// true for things like constant expressions that could divide by zero.
canTrap() const298 bool Constant::canTrap() const {
299 SmallPtrSet<const ConstantExpr *, 4> NonTrappingOps;
300 return canTrapImpl(this, NonTrappingOps);
301 }
302
303 /// Check if C contains a GlobalValue for which Predicate is true.
304 static bool
ConstHasGlobalValuePredicate(const Constant * C,bool (* Predicate)(const GlobalValue *))305 ConstHasGlobalValuePredicate(const Constant *C,
306 bool (*Predicate)(const GlobalValue *)) {
307 SmallPtrSet<const Constant *, 8> Visited;
308 SmallVector<const Constant *, 8> WorkList;
309 WorkList.push_back(C);
310 Visited.insert(C);
311
312 while (!WorkList.empty()) {
313 const Constant *WorkItem = WorkList.pop_back_val();
314 if (const auto *GV = dyn_cast<GlobalValue>(WorkItem))
315 if (Predicate(GV))
316 return true;
317 for (const Value *Op : WorkItem->operands()) {
318 const Constant *ConstOp = dyn_cast<Constant>(Op);
319 if (!ConstOp)
320 continue;
321 if (Visited.insert(ConstOp))
322 WorkList.push_back(ConstOp);
323 }
324 }
325 return false;
326 }
327
328 /// Return true if the value can vary between threads.
isThreadDependent() const329 bool Constant::isThreadDependent() const {
330 auto DLLImportPredicate = [](const GlobalValue *GV) {
331 return GV->isThreadLocal();
332 };
333 return ConstHasGlobalValuePredicate(this, DLLImportPredicate);
334 }
335
isDLLImportDependent() const336 bool Constant::isDLLImportDependent() const {
337 auto DLLImportPredicate = [](const GlobalValue *GV) {
338 return GV->hasDLLImportStorageClass();
339 };
340 return ConstHasGlobalValuePredicate(this, DLLImportPredicate);
341 }
342
343 /// Return true if the constant has users other than constant exprs and other
344 /// dangling things.
isConstantUsed() const345 bool Constant::isConstantUsed() const {
346 for (const User *U : users()) {
347 const Constant *UC = dyn_cast<Constant>(U);
348 if (!UC || isa<GlobalValue>(UC))
349 return true;
350
351 if (UC->isConstantUsed())
352 return true;
353 }
354 return false;
355 }
356
357
358
359 /// getRelocationInfo - This method classifies the entry according to
360 /// whether or not it may generate a relocation entry. This must be
361 /// conservative, so if it might codegen to a relocatable entry, it should say
362 /// so. The return values are:
363 ///
364 /// NoRelocation: This constant pool entry is guaranteed to never have a
365 /// relocation applied to it (because it holds a simple constant like
366 /// '4').
367 /// LocalRelocation: This entry has relocations, but the entries are
368 /// guaranteed to be resolvable by the static linker, so the dynamic
369 /// linker will never see them.
370 /// GlobalRelocations: This entry may have arbitrary relocations.
371 ///
372 /// FIXME: This really should not be in IR.
getRelocationInfo() const373 Constant::PossibleRelocationsTy Constant::getRelocationInfo() const {
374 if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
375 if (GV->hasLocalLinkage() || GV->hasHiddenVisibility())
376 return LocalRelocation; // Local to this file/library.
377 return GlobalRelocations; // Global reference.
378 }
379
380 if (const BlockAddress *BA = dyn_cast<BlockAddress>(this))
381 return BA->getFunction()->getRelocationInfo();
382
383 // While raw uses of blockaddress need to be relocated, differences between
384 // two of them don't when they are for labels in the same function. This is a
385 // common idiom when creating a table for the indirect goto extension, so we
386 // handle it efficiently here.
387 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(this))
388 if (CE->getOpcode() == Instruction::Sub) {
389 ConstantExpr *LHS = dyn_cast<ConstantExpr>(CE->getOperand(0));
390 ConstantExpr *RHS = dyn_cast<ConstantExpr>(CE->getOperand(1));
391 if (LHS && RHS &&
392 LHS->getOpcode() == Instruction::PtrToInt &&
393 RHS->getOpcode() == Instruction::PtrToInt &&
394 isa<BlockAddress>(LHS->getOperand(0)) &&
395 isa<BlockAddress>(RHS->getOperand(0)) &&
396 cast<BlockAddress>(LHS->getOperand(0))->getFunction() ==
397 cast<BlockAddress>(RHS->getOperand(0))->getFunction())
398 return NoRelocation;
399 }
400
401 PossibleRelocationsTy Result = NoRelocation;
402 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
403 Result = std::max(Result,
404 cast<Constant>(getOperand(i))->getRelocationInfo());
405
406 return Result;
407 }
408
409 /// removeDeadUsersOfConstant - If the specified constantexpr is dead, remove
410 /// it. This involves recursively eliminating any dead users of the
411 /// constantexpr.
removeDeadUsersOfConstant(const Constant * C)412 static bool removeDeadUsersOfConstant(const Constant *C) {
413 if (isa<GlobalValue>(C)) return false; // Cannot remove this
414
415 while (!C->use_empty()) {
416 const Constant *User = dyn_cast<Constant>(C->user_back());
417 if (!User) return false; // Non-constant usage;
418 if (!removeDeadUsersOfConstant(User))
419 return false; // Constant wasn't dead
420 }
421
422 const_cast<Constant*>(C)->destroyConstant();
423 return true;
424 }
425
426
427 /// removeDeadConstantUsers - If there are any dead constant users dangling
428 /// off of this constant, remove them. This method is useful for clients
429 /// that want to check to see if a global is unused, but don't want to deal
430 /// with potentially dead constants hanging off of the globals.
removeDeadConstantUsers() const431 void Constant::removeDeadConstantUsers() const {
432 Value::const_user_iterator I = user_begin(), E = user_end();
433 Value::const_user_iterator LastNonDeadUser = E;
434 while (I != E) {
435 const Constant *User = dyn_cast<Constant>(*I);
436 if (!User) {
437 LastNonDeadUser = I;
438 ++I;
439 continue;
440 }
441
442 if (!removeDeadUsersOfConstant(User)) {
443 // If the constant wasn't dead, remember that this was the last live use
444 // and move on to the next constant.
445 LastNonDeadUser = I;
446 ++I;
447 continue;
448 }
449
450 // If the constant was dead, then the iterator is invalidated.
451 if (LastNonDeadUser == E) {
452 I = user_begin();
453 if (I == E) break;
454 } else {
455 I = LastNonDeadUser;
456 ++I;
457 }
458 }
459 }
460
461
462
463 //===----------------------------------------------------------------------===//
464 // ConstantInt
465 //===----------------------------------------------------------------------===//
466
anchor()467 void ConstantInt::anchor() { }
468
ConstantInt(IntegerType * Ty,const APInt & V)469 ConstantInt::ConstantInt(IntegerType *Ty, const APInt& V)
470 : Constant(Ty, ConstantIntVal, nullptr, 0), Val(V) {
471 assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type");
472 }
473
getTrue(LLVMContext & Context)474 ConstantInt *ConstantInt::getTrue(LLVMContext &Context) {
475 LLVMContextImpl *pImpl = Context.pImpl;
476 if (!pImpl->TheTrueVal)
477 pImpl->TheTrueVal = ConstantInt::get(Type::getInt1Ty(Context), 1);
478 return pImpl->TheTrueVal;
479 }
480
getFalse(LLVMContext & Context)481 ConstantInt *ConstantInt::getFalse(LLVMContext &Context) {
482 LLVMContextImpl *pImpl = Context.pImpl;
483 if (!pImpl->TheFalseVal)
484 pImpl->TheFalseVal = ConstantInt::get(Type::getInt1Ty(Context), 0);
485 return pImpl->TheFalseVal;
486 }
487
getTrue(Type * Ty)488 Constant *ConstantInt::getTrue(Type *Ty) {
489 VectorType *VTy = dyn_cast<VectorType>(Ty);
490 if (!VTy) {
491 assert(Ty->isIntegerTy(1) && "True must be i1 or vector of i1.");
492 return ConstantInt::getTrue(Ty->getContext());
493 }
494 assert(VTy->getElementType()->isIntegerTy(1) &&
495 "True must be vector of i1 or i1.");
496 return ConstantVector::getSplat(VTy->getNumElements(),
497 ConstantInt::getTrue(Ty->getContext()));
498 }
499
getFalse(Type * Ty)500 Constant *ConstantInt::getFalse(Type *Ty) {
501 VectorType *VTy = dyn_cast<VectorType>(Ty);
502 if (!VTy) {
503 assert(Ty->isIntegerTy(1) && "False must be i1 or vector of i1.");
504 return ConstantInt::getFalse(Ty->getContext());
505 }
506 assert(VTy->getElementType()->isIntegerTy(1) &&
507 "False must be vector of i1 or i1.");
508 return ConstantVector::getSplat(VTy->getNumElements(),
509 ConstantInt::getFalse(Ty->getContext()));
510 }
511
512
513 // Get a ConstantInt from an APInt. Note that the value stored in the DenseMap
514 // as the key, is a DenseMapAPIntKeyInfo::KeyTy which has provided the
515 // operator== and operator!= to ensure that the DenseMap doesn't attempt to
516 // compare APInt's of different widths, which would violate an APInt class
517 // invariant which generates an assertion.
get(LLVMContext & Context,const APInt & V)518 ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt &V) {
519 // Get the corresponding integer type for the bit width of the value.
520 IntegerType *ITy = IntegerType::get(Context, V.getBitWidth());
521 // get an existing value or the insertion position
522 LLVMContextImpl *pImpl = Context.pImpl;
523 ConstantInt *&Slot = pImpl->IntConstants[DenseMapAPIntKeyInfo::KeyTy(V, ITy)];
524 if (!Slot) Slot = new ConstantInt(ITy, V);
525 return Slot;
526 }
527
get(Type * Ty,uint64_t V,bool isSigned)528 Constant *ConstantInt::get(Type *Ty, uint64_t V, bool isSigned) {
529 Constant *C = get(cast<IntegerType>(Ty->getScalarType()), V, isSigned);
530
531 // For vectors, broadcast the value.
532 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
533 return ConstantVector::getSplat(VTy->getNumElements(), C);
534
535 return C;
536 }
537
get(IntegerType * Ty,uint64_t V,bool isSigned)538 ConstantInt *ConstantInt::get(IntegerType *Ty, uint64_t V,
539 bool isSigned) {
540 return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned));
541 }
542
getSigned(IntegerType * Ty,int64_t V)543 ConstantInt *ConstantInt::getSigned(IntegerType *Ty, int64_t V) {
544 return get(Ty, V, true);
545 }
546
getSigned(Type * Ty,int64_t V)547 Constant *ConstantInt::getSigned(Type *Ty, int64_t V) {
548 return get(Ty, V, true);
549 }
550
get(Type * Ty,const APInt & V)551 Constant *ConstantInt::get(Type *Ty, const APInt& V) {
552 ConstantInt *C = get(Ty->getContext(), V);
553 assert(C->getType() == Ty->getScalarType() &&
554 "ConstantInt type doesn't match the type implied by its value!");
555
556 // For vectors, broadcast the value.
557 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
558 return ConstantVector::getSplat(VTy->getNumElements(), C);
559
560 return C;
561 }
562
get(IntegerType * Ty,StringRef Str,uint8_t radix)563 ConstantInt *ConstantInt::get(IntegerType* Ty, StringRef Str,
564 uint8_t radix) {
565 return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix));
566 }
567
568 //===----------------------------------------------------------------------===//
569 // ConstantFP
570 //===----------------------------------------------------------------------===//
571
TypeToFloatSemantics(Type * Ty)572 static const fltSemantics *TypeToFloatSemantics(Type *Ty) {
573 if (Ty->isHalfTy())
574 return &APFloat::IEEEhalf;
575 if (Ty->isFloatTy())
576 return &APFloat::IEEEsingle;
577 if (Ty->isDoubleTy())
578 return &APFloat::IEEEdouble;
579 if (Ty->isX86_FP80Ty())
580 return &APFloat::x87DoubleExtended;
581 else if (Ty->isFP128Ty())
582 return &APFloat::IEEEquad;
583
584 assert(Ty->isPPC_FP128Ty() && "Unknown FP format");
585 return &APFloat::PPCDoubleDouble;
586 }
587
anchor()588 void ConstantFP::anchor() { }
589
590 /// get() - This returns a constant fp for the specified value in the
591 /// specified type. This should only be used for simple constant values like
592 /// 2.0/1.0 etc, that are known-valid both as double and as the target format.
get(Type * Ty,double V)593 Constant *ConstantFP::get(Type *Ty, double V) {
594 LLVMContext &Context = Ty->getContext();
595
596 APFloat FV(V);
597 bool ignored;
598 FV.convert(*TypeToFloatSemantics(Ty->getScalarType()),
599 APFloat::rmNearestTiesToEven, &ignored);
600 Constant *C = get(Context, FV);
601
602 // For vectors, broadcast the value.
603 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
604 return ConstantVector::getSplat(VTy->getNumElements(), C);
605
606 return C;
607 }
608
609
get(Type * Ty,StringRef Str)610 Constant *ConstantFP::get(Type *Ty, StringRef Str) {
611 LLVMContext &Context = Ty->getContext();
612
613 APFloat FV(*TypeToFloatSemantics(Ty->getScalarType()), Str);
614 Constant *C = get(Context, FV);
615
616 // For vectors, broadcast the value.
617 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
618 return ConstantVector::getSplat(VTy->getNumElements(), C);
619
620 return C;
621 }
622
getNegativeZero(Type * Ty)623 Constant *ConstantFP::getNegativeZero(Type *Ty) {
624 const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
625 APFloat NegZero = APFloat::getZero(Semantics, /*Negative=*/true);
626 Constant *C = get(Ty->getContext(), NegZero);
627
628 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
629 return ConstantVector::getSplat(VTy->getNumElements(), C);
630
631 return C;
632 }
633
634
getZeroValueForNegation(Type * Ty)635 Constant *ConstantFP::getZeroValueForNegation(Type *Ty) {
636 if (Ty->isFPOrFPVectorTy())
637 return getNegativeZero(Ty);
638
639 return Constant::getNullValue(Ty);
640 }
641
642
643 // ConstantFP accessors.
get(LLVMContext & Context,const APFloat & V)644 ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) {
645 LLVMContextImpl* pImpl = Context.pImpl;
646
647 ConstantFP *&Slot = pImpl->FPConstants[DenseMapAPFloatKeyInfo::KeyTy(V)];
648
649 if (!Slot) {
650 Type *Ty;
651 if (&V.getSemantics() == &APFloat::IEEEhalf)
652 Ty = Type::getHalfTy(Context);
653 else if (&V.getSemantics() == &APFloat::IEEEsingle)
654 Ty = Type::getFloatTy(Context);
655 else if (&V.getSemantics() == &APFloat::IEEEdouble)
656 Ty = Type::getDoubleTy(Context);
657 else if (&V.getSemantics() == &APFloat::x87DoubleExtended)
658 Ty = Type::getX86_FP80Ty(Context);
659 else if (&V.getSemantics() == &APFloat::IEEEquad)
660 Ty = Type::getFP128Ty(Context);
661 else {
662 assert(&V.getSemantics() == &APFloat::PPCDoubleDouble &&
663 "Unknown FP format");
664 Ty = Type::getPPC_FP128Ty(Context);
665 }
666 Slot = new ConstantFP(Ty, V);
667 }
668
669 return Slot;
670 }
671
getInfinity(Type * Ty,bool Negative)672 Constant *ConstantFP::getInfinity(Type *Ty, bool Negative) {
673 const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
674 Constant *C = get(Ty->getContext(), APFloat::getInf(Semantics, Negative));
675
676 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
677 return ConstantVector::getSplat(VTy->getNumElements(), C);
678
679 return C;
680 }
681
ConstantFP(Type * Ty,const APFloat & V)682 ConstantFP::ConstantFP(Type *Ty, const APFloat& V)
683 : Constant(Ty, ConstantFPVal, nullptr, 0), Val(V) {
684 assert(&V.getSemantics() == TypeToFloatSemantics(Ty) &&
685 "FP type Mismatch");
686 }
687
isExactlyValue(const APFloat & V) const688 bool ConstantFP::isExactlyValue(const APFloat &V) const {
689 return Val.bitwiseIsEqual(V);
690 }
691
692 //===----------------------------------------------------------------------===//
693 // ConstantAggregateZero Implementation
694 //===----------------------------------------------------------------------===//
695
696 /// getSequentialElement - If this CAZ has array or vector type, return a zero
697 /// with the right element type.
getSequentialElement() const698 Constant *ConstantAggregateZero::getSequentialElement() const {
699 return Constant::getNullValue(getType()->getSequentialElementType());
700 }
701
702 /// getStructElement - If this CAZ has struct type, return a zero with the
703 /// right element type for the specified element.
getStructElement(unsigned Elt) const704 Constant *ConstantAggregateZero::getStructElement(unsigned Elt) const {
705 return Constant::getNullValue(getType()->getStructElementType(Elt));
706 }
707
708 /// getElementValue - Return a zero of the right value for the specified GEP
709 /// index if we can, otherwise return null (e.g. if C is a ConstantExpr).
getElementValue(Constant * C) const710 Constant *ConstantAggregateZero::getElementValue(Constant *C) const {
711 if (isa<SequentialType>(getType()))
712 return getSequentialElement();
713 return getStructElement(cast<ConstantInt>(C)->getZExtValue());
714 }
715
716 /// getElementValue - Return a zero of the right value for the specified GEP
717 /// index.
getElementValue(unsigned Idx) const718 Constant *ConstantAggregateZero::getElementValue(unsigned Idx) const {
719 if (isa<SequentialType>(getType()))
720 return getSequentialElement();
721 return getStructElement(Idx);
722 }
723
724
725 //===----------------------------------------------------------------------===//
726 // UndefValue Implementation
727 //===----------------------------------------------------------------------===//
728
729 /// getSequentialElement - If this undef has array or vector type, return an
730 /// undef with the right element type.
getSequentialElement() const731 UndefValue *UndefValue::getSequentialElement() const {
732 return UndefValue::get(getType()->getSequentialElementType());
733 }
734
735 /// getStructElement - If this undef has struct type, return a zero with the
736 /// right element type for the specified element.
getStructElement(unsigned Elt) const737 UndefValue *UndefValue::getStructElement(unsigned Elt) const {
738 return UndefValue::get(getType()->getStructElementType(Elt));
739 }
740
741 /// getElementValue - Return an undef of the right value for the specified GEP
742 /// index if we can, otherwise return null (e.g. if C is a ConstantExpr).
getElementValue(Constant * C) const743 UndefValue *UndefValue::getElementValue(Constant *C) const {
744 if (isa<SequentialType>(getType()))
745 return getSequentialElement();
746 return getStructElement(cast<ConstantInt>(C)->getZExtValue());
747 }
748
749 /// getElementValue - Return an undef of the right value for the specified GEP
750 /// index.
getElementValue(unsigned Idx) const751 UndefValue *UndefValue::getElementValue(unsigned Idx) const {
752 if (isa<SequentialType>(getType()))
753 return getSequentialElement();
754 return getStructElement(Idx);
755 }
756
757
758
759 //===----------------------------------------------------------------------===//
760 // ConstantXXX Classes
761 //===----------------------------------------------------------------------===//
762
763 template <typename ItTy, typename EltTy>
rangeOnlyContains(ItTy Start,ItTy End,EltTy Elt)764 static bool rangeOnlyContains(ItTy Start, ItTy End, EltTy Elt) {
765 for (; Start != End; ++Start)
766 if (*Start != Elt)
767 return false;
768 return true;
769 }
770
ConstantArray(ArrayType * T,ArrayRef<Constant * > V)771 ConstantArray::ConstantArray(ArrayType *T, ArrayRef<Constant *> V)
772 : Constant(T, ConstantArrayVal,
773 OperandTraits<ConstantArray>::op_end(this) - V.size(),
774 V.size()) {
775 assert(V.size() == T->getNumElements() &&
776 "Invalid initializer vector for constant array");
777 for (unsigned i = 0, e = V.size(); i != e; ++i)
778 assert(V[i]->getType() == T->getElementType() &&
779 "Initializer for array element doesn't match array element type!");
780 std::copy(V.begin(), V.end(), op_begin());
781 }
782
get(ArrayType * Ty,ArrayRef<Constant * > V)783 Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) {
784 // Empty arrays are canonicalized to ConstantAggregateZero.
785 if (V.empty())
786 return ConstantAggregateZero::get(Ty);
787
788 for (unsigned i = 0, e = V.size(); i != e; ++i) {
789 assert(V[i]->getType() == Ty->getElementType() &&
790 "Wrong type in array element initializer");
791 }
792 LLVMContextImpl *pImpl = Ty->getContext().pImpl;
793
794 // If this is an all-zero array, return a ConstantAggregateZero object. If
795 // all undef, return an UndefValue, if "all simple", then return a
796 // ConstantDataArray.
797 Constant *C = V[0];
798 if (isa<UndefValue>(C) && rangeOnlyContains(V.begin(), V.end(), C))
799 return UndefValue::get(Ty);
800
801 if (C->isNullValue() && rangeOnlyContains(V.begin(), V.end(), C))
802 return ConstantAggregateZero::get(Ty);
803
804 // Check to see if all of the elements are ConstantFP or ConstantInt and if
805 // the element type is compatible with ConstantDataVector. If so, use it.
806 if (ConstantDataSequential::isElementTypeCompatible(C->getType())) {
807 // We speculatively build the elements here even if it turns out that there
808 // is a constantexpr or something else weird in the array, since it is so
809 // uncommon for that to happen.
810 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
811 if (CI->getType()->isIntegerTy(8)) {
812 SmallVector<uint8_t, 16> Elts;
813 for (unsigned i = 0, e = V.size(); i != e; ++i)
814 if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
815 Elts.push_back(CI->getZExtValue());
816 else
817 break;
818 if (Elts.size() == V.size())
819 return ConstantDataArray::get(C->getContext(), Elts);
820 } else if (CI->getType()->isIntegerTy(16)) {
821 SmallVector<uint16_t, 16> Elts;
822 for (unsigned i = 0, e = V.size(); i != e; ++i)
823 if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
824 Elts.push_back(CI->getZExtValue());
825 else
826 break;
827 if (Elts.size() == V.size())
828 return ConstantDataArray::get(C->getContext(), Elts);
829 } else if (CI->getType()->isIntegerTy(32)) {
830 SmallVector<uint32_t, 16> Elts;
831 for (unsigned i = 0, e = V.size(); i != e; ++i)
832 if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
833 Elts.push_back(CI->getZExtValue());
834 else
835 break;
836 if (Elts.size() == V.size())
837 return ConstantDataArray::get(C->getContext(), Elts);
838 } else if (CI->getType()->isIntegerTy(64)) {
839 SmallVector<uint64_t, 16> Elts;
840 for (unsigned i = 0, e = V.size(); i != e; ++i)
841 if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
842 Elts.push_back(CI->getZExtValue());
843 else
844 break;
845 if (Elts.size() == V.size())
846 return ConstantDataArray::get(C->getContext(), Elts);
847 }
848 }
849
850 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
851 if (CFP->getType()->isFloatTy()) {
852 SmallVector<float, 16> Elts;
853 for (unsigned i = 0, e = V.size(); i != e; ++i)
854 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
855 Elts.push_back(CFP->getValueAPF().convertToFloat());
856 else
857 break;
858 if (Elts.size() == V.size())
859 return ConstantDataArray::get(C->getContext(), Elts);
860 } else if (CFP->getType()->isDoubleTy()) {
861 SmallVector<double, 16> Elts;
862 for (unsigned i = 0, e = V.size(); i != e; ++i)
863 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
864 Elts.push_back(CFP->getValueAPF().convertToDouble());
865 else
866 break;
867 if (Elts.size() == V.size())
868 return ConstantDataArray::get(C->getContext(), Elts);
869 }
870 }
871 }
872
873 // Otherwise, we really do want to create a ConstantArray.
874 return pImpl->ArrayConstants.getOrCreate(Ty, V);
875 }
876
877 /// getTypeForElements - Return an anonymous struct type to use for a constant
878 /// with the specified set of elements. The list must not be empty.
getTypeForElements(LLVMContext & Context,ArrayRef<Constant * > V,bool Packed)879 StructType *ConstantStruct::getTypeForElements(LLVMContext &Context,
880 ArrayRef<Constant*> V,
881 bool Packed) {
882 unsigned VecSize = V.size();
883 SmallVector<Type*, 16> EltTypes(VecSize);
884 for (unsigned i = 0; i != VecSize; ++i)
885 EltTypes[i] = V[i]->getType();
886
887 return StructType::get(Context, EltTypes, Packed);
888 }
889
890
getTypeForElements(ArrayRef<Constant * > V,bool Packed)891 StructType *ConstantStruct::getTypeForElements(ArrayRef<Constant*> V,
892 bool Packed) {
893 assert(!V.empty() &&
894 "ConstantStruct::getTypeForElements cannot be called on empty list");
895 return getTypeForElements(V[0]->getContext(), V, Packed);
896 }
897
898
ConstantStruct(StructType * T,ArrayRef<Constant * > V)899 ConstantStruct::ConstantStruct(StructType *T, ArrayRef<Constant *> V)
900 : Constant(T, ConstantStructVal,
901 OperandTraits<ConstantStruct>::op_end(this) - V.size(),
902 V.size()) {
903 assert(V.size() == T->getNumElements() &&
904 "Invalid initializer vector for constant structure");
905 for (unsigned i = 0, e = V.size(); i != e; ++i)
906 assert((T->isOpaque() || V[i]->getType() == T->getElementType(i)) &&
907 "Initializer for struct element doesn't match struct element type!");
908 std::copy(V.begin(), V.end(), op_begin());
909 }
910
911 // ConstantStruct accessors.
get(StructType * ST,ArrayRef<Constant * > V)912 Constant *ConstantStruct::get(StructType *ST, ArrayRef<Constant*> V) {
913 assert((ST->isOpaque() || ST->getNumElements() == V.size()) &&
914 "Incorrect # elements specified to ConstantStruct::get");
915
916 // Create a ConstantAggregateZero value if all elements are zeros.
917 bool isZero = true;
918 bool isUndef = false;
919
920 if (!V.empty()) {
921 isUndef = isa<UndefValue>(V[0]);
922 isZero = V[0]->isNullValue();
923 if (isUndef || isZero) {
924 for (unsigned i = 0, e = V.size(); i != e; ++i) {
925 if (!V[i]->isNullValue())
926 isZero = false;
927 if (!isa<UndefValue>(V[i]))
928 isUndef = false;
929 }
930 }
931 }
932 if (isZero)
933 return ConstantAggregateZero::get(ST);
934 if (isUndef)
935 return UndefValue::get(ST);
936
937 return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V);
938 }
939
get(StructType * T,...)940 Constant *ConstantStruct::get(StructType *T, ...) {
941 va_list ap;
942 SmallVector<Constant*, 8> Values;
943 va_start(ap, T);
944 while (Constant *Val = va_arg(ap, llvm::Constant*))
945 Values.push_back(Val);
946 va_end(ap);
947 return get(T, Values);
948 }
949
ConstantVector(VectorType * T,ArrayRef<Constant * > V)950 ConstantVector::ConstantVector(VectorType *T, ArrayRef<Constant *> V)
951 : Constant(T, ConstantVectorVal,
952 OperandTraits<ConstantVector>::op_end(this) - V.size(),
953 V.size()) {
954 for (size_t i = 0, e = V.size(); i != e; i++)
955 assert(V[i]->getType() == T->getElementType() &&
956 "Initializer for vector element doesn't match vector element type!");
957 std::copy(V.begin(), V.end(), op_begin());
958 }
959
960 // ConstantVector accessors.
get(ArrayRef<Constant * > V)961 Constant *ConstantVector::get(ArrayRef<Constant*> V) {
962 assert(!V.empty() && "Vectors can't be empty");
963 VectorType *T = VectorType::get(V.front()->getType(), V.size());
964 LLVMContextImpl *pImpl = T->getContext().pImpl;
965
966 // If this is an all-undef or all-zero vector, return a
967 // ConstantAggregateZero or UndefValue.
968 Constant *C = V[0];
969 bool isZero = C->isNullValue();
970 bool isUndef = isa<UndefValue>(C);
971
972 if (isZero || isUndef) {
973 for (unsigned i = 1, e = V.size(); i != e; ++i)
974 if (V[i] != C) {
975 isZero = isUndef = false;
976 break;
977 }
978 }
979
980 if (isZero)
981 return ConstantAggregateZero::get(T);
982 if (isUndef)
983 return UndefValue::get(T);
984
985 // Check to see if all of the elements are ConstantFP or ConstantInt and if
986 // the element type is compatible with ConstantDataVector. If so, use it.
987 if (ConstantDataSequential::isElementTypeCompatible(C->getType())) {
988 // We speculatively build the elements here even if it turns out that there
989 // is a constantexpr or something else weird in the array, since it is so
990 // uncommon for that to happen.
991 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
992 if (CI->getType()->isIntegerTy(8)) {
993 SmallVector<uint8_t, 16> Elts;
994 for (unsigned i = 0, e = V.size(); i != e; ++i)
995 if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
996 Elts.push_back(CI->getZExtValue());
997 else
998 break;
999 if (Elts.size() == V.size())
1000 return ConstantDataVector::get(C->getContext(), Elts);
1001 } else if (CI->getType()->isIntegerTy(16)) {
1002 SmallVector<uint16_t, 16> Elts;
1003 for (unsigned i = 0, e = V.size(); i != e; ++i)
1004 if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
1005 Elts.push_back(CI->getZExtValue());
1006 else
1007 break;
1008 if (Elts.size() == V.size())
1009 return ConstantDataVector::get(C->getContext(), Elts);
1010 } else if (CI->getType()->isIntegerTy(32)) {
1011 SmallVector<uint32_t, 16> Elts;
1012 for (unsigned i = 0, e = V.size(); i != e; ++i)
1013 if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
1014 Elts.push_back(CI->getZExtValue());
1015 else
1016 break;
1017 if (Elts.size() == V.size())
1018 return ConstantDataVector::get(C->getContext(), Elts);
1019 } else if (CI->getType()->isIntegerTy(64)) {
1020 SmallVector<uint64_t, 16> Elts;
1021 for (unsigned i = 0, e = V.size(); i != e; ++i)
1022 if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
1023 Elts.push_back(CI->getZExtValue());
1024 else
1025 break;
1026 if (Elts.size() == V.size())
1027 return ConstantDataVector::get(C->getContext(), Elts);
1028 }
1029 }
1030
1031 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
1032 if (CFP->getType()->isFloatTy()) {
1033 SmallVector<float, 16> Elts;
1034 for (unsigned i = 0, e = V.size(); i != e; ++i)
1035 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
1036 Elts.push_back(CFP->getValueAPF().convertToFloat());
1037 else
1038 break;
1039 if (Elts.size() == V.size())
1040 return ConstantDataVector::get(C->getContext(), Elts);
1041 } else if (CFP->getType()->isDoubleTy()) {
1042 SmallVector<double, 16> Elts;
1043 for (unsigned i = 0, e = V.size(); i != e; ++i)
1044 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
1045 Elts.push_back(CFP->getValueAPF().convertToDouble());
1046 else
1047 break;
1048 if (Elts.size() == V.size())
1049 return ConstantDataVector::get(C->getContext(), Elts);
1050 }
1051 }
1052 }
1053
1054 // Otherwise, the element type isn't compatible with ConstantDataVector, or
1055 // the operand list constants a ConstantExpr or something else strange.
1056 return pImpl->VectorConstants.getOrCreate(T, V);
1057 }
1058
getSplat(unsigned NumElts,Constant * V)1059 Constant *ConstantVector::getSplat(unsigned NumElts, Constant *V) {
1060 // If this splat is compatible with ConstantDataVector, use it instead of
1061 // ConstantVector.
1062 if ((isa<ConstantFP>(V) || isa<ConstantInt>(V)) &&
1063 ConstantDataSequential::isElementTypeCompatible(V->getType()))
1064 return ConstantDataVector::getSplat(NumElts, V);
1065
1066 SmallVector<Constant*, 32> Elts(NumElts, V);
1067 return get(Elts);
1068 }
1069
1070
1071 // Utility function for determining if a ConstantExpr is a CastOp or not. This
1072 // can't be inline because we don't want to #include Instruction.h into
1073 // Constant.h
isCast() const1074 bool ConstantExpr::isCast() const {
1075 return Instruction::isCast(getOpcode());
1076 }
1077
isCompare() const1078 bool ConstantExpr::isCompare() const {
1079 return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp;
1080 }
1081
isGEPWithNoNotionalOverIndexing() const1082 bool ConstantExpr::isGEPWithNoNotionalOverIndexing() const {
1083 if (getOpcode() != Instruction::GetElementPtr) return false;
1084
1085 gep_type_iterator GEPI = gep_type_begin(this), E = gep_type_end(this);
1086 User::const_op_iterator OI = std::next(this->op_begin());
1087
1088 // Skip the first index, as it has no static limit.
1089 ++GEPI;
1090 ++OI;
1091
1092 // The remaining indices must be compile-time known integers within the
1093 // bounds of the corresponding notional static array types.
1094 for (; GEPI != E; ++GEPI, ++OI) {
1095 ConstantInt *CI = dyn_cast<ConstantInt>(*OI);
1096 if (!CI) return false;
1097 if (ArrayType *ATy = dyn_cast<ArrayType>(*GEPI))
1098 if (CI->getValue().getActiveBits() > 64 ||
1099 CI->getZExtValue() >= ATy->getNumElements())
1100 return false;
1101 }
1102
1103 // All the indices checked out.
1104 return true;
1105 }
1106
hasIndices() const1107 bool ConstantExpr::hasIndices() const {
1108 return getOpcode() == Instruction::ExtractValue ||
1109 getOpcode() == Instruction::InsertValue;
1110 }
1111
getIndices() const1112 ArrayRef<unsigned> ConstantExpr::getIndices() const {
1113 if (const ExtractValueConstantExpr *EVCE =
1114 dyn_cast<ExtractValueConstantExpr>(this))
1115 return EVCE->Indices;
1116
1117 return cast<InsertValueConstantExpr>(this)->Indices;
1118 }
1119
getPredicate() const1120 unsigned ConstantExpr::getPredicate() const {
1121 assert(isCompare());
1122 return ((const CompareConstantExpr*)this)->predicate;
1123 }
1124
1125 /// getWithOperandReplaced - Return a constant expression identical to this
1126 /// one, but with the specified operand set to the specified value.
1127 Constant *
getWithOperandReplaced(unsigned OpNo,Constant * Op) const1128 ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const {
1129 assert(Op->getType() == getOperand(OpNo)->getType() &&
1130 "Replacing operand with value of different type!");
1131 if (getOperand(OpNo) == Op)
1132 return const_cast<ConstantExpr*>(this);
1133
1134 SmallVector<Constant*, 8> NewOps;
1135 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1136 NewOps.push_back(i == OpNo ? Op : getOperand(i));
1137
1138 return getWithOperands(NewOps);
1139 }
1140
1141 /// getWithOperands - This returns the current constant expression with the
1142 /// operands replaced with the specified values. The specified array must
1143 /// have the same number of operands as our current one.
1144 Constant *ConstantExpr::
getWithOperands(ArrayRef<Constant * > Ops,Type * Ty) const1145 getWithOperands(ArrayRef<Constant*> Ops, Type *Ty) const {
1146 assert(Ops.size() == getNumOperands() && "Operand count mismatch!");
1147 bool AnyChange = Ty != getType();
1148 for (unsigned i = 0; i != Ops.size(); ++i)
1149 AnyChange |= Ops[i] != getOperand(i);
1150
1151 if (!AnyChange) // No operands changed, return self.
1152 return const_cast<ConstantExpr*>(this);
1153
1154 switch (getOpcode()) {
1155 case Instruction::Trunc:
1156 case Instruction::ZExt:
1157 case Instruction::SExt:
1158 case Instruction::FPTrunc:
1159 case Instruction::FPExt:
1160 case Instruction::UIToFP:
1161 case Instruction::SIToFP:
1162 case Instruction::FPToUI:
1163 case Instruction::FPToSI:
1164 case Instruction::PtrToInt:
1165 case Instruction::IntToPtr:
1166 case Instruction::BitCast:
1167 case Instruction::AddrSpaceCast:
1168 return ConstantExpr::getCast(getOpcode(), Ops[0], Ty);
1169 case Instruction::Select:
1170 return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
1171 case Instruction::InsertElement:
1172 return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
1173 case Instruction::ExtractElement:
1174 return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
1175 case Instruction::InsertValue:
1176 return ConstantExpr::getInsertValue(Ops[0], Ops[1], getIndices());
1177 case Instruction::ExtractValue:
1178 return ConstantExpr::getExtractValue(Ops[0], getIndices());
1179 case Instruction::ShuffleVector:
1180 return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
1181 case Instruction::GetElementPtr:
1182 return ConstantExpr::getGetElementPtr(Ops[0], Ops.slice(1),
1183 cast<GEPOperator>(this)->isInBounds());
1184 case Instruction::ICmp:
1185 case Instruction::FCmp:
1186 return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1]);
1187 default:
1188 assert(getNumOperands() == 2 && "Must be binary operator?");
1189 return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassOptionalData);
1190 }
1191 }
1192
1193
1194 //===----------------------------------------------------------------------===//
1195 // isValueValidForType implementations
1196
isValueValidForType(Type * Ty,uint64_t Val)1197 bool ConstantInt::isValueValidForType(Type *Ty, uint64_t Val) {
1198 unsigned NumBits = Ty->getIntegerBitWidth(); // assert okay
1199 if (Ty->isIntegerTy(1))
1200 return Val == 0 || Val == 1;
1201 if (NumBits >= 64)
1202 return true; // always true, has to fit in largest type
1203 uint64_t Max = (1ll << NumBits) - 1;
1204 return Val <= Max;
1205 }
1206
isValueValidForType(Type * Ty,int64_t Val)1207 bool ConstantInt::isValueValidForType(Type *Ty, int64_t Val) {
1208 unsigned NumBits = Ty->getIntegerBitWidth();
1209 if (Ty->isIntegerTy(1))
1210 return Val == 0 || Val == 1 || Val == -1;
1211 if (NumBits >= 64)
1212 return true; // always true, has to fit in largest type
1213 int64_t Min = -(1ll << (NumBits-1));
1214 int64_t Max = (1ll << (NumBits-1)) - 1;
1215 return (Val >= Min && Val <= Max);
1216 }
1217
isValueValidForType(Type * Ty,const APFloat & Val)1218 bool ConstantFP::isValueValidForType(Type *Ty, const APFloat& Val) {
1219 // convert modifies in place, so make a copy.
1220 APFloat Val2 = APFloat(Val);
1221 bool losesInfo;
1222 switch (Ty->getTypeID()) {
1223 default:
1224 return false; // These can't be represented as floating point!
1225
1226 // FIXME rounding mode needs to be more flexible
1227 case Type::HalfTyID: {
1228 if (&Val2.getSemantics() == &APFloat::IEEEhalf)
1229 return true;
1230 Val2.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &losesInfo);
1231 return !losesInfo;
1232 }
1233 case Type::FloatTyID: {
1234 if (&Val2.getSemantics() == &APFloat::IEEEsingle)
1235 return true;
1236 Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &losesInfo);
1237 return !losesInfo;
1238 }
1239 case Type::DoubleTyID: {
1240 if (&Val2.getSemantics() == &APFloat::IEEEhalf ||
1241 &Val2.getSemantics() == &APFloat::IEEEsingle ||
1242 &Val2.getSemantics() == &APFloat::IEEEdouble)
1243 return true;
1244 Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &losesInfo);
1245 return !losesInfo;
1246 }
1247 case Type::X86_FP80TyID:
1248 return &Val2.getSemantics() == &APFloat::IEEEhalf ||
1249 &Val2.getSemantics() == &APFloat::IEEEsingle ||
1250 &Val2.getSemantics() == &APFloat::IEEEdouble ||
1251 &Val2.getSemantics() == &APFloat::x87DoubleExtended;
1252 case Type::FP128TyID:
1253 return &Val2.getSemantics() == &APFloat::IEEEhalf ||
1254 &Val2.getSemantics() == &APFloat::IEEEsingle ||
1255 &Val2.getSemantics() == &APFloat::IEEEdouble ||
1256 &Val2.getSemantics() == &APFloat::IEEEquad;
1257 case Type::PPC_FP128TyID:
1258 return &Val2.getSemantics() == &APFloat::IEEEhalf ||
1259 &Val2.getSemantics() == &APFloat::IEEEsingle ||
1260 &Val2.getSemantics() == &APFloat::IEEEdouble ||
1261 &Val2.getSemantics() == &APFloat::PPCDoubleDouble;
1262 }
1263 }
1264
1265
1266 //===----------------------------------------------------------------------===//
1267 // Factory Function Implementation
1268
get(Type * Ty)1269 ConstantAggregateZero *ConstantAggregateZero::get(Type *Ty) {
1270 assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) &&
1271 "Cannot create an aggregate zero of non-aggregate type!");
1272
1273 ConstantAggregateZero *&Entry = Ty->getContext().pImpl->CAZConstants[Ty];
1274 if (!Entry)
1275 Entry = new ConstantAggregateZero(Ty);
1276
1277 return Entry;
1278 }
1279
1280 /// destroyConstant - Remove the constant from the constant table.
1281 ///
destroyConstant()1282 void ConstantAggregateZero::destroyConstant() {
1283 getContext().pImpl->CAZConstants.erase(getType());
1284 destroyConstantImpl();
1285 }
1286
1287 /// destroyConstant - Remove the constant from the constant table...
1288 ///
destroyConstant()1289 void ConstantArray::destroyConstant() {
1290 getType()->getContext().pImpl->ArrayConstants.remove(this);
1291 destroyConstantImpl();
1292 }
1293
1294
1295 //---- ConstantStruct::get() implementation...
1296 //
1297
1298 // destroyConstant - Remove the constant from the constant table...
1299 //
destroyConstant()1300 void ConstantStruct::destroyConstant() {
1301 getType()->getContext().pImpl->StructConstants.remove(this);
1302 destroyConstantImpl();
1303 }
1304
1305 // destroyConstant - Remove the constant from the constant table...
1306 //
destroyConstant()1307 void ConstantVector::destroyConstant() {
1308 getType()->getContext().pImpl->VectorConstants.remove(this);
1309 destroyConstantImpl();
1310 }
1311
1312 /// getSplatValue - If this is a splat vector constant, meaning that all of
1313 /// the elements have the same value, return that value. Otherwise return 0.
getSplatValue() const1314 Constant *Constant::getSplatValue() const {
1315 assert(this->getType()->isVectorTy() && "Only valid for vectors!");
1316 if (isa<ConstantAggregateZero>(this))
1317 return getNullValue(this->getType()->getVectorElementType());
1318 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
1319 return CV->getSplatValue();
1320 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
1321 return CV->getSplatValue();
1322 return nullptr;
1323 }
1324
1325 /// getSplatValue - If this is a splat constant, where all of the
1326 /// elements have the same value, return that value. Otherwise return null.
getSplatValue() const1327 Constant *ConstantVector::getSplatValue() const {
1328 // Check out first element.
1329 Constant *Elt = getOperand(0);
1330 // Then make sure all remaining elements point to the same value.
1331 for (unsigned I = 1, E = getNumOperands(); I < E; ++I)
1332 if (getOperand(I) != Elt)
1333 return nullptr;
1334 return Elt;
1335 }
1336
1337 /// If C is a constant integer then return its value, otherwise C must be a
1338 /// vector of constant integers, all equal, and the common value is returned.
getUniqueInteger() const1339 const APInt &Constant::getUniqueInteger() const {
1340 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
1341 return CI->getValue();
1342 assert(this->getSplatValue() && "Doesn't contain a unique integer!");
1343 const Constant *C = this->getAggregateElement(0U);
1344 assert(C && isa<ConstantInt>(C) && "Not a vector of numbers!");
1345 return cast<ConstantInt>(C)->getValue();
1346 }
1347
1348
1349 //---- ConstantPointerNull::get() implementation.
1350 //
1351
get(PointerType * Ty)1352 ConstantPointerNull *ConstantPointerNull::get(PointerType *Ty) {
1353 ConstantPointerNull *&Entry = Ty->getContext().pImpl->CPNConstants[Ty];
1354 if (!Entry)
1355 Entry = new ConstantPointerNull(Ty);
1356
1357 return Entry;
1358 }
1359
1360 // destroyConstant - Remove the constant from the constant table...
1361 //
destroyConstant()1362 void ConstantPointerNull::destroyConstant() {
1363 getContext().pImpl->CPNConstants.erase(getType());
1364 // Free the constant and any dangling references to it.
1365 destroyConstantImpl();
1366 }
1367
1368
1369 //---- UndefValue::get() implementation.
1370 //
1371
get(Type * Ty)1372 UndefValue *UndefValue::get(Type *Ty) {
1373 UndefValue *&Entry = Ty->getContext().pImpl->UVConstants[Ty];
1374 if (!Entry)
1375 Entry = new UndefValue(Ty);
1376
1377 return Entry;
1378 }
1379
1380 // destroyConstant - Remove the constant from the constant table.
1381 //
destroyConstant()1382 void UndefValue::destroyConstant() {
1383 // Free the constant and any dangling references to it.
1384 getContext().pImpl->UVConstants.erase(getType());
1385 destroyConstantImpl();
1386 }
1387
1388 //---- BlockAddress::get() implementation.
1389 //
1390
get(BasicBlock * BB)1391 BlockAddress *BlockAddress::get(BasicBlock *BB) {
1392 assert(BB->getParent() && "Block must have a parent");
1393 return get(BB->getParent(), BB);
1394 }
1395
get(Function * F,BasicBlock * BB)1396 BlockAddress *BlockAddress::get(Function *F, BasicBlock *BB) {
1397 BlockAddress *&BA =
1398 F->getContext().pImpl->BlockAddresses[std::make_pair(F, BB)];
1399 if (!BA)
1400 BA = new BlockAddress(F, BB);
1401
1402 assert(BA->getFunction() == F && "Basic block moved between functions");
1403 return BA;
1404 }
1405
BlockAddress(Function * F,BasicBlock * BB)1406 BlockAddress::BlockAddress(Function *F, BasicBlock *BB)
1407 : Constant(Type::getInt8PtrTy(F->getContext()), Value::BlockAddressVal,
1408 &Op<0>(), 2) {
1409 setOperand(0, F);
1410 setOperand(1, BB);
1411 BB->AdjustBlockAddressRefCount(1);
1412 }
1413
lookup(const BasicBlock * BB)1414 BlockAddress *BlockAddress::lookup(const BasicBlock *BB) {
1415 if (!BB->hasAddressTaken())
1416 return nullptr;
1417
1418 const Function *F = BB->getParent();
1419 assert(F && "Block must have a parent");
1420 BlockAddress *BA =
1421 F->getContext().pImpl->BlockAddresses.lookup(std::make_pair(F, BB));
1422 assert(BA && "Refcount and block address map disagree!");
1423 return BA;
1424 }
1425
1426 // destroyConstant - Remove the constant from the constant table.
1427 //
destroyConstant()1428 void BlockAddress::destroyConstant() {
1429 getFunction()->getType()->getContext().pImpl
1430 ->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock()));
1431 getBasicBlock()->AdjustBlockAddressRefCount(-1);
1432 destroyConstantImpl();
1433 }
1434
replaceUsesOfWithOnConstant(Value * From,Value * To,Use * U)1435 void BlockAddress::replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) {
1436 // This could be replacing either the Basic Block or the Function. In either
1437 // case, we have to remove the map entry.
1438 Function *NewF = getFunction();
1439 BasicBlock *NewBB = getBasicBlock();
1440
1441 if (U == &Op<0>())
1442 NewF = cast<Function>(To->stripPointerCasts());
1443 else
1444 NewBB = cast<BasicBlock>(To);
1445
1446 // See if the 'new' entry already exists, if not, just update this in place
1447 // and return early.
1448 BlockAddress *&NewBA =
1449 getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)];
1450 if (!NewBA) {
1451 getBasicBlock()->AdjustBlockAddressRefCount(-1);
1452
1453 // Remove the old entry, this can't cause the map to rehash (just a
1454 // tombstone will get added).
1455 getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(),
1456 getBasicBlock()));
1457 NewBA = this;
1458 setOperand(0, NewF);
1459 setOperand(1, NewBB);
1460 getBasicBlock()->AdjustBlockAddressRefCount(1);
1461 return;
1462 }
1463
1464 // Otherwise, I do need to replace this with an existing value.
1465 assert(NewBA != this && "I didn't contain From!");
1466
1467 // Everyone using this now uses the replacement.
1468 replaceAllUsesWith(NewBA);
1469
1470 destroyConstant();
1471 }
1472
1473 //---- ConstantExpr::get() implementations.
1474 //
1475
1476 /// This is a utility function to handle folding of casts and lookup of the
1477 /// cast in the ExprConstants map. It is used by the various get* methods below.
getFoldedCast(Instruction::CastOps opc,Constant * C,Type * Ty)1478 static inline Constant *getFoldedCast(
1479 Instruction::CastOps opc, Constant *C, Type *Ty) {
1480 assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
1481 // Fold a few common cases
1482 if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty))
1483 return FC;
1484
1485 LLVMContextImpl *pImpl = Ty->getContext().pImpl;
1486
1487 // Look up the constant in the table first to ensure uniqueness.
1488 ExprMapKeyType Key(opc, C);
1489
1490 return pImpl->ExprConstants.getOrCreate(Ty, Key);
1491 }
1492
getCast(unsigned oc,Constant * C,Type * Ty)1493 Constant *ConstantExpr::getCast(unsigned oc, Constant *C, Type *Ty) {
1494 Instruction::CastOps opc = Instruction::CastOps(oc);
1495 assert(Instruction::isCast(opc) && "opcode out of range");
1496 assert(C && Ty && "Null arguments to getCast");
1497 assert(CastInst::castIsValid(opc, C, Ty) && "Invalid constantexpr cast!");
1498
1499 switch (opc) {
1500 default:
1501 llvm_unreachable("Invalid cast opcode");
1502 case Instruction::Trunc: return getTrunc(C, Ty);
1503 case Instruction::ZExt: return getZExt(C, Ty);
1504 case Instruction::SExt: return getSExt(C, Ty);
1505 case Instruction::FPTrunc: return getFPTrunc(C, Ty);
1506 case Instruction::FPExt: return getFPExtend(C, Ty);
1507 case Instruction::UIToFP: return getUIToFP(C, Ty);
1508 case Instruction::SIToFP: return getSIToFP(C, Ty);
1509 case Instruction::FPToUI: return getFPToUI(C, Ty);
1510 case Instruction::FPToSI: return getFPToSI(C, Ty);
1511 case Instruction::PtrToInt: return getPtrToInt(C, Ty);
1512 case Instruction::IntToPtr: return getIntToPtr(C, Ty);
1513 case Instruction::BitCast: return getBitCast(C, Ty);
1514 case Instruction::AddrSpaceCast: return getAddrSpaceCast(C, Ty);
1515 }
1516 }
1517
getZExtOrBitCast(Constant * C,Type * Ty)1518 Constant *ConstantExpr::getZExtOrBitCast(Constant *C, Type *Ty) {
1519 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1520 return getBitCast(C, Ty);
1521 return getZExt(C, Ty);
1522 }
1523
getSExtOrBitCast(Constant * C,Type * Ty)1524 Constant *ConstantExpr::getSExtOrBitCast(Constant *C, Type *Ty) {
1525 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1526 return getBitCast(C, Ty);
1527 return getSExt(C, Ty);
1528 }
1529
getTruncOrBitCast(Constant * C,Type * Ty)1530 Constant *ConstantExpr::getTruncOrBitCast(Constant *C, Type *Ty) {
1531 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1532 return getBitCast(C, Ty);
1533 return getTrunc(C, Ty);
1534 }
1535
getPointerCast(Constant * S,Type * Ty)1536 Constant *ConstantExpr::getPointerCast(Constant *S, Type *Ty) {
1537 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
1538 assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
1539 "Invalid cast");
1540
1541 if (Ty->isIntOrIntVectorTy())
1542 return getPtrToInt(S, Ty);
1543
1544 unsigned SrcAS = S->getType()->getPointerAddressSpace();
1545 if (Ty->isPtrOrPtrVectorTy() && SrcAS != Ty->getPointerAddressSpace())
1546 return getAddrSpaceCast(S, Ty);
1547
1548 return getBitCast(S, Ty);
1549 }
1550
getPointerBitCastOrAddrSpaceCast(Constant * S,Type * Ty)1551 Constant *ConstantExpr::getPointerBitCastOrAddrSpaceCast(Constant *S,
1552 Type *Ty) {
1553 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
1554 assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
1555
1556 if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
1557 return getAddrSpaceCast(S, Ty);
1558
1559 return getBitCast(S, Ty);
1560 }
1561
getIntegerCast(Constant * C,Type * Ty,bool isSigned)1562 Constant *ConstantExpr::getIntegerCast(Constant *C, Type *Ty,
1563 bool isSigned) {
1564 assert(C->getType()->isIntOrIntVectorTy() &&
1565 Ty->isIntOrIntVectorTy() && "Invalid cast");
1566 unsigned SrcBits = C->getType()->getScalarSizeInBits();
1567 unsigned DstBits = Ty->getScalarSizeInBits();
1568 Instruction::CastOps opcode =
1569 (SrcBits == DstBits ? Instruction::BitCast :
1570 (SrcBits > DstBits ? Instruction::Trunc :
1571 (isSigned ? Instruction::SExt : Instruction::ZExt)));
1572 return getCast(opcode, C, Ty);
1573 }
1574
getFPCast(Constant * C,Type * Ty)1575 Constant *ConstantExpr::getFPCast(Constant *C, Type *Ty) {
1576 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1577 "Invalid cast");
1578 unsigned SrcBits = C->getType()->getScalarSizeInBits();
1579 unsigned DstBits = Ty->getScalarSizeInBits();
1580 if (SrcBits == DstBits)
1581 return C; // Avoid a useless cast
1582 Instruction::CastOps opcode =
1583 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt);
1584 return getCast(opcode, C, Ty);
1585 }
1586
getTrunc(Constant * C,Type * Ty)1587 Constant *ConstantExpr::getTrunc(Constant *C, Type *Ty) {
1588 #ifndef NDEBUG
1589 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1590 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1591 #endif
1592 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1593 assert(C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer");
1594 assert(Ty->isIntOrIntVectorTy() && "Trunc produces only integral");
1595 assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
1596 "SrcTy must be larger than DestTy for Trunc!");
1597
1598 return getFoldedCast(Instruction::Trunc, C, Ty);
1599 }
1600
getSExt(Constant * C,Type * Ty)1601 Constant *ConstantExpr::getSExt(Constant *C, Type *Ty) {
1602 #ifndef NDEBUG
1603 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1604 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1605 #endif
1606 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1607 assert(C->getType()->isIntOrIntVectorTy() && "SExt operand must be integral");
1608 assert(Ty->isIntOrIntVectorTy() && "SExt produces only integer");
1609 assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1610 "SrcTy must be smaller than DestTy for SExt!");
1611
1612 return getFoldedCast(Instruction::SExt, C, Ty);
1613 }
1614
getZExt(Constant * C,Type * Ty)1615 Constant *ConstantExpr::getZExt(Constant *C, Type *Ty) {
1616 #ifndef NDEBUG
1617 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1618 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1619 #endif
1620 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1621 assert(C->getType()->isIntOrIntVectorTy() && "ZEXt operand must be integral");
1622 assert(Ty->isIntOrIntVectorTy() && "ZExt produces only integer");
1623 assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1624 "SrcTy must be smaller than DestTy for ZExt!");
1625
1626 return getFoldedCast(Instruction::ZExt, C, Ty);
1627 }
1628
getFPTrunc(Constant * C,Type * Ty)1629 Constant *ConstantExpr::getFPTrunc(Constant *C, Type *Ty) {
1630 #ifndef NDEBUG
1631 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1632 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1633 #endif
1634 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1635 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1636 C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
1637 "This is an illegal floating point truncation!");
1638 return getFoldedCast(Instruction::FPTrunc, C, Ty);
1639 }
1640
getFPExtend(Constant * C,Type * Ty)1641 Constant *ConstantExpr::getFPExtend(Constant *C, Type *Ty) {
1642 #ifndef NDEBUG
1643 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1644 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1645 #endif
1646 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1647 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1648 C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1649 "This is an illegal floating point extension!");
1650 return getFoldedCast(Instruction::FPExt, C, Ty);
1651 }
1652
getUIToFP(Constant * C,Type * Ty)1653 Constant *ConstantExpr::getUIToFP(Constant *C, Type *Ty) {
1654 #ifndef NDEBUG
1655 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1656 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1657 #endif
1658 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1659 assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
1660 "This is an illegal uint to floating point cast!");
1661 return getFoldedCast(Instruction::UIToFP, C, Ty);
1662 }
1663
getSIToFP(Constant * C,Type * Ty)1664 Constant *ConstantExpr::getSIToFP(Constant *C, Type *Ty) {
1665 #ifndef NDEBUG
1666 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1667 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1668 #endif
1669 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1670 assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
1671 "This is an illegal sint to floating point cast!");
1672 return getFoldedCast(Instruction::SIToFP, C, Ty);
1673 }
1674
getFPToUI(Constant * C,Type * Ty)1675 Constant *ConstantExpr::getFPToUI(Constant *C, Type *Ty) {
1676 #ifndef NDEBUG
1677 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1678 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1679 #endif
1680 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1681 assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
1682 "This is an illegal floating point to uint cast!");
1683 return getFoldedCast(Instruction::FPToUI, C, Ty);
1684 }
1685
getFPToSI(Constant * C,Type * Ty)1686 Constant *ConstantExpr::getFPToSI(Constant *C, Type *Ty) {
1687 #ifndef NDEBUG
1688 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1689 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1690 #endif
1691 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1692 assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
1693 "This is an illegal floating point to sint cast!");
1694 return getFoldedCast(Instruction::FPToSI, C, Ty);
1695 }
1696
getPtrToInt(Constant * C,Type * DstTy)1697 Constant *ConstantExpr::getPtrToInt(Constant *C, Type *DstTy) {
1698 assert(C->getType()->getScalarType()->isPointerTy() &&
1699 "PtrToInt source must be pointer or pointer vector");
1700 assert(DstTy->getScalarType()->isIntegerTy() &&
1701 "PtrToInt destination must be integer or integer vector");
1702 assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
1703 if (isa<VectorType>(C->getType()))
1704 assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&&
1705 "Invalid cast between a different number of vector elements");
1706 return getFoldedCast(Instruction::PtrToInt, C, DstTy);
1707 }
1708
getIntToPtr(Constant * C,Type * DstTy)1709 Constant *ConstantExpr::getIntToPtr(Constant *C, Type *DstTy) {
1710 assert(C->getType()->getScalarType()->isIntegerTy() &&
1711 "IntToPtr source must be integer or integer vector");
1712 assert(DstTy->getScalarType()->isPointerTy() &&
1713 "IntToPtr destination must be a pointer or pointer vector");
1714 assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
1715 if (isa<VectorType>(C->getType()))
1716 assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&&
1717 "Invalid cast between a different number of vector elements");
1718 return getFoldedCast(Instruction::IntToPtr, C, DstTy);
1719 }
1720
getBitCast(Constant * C,Type * DstTy)1721 Constant *ConstantExpr::getBitCast(Constant *C, Type *DstTy) {
1722 assert(CastInst::castIsValid(Instruction::BitCast, C, DstTy) &&
1723 "Invalid constantexpr bitcast!");
1724
1725 // It is common to ask for a bitcast of a value to its own type, handle this
1726 // speedily.
1727 if (C->getType() == DstTy) return C;
1728
1729 return getFoldedCast(Instruction::BitCast, C, DstTy);
1730 }
1731
getAddrSpaceCast(Constant * C,Type * DstTy)1732 Constant *ConstantExpr::getAddrSpaceCast(Constant *C, Type *DstTy) {
1733 assert(CastInst::castIsValid(Instruction::AddrSpaceCast, C, DstTy) &&
1734 "Invalid constantexpr addrspacecast!");
1735
1736 // Canonicalize addrspacecasts between different pointer types by first
1737 // bitcasting the pointer type and then converting the address space.
1738 PointerType *SrcScalarTy = cast<PointerType>(C->getType()->getScalarType());
1739 PointerType *DstScalarTy = cast<PointerType>(DstTy->getScalarType());
1740 Type *DstElemTy = DstScalarTy->getElementType();
1741 if (SrcScalarTy->getElementType() != DstElemTy) {
1742 Type *MidTy = PointerType::get(DstElemTy, SrcScalarTy->getAddressSpace());
1743 if (VectorType *VT = dyn_cast<VectorType>(DstTy)) {
1744 // Handle vectors of pointers.
1745 MidTy = VectorType::get(MidTy, VT->getNumElements());
1746 }
1747 C = getBitCast(C, MidTy);
1748 }
1749 return getFoldedCast(Instruction::AddrSpaceCast, C, DstTy);
1750 }
1751
get(unsigned Opcode,Constant * C1,Constant * C2,unsigned Flags)1752 Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2,
1753 unsigned Flags) {
1754 // Check the operands for consistency first.
1755 assert(Opcode >= Instruction::BinaryOpsBegin &&
1756 Opcode < Instruction::BinaryOpsEnd &&
1757 "Invalid opcode in binary constant expression");
1758 assert(C1->getType() == C2->getType() &&
1759 "Operand types in binary constant expression should match");
1760
1761 #ifndef NDEBUG
1762 switch (Opcode) {
1763 case Instruction::Add:
1764 case Instruction::Sub:
1765 case Instruction::Mul:
1766 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1767 assert(C1->getType()->isIntOrIntVectorTy() &&
1768 "Tried to create an integer operation on a non-integer type!");
1769 break;
1770 case Instruction::FAdd:
1771 case Instruction::FSub:
1772 case Instruction::FMul:
1773 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1774 assert(C1->getType()->isFPOrFPVectorTy() &&
1775 "Tried to create a floating-point operation on a "
1776 "non-floating-point type!");
1777 break;
1778 case Instruction::UDiv:
1779 case Instruction::SDiv:
1780 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1781 assert(C1->getType()->isIntOrIntVectorTy() &&
1782 "Tried to create an arithmetic operation on a non-arithmetic type!");
1783 break;
1784 case Instruction::FDiv:
1785 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1786 assert(C1->getType()->isFPOrFPVectorTy() &&
1787 "Tried to create an arithmetic operation on a non-arithmetic type!");
1788 break;
1789 case Instruction::URem:
1790 case Instruction::SRem:
1791 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1792 assert(C1->getType()->isIntOrIntVectorTy() &&
1793 "Tried to create an arithmetic operation on a non-arithmetic type!");
1794 break;
1795 case Instruction::FRem:
1796 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1797 assert(C1->getType()->isFPOrFPVectorTy() &&
1798 "Tried to create an arithmetic operation on a non-arithmetic type!");
1799 break;
1800 case Instruction::And:
1801 case Instruction::Or:
1802 case Instruction::Xor:
1803 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1804 assert(C1->getType()->isIntOrIntVectorTy() &&
1805 "Tried to create a logical operation on a non-integral type!");
1806 break;
1807 case Instruction::Shl:
1808 case Instruction::LShr:
1809 case Instruction::AShr:
1810 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1811 assert(C1->getType()->isIntOrIntVectorTy() &&
1812 "Tried to create a shift operation on a non-integer type!");
1813 break;
1814 default:
1815 break;
1816 }
1817 #endif
1818
1819 if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2))
1820 return FC; // Fold a few common cases.
1821
1822 Constant *ArgVec[] = { C1, C2 };
1823 ExprMapKeyType Key(Opcode, ArgVec, 0, Flags);
1824
1825 LLVMContextImpl *pImpl = C1->getContext().pImpl;
1826 return pImpl->ExprConstants.getOrCreate(C1->getType(), Key);
1827 }
1828
getSizeOf(Type * Ty)1829 Constant *ConstantExpr::getSizeOf(Type* Ty) {
1830 // sizeof is implemented as: (i64) gep (Ty*)null, 1
1831 // Note that a non-inbounds gep is used, as null isn't within any object.
1832 Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
1833 Constant *GEP = getGetElementPtr(
1834 Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
1835 return getPtrToInt(GEP,
1836 Type::getInt64Ty(Ty->getContext()));
1837 }
1838
getAlignOf(Type * Ty)1839 Constant *ConstantExpr::getAlignOf(Type* Ty) {
1840 // alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1
1841 // Note that a non-inbounds gep is used, as null isn't within any object.
1842 Type *AligningTy =
1843 StructType::get(Type::getInt1Ty(Ty->getContext()), Ty, NULL);
1844 Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo(0));
1845 Constant *Zero = ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0);
1846 Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
1847 Constant *Indices[2] = { Zero, One };
1848 Constant *GEP = getGetElementPtr(NullPtr, Indices);
1849 return getPtrToInt(GEP,
1850 Type::getInt64Ty(Ty->getContext()));
1851 }
1852
getOffsetOf(StructType * STy,unsigned FieldNo)1853 Constant *ConstantExpr::getOffsetOf(StructType* STy, unsigned FieldNo) {
1854 return getOffsetOf(STy, ConstantInt::get(Type::getInt32Ty(STy->getContext()),
1855 FieldNo));
1856 }
1857
getOffsetOf(Type * Ty,Constant * FieldNo)1858 Constant *ConstantExpr::getOffsetOf(Type* Ty, Constant *FieldNo) {
1859 // offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo
1860 // Note that a non-inbounds gep is used, as null isn't within any object.
1861 Constant *GEPIdx[] = {
1862 ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0),
1863 FieldNo
1864 };
1865 Constant *GEP = getGetElementPtr(
1866 Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
1867 return getPtrToInt(GEP,
1868 Type::getInt64Ty(Ty->getContext()));
1869 }
1870
getCompare(unsigned short Predicate,Constant * C1,Constant * C2)1871 Constant *ConstantExpr::getCompare(unsigned short Predicate,
1872 Constant *C1, Constant *C2) {
1873 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1874
1875 switch (Predicate) {
1876 default: llvm_unreachable("Invalid CmpInst predicate");
1877 case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT:
1878 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE:
1879 case CmpInst::FCMP_ONE: case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO:
1880 case CmpInst::FCMP_UEQ: case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE:
1881 case CmpInst::FCMP_ULT: case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE:
1882 case CmpInst::FCMP_TRUE:
1883 return getFCmp(Predicate, C1, C2);
1884
1885 case CmpInst::ICMP_EQ: case CmpInst::ICMP_NE: case CmpInst::ICMP_UGT:
1886 case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE:
1887 case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT:
1888 case CmpInst::ICMP_SLE:
1889 return getICmp(Predicate, C1, C2);
1890 }
1891 }
1892
getSelect(Constant * C,Constant * V1,Constant * V2)1893 Constant *ConstantExpr::getSelect(Constant *C, Constant *V1, Constant *V2) {
1894 assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands");
1895
1896 if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2))
1897 return SC; // Fold common cases
1898
1899 Constant *ArgVec[] = { C, V1, V2 };
1900 ExprMapKeyType Key(Instruction::Select, ArgVec);
1901
1902 LLVMContextImpl *pImpl = C->getContext().pImpl;
1903 return pImpl->ExprConstants.getOrCreate(V1->getType(), Key);
1904 }
1905
getGetElementPtr(Constant * C,ArrayRef<Value * > Idxs,bool InBounds)1906 Constant *ConstantExpr::getGetElementPtr(Constant *C, ArrayRef<Value *> Idxs,
1907 bool InBounds) {
1908 assert(C->getType()->isPtrOrPtrVectorTy() &&
1909 "Non-pointer type for constant GetElementPtr expression");
1910
1911 if (Constant *FC = ConstantFoldGetElementPtr(C, InBounds, Idxs))
1912 return FC; // Fold a few common cases.
1913
1914 // Get the result type of the getelementptr!
1915 Type *Ty = GetElementPtrInst::getIndexedType(C->getType(), Idxs);
1916 assert(Ty && "GEP indices invalid!");
1917 unsigned AS = C->getType()->getPointerAddressSpace();
1918 Type *ReqTy = Ty->getPointerTo(AS);
1919 if (VectorType *VecTy = dyn_cast<VectorType>(C->getType()))
1920 ReqTy = VectorType::get(ReqTy, VecTy->getNumElements());
1921
1922 // Look up the constant in the table first to ensure uniqueness
1923 std::vector<Constant*> ArgVec;
1924 ArgVec.reserve(1 + Idxs.size());
1925 ArgVec.push_back(C);
1926 for (unsigned i = 0, e = Idxs.size(); i != e; ++i) {
1927 assert(Idxs[i]->getType()->isVectorTy() == ReqTy->isVectorTy() &&
1928 "getelementptr index type missmatch");
1929 assert((!Idxs[i]->getType()->isVectorTy() ||
1930 ReqTy->getVectorNumElements() ==
1931 Idxs[i]->getType()->getVectorNumElements()) &&
1932 "getelementptr index type missmatch");
1933 ArgVec.push_back(cast<Constant>(Idxs[i]));
1934 }
1935 const ExprMapKeyType Key(Instruction::GetElementPtr, ArgVec, 0,
1936 InBounds ? GEPOperator::IsInBounds : 0);
1937
1938 LLVMContextImpl *pImpl = C->getContext().pImpl;
1939 return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
1940 }
1941
1942 Constant *
getICmp(unsigned short pred,Constant * LHS,Constant * RHS)1943 ConstantExpr::getICmp(unsigned short pred, Constant *LHS, Constant *RHS) {
1944 assert(LHS->getType() == RHS->getType());
1945 assert(pred >= ICmpInst::FIRST_ICMP_PREDICATE &&
1946 pred <= ICmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp Predicate");
1947
1948 if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
1949 return FC; // Fold a few common cases...
1950
1951 // Look up the constant in the table first to ensure uniqueness
1952 Constant *ArgVec[] = { LHS, RHS };
1953 // Get the key type with both the opcode and predicate
1954 const ExprMapKeyType Key(Instruction::ICmp, ArgVec, pred);
1955
1956 Type *ResultTy = Type::getInt1Ty(LHS->getContext());
1957 if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
1958 ResultTy = VectorType::get(ResultTy, VT->getNumElements());
1959
1960 LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
1961 return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
1962 }
1963
1964 Constant *
getFCmp(unsigned short pred,Constant * LHS,Constant * RHS)1965 ConstantExpr::getFCmp(unsigned short pred, Constant *LHS, Constant *RHS) {
1966 assert(LHS->getType() == RHS->getType());
1967 assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid FCmp Predicate");
1968
1969 if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
1970 return FC; // Fold a few common cases...
1971
1972 // Look up the constant in the table first to ensure uniqueness
1973 Constant *ArgVec[] = { LHS, RHS };
1974 // Get the key type with both the opcode and predicate
1975 const ExprMapKeyType Key(Instruction::FCmp, ArgVec, pred);
1976
1977 Type *ResultTy = Type::getInt1Ty(LHS->getContext());
1978 if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
1979 ResultTy = VectorType::get(ResultTy, VT->getNumElements());
1980
1981 LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
1982 return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
1983 }
1984
getExtractElement(Constant * Val,Constant * Idx)1985 Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx) {
1986 assert(Val->getType()->isVectorTy() &&
1987 "Tried to create extractelement operation on non-vector type!");
1988 assert(Idx->getType()->isIntegerTy() &&
1989 "Extractelement index must be an integer type!");
1990
1991 if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx))
1992 return FC; // Fold a few common cases.
1993
1994 // Look up the constant in the table first to ensure uniqueness
1995 Constant *ArgVec[] = { Val, Idx };
1996 const ExprMapKeyType Key(Instruction::ExtractElement, ArgVec);
1997
1998 LLVMContextImpl *pImpl = Val->getContext().pImpl;
1999 Type *ReqTy = Val->getType()->getVectorElementType();
2000 return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2001 }
2002
getInsertElement(Constant * Val,Constant * Elt,Constant * Idx)2003 Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt,
2004 Constant *Idx) {
2005 assert(Val->getType()->isVectorTy() &&
2006 "Tried to create insertelement operation on non-vector type!");
2007 assert(Elt->getType() == Val->getType()->getVectorElementType() &&
2008 "Insertelement types must match!");
2009 assert(Idx->getType()->isIntegerTy() &&
2010 "Insertelement index must be i32 type!");
2011
2012 if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx))
2013 return FC; // Fold a few common cases.
2014 // Look up the constant in the table first to ensure uniqueness
2015 Constant *ArgVec[] = { Val, Elt, Idx };
2016 const ExprMapKeyType Key(Instruction::InsertElement, ArgVec);
2017
2018 LLVMContextImpl *pImpl = Val->getContext().pImpl;
2019 return pImpl->ExprConstants.getOrCreate(Val->getType(), Key);
2020 }
2021
getShuffleVector(Constant * V1,Constant * V2,Constant * Mask)2022 Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2,
2023 Constant *Mask) {
2024 assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) &&
2025 "Invalid shuffle vector constant expr operands!");
2026
2027 if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask))
2028 return FC; // Fold a few common cases.
2029
2030 unsigned NElts = Mask->getType()->getVectorNumElements();
2031 Type *EltTy = V1->getType()->getVectorElementType();
2032 Type *ShufTy = VectorType::get(EltTy, NElts);
2033
2034 // Look up the constant in the table first to ensure uniqueness
2035 Constant *ArgVec[] = { V1, V2, Mask };
2036 const ExprMapKeyType Key(Instruction::ShuffleVector, ArgVec);
2037
2038 LLVMContextImpl *pImpl = ShufTy->getContext().pImpl;
2039 return pImpl->ExprConstants.getOrCreate(ShufTy, Key);
2040 }
2041
getInsertValue(Constant * Agg,Constant * Val,ArrayRef<unsigned> Idxs)2042 Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val,
2043 ArrayRef<unsigned> Idxs) {
2044 assert(Agg->getType()->isFirstClassType() &&
2045 "Non-first-class type for constant insertvalue expression");
2046
2047 assert(ExtractValueInst::getIndexedType(Agg->getType(),
2048 Idxs) == Val->getType() &&
2049 "insertvalue indices invalid!");
2050 Type *ReqTy = Val->getType();
2051
2052 if (Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs))
2053 return FC;
2054
2055 Constant *ArgVec[] = { Agg, Val };
2056 const ExprMapKeyType Key(Instruction::InsertValue, ArgVec, 0, 0, Idxs);
2057
2058 LLVMContextImpl *pImpl = Agg->getContext().pImpl;
2059 return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2060 }
2061
getExtractValue(Constant * Agg,ArrayRef<unsigned> Idxs)2062 Constant *ConstantExpr::getExtractValue(Constant *Agg,
2063 ArrayRef<unsigned> Idxs) {
2064 assert(Agg->getType()->isFirstClassType() &&
2065 "Tried to create extractelement operation on non-first-class type!");
2066
2067 Type *ReqTy = ExtractValueInst::getIndexedType(Agg->getType(), Idxs);
2068 (void)ReqTy;
2069 assert(ReqTy && "extractvalue indices invalid!");
2070
2071 assert(Agg->getType()->isFirstClassType() &&
2072 "Non-first-class type for constant extractvalue expression");
2073 if (Constant *FC = ConstantFoldExtractValueInstruction(Agg, Idxs))
2074 return FC;
2075
2076 Constant *ArgVec[] = { Agg };
2077 const ExprMapKeyType Key(Instruction::ExtractValue, ArgVec, 0, 0, Idxs);
2078
2079 LLVMContextImpl *pImpl = Agg->getContext().pImpl;
2080 return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2081 }
2082
getNeg(Constant * C,bool HasNUW,bool HasNSW)2083 Constant *ConstantExpr::getNeg(Constant *C, bool HasNUW, bool HasNSW) {
2084 assert(C->getType()->isIntOrIntVectorTy() &&
2085 "Cannot NEG a nonintegral value!");
2086 return getSub(ConstantFP::getZeroValueForNegation(C->getType()),
2087 C, HasNUW, HasNSW);
2088 }
2089
getFNeg(Constant * C)2090 Constant *ConstantExpr::getFNeg(Constant *C) {
2091 assert(C->getType()->isFPOrFPVectorTy() &&
2092 "Cannot FNEG a non-floating-point value!");
2093 return getFSub(ConstantFP::getZeroValueForNegation(C->getType()), C);
2094 }
2095
getNot(Constant * C)2096 Constant *ConstantExpr::getNot(Constant *C) {
2097 assert(C->getType()->isIntOrIntVectorTy() &&
2098 "Cannot NOT a nonintegral value!");
2099 return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType()));
2100 }
2101
getAdd(Constant * C1,Constant * C2,bool HasNUW,bool HasNSW)2102 Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2,
2103 bool HasNUW, bool HasNSW) {
2104 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2105 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0);
2106 return get(Instruction::Add, C1, C2, Flags);
2107 }
2108
getFAdd(Constant * C1,Constant * C2)2109 Constant *ConstantExpr::getFAdd(Constant *C1, Constant *C2) {
2110 return get(Instruction::FAdd, C1, C2);
2111 }
2112
getSub(Constant * C1,Constant * C2,bool HasNUW,bool HasNSW)2113 Constant *ConstantExpr::getSub(Constant *C1, Constant *C2,
2114 bool HasNUW, bool HasNSW) {
2115 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2116 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0);
2117 return get(Instruction::Sub, C1, C2, Flags);
2118 }
2119
getFSub(Constant * C1,Constant * C2)2120 Constant *ConstantExpr::getFSub(Constant *C1, Constant *C2) {
2121 return get(Instruction::FSub, C1, C2);
2122 }
2123
getMul(Constant * C1,Constant * C2,bool HasNUW,bool HasNSW)2124 Constant *ConstantExpr::getMul(Constant *C1, Constant *C2,
2125 bool HasNUW, bool HasNSW) {
2126 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2127 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0);
2128 return get(Instruction::Mul, C1, C2, Flags);
2129 }
2130
getFMul(Constant * C1,Constant * C2)2131 Constant *ConstantExpr::getFMul(Constant *C1, Constant *C2) {
2132 return get(Instruction::FMul, C1, C2);
2133 }
2134
getUDiv(Constant * C1,Constant * C2,bool isExact)2135 Constant *ConstantExpr::getUDiv(Constant *C1, Constant *C2, bool isExact) {
2136 return get(Instruction::UDiv, C1, C2,
2137 isExact ? PossiblyExactOperator::IsExact : 0);
2138 }
2139
getSDiv(Constant * C1,Constant * C2,bool isExact)2140 Constant *ConstantExpr::getSDiv(Constant *C1, Constant *C2, bool isExact) {
2141 return get(Instruction::SDiv, C1, C2,
2142 isExact ? PossiblyExactOperator::IsExact : 0);
2143 }
2144
getFDiv(Constant * C1,Constant * C2)2145 Constant *ConstantExpr::getFDiv(Constant *C1, Constant *C2) {
2146 return get(Instruction::FDiv, C1, C2);
2147 }
2148
getURem(Constant * C1,Constant * C2)2149 Constant *ConstantExpr::getURem(Constant *C1, Constant *C2) {
2150 return get(Instruction::URem, C1, C2);
2151 }
2152
getSRem(Constant * C1,Constant * C2)2153 Constant *ConstantExpr::getSRem(Constant *C1, Constant *C2) {
2154 return get(Instruction::SRem, C1, C2);
2155 }
2156
getFRem(Constant * C1,Constant * C2)2157 Constant *ConstantExpr::getFRem(Constant *C1, Constant *C2) {
2158 return get(Instruction::FRem, C1, C2);
2159 }
2160
getAnd(Constant * C1,Constant * C2)2161 Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) {
2162 return get(Instruction::And, C1, C2);
2163 }
2164
getOr(Constant * C1,Constant * C2)2165 Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) {
2166 return get(Instruction::Or, C1, C2);
2167 }
2168
getXor(Constant * C1,Constant * C2)2169 Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) {
2170 return get(Instruction::Xor, C1, C2);
2171 }
2172
getShl(Constant * C1,Constant * C2,bool HasNUW,bool HasNSW)2173 Constant *ConstantExpr::getShl(Constant *C1, Constant *C2,
2174 bool HasNUW, bool HasNSW) {
2175 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2176 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0);
2177 return get(Instruction::Shl, C1, C2, Flags);
2178 }
2179
getLShr(Constant * C1,Constant * C2,bool isExact)2180 Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2, bool isExact) {
2181 return get(Instruction::LShr, C1, C2,
2182 isExact ? PossiblyExactOperator::IsExact : 0);
2183 }
2184
getAShr(Constant * C1,Constant * C2,bool isExact)2185 Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2, bool isExact) {
2186 return get(Instruction::AShr, C1, C2,
2187 isExact ? PossiblyExactOperator::IsExact : 0);
2188 }
2189
2190 /// getBinOpIdentity - Return the identity for the given binary operation,
2191 /// i.e. a constant C such that X op C = X and C op X = X for every X. It
2192 /// returns null if the operator doesn't have an identity.
getBinOpIdentity(unsigned Opcode,Type * Ty)2193 Constant *ConstantExpr::getBinOpIdentity(unsigned Opcode, Type *Ty) {
2194 switch (Opcode) {
2195 default:
2196 // Doesn't have an identity.
2197 return nullptr;
2198
2199 case Instruction::Add:
2200 case Instruction::Or:
2201 case Instruction::Xor:
2202 return Constant::getNullValue(Ty);
2203
2204 case Instruction::Mul:
2205 return ConstantInt::get(Ty, 1);
2206
2207 case Instruction::And:
2208 return Constant::getAllOnesValue(Ty);
2209 }
2210 }
2211
2212 /// getBinOpAbsorber - Return the absorbing element for the given binary
2213 /// operation, i.e. a constant C such that X op C = C and C op X = C for
2214 /// every X. For example, this returns zero for integer multiplication.
2215 /// It returns null if the operator doesn't have an absorbing element.
getBinOpAbsorber(unsigned Opcode,Type * Ty)2216 Constant *ConstantExpr::getBinOpAbsorber(unsigned Opcode, Type *Ty) {
2217 switch (Opcode) {
2218 default:
2219 // Doesn't have an absorber.
2220 return nullptr;
2221
2222 case Instruction::Or:
2223 return Constant::getAllOnesValue(Ty);
2224
2225 case Instruction::And:
2226 case Instruction::Mul:
2227 return Constant::getNullValue(Ty);
2228 }
2229 }
2230
2231 // destroyConstant - Remove the constant from the constant table...
2232 //
destroyConstant()2233 void ConstantExpr::destroyConstant() {
2234 getType()->getContext().pImpl->ExprConstants.remove(this);
2235 destroyConstantImpl();
2236 }
2237
getOpcodeName() const2238 const char *ConstantExpr::getOpcodeName() const {
2239 return Instruction::getOpcodeName(getOpcode());
2240 }
2241
2242
2243
2244 GetElementPtrConstantExpr::
GetElementPtrConstantExpr(Constant * C,ArrayRef<Constant * > IdxList,Type * DestTy)2245 GetElementPtrConstantExpr(Constant *C, ArrayRef<Constant*> IdxList,
2246 Type *DestTy)
2247 : ConstantExpr(DestTy, Instruction::GetElementPtr,
2248 OperandTraits<GetElementPtrConstantExpr>::op_end(this)
2249 - (IdxList.size()+1), IdxList.size()+1) {
2250 OperandList[0] = C;
2251 for (unsigned i = 0, E = IdxList.size(); i != E; ++i)
2252 OperandList[i+1] = IdxList[i];
2253 }
2254
2255 //===----------------------------------------------------------------------===//
2256 // ConstantData* implementations
2257
anchor()2258 void ConstantDataArray::anchor() {}
anchor()2259 void ConstantDataVector::anchor() {}
2260
2261 /// getElementType - Return the element type of the array/vector.
getElementType() const2262 Type *ConstantDataSequential::getElementType() const {
2263 return getType()->getElementType();
2264 }
2265
getRawDataValues() const2266 StringRef ConstantDataSequential::getRawDataValues() const {
2267 return StringRef(DataElements, getNumElements()*getElementByteSize());
2268 }
2269
2270 /// isElementTypeCompatible - Return true if a ConstantDataSequential can be
2271 /// formed with a vector or array of the specified element type.
2272 /// ConstantDataArray only works with normal float and int types that are
2273 /// stored densely in memory, not with things like i42 or x86_f80.
isElementTypeCompatible(const Type * Ty)2274 bool ConstantDataSequential::isElementTypeCompatible(const Type *Ty) {
2275 if (Ty->isFloatTy() || Ty->isDoubleTy()) return true;
2276 if (const IntegerType *IT = dyn_cast<IntegerType>(Ty)) {
2277 switch (IT->getBitWidth()) {
2278 case 8:
2279 case 16:
2280 case 32:
2281 case 64:
2282 return true;
2283 default: break;
2284 }
2285 }
2286 return false;
2287 }
2288
2289 /// getNumElements - Return the number of elements in the array or vector.
getNumElements() const2290 unsigned ConstantDataSequential::getNumElements() const {
2291 if (ArrayType *AT = dyn_cast<ArrayType>(getType()))
2292 return AT->getNumElements();
2293 return getType()->getVectorNumElements();
2294 }
2295
2296
2297 /// getElementByteSize - Return the size in bytes of the elements in the data.
getElementByteSize() const2298 uint64_t ConstantDataSequential::getElementByteSize() const {
2299 return getElementType()->getPrimitiveSizeInBits()/8;
2300 }
2301
2302 /// getElementPointer - Return the start of the specified element.
getElementPointer(unsigned Elt) const2303 const char *ConstantDataSequential::getElementPointer(unsigned Elt) const {
2304 assert(Elt < getNumElements() && "Invalid Elt");
2305 return DataElements+Elt*getElementByteSize();
2306 }
2307
2308
2309 /// isAllZeros - return true if the array is empty or all zeros.
isAllZeros(StringRef Arr)2310 static bool isAllZeros(StringRef Arr) {
2311 for (StringRef::iterator I = Arr.begin(), E = Arr.end(); I != E; ++I)
2312 if (*I != 0)
2313 return false;
2314 return true;
2315 }
2316
2317 /// getImpl - This is the underlying implementation of all of the
2318 /// ConstantDataSequential::get methods. They all thunk down to here, providing
2319 /// the correct element type. We take the bytes in as a StringRef because
2320 /// we *want* an underlying "char*" to avoid TBAA type punning violations.
getImpl(StringRef Elements,Type * Ty)2321 Constant *ConstantDataSequential::getImpl(StringRef Elements, Type *Ty) {
2322 assert(isElementTypeCompatible(Ty->getSequentialElementType()));
2323 // If the elements are all zero or there are no elements, return a CAZ, which
2324 // is more dense and canonical.
2325 if (isAllZeros(Elements))
2326 return ConstantAggregateZero::get(Ty);
2327
2328 // Do a lookup to see if we have already formed one of these.
2329 StringMap<ConstantDataSequential*>::MapEntryTy &Slot =
2330 Ty->getContext().pImpl->CDSConstants.GetOrCreateValue(Elements);
2331
2332 // The bucket can point to a linked list of different CDS's that have the same
2333 // body but different types. For example, 0,0,0,1 could be a 4 element array
2334 // of i8, or a 1-element array of i32. They'll both end up in the same
2335 /// StringMap bucket, linked up by their Next pointers. Walk the list.
2336 ConstantDataSequential **Entry = &Slot.getValue();
2337 for (ConstantDataSequential *Node = *Entry; Node;
2338 Entry = &Node->Next, Node = *Entry)
2339 if (Node->getType() == Ty)
2340 return Node;
2341
2342 // Okay, we didn't get a hit. Create a node of the right class, link it in,
2343 // and return it.
2344 if (isa<ArrayType>(Ty))
2345 return *Entry = new ConstantDataArray(Ty, Slot.getKeyData());
2346
2347 assert(isa<VectorType>(Ty));
2348 return *Entry = new ConstantDataVector(Ty, Slot.getKeyData());
2349 }
2350
destroyConstant()2351 void ConstantDataSequential::destroyConstant() {
2352 // Remove the constant from the StringMap.
2353 StringMap<ConstantDataSequential*> &CDSConstants =
2354 getType()->getContext().pImpl->CDSConstants;
2355
2356 StringMap<ConstantDataSequential*>::iterator Slot =
2357 CDSConstants.find(getRawDataValues());
2358
2359 assert(Slot != CDSConstants.end() && "CDS not found in uniquing table");
2360
2361 ConstantDataSequential **Entry = &Slot->getValue();
2362
2363 // Remove the entry from the hash table.
2364 if (!(*Entry)->Next) {
2365 // If there is only one value in the bucket (common case) it must be this
2366 // entry, and removing the entry should remove the bucket completely.
2367 assert((*Entry) == this && "Hash mismatch in ConstantDataSequential");
2368 getContext().pImpl->CDSConstants.erase(Slot);
2369 } else {
2370 // Otherwise, there are multiple entries linked off the bucket, unlink the
2371 // node we care about but keep the bucket around.
2372 for (ConstantDataSequential *Node = *Entry; ;
2373 Entry = &Node->Next, Node = *Entry) {
2374 assert(Node && "Didn't find entry in its uniquing hash table!");
2375 // If we found our entry, unlink it from the list and we're done.
2376 if (Node == this) {
2377 *Entry = Node->Next;
2378 break;
2379 }
2380 }
2381 }
2382
2383 // If we were part of a list, make sure that we don't delete the list that is
2384 // still owned by the uniquing map.
2385 Next = nullptr;
2386
2387 // Finally, actually delete it.
2388 destroyConstantImpl();
2389 }
2390
2391 /// get() constructors - Return a constant with array type with an element
2392 /// count and element type matching the ArrayRef passed in. Note that this
2393 /// can return a ConstantAggregateZero object.
get(LLVMContext & Context,ArrayRef<uint8_t> Elts)2394 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint8_t> Elts) {
2395 Type *Ty = ArrayType::get(Type::getInt8Ty(Context), Elts.size());
2396 const char *Data = reinterpret_cast<const char *>(Elts.data());
2397 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*1), Ty);
2398 }
get(LLVMContext & Context,ArrayRef<uint16_t> Elts)2399 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){
2400 Type *Ty = ArrayType::get(Type::getInt16Ty(Context), Elts.size());
2401 const char *Data = reinterpret_cast<const char *>(Elts.data());
2402 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*2), Ty);
2403 }
get(LLVMContext & Context,ArrayRef<uint32_t> Elts)2404 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){
2405 Type *Ty = ArrayType::get(Type::getInt32Ty(Context), Elts.size());
2406 const char *Data = reinterpret_cast<const char *>(Elts.data());
2407 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2408 }
get(LLVMContext & Context,ArrayRef<uint64_t> Elts)2409 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){
2410 Type *Ty = ArrayType::get(Type::getInt64Ty(Context), Elts.size());
2411 const char *Data = reinterpret_cast<const char *>(Elts.data());
2412 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
2413 }
get(LLVMContext & Context,ArrayRef<float> Elts)2414 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<float> Elts) {
2415 Type *Ty = ArrayType::get(Type::getFloatTy(Context), Elts.size());
2416 const char *Data = reinterpret_cast<const char *>(Elts.data());
2417 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2418 }
get(LLVMContext & Context,ArrayRef<double> Elts)2419 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<double> Elts) {
2420 Type *Ty = ArrayType::get(Type::getDoubleTy(Context), Elts.size());
2421 const char *Data = reinterpret_cast<const char *>(Elts.data());
2422 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
2423 }
2424
2425 /// getString - This method constructs a CDS and initializes it with a text
2426 /// string. The default behavior (AddNull==true) causes a null terminator to
2427 /// be placed at the end of the array (increasing the length of the string by
2428 /// one more than the StringRef would normally indicate. Pass AddNull=false
2429 /// to disable this behavior.
getString(LLVMContext & Context,StringRef Str,bool AddNull)2430 Constant *ConstantDataArray::getString(LLVMContext &Context,
2431 StringRef Str, bool AddNull) {
2432 if (!AddNull) {
2433 const uint8_t *Data = reinterpret_cast<const uint8_t *>(Str.data());
2434 return get(Context, ArrayRef<uint8_t>(const_cast<uint8_t *>(Data),
2435 Str.size()));
2436 }
2437
2438 SmallVector<uint8_t, 64> ElementVals;
2439 ElementVals.append(Str.begin(), Str.end());
2440 ElementVals.push_back(0);
2441 return get(Context, ElementVals);
2442 }
2443
2444 /// get() constructors - Return a constant with vector type with an element
2445 /// count and element type matching the ArrayRef passed in. Note that this
2446 /// can return a ConstantAggregateZero object.
get(LLVMContext & Context,ArrayRef<uint8_t> Elts)2447 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint8_t> Elts){
2448 Type *Ty = VectorType::get(Type::getInt8Ty(Context), Elts.size());
2449 const char *Data = reinterpret_cast<const char *>(Elts.data());
2450 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*1), Ty);
2451 }
get(LLVMContext & Context,ArrayRef<uint16_t> Elts)2452 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){
2453 Type *Ty = VectorType::get(Type::getInt16Ty(Context), Elts.size());
2454 const char *Data = reinterpret_cast<const char *>(Elts.data());
2455 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*2), Ty);
2456 }
get(LLVMContext & Context,ArrayRef<uint32_t> Elts)2457 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){
2458 Type *Ty = VectorType::get(Type::getInt32Ty(Context), Elts.size());
2459 const char *Data = reinterpret_cast<const char *>(Elts.data());
2460 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2461 }
get(LLVMContext & Context,ArrayRef<uint64_t> Elts)2462 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){
2463 Type *Ty = VectorType::get(Type::getInt64Ty(Context), Elts.size());
2464 const char *Data = reinterpret_cast<const char *>(Elts.data());
2465 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
2466 }
get(LLVMContext & Context,ArrayRef<float> Elts)2467 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<float> Elts) {
2468 Type *Ty = VectorType::get(Type::getFloatTy(Context), Elts.size());
2469 const char *Data = reinterpret_cast<const char *>(Elts.data());
2470 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2471 }
get(LLVMContext & Context,ArrayRef<double> Elts)2472 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<double> Elts) {
2473 Type *Ty = VectorType::get(Type::getDoubleTy(Context), Elts.size());
2474 const char *Data = reinterpret_cast<const char *>(Elts.data());
2475 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
2476 }
2477
getSplat(unsigned NumElts,Constant * V)2478 Constant *ConstantDataVector::getSplat(unsigned NumElts, Constant *V) {
2479 assert(isElementTypeCompatible(V->getType()) &&
2480 "Element type not compatible with ConstantData");
2481 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2482 if (CI->getType()->isIntegerTy(8)) {
2483 SmallVector<uint8_t, 16> Elts(NumElts, CI->getZExtValue());
2484 return get(V->getContext(), Elts);
2485 }
2486 if (CI->getType()->isIntegerTy(16)) {
2487 SmallVector<uint16_t, 16> Elts(NumElts, CI->getZExtValue());
2488 return get(V->getContext(), Elts);
2489 }
2490 if (CI->getType()->isIntegerTy(32)) {
2491 SmallVector<uint32_t, 16> Elts(NumElts, CI->getZExtValue());
2492 return get(V->getContext(), Elts);
2493 }
2494 assert(CI->getType()->isIntegerTy(64) && "Unsupported ConstantData type");
2495 SmallVector<uint64_t, 16> Elts(NumElts, CI->getZExtValue());
2496 return get(V->getContext(), Elts);
2497 }
2498
2499 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2500 if (CFP->getType()->isFloatTy()) {
2501 SmallVector<float, 16> Elts(NumElts, CFP->getValueAPF().convertToFloat());
2502 return get(V->getContext(), Elts);
2503 }
2504 if (CFP->getType()->isDoubleTy()) {
2505 SmallVector<double, 16> Elts(NumElts,
2506 CFP->getValueAPF().convertToDouble());
2507 return get(V->getContext(), Elts);
2508 }
2509 }
2510 return ConstantVector::getSplat(NumElts, V);
2511 }
2512
2513
2514 /// getElementAsInteger - If this is a sequential container of integers (of
2515 /// any size), return the specified element in the low bits of a uint64_t.
getElementAsInteger(unsigned Elt) const2516 uint64_t ConstantDataSequential::getElementAsInteger(unsigned Elt) const {
2517 assert(isa<IntegerType>(getElementType()) &&
2518 "Accessor can only be used when element is an integer");
2519 const char *EltPtr = getElementPointer(Elt);
2520
2521 // The data is stored in host byte order, make sure to cast back to the right
2522 // type to load with the right endianness.
2523 switch (getElementType()->getIntegerBitWidth()) {
2524 default: llvm_unreachable("Invalid bitwidth for CDS");
2525 case 8:
2526 return *const_cast<uint8_t *>(reinterpret_cast<const uint8_t *>(EltPtr));
2527 case 16:
2528 return *const_cast<uint16_t *>(reinterpret_cast<const uint16_t *>(EltPtr));
2529 case 32:
2530 return *const_cast<uint32_t *>(reinterpret_cast<const uint32_t *>(EltPtr));
2531 case 64:
2532 return *const_cast<uint64_t *>(reinterpret_cast<const uint64_t *>(EltPtr));
2533 }
2534 }
2535
2536 /// getElementAsAPFloat - If this is a sequential container of floating point
2537 /// type, return the specified element as an APFloat.
getElementAsAPFloat(unsigned Elt) const2538 APFloat ConstantDataSequential::getElementAsAPFloat(unsigned Elt) const {
2539 const char *EltPtr = getElementPointer(Elt);
2540
2541 switch (getElementType()->getTypeID()) {
2542 default:
2543 llvm_unreachable("Accessor can only be used when element is float/double!");
2544 case Type::FloatTyID: {
2545 const float *FloatPrt = reinterpret_cast<const float *>(EltPtr);
2546 return APFloat(*const_cast<float *>(FloatPrt));
2547 }
2548 case Type::DoubleTyID: {
2549 const double *DoublePtr = reinterpret_cast<const double *>(EltPtr);
2550 return APFloat(*const_cast<double *>(DoublePtr));
2551 }
2552 }
2553 }
2554
2555 /// getElementAsFloat - If this is an sequential container of floats, return
2556 /// the specified element as a float.
getElementAsFloat(unsigned Elt) const2557 float ConstantDataSequential::getElementAsFloat(unsigned Elt) const {
2558 assert(getElementType()->isFloatTy() &&
2559 "Accessor can only be used when element is a 'float'");
2560 const float *EltPtr = reinterpret_cast<const float *>(getElementPointer(Elt));
2561 return *const_cast<float *>(EltPtr);
2562 }
2563
2564 /// getElementAsDouble - If this is an sequential container of doubles, return
2565 /// the specified element as a float.
getElementAsDouble(unsigned Elt) const2566 double ConstantDataSequential::getElementAsDouble(unsigned Elt) const {
2567 assert(getElementType()->isDoubleTy() &&
2568 "Accessor can only be used when element is a 'float'");
2569 const double *EltPtr =
2570 reinterpret_cast<const double *>(getElementPointer(Elt));
2571 return *const_cast<double *>(EltPtr);
2572 }
2573
2574 /// getElementAsConstant - Return a Constant for a specified index's element.
2575 /// Note that this has to compute a new constant to return, so it isn't as
2576 /// efficient as getElementAsInteger/Float/Double.
getElementAsConstant(unsigned Elt) const2577 Constant *ConstantDataSequential::getElementAsConstant(unsigned Elt) const {
2578 if (getElementType()->isFloatTy() || getElementType()->isDoubleTy())
2579 return ConstantFP::get(getContext(), getElementAsAPFloat(Elt));
2580
2581 return ConstantInt::get(getElementType(), getElementAsInteger(Elt));
2582 }
2583
2584 /// isString - This method returns true if this is an array of i8.
isString() const2585 bool ConstantDataSequential::isString() const {
2586 return isa<ArrayType>(getType()) && getElementType()->isIntegerTy(8);
2587 }
2588
2589 /// isCString - This method returns true if the array "isString", ends with a
2590 /// nul byte, and does not contains any other nul bytes.
isCString() const2591 bool ConstantDataSequential::isCString() const {
2592 if (!isString())
2593 return false;
2594
2595 StringRef Str = getAsString();
2596
2597 // The last value must be nul.
2598 if (Str.back() != 0) return false;
2599
2600 // Other elements must be non-nul.
2601 return Str.drop_back().find(0) == StringRef::npos;
2602 }
2603
2604 /// getSplatValue - If this is a splat constant, meaning that all of the
2605 /// elements have the same value, return that value. Otherwise return NULL.
getSplatValue() const2606 Constant *ConstantDataVector::getSplatValue() const {
2607 const char *Base = getRawDataValues().data();
2608
2609 // Compare elements 1+ to the 0'th element.
2610 unsigned EltSize = getElementByteSize();
2611 for (unsigned i = 1, e = getNumElements(); i != e; ++i)
2612 if (memcmp(Base, Base+i*EltSize, EltSize))
2613 return nullptr;
2614
2615 // If they're all the same, return the 0th one as a representative.
2616 return getElementAsConstant(0);
2617 }
2618
2619 //===----------------------------------------------------------------------===//
2620 // replaceUsesOfWithOnConstant implementations
2621
2622 /// replaceUsesOfWithOnConstant - Update this constant array to change uses of
2623 /// 'From' to be uses of 'To'. This must update the uniquing data structures
2624 /// etc.
2625 ///
2626 /// Note that we intentionally replace all uses of From with To here. Consider
2627 /// a large array that uses 'From' 1000 times. By handling this case all here,
2628 /// ConstantArray::replaceUsesOfWithOnConstant is only invoked once, and that
2629 /// single invocation handles all 1000 uses. Handling them one at a time would
2630 /// work, but would be really slow because it would have to unique each updated
2631 /// array instance.
2632 ///
replaceUsesOfWithOnConstant(Value * From,Value * To,Use * U)2633 void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To,
2634 Use *U) {
2635 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2636 Constant *ToC = cast<Constant>(To);
2637
2638 LLVMContextImpl *pImpl = getType()->getContext().pImpl;
2639
2640 SmallVector<Constant*, 8> Values;
2641 LLVMContextImpl::ArrayConstantsTy::LookupKey Lookup;
2642 Lookup.first = cast<ArrayType>(getType());
2643 Values.reserve(getNumOperands()); // Build replacement array.
2644
2645 // Fill values with the modified operands of the constant array. Also,
2646 // compute whether this turns into an all-zeros array.
2647 unsigned NumUpdated = 0;
2648
2649 // Keep track of whether all the values in the array are "ToC".
2650 bool AllSame = true;
2651 for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2652 Constant *Val = cast<Constant>(O->get());
2653 if (Val == From) {
2654 Val = ToC;
2655 ++NumUpdated;
2656 }
2657 Values.push_back(Val);
2658 AllSame &= Val == ToC;
2659 }
2660
2661 Constant *Replacement = nullptr;
2662 if (AllSame && ToC->isNullValue()) {
2663 Replacement = ConstantAggregateZero::get(getType());
2664 } else if (AllSame && isa<UndefValue>(ToC)) {
2665 Replacement = UndefValue::get(getType());
2666 } else {
2667 // Check to see if we have this array type already.
2668 Lookup.second = makeArrayRef(Values);
2669 LLVMContextImpl::ArrayConstantsTy::MapTy::iterator I =
2670 pImpl->ArrayConstants.find(Lookup);
2671
2672 if (I != pImpl->ArrayConstants.map_end()) {
2673 Replacement = I->first;
2674 } else {
2675 // Okay, the new shape doesn't exist in the system yet. Instead of
2676 // creating a new constant array, inserting it, replaceallusesof'ing the
2677 // old with the new, then deleting the old... just update the current one
2678 // in place!
2679 pImpl->ArrayConstants.remove(this);
2680
2681 // Update to the new value. Optimize for the case when we have a single
2682 // operand that we're changing, but handle bulk updates efficiently.
2683 if (NumUpdated == 1) {
2684 unsigned OperandToUpdate = U - OperandList;
2685 assert(getOperand(OperandToUpdate) == From &&
2686 "ReplaceAllUsesWith broken!");
2687 setOperand(OperandToUpdate, ToC);
2688 } else {
2689 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
2690 if (getOperand(i) == From)
2691 setOperand(i, ToC);
2692 }
2693 pImpl->ArrayConstants.insert(this);
2694 return;
2695 }
2696 }
2697
2698 // Otherwise, I do need to replace this with an existing value.
2699 assert(Replacement != this && "I didn't contain From!");
2700
2701 // Everyone using this now uses the replacement.
2702 replaceAllUsesWith(Replacement);
2703
2704 // Delete the old constant!
2705 destroyConstant();
2706 }
2707
replaceUsesOfWithOnConstant(Value * From,Value * To,Use * U)2708 void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To,
2709 Use *U) {
2710 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2711 Constant *ToC = cast<Constant>(To);
2712
2713 unsigned OperandToUpdate = U-OperandList;
2714 assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!");
2715
2716 SmallVector<Constant*, 8> Values;
2717 LLVMContextImpl::StructConstantsTy::LookupKey Lookup;
2718 Lookup.first = cast<StructType>(getType());
2719 Values.reserve(getNumOperands()); // Build replacement struct.
2720
2721 // Fill values with the modified operands of the constant struct. Also,
2722 // compute whether this turns into an all-zeros struct.
2723 bool isAllZeros = false;
2724 bool isAllUndef = false;
2725 if (ToC->isNullValue()) {
2726 isAllZeros = true;
2727 for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2728 Constant *Val = cast<Constant>(O->get());
2729 Values.push_back(Val);
2730 if (isAllZeros) isAllZeros = Val->isNullValue();
2731 }
2732 } else if (isa<UndefValue>(ToC)) {
2733 isAllUndef = true;
2734 for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2735 Constant *Val = cast<Constant>(O->get());
2736 Values.push_back(Val);
2737 if (isAllUndef) isAllUndef = isa<UndefValue>(Val);
2738 }
2739 } else {
2740 for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O)
2741 Values.push_back(cast<Constant>(O->get()));
2742 }
2743 Values[OperandToUpdate] = ToC;
2744
2745 LLVMContextImpl *pImpl = getContext().pImpl;
2746
2747 Constant *Replacement = nullptr;
2748 if (isAllZeros) {
2749 Replacement = ConstantAggregateZero::get(getType());
2750 } else if (isAllUndef) {
2751 Replacement = UndefValue::get(getType());
2752 } else {
2753 // Check to see if we have this struct type already.
2754 Lookup.second = makeArrayRef(Values);
2755 LLVMContextImpl::StructConstantsTy::MapTy::iterator I =
2756 pImpl->StructConstants.find(Lookup);
2757
2758 if (I != pImpl->StructConstants.map_end()) {
2759 Replacement = I->first;
2760 } else {
2761 // Okay, the new shape doesn't exist in the system yet. Instead of
2762 // creating a new constant struct, inserting it, replaceallusesof'ing the
2763 // old with the new, then deleting the old... just update the current one
2764 // in place!
2765 pImpl->StructConstants.remove(this);
2766
2767 // Update to the new value.
2768 setOperand(OperandToUpdate, ToC);
2769 pImpl->StructConstants.insert(this);
2770 return;
2771 }
2772 }
2773
2774 assert(Replacement != this && "I didn't contain From!");
2775
2776 // Everyone using this now uses the replacement.
2777 replaceAllUsesWith(Replacement);
2778
2779 // Delete the old constant!
2780 destroyConstant();
2781 }
2782
replaceUsesOfWithOnConstant(Value * From,Value * To,Use * U)2783 void ConstantVector::replaceUsesOfWithOnConstant(Value *From, Value *To,
2784 Use *U) {
2785 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2786
2787 SmallVector<Constant*, 8> Values;
2788 Values.reserve(getNumOperands()); // Build replacement array...
2789 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2790 Constant *Val = getOperand(i);
2791 if (Val == From) Val = cast<Constant>(To);
2792 Values.push_back(Val);
2793 }
2794
2795 Constant *Replacement = get(Values);
2796 assert(Replacement != this && "I didn't contain From!");
2797
2798 // Everyone using this now uses the replacement.
2799 replaceAllUsesWith(Replacement);
2800
2801 // Delete the old constant!
2802 destroyConstant();
2803 }
2804
replaceUsesOfWithOnConstant(Value * From,Value * ToV,Use * U)2805 void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV,
2806 Use *U) {
2807 assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!");
2808 Constant *To = cast<Constant>(ToV);
2809
2810 SmallVector<Constant*, 8> NewOps;
2811 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2812 Constant *Op = getOperand(i);
2813 NewOps.push_back(Op == From ? To : Op);
2814 }
2815
2816 Constant *Replacement = getWithOperands(NewOps);
2817 assert(Replacement != this && "I didn't contain From!");
2818
2819 // Everyone using this now uses the replacement.
2820 replaceAllUsesWith(Replacement);
2821
2822 // Delete the old constant!
2823 destroyConstant();
2824 }
2825
getAsInstruction()2826 Instruction *ConstantExpr::getAsInstruction() {
2827 SmallVector<Value*,4> ValueOperands;
2828 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
2829 ValueOperands.push_back(cast<Value>(I));
2830
2831 ArrayRef<Value*> Ops(ValueOperands);
2832
2833 switch (getOpcode()) {
2834 case Instruction::Trunc:
2835 case Instruction::ZExt:
2836 case Instruction::SExt:
2837 case Instruction::FPTrunc:
2838 case Instruction::FPExt:
2839 case Instruction::UIToFP:
2840 case Instruction::SIToFP:
2841 case Instruction::FPToUI:
2842 case Instruction::FPToSI:
2843 case Instruction::PtrToInt:
2844 case Instruction::IntToPtr:
2845 case Instruction::BitCast:
2846 case Instruction::AddrSpaceCast:
2847 return CastInst::Create((Instruction::CastOps)getOpcode(),
2848 Ops[0], getType());
2849 case Instruction::Select:
2850 return SelectInst::Create(Ops[0], Ops[1], Ops[2]);
2851 case Instruction::InsertElement:
2852 return InsertElementInst::Create(Ops[0], Ops[1], Ops[2]);
2853 case Instruction::ExtractElement:
2854 return ExtractElementInst::Create(Ops[0], Ops[1]);
2855 case Instruction::InsertValue:
2856 return InsertValueInst::Create(Ops[0], Ops[1], getIndices());
2857 case Instruction::ExtractValue:
2858 return ExtractValueInst::Create(Ops[0], getIndices());
2859 case Instruction::ShuffleVector:
2860 return new ShuffleVectorInst(Ops[0], Ops[1], Ops[2]);
2861
2862 case Instruction::GetElementPtr:
2863 if (cast<GEPOperator>(this)->isInBounds())
2864 return GetElementPtrInst::CreateInBounds(Ops[0], Ops.slice(1));
2865 else
2866 return GetElementPtrInst::Create(Ops[0], Ops.slice(1));
2867
2868 case Instruction::ICmp:
2869 case Instruction::FCmp:
2870 return CmpInst::Create((Instruction::OtherOps)getOpcode(),
2871 getPredicate(), Ops[0], Ops[1]);
2872
2873 default:
2874 assert(getNumOperands() == 2 && "Must be binary operator?");
2875 BinaryOperator *BO =
2876 BinaryOperator::Create((Instruction::BinaryOps)getOpcode(),
2877 Ops[0], Ops[1]);
2878 if (isa<OverflowingBinaryOperator>(BO)) {
2879 BO->setHasNoUnsignedWrap(SubclassOptionalData &
2880 OverflowingBinaryOperator::NoUnsignedWrap);
2881 BO->setHasNoSignedWrap(SubclassOptionalData &
2882 OverflowingBinaryOperator::NoSignedWrap);
2883 }
2884 if (isa<PossiblyExactOperator>(BO))
2885 BO->setIsExact(SubclassOptionalData & PossiblyExactOperator::IsExact);
2886 return BO;
2887 }
2888 }
2889