• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file implements semantic analysis for declarations.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Sema/SemaInternal.h"
15 #include "TypeLocBuilder.h"
16 #include "clang/AST/ASTConsumer.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/ASTLambda.h"
19 #include "clang/AST/CXXInheritance.h"
20 #include "clang/AST/CharUnits.h"
21 #include "clang/AST/CommentDiagnostic.h"
22 #include "clang/AST/DeclCXX.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/AST/DeclTemplate.h"
25 #include "clang/AST/EvaluatedExprVisitor.h"
26 #include "clang/AST/ExprCXX.h"
27 #include "clang/AST/StmtCXX.h"
28 #include "clang/Basic/Builtins.h"
29 #include "clang/Basic/PartialDiagnostic.h"
30 #include "clang/Basic/SourceManager.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "clang/Lex/HeaderSearch.h" // TODO: Sema shouldn't depend on Lex
33 #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering.
34 #include "clang/Lex/ModuleLoader.h" // TODO: Sema shouldn't depend on Lex
35 #include "clang/Lex/Preprocessor.h" // Included for isCodeCompletionEnabled()
36 #include "clang/Parse/ParseDiagnostic.h"
37 #include "clang/Sema/CXXFieldCollector.h"
38 #include "clang/Sema/DeclSpec.h"
39 #include "clang/Sema/DelayedDiagnostic.h"
40 #include "clang/Sema/Initialization.h"
41 #include "clang/Sema/Lookup.h"
42 #include "clang/Sema/ParsedTemplate.h"
43 #include "clang/Sema/Scope.h"
44 #include "clang/Sema/ScopeInfo.h"
45 #include "clang/Sema/Template.h"
46 #include "llvm/ADT/SmallString.h"
47 #include "llvm/ADT/Triple.h"
48 #include <algorithm>
49 #include <cstring>
50 #include <functional>
51 using namespace clang;
52 using namespace sema;
53 
ConvertDeclToDeclGroup(Decl * Ptr,Decl * OwnedType)54 Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
55   if (OwnedType) {
56     Decl *Group[2] = { OwnedType, Ptr };
57     return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
58   }
59 
60   return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
61 }
62 
63 namespace {
64 
65 class TypeNameValidatorCCC : public CorrectionCandidateCallback {
66  public:
TypeNameValidatorCCC(bool AllowInvalid,bool WantClass=false,bool AllowTemplates=false)67   TypeNameValidatorCCC(bool AllowInvalid, bool WantClass=false,
68                        bool AllowTemplates=false)
69       : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass),
70         AllowClassTemplates(AllowTemplates) {
71     WantExpressionKeywords = false;
72     WantCXXNamedCasts = false;
73     WantRemainingKeywords = false;
74   }
75 
ValidateCandidate(const TypoCorrection & candidate)76   bool ValidateCandidate(const TypoCorrection &candidate) override {
77     if (NamedDecl *ND = candidate.getCorrectionDecl()) {
78       bool IsType = isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND);
79       bool AllowedTemplate = AllowClassTemplates && isa<ClassTemplateDecl>(ND);
80       return (IsType || AllowedTemplate) &&
81              (AllowInvalidDecl || !ND->isInvalidDecl());
82     }
83     return !WantClassName && candidate.isKeyword();
84   }
85 
86  private:
87   bool AllowInvalidDecl;
88   bool WantClassName;
89   bool AllowClassTemplates;
90 };
91 
92 }
93 
94 /// \brief Determine whether the token kind starts a simple-type-specifier.
isSimpleTypeSpecifier(tok::TokenKind Kind) const95 bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const {
96   switch (Kind) {
97   // FIXME: Take into account the current language when deciding whether a
98   // token kind is a valid type specifier
99   case tok::kw_short:
100   case tok::kw_long:
101   case tok::kw___int64:
102   case tok::kw___int128:
103   case tok::kw_signed:
104   case tok::kw_unsigned:
105   case tok::kw_void:
106   case tok::kw_char:
107   case tok::kw_int:
108   case tok::kw_half:
109   case tok::kw_float:
110   case tok::kw_double:
111   case tok::kw_wchar_t:
112   case tok::kw_bool:
113   case tok::kw___underlying_type:
114     return true;
115 
116   case tok::annot_typename:
117   case tok::kw_char16_t:
118   case tok::kw_char32_t:
119   case tok::kw_typeof:
120   case tok::annot_decltype:
121   case tok::kw_decltype:
122     return getLangOpts().CPlusPlus;
123 
124   default:
125     break;
126   }
127 
128   return false;
129 }
130 
recoverFromTypeInKnownDependentBase(Sema & S,const IdentifierInfo & II,SourceLocation NameLoc)131 static ParsedType recoverFromTypeInKnownDependentBase(Sema &S,
132                                                       const IdentifierInfo &II,
133                                                       SourceLocation NameLoc) {
134   // Find the first parent class template context, if any.
135   // FIXME: Perform the lookup in all enclosing class templates.
136   const CXXRecordDecl *RD = nullptr;
137   for (DeclContext *DC = S.CurContext; DC; DC = DC->getParent()) {
138     RD = dyn_cast<CXXRecordDecl>(DC);
139     if (RD && RD->getDescribedClassTemplate())
140       break;
141   }
142   if (!RD)
143     return ParsedType();
144 
145   // Look for type decls in dependent base classes that have known primary
146   // templates.
147   bool FoundTypeDecl = false;
148   for (const auto &Base : RD->bases()) {
149     auto *TST = Base.getType()->getAs<TemplateSpecializationType>();
150     if (!TST || !TST->isDependentType())
151       continue;
152     auto *TD = TST->getTemplateName().getAsTemplateDecl();
153     if (!TD)
154       continue;
155     auto *BasePrimaryTemplate = cast<CXXRecordDecl>(TD->getTemplatedDecl());
156     // FIXME: Allow lookup into non-dependent bases of dependent bases, possibly
157     // by calling or integrating with the main LookupQualifiedName mechanism.
158     for (NamedDecl *ND : BasePrimaryTemplate->lookup(&II)) {
159       if (FoundTypeDecl)
160         return ParsedType();
161       FoundTypeDecl = isa<TypeDecl>(ND);
162       if (!FoundTypeDecl)
163         return ParsedType();
164     }
165   }
166   if (!FoundTypeDecl)
167     return ParsedType();
168 
169   // We found some types in dependent base classes.  Recover as if the user
170   // wrote 'typename MyClass::II' instead of 'II'.  We'll fully resolve the
171   // lookup during template instantiation.
172   S.Diag(NameLoc, diag::ext_found_via_dependent_bases_lookup) << &II;
173 
174   ASTContext &Context = S.Context;
175   auto *NNS = NestedNameSpecifier::Create(Context, nullptr, false,
176                                           cast<Type>(Context.getRecordType(RD)));
177   QualType T = Context.getDependentNameType(ETK_Typename, NNS, &II);
178 
179   CXXScopeSpec SS;
180   SS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
181 
182   TypeLocBuilder Builder;
183   DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
184   DepTL.setNameLoc(NameLoc);
185   DepTL.setElaboratedKeywordLoc(SourceLocation());
186   DepTL.setQualifierLoc(SS.getWithLocInContext(Context));
187   return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
188 }
189 
190 /// \brief If the identifier refers to a type name within this scope,
191 /// return the declaration of that type.
192 ///
193 /// This routine performs ordinary name lookup of the identifier II
194 /// within the given scope, with optional C++ scope specifier SS, to
195 /// determine whether the name refers to a type. If so, returns an
196 /// opaque pointer (actually a QualType) corresponding to that
197 /// type. Otherwise, returns NULL.
getTypeName(const IdentifierInfo & II,SourceLocation NameLoc,Scope * S,CXXScopeSpec * SS,bool isClassName,bool HasTrailingDot,ParsedType ObjectTypePtr,bool IsCtorOrDtorName,bool WantNontrivialTypeSourceInfo,IdentifierInfo ** CorrectedII)198 ParsedType Sema::getTypeName(const IdentifierInfo &II, SourceLocation NameLoc,
199                              Scope *S, CXXScopeSpec *SS,
200                              bool isClassName, bool HasTrailingDot,
201                              ParsedType ObjectTypePtr,
202                              bool IsCtorOrDtorName,
203                              bool WantNontrivialTypeSourceInfo,
204                              IdentifierInfo **CorrectedII) {
205   // Determine where we will perform name lookup.
206   DeclContext *LookupCtx = nullptr;
207   if (ObjectTypePtr) {
208     QualType ObjectType = ObjectTypePtr.get();
209     if (ObjectType->isRecordType())
210       LookupCtx = computeDeclContext(ObjectType);
211   } else if (SS && SS->isNotEmpty()) {
212     LookupCtx = computeDeclContext(*SS, false);
213 
214     if (!LookupCtx) {
215       if (isDependentScopeSpecifier(*SS)) {
216         // C++ [temp.res]p3:
217         //   A qualified-id that refers to a type and in which the
218         //   nested-name-specifier depends on a template-parameter (14.6.2)
219         //   shall be prefixed by the keyword typename to indicate that the
220         //   qualified-id denotes a type, forming an
221         //   elaborated-type-specifier (7.1.5.3).
222         //
223         // We therefore do not perform any name lookup if the result would
224         // refer to a member of an unknown specialization.
225         if (!isClassName && !IsCtorOrDtorName)
226           return ParsedType();
227 
228         // We know from the grammar that this name refers to a type,
229         // so build a dependent node to describe the type.
230         if (WantNontrivialTypeSourceInfo)
231           return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
232 
233         NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
234         QualType T = CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
235                                        II, NameLoc);
236         return ParsedType::make(T);
237       }
238 
239       return ParsedType();
240     }
241 
242     if (!LookupCtx->isDependentContext() &&
243         RequireCompleteDeclContext(*SS, LookupCtx))
244       return ParsedType();
245   }
246 
247   // FIXME: LookupNestedNameSpecifierName isn't the right kind of
248   // lookup for class-names.
249   LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
250                                       LookupOrdinaryName;
251   LookupResult Result(*this, &II, NameLoc, Kind);
252   if (LookupCtx) {
253     // Perform "qualified" name lookup into the declaration context we
254     // computed, which is either the type of the base of a member access
255     // expression or the declaration context associated with a prior
256     // nested-name-specifier.
257     LookupQualifiedName(Result, LookupCtx);
258 
259     if (ObjectTypePtr && Result.empty()) {
260       // C++ [basic.lookup.classref]p3:
261       //   If the unqualified-id is ~type-name, the type-name is looked up
262       //   in the context of the entire postfix-expression. If the type T of
263       //   the object expression is of a class type C, the type-name is also
264       //   looked up in the scope of class C. At least one of the lookups shall
265       //   find a name that refers to (possibly cv-qualified) T.
266       LookupName(Result, S);
267     }
268   } else {
269     // Perform unqualified name lookup.
270     LookupName(Result, S);
271 
272     // For unqualified lookup in a class template in MSVC mode, look into
273     // dependent base classes where the primary class template is known.
274     if (Result.empty() && getLangOpts().MSVCCompat && (!SS || SS->isEmpty())) {
275       if (ParsedType TypeInBase =
276               recoverFromTypeInKnownDependentBase(*this, II, NameLoc))
277         return TypeInBase;
278     }
279   }
280 
281   NamedDecl *IIDecl = nullptr;
282   switch (Result.getResultKind()) {
283   case LookupResult::NotFound:
284   case LookupResult::NotFoundInCurrentInstantiation:
285     if (CorrectedII) {
286       TypeNameValidatorCCC Validator(true, isClassName);
287       TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(),
288                                               Kind, S, SS, Validator,
289                                               CTK_ErrorRecovery);
290       IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
291       TemplateTy Template;
292       bool MemberOfUnknownSpecialization;
293       UnqualifiedId TemplateName;
294       TemplateName.setIdentifier(NewII, NameLoc);
295       NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
296       CXXScopeSpec NewSS, *NewSSPtr = SS;
297       if (SS && NNS) {
298         NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
299         NewSSPtr = &NewSS;
300       }
301       if (Correction && (NNS || NewII != &II) &&
302           // Ignore a correction to a template type as the to-be-corrected
303           // identifier is not a template (typo correction for template names
304           // is handled elsewhere).
305           !(getLangOpts().CPlusPlus && NewSSPtr &&
306             isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(),
307                            false, Template, MemberOfUnknownSpecialization))) {
308         ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
309                                     isClassName, HasTrailingDot, ObjectTypePtr,
310                                     IsCtorOrDtorName,
311                                     WantNontrivialTypeSourceInfo);
312         if (Ty) {
313           diagnoseTypo(Correction,
314                        PDiag(diag::err_unknown_type_or_class_name_suggest)
315                          << Result.getLookupName() << isClassName);
316           if (SS && NNS)
317             SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
318           *CorrectedII = NewII;
319           return Ty;
320         }
321       }
322     }
323     // If typo correction failed or was not performed, fall through
324   case LookupResult::FoundOverloaded:
325   case LookupResult::FoundUnresolvedValue:
326     Result.suppressDiagnostics();
327     return ParsedType();
328 
329   case LookupResult::Ambiguous:
330     // Recover from type-hiding ambiguities by hiding the type.  We'll
331     // do the lookup again when looking for an object, and we can
332     // diagnose the error then.  If we don't do this, then the error
333     // about hiding the type will be immediately followed by an error
334     // that only makes sense if the identifier was treated like a type.
335     if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
336       Result.suppressDiagnostics();
337       return ParsedType();
338     }
339 
340     // Look to see if we have a type anywhere in the list of results.
341     for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
342          Res != ResEnd; ++Res) {
343       if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
344         if (!IIDecl ||
345             (*Res)->getLocation().getRawEncoding() <
346               IIDecl->getLocation().getRawEncoding())
347           IIDecl = *Res;
348       }
349     }
350 
351     if (!IIDecl) {
352       // None of the entities we found is a type, so there is no way
353       // to even assume that the result is a type. In this case, don't
354       // complain about the ambiguity. The parser will either try to
355       // perform this lookup again (e.g., as an object name), which
356       // will produce the ambiguity, or will complain that it expected
357       // a type name.
358       Result.suppressDiagnostics();
359       return ParsedType();
360     }
361 
362     // We found a type within the ambiguous lookup; diagnose the
363     // ambiguity and then return that type. This might be the right
364     // answer, or it might not be, but it suppresses any attempt to
365     // perform the name lookup again.
366     break;
367 
368   case LookupResult::Found:
369     IIDecl = Result.getFoundDecl();
370     break;
371   }
372 
373   assert(IIDecl && "Didn't find decl");
374 
375   QualType T;
376   if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
377     DiagnoseUseOfDecl(IIDecl, NameLoc);
378 
379     T = Context.getTypeDeclType(TD);
380 
381     // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
382     // constructor or destructor name (in such a case, the scope specifier
383     // will be attached to the enclosing Expr or Decl node).
384     if (SS && SS->isNotEmpty() && !IsCtorOrDtorName) {
385       if (WantNontrivialTypeSourceInfo) {
386         // Construct a type with type-source information.
387         TypeLocBuilder Builder;
388         Builder.pushTypeSpec(T).setNameLoc(NameLoc);
389 
390         T = getElaboratedType(ETK_None, *SS, T);
391         ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
392         ElabTL.setElaboratedKeywordLoc(SourceLocation());
393         ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
394         return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
395       } else {
396         T = getElaboratedType(ETK_None, *SS, T);
397       }
398     }
399   } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
400     (void)DiagnoseUseOfDecl(IDecl, NameLoc);
401     if (!HasTrailingDot)
402       T = Context.getObjCInterfaceType(IDecl);
403   }
404 
405   if (T.isNull()) {
406     // If it's not plausibly a type, suppress diagnostics.
407     Result.suppressDiagnostics();
408     return ParsedType();
409   }
410   return ParsedType::make(T);
411 }
412 
413 // Builds a fake NNS for the given decl context.
414 static NestedNameSpecifier *
synthesizeCurrentNestedNameSpecifier(ASTContext & Context,DeclContext * DC)415 synthesizeCurrentNestedNameSpecifier(ASTContext &Context, DeclContext *DC) {
416   for (;; DC = DC->getLookupParent()) {
417     DC = DC->getPrimaryContext();
418     auto *ND = dyn_cast<NamespaceDecl>(DC);
419     if (ND && !ND->isInline() && !ND->isAnonymousNamespace())
420       return NestedNameSpecifier::Create(Context, nullptr, ND);
421     else if (auto *RD = dyn_cast<CXXRecordDecl>(DC))
422       return NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(),
423                                          RD->getTypeForDecl());
424     else if (isa<TranslationUnitDecl>(DC))
425       return NestedNameSpecifier::GlobalSpecifier(Context);
426   }
427   llvm_unreachable("something isn't in TU scope?");
428 }
429 
ActOnDelayedDefaultTemplateArg(const IdentifierInfo & II,SourceLocation NameLoc)430 ParsedType Sema::ActOnDelayedDefaultTemplateArg(const IdentifierInfo &II,
431                                                 SourceLocation NameLoc) {
432   // Accepting an undeclared identifier as a default argument for a template
433   // type parameter is a Microsoft extension.
434   Diag(NameLoc, diag::ext_ms_delayed_template_argument) << &II;
435 
436   // Build a fake DependentNameType that will perform lookup into CurContext at
437   // instantiation time.  The name specifier isn't dependent, so template
438   // instantiation won't transform it.  It will retry the lookup, however.
439   NestedNameSpecifier *NNS =
440       synthesizeCurrentNestedNameSpecifier(Context, CurContext);
441   QualType T = Context.getDependentNameType(ETK_None, NNS, &II);
442 
443   // Build type location information.  We synthesized the qualifier, so we have
444   // to build a fake NestedNameSpecifierLoc.
445   NestedNameSpecifierLocBuilder NNSLocBuilder;
446   NNSLocBuilder.MakeTrivial(Context, NNS, SourceRange(NameLoc));
447   NestedNameSpecifierLoc QualifierLoc = NNSLocBuilder.getWithLocInContext(Context);
448 
449   TypeLocBuilder Builder;
450   DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
451   DepTL.setNameLoc(NameLoc);
452   DepTL.setElaboratedKeywordLoc(SourceLocation());
453   DepTL.setQualifierLoc(QualifierLoc);
454   return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
455 }
456 
457 /// isTagName() - This method is called *for error recovery purposes only*
458 /// to determine if the specified name is a valid tag name ("struct foo").  If
459 /// so, this returns the TST for the tag corresponding to it (TST_enum,
460 /// TST_union, TST_struct, TST_interface, TST_class).  This is used to diagnose
461 /// cases in C where the user forgot to specify the tag.
isTagName(IdentifierInfo & II,Scope * S)462 DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
463   // Do a tag name lookup in this scope.
464   LookupResult R(*this, &II, SourceLocation(), LookupTagName);
465   LookupName(R, S, false);
466   R.suppressDiagnostics();
467   if (R.getResultKind() == LookupResult::Found)
468     if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
469       switch (TD->getTagKind()) {
470       case TTK_Struct: return DeclSpec::TST_struct;
471       case TTK_Interface: return DeclSpec::TST_interface;
472       case TTK_Union:  return DeclSpec::TST_union;
473       case TTK_Class:  return DeclSpec::TST_class;
474       case TTK_Enum:   return DeclSpec::TST_enum;
475       }
476     }
477 
478   return DeclSpec::TST_unspecified;
479 }
480 
481 /// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
482 /// if a CXXScopeSpec's type is equal to the type of one of the base classes
483 /// then downgrade the missing typename error to a warning.
484 /// This is needed for MSVC compatibility; Example:
485 /// @code
486 /// template<class T> class A {
487 /// public:
488 ///   typedef int TYPE;
489 /// };
490 /// template<class T> class B : public A<T> {
491 /// public:
492 ///   A<T>::TYPE a; // no typename required because A<T> is a base class.
493 /// };
494 /// @endcode
isMicrosoftMissingTypename(const CXXScopeSpec * SS,Scope * S)495 bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
496   if (CurContext->isRecord()) {
497     const Type *Ty = SS->getScopeRep()->getAsType();
498 
499     CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
500     for (const auto &Base : RD->bases())
501       if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base.getType()))
502         return true;
503     return S->isFunctionPrototypeScope();
504   }
505   return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
506 }
507 
DiagnoseUnknownTypeName(IdentifierInfo * & II,SourceLocation IILoc,Scope * S,CXXScopeSpec * SS,ParsedType & SuggestedType,bool AllowClassTemplates)508 void Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II,
509                                    SourceLocation IILoc,
510                                    Scope *S,
511                                    CXXScopeSpec *SS,
512                                    ParsedType &SuggestedType,
513                                    bool AllowClassTemplates) {
514   // We don't have anything to suggest (yet).
515   SuggestedType = ParsedType();
516 
517   // There may have been a typo in the name of the type. Look up typo
518   // results, in case we have something that we can suggest.
519   TypeNameValidatorCCC Validator(false, false, AllowClassTemplates);
520   if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(II, IILoc),
521                                              LookupOrdinaryName, S, SS,
522                                              Validator, CTK_ErrorRecovery)) {
523     if (Corrected.isKeyword()) {
524       // We corrected to a keyword.
525       diagnoseTypo(Corrected, PDiag(diag::err_unknown_typename_suggest) << II);
526       II = Corrected.getCorrectionAsIdentifierInfo();
527     } else {
528       // We found a similarly-named type or interface; suggest that.
529       if (!SS || !SS->isSet()) {
530         diagnoseTypo(Corrected,
531                      PDiag(diag::err_unknown_typename_suggest) << II);
532       } else if (DeclContext *DC = computeDeclContext(*SS, false)) {
533         std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
534         bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
535                                 II->getName().equals(CorrectedStr);
536         diagnoseTypo(Corrected,
537                      PDiag(diag::err_unknown_nested_typename_suggest)
538                        << II << DC << DroppedSpecifier << SS->getRange());
539       } else {
540         llvm_unreachable("could not have corrected a typo here");
541       }
542 
543       CXXScopeSpec tmpSS;
544       if (Corrected.getCorrectionSpecifier())
545         tmpSS.MakeTrivial(Context, Corrected.getCorrectionSpecifier(),
546                           SourceRange(IILoc));
547       SuggestedType = getTypeName(*Corrected.getCorrectionAsIdentifierInfo(),
548                                   IILoc, S, tmpSS.isSet() ? &tmpSS : SS, false,
549                                   false, ParsedType(),
550                                   /*IsCtorOrDtorName=*/false,
551                                   /*NonTrivialTypeSourceInfo=*/true);
552     }
553     return;
554   }
555 
556   if (getLangOpts().CPlusPlus) {
557     // See if II is a class template that the user forgot to pass arguments to.
558     UnqualifiedId Name;
559     Name.setIdentifier(II, IILoc);
560     CXXScopeSpec EmptySS;
561     TemplateTy TemplateResult;
562     bool MemberOfUnknownSpecialization;
563     if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
564                        Name, ParsedType(), true, TemplateResult,
565                        MemberOfUnknownSpecialization) == TNK_Type_template) {
566       TemplateName TplName = TemplateResult.get();
567       Diag(IILoc, diag::err_template_missing_args) << TplName;
568       if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
569         Diag(TplDecl->getLocation(), diag::note_template_decl_here)
570           << TplDecl->getTemplateParameters()->getSourceRange();
571       }
572       return;
573     }
574   }
575 
576   // FIXME: Should we move the logic that tries to recover from a missing tag
577   // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
578 
579   if (!SS || (!SS->isSet() && !SS->isInvalid()))
580     Diag(IILoc, diag::err_unknown_typename) << II;
581   else if (DeclContext *DC = computeDeclContext(*SS, false))
582     Diag(IILoc, diag::err_typename_nested_not_found)
583       << II << DC << SS->getRange();
584   else if (isDependentScopeSpecifier(*SS)) {
585     unsigned DiagID = diag::err_typename_missing;
586     if (getLangOpts().MSVCCompat && isMicrosoftMissingTypename(SS, S))
587       DiagID = diag::ext_typename_missing;
588 
589     Diag(SS->getRange().getBegin(), DiagID)
590       << SS->getScopeRep() << II->getName()
591       << SourceRange(SS->getRange().getBegin(), IILoc)
592       << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
593     SuggestedType = ActOnTypenameType(S, SourceLocation(),
594                                       *SS, *II, IILoc).get();
595   } else {
596     assert(SS && SS->isInvalid() &&
597            "Invalid scope specifier has already been diagnosed");
598   }
599 }
600 
601 /// \brief Determine whether the given result set contains either a type name
602 /// or
isResultTypeOrTemplate(LookupResult & R,const Token & NextToken)603 static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
604   bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
605                        NextToken.is(tok::less);
606 
607   for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
608     if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
609       return true;
610 
611     if (CheckTemplate && isa<TemplateDecl>(*I))
612       return true;
613   }
614 
615   return false;
616 }
617 
isTagTypeWithMissingTag(Sema & SemaRef,LookupResult & Result,Scope * S,CXXScopeSpec & SS,IdentifierInfo * & Name,SourceLocation NameLoc)618 static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
619                                     Scope *S, CXXScopeSpec &SS,
620                                     IdentifierInfo *&Name,
621                                     SourceLocation NameLoc) {
622   LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName);
623   SemaRef.LookupParsedName(R, S, &SS);
624   if (TagDecl *Tag = R.getAsSingle<TagDecl>()) {
625     StringRef FixItTagName;
626     switch (Tag->getTagKind()) {
627       case TTK_Class:
628         FixItTagName = "class ";
629         break;
630 
631       case TTK_Enum:
632         FixItTagName = "enum ";
633         break;
634 
635       case TTK_Struct:
636         FixItTagName = "struct ";
637         break;
638 
639       case TTK_Interface:
640         FixItTagName = "__interface ";
641         break;
642 
643       case TTK_Union:
644         FixItTagName = "union ";
645         break;
646     }
647 
648     StringRef TagName = FixItTagName.drop_back();
649     SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
650       << Name << TagName << SemaRef.getLangOpts().CPlusPlus
651       << FixItHint::CreateInsertion(NameLoc, FixItTagName);
652 
653     for (LookupResult::iterator I = Result.begin(), IEnd = Result.end();
654          I != IEnd; ++I)
655       SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
656         << Name << TagName;
657 
658     // Replace lookup results with just the tag decl.
659     Result.clear(Sema::LookupTagName);
660     SemaRef.LookupParsedName(Result, S, &SS);
661     return true;
662   }
663 
664   return false;
665 }
666 
667 /// Build a ParsedType for a simple-type-specifier with a nested-name-specifier.
buildNestedType(Sema & S,CXXScopeSpec & SS,QualType T,SourceLocation NameLoc)668 static ParsedType buildNestedType(Sema &S, CXXScopeSpec &SS,
669                                   QualType T, SourceLocation NameLoc) {
670   ASTContext &Context = S.Context;
671 
672   TypeLocBuilder Builder;
673   Builder.pushTypeSpec(T).setNameLoc(NameLoc);
674 
675   T = S.getElaboratedType(ETK_None, SS, T);
676   ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
677   ElabTL.setElaboratedKeywordLoc(SourceLocation());
678   ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
679   return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
680 }
681 
ClassifyName(Scope * S,CXXScopeSpec & SS,IdentifierInfo * & Name,SourceLocation NameLoc,const Token & NextToken,bool IsAddressOfOperand,CorrectionCandidateCallback * CCC)682 Sema::NameClassification Sema::ClassifyName(Scope *S,
683                                             CXXScopeSpec &SS,
684                                             IdentifierInfo *&Name,
685                                             SourceLocation NameLoc,
686                                             const Token &NextToken,
687                                             bool IsAddressOfOperand,
688                                             CorrectionCandidateCallback *CCC) {
689   DeclarationNameInfo NameInfo(Name, NameLoc);
690   ObjCMethodDecl *CurMethod = getCurMethodDecl();
691 
692   if (NextToken.is(tok::coloncolon)) {
693     BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
694                                 QualType(), false, SS, nullptr, false);
695   }
696 
697   LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
698   LookupParsedName(Result, S, &SS, !CurMethod);
699 
700   // For unqualified lookup in a class template in MSVC mode, look into
701   // dependent base classes where the primary class template is known.
702   if (Result.empty() && SS.isEmpty() && getLangOpts().MSVCCompat) {
703     if (ParsedType TypeInBase =
704             recoverFromTypeInKnownDependentBase(*this, *Name, NameLoc))
705       return TypeInBase;
706   }
707 
708   // Perform lookup for Objective-C instance variables (including automatically
709   // synthesized instance variables), if we're in an Objective-C method.
710   // FIXME: This lookup really, really needs to be folded in to the normal
711   // unqualified lookup mechanism.
712   if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
713     ExprResult E = LookupInObjCMethod(Result, S, Name, true);
714     if (E.get() || E.isInvalid())
715       return E;
716   }
717 
718   bool SecondTry = false;
719   bool IsFilteredTemplateName = false;
720 
721 Corrected:
722   switch (Result.getResultKind()) {
723   case LookupResult::NotFound:
724     // If an unqualified-id is followed by a '(', then we have a function
725     // call.
726     if (!SS.isSet() && NextToken.is(tok::l_paren)) {
727       // In C++, this is an ADL-only call.
728       // FIXME: Reference?
729       if (getLangOpts().CPlusPlus)
730         return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
731 
732       // C90 6.3.2.2:
733       //   If the expression that precedes the parenthesized argument list in a
734       //   function call consists solely of an identifier, and if no
735       //   declaration is visible for this identifier, the identifier is
736       //   implicitly declared exactly as if, in the innermost block containing
737       //   the function call, the declaration
738       //
739       //     extern int identifier ();
740       //
741       //   appeared.
742       //
743       // We also allow this in C99 as an extension.
744       if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
745         Result.addDecl(D);
746         Result.resolveKind();
747         return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
748       }
749     }
750 
751     // In C, we first see whether there is a tag type by the same name, in
752     // which case it's likely that the user just forget to write "enum",
753     // "struct", or "union".
754     if (!getLangOpts().CPlusPlus && !SecondTry &&
755         isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
756       break;
757     }
758 
759     // Perform typo correction to determine if there is another name that is
760     // close to this name.
761     if (!SecondTry && CCC) {
762       SecondTry = true;
763       if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
764                                                  Result.getLookupKind(), S,
765                                                  &SS, *CCC,
766                                                  CTK_ErrorRecovery)) {
767         unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
768         unsigned QualifiedDiag = diag::err_no_member_suggest;
769 
770         NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
771         NamedDecl *UnderlyingFirstDecl
772           = FirstDecl? FirstDecl->getUnderlyingDecl() : nullptr;
773         if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
774             UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
775           UnqualifiedDiag = diag::err_no_template_suggest;
776           QualifiedDiag = diag::err_no_member_template_suggest;
777         } else if (UnderlyingFirstDecl &&
778                    (isa<TypeDecl>(UnderlyingFirstDecl) ||
779                     isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
780                     isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
781           UnqualifiedDiag = diag::err_unknown_typename_suggest;
782           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
783         }
784 
785         if (SS.isEmpty()) {
786           diagnoseTypo(Corrected, PDiag(UnqualifiedDiag) << Name);
787         } else {// FIXME: is this even reachable? Test it.
788           std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
789           bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
790                                   Name->getName().equals(CorrectedStr);
791           diagnoseTypo(Corrected, PDiag(QualifiedDiag)
792                                     << Name << computeDeclContext(SS, false)
793                                     << DroppedSpecifier << SS.getRange());
794         }
795 
796         // Update the name, so that the caller has the new name.
797         Name = Corrected.getCorrectionAsIdentifierInfo();
798 
799         // Typo correction corrected to a keyword.
800         if (Corrected.isKeyword())
801           return Name;
802 
803         // Also update the LookupResult...
804         // FIXME: This should probably go away at some point
805         Result.clear();
806         Result.setLookupName(Corrected.getCorrection());
807         if (FirstDecl)
808           Result.addDecl(FirstDecl);
809 
810         // If we found an Objective-C instance variable, let
811         // LookupInObjCMethod build the appropriate expression to
812         // reference the ivar.
813         // FIXME: This is a gross hack.
814         if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
815           Result.clear();
816           ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
817           return E;
818         }
819 
820         goto Corrected;
821       }
822     }
823 
824     // We failed to correct; just fall through and let the parser deal with it.
825     Result.suppressDiagnostics();
826     return NameClassification::Unknown();
827 
828   case LookupResult::NotFoundInCurrentInstantiation: {
829     // We performed name lookup into the current instantiation, and there were
830     // dependent bases, so we treat this result the same way as any other
831     // dependent nested-name-specifier.
832 
833     // C++ [temp.res]p2:
834     //   A name used in a template declaration or definition and that is
835     //   dependent on a template-parameter is assumed not to name a type
836     //   unless the applicable name lookup finds a type name or the name is
837     //   qualified by the keyword typename.
838     //
839     // FIXME: If the next token is '<', we might want to ask the parser to
840     // perform some heroics to see if we actually have a
841     // template-argument-list, which would indicate a missing 'template'
842     // keyword here.
843     return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(),
844                                       NameInfo, IsAddressOfOperand,
845                                       /*TemplateArgs=*/nullptr);
846   }
847 
848   case LookupResult::Found:
849   case LookupResult::FoundOverloaded:
850   case LookupResult::FoundUnresolvedValue:
851     break;
852 
853   case LookupResult::Ambiguous:
854     if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
855         hasAnyAcceptableTemplateNames(Result)) {
856       // C++ [temp.local]p3:
857       //   A lookup that finds an injected-class-name (10.2) can result in an
858       //   ambiguity in certain cases (for example, if it is found in more than
859       //   one base class). If all of the injected-class-names that are found
860       //   refer to specializations of the same class template, and if the name
861       //   is followed by a template-argument-list, the reference refers to the
862       //   class template itself and not a specialization thereof, and is not
863       //   ambiguous.
864       //
865       // This filtering can make an ambiguous result into an unambiguous one,
866       // so try again after filtering out template names.
867       FilterAcceptableTemplateNames(Result);
868       if (!Result.isAmbiguous()) {
869         IsFilteredTemplateName = true;
870         break;
871       }
872     }
873 
874     // Diagnose the ambiguity and return an error.
875     return NameClassification::Error();
876   }
877 
878   if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
879       (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
880     // C++ [temp.names]p3:
881     //   After name lookup (3.4) finds that a name is a template-name or that
882     //   an operator-function-id or a literal- operator-id refers to a set of
883     //   overloaded functions any member of which is a function template if
884     //   this is followed by a <, the < is always taken as the delimiter of a
885     //   template-argument-list and never as the less-than operator.
886     if (!IsFilteredTemplateName)
887       FilterAcceptableTemplateNames(Result);
888 
889     if (!Result.empty()) {
890       bool IsFunctionTemplate;
891       bool IsVarTemplate;
892       TemplateName Template;
893       if (Result.end() - Result.begin() > 1) {
894         IsFunctionTemplate = true;
895         Template = Context.getOverloadedTemplateName(Result.begin(),
896                                                      Result.end());
897       } else {
898         TemplateDecl *TD
899           = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
900         IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
901         IsVarTemplate = isa<VarTemplateDecl>(TD);
902 
903         if (SS.isSet() && !SS.isInvalid())
904           Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
905                                                     /*TemplateKeyword=*/false,
906                                                       TD);
907         else
908           Template = TemplateName(TD);
909       }
910 
911       if (IsFunctionTemplate) {
912         // Function templates always go through overload resolution, at which
913         // point we'll perform the various checks (e.g., accessibility) we need
914         // to based on which function we selected.
915         Result.suppressDiagnostics();
916 
917         return NameClassification::FunctionTemplate(Template);
918       }
919 
920       return IsVarTemplate ? NameClassification::VarTemplate(Template)
921                            : NameClassification::TypeTemplate(Template);
922     }
923   }
924 
925   NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
926   if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
927     DiagnoseUseOfDecl(Type, NameLoc);
928     QualType T = Context.getTypeDeclType(Type);
929     if (SS.isNotEmpty())
930       return buildNestedType(*this, SS, T, NameLoc);
931     return ParsedType::make(T);
932   }
933 
934   ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
935   if (!Class) {
936     // FIXME: It's unfortunate that we don't have a Type node for handling this.
937     if (ObjCCompatibleAliasDecl *Alias =
938             dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
939       Class = Alias->getClassInterface();
940   }
941 
942   if (Class) {
943     DiagnoseUseOfDecl(Class, NameLoc);
944 
945     if (NextToken.is(tok::period)) {
946       // Interface. <something> is parsed as a property reference expression.
947       // Just return "unknown" as a fall-through for now.
948       Result.suppressDiagnostics();
949       return NameClassification::Unknown();
950     }
951 
952     QualType T = Context.getObjCInterfaceType(Class);
953     return ParsedType::make(T);
954   }
955 
956   // We can have a type template here if we're classifying a template argument.
957   if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl))
958     return NameClassification::TypeTemplate(
959         TemplateName(cast<TemplateDecl>(FirstDecl)));
960 
961   // Check for a tag type hidden by a non-type decl in a few cases where it
962   // seems likely a type is wanted instead of the non-type that was found.
963   bool NextIsOp = NextToken.is(tok::amp) || NextToken.is(tok::star);
964   if ((NextToken.is(tok::identifier) ||
965        (NextIsOp &&
966         FirstDecl->getUnderlyingDecl()->isFunctionOrFunctionTemplate())) &&
967       isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
968     TypeDecl *Type = Result.getAsSingle<TypeDecl>();
969     DiagnoseUseOfDecl(Type, NameLoc);
970     QualType T = Context.getTypeDeclType(Type);
971     if (SS.isNotEmpty())
972       return buildNestedType(*this, SS, T, NameLoc);
973     return ParsedType::make(T);
974   }
975 
976   if (FirstDecl->isCXXClassMember())
977     return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result,
978                                            nullptr);
979 
980   bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
981   return BuildDeclarationNameExpr(SS, Result, ADL);
982 }
983 
984 // Determines the context to return to after temporarily entering a
985 // context.  This depends in an unnecessarily complicated way on the
986 // exact ordering of callbacks from the parser.
getContainingDC(DeclContext * DC)987 DeclContext *Sema::getContainingDC(DeclContext *DC) {
988 
989   // Functions defined inline within classes aren't parsed until we've
990   // finished parsing the top-level class, so the top-level class is
991   // the context we'll need to return to.
992   // A Lambda call operator whose parent is a class must not be treated
993   // as an inline member function.  A Lambda can be used legally
994   // either as an in-class member initializer or a default argument.  These
995   // are parsed once the class has been marked complete and so the containing
996   // context would be the nested class (when the lambda is defined in one);
997   // If the class is not complete, then the lambda is being used in an
998   // ill-formed fashion (such as to specify the width of a bit-field, or
999   // in an array-bound) - in which case we still want to return the
1000   // lexically containing DC (which could be a nested class).
1001   if (isa<FunctionDecl>(DC) && !isLambdaCallOperator(DC)) {
1002     DC = DC->getLexicalParent();
1003 
1004     // A function not defined within a class will always return to its
1005     // lexical context.
1006     if (!isa<CXXRecordDecl>(DC))
1007       return DC;
1008 
1009     // A C++ inline method/friend is parsed *after* the topmost class
1010     // it was declared in is fully parsed ("complete");  the topmost
1011     // class is the context we need to return to.
1012     while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
1013       DC = RD;
1014 
1015     // Return the declaration context of the topmost class the inline method is
1016     // declared in.
1017     return DC;
1018   }
1019 
1020   return DC->getLexicalParent();
1021 }
1022 
PushDeclContext(Scope * S,DeclContext * DC)1023 void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
1024   assert(getContainingDC(DC) == CurContext &&
1025       "The next DeclContext should be lexically contained in the current one.");
1026   CurContext = DC;
1027   S->setEntity(DC);
1028 }
1029 
PopDeclContext()1030 void Sema::PopDeclContext() {
1031   assert(CurContext && "DeclContext imbalance!");
1032 
1033   CurContext = getContainingDC(CurContext);
1034   assert(CurContext && "Popped translation unit!");
1035 }
1036 
1037 /// EnterDeclaratorContext - Used when we must lookup names in the context
1038 /// of a declarator's nested name specifier.
1039 ///
EnterDeclaratorContext(Scope * S,DeclContext * DC)1040 void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
1041   // C++0x [basic.lookup.unqual]p13:
1042   //   A name used in the definition of a static data member of class
1043   //   X (after the qualified-id of the static member) is looked up as
1044   //   if the name was used in a member function of X.
1045   // C++0x [basic.lookup.unqual]p14:
1046   //   If a variable member of a namespace is defined outside of the
1047   //   scope of its namespace then any name used in the definition of
1048   //   the variable member (after the declarator-id) is looked up as
1049   //   if the definition of the variable member occurred in its
1050   //   namespace.
1051   // Both of these imply that we should push a scope whose context
1052   // is the semantic context of the declaration.  We can't use
1053   // PushDeclContext here because that context is not necessarily
1054   // lexically contained in the current context.  Fortunately,
1055   // the containing scope should have the appropriate information.
1056 
1057   assert(!S->getEntity() && "scope already has entity");
1058 
1059 #ifndef NDEBUG
1060   Scope *Ancestor = S->getParent();
1061   while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
1062   assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
1063 #endif
1064 
1065   CurContext = DC;
1066   S->setEntity(DC);
1067 }
1068 
ExitDeclaratorContext(Scope * S)1069 void Sema::ExitDeclaratorContext(Scope *S) {
1070   assert(S->getEntity() == CurContext && "Context imbalance!");
1071 
1072   // Switch back to the lexical context.  The safety of this is
1073   // enforced by an assert in EnterDeclaratorContext.
1074   Scope *Ancestor = S->getParent();
1075   while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
1076   CurContext = Ancestor->getEntity();
1077 
1078   // We don't need to do anything with the scope, which is going to
1079   // disappear.
1080 }
1081 
1082 
ActOnReenterFunctionContext(Scope * S,Decl * D)1083 void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
1084   // We assume that the caller has already called
1085   // ActOnReenterTemplateScope so getTemplatedDecl() works.
1086   FunctionDecl *FD = D->getAsFunction();
1087   if (!FD)
1088     return;
1089 
1090   // Same implementation as PushDeclContext, but enters the context
1091   // from the lexical parent, rather than the top-level class.
1092   assert(CurContext == FD->getLexicalParent() &&
1093     "The next DeclContext should be lexically contained in the current one.");
1094   CurContext = FD;
1095   S->setEntity(CurContext);
1096 
1097   for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
1098     ParmVarDecl *Param = FD->getParamDecl(P);
1099     // If the parameter has an identifier, then add it to the scope
1100     if (Param->getIdentifier()) {
1101       S->AddDecl(Param);
1102       IdResolver.AddDecl(Param);
1103     }
1104   }
1105 }
1106 
1107 
ActOnExitFunctionContext()1108 void Sema::ActOnExitFunctionContext() {
1109   // Same implementation as PopDeclContext, but returns to the lexical parent,
1110   // rather than the top-level class.
1111   assert(CurContext && "DeclContext imbalance!");
1112   CurContext = CurContext->getLexicalParent();
1113   assert(CurContext && "Popped translation unit!");
1114 }
1115 
1116 
1117 /// \brief Determine whether we allow overloading of the function
1118 /// PrevDecl with another declaration.
1119 ///
1120 /// This routine determines whether overloading is possible, not
1121 /// whether some new function is actually an overload. It will return
1122 /// true in C++ (where we can always provide overloads) or, as an
1123 /// extension, in C when the previous function is already an
1124 /// overloaded function declaration or has the "overloadable"
1125 /// attribute.
AllowOverloadingOfFunction(LookupResult & Previous,ASTContext & Context)1126 static bool AllowOverloadingOfFunction(LookupResult &Previous,
1127                                        ASTContext &Context) {
1128   if (Context.getLangOpts().CPlusPlus)
1129     return true;
1130 
1131   if (Previous.getResultKind() == LookupResult::FoundOverloaded)
1132     return true;
1133 
1134   return (Previous.getResultKind() == LookupResult::Found
1135           && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
1136 }
1137 
1138 /// Add this decl to the scope shadowed decl chains.
PushOnScopeChains(NamedDecl * D,Scope * S,bool AddToContext)1139 void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
1140   // Move up the scope chain until we find the nearest enclosing
1141   // non-transparent context. The declaration will be introduced into this
1142   // scope.
1143   while (S->getEntity() && S->getEntity()->isTransparentContext())
1144     S = S->getParent();
1145 
1146   // Add scoped declarations into their context, so that they can be
1147   // found later. Declarations without a context won't be inserted
1148   // into any context.
1149   if (AddToContext)
1150     CurContext->addDecl(D);
1151 
1152   // Out-of-line definitions shouldn't be pushed into scope in C++, unless they
1153   // are function-local declarations.
1154   if (getLangOpts().CPlusPlus && D->isOutOfLine() &&
1155       !D->getDeclContext()->getRedeclContext()->Equals(
1156         D->getLexicalDeclContext()->getRedeclContext()) &&
1157       !D->getLexicalDeclContext()->isFunctionOrMethod())
1158     return;
1159 
1160   // Template instantiations should also not be pushed into scope.
1161   if (isa<FunctionDecl>(D) &&
1162       cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
1163     return;
1164 
1165   // If this replaces anything in the current scope,
1166   IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
1167                                IEnd = IdResolver.end();
1168   for (; I != IEnd; ++I) {
1169     if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
1170       S->RemoveDecl(*I);
1171       IdResolver.RemoveDecl(*I);
1172 
1173       // Should only need to replace one decl.
1174       break;
1175     }
1176   }
1177 
1178   S->AddDecl(D);
1179 
1180   if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
1181     // Implicitly-generated labels may end up getting generated in an order that
1182     // isn't strictly lexical, which breaks name lookup. Be careful to insert
1183     // the label at the appropriate place in the identifier chain.
1184     for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
1185       DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
1186       if (IDC == CurContext) {
1187         if (!S->isDeclScope(*I))
1188           continue;
1189       } else if (IDC->Encloses(CurContext))
1190         break;
1191     }
1192 
1193     IdResolver.InsertDeclAfter(I, D);
1194   } else {
1195     IdResolver.AddDecl(D);
1196   }
1197 }
1198 
pushExternalDeclIntoScope(NamedDecl * D,DeclarationName Name)1199 void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
1200   if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope)
1201     TUScope->AddDecl(D);
1202 }
1203 
isDeclInScope(NamedDecl * D,DeclContext * Ctx,Scope * S,bool AllowInlineNamespace)1204 bool Sema::isDeclInScope(NamedDecl *D, DeclContext *Ctx, Scope *S,
1205                          bool AllowInlineNamespace) {
1206   return IdResolver.isDeclInScope(D, Ctx, S, AllowInlineNamespace);
1207 }
1208 
getScopeForDeclContext(Scope * S,DeclContext * DC)1209 Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
1210   DeclContext *TargetDC = DC->getPrimaryContext();
1211   do {
1212     if (DeclContext *ScopeDC = S->getEntity())
1213       if (ScopeDC->getPrimaryContext() == TargetDC)
1214         return S;
1215   } while ((S = S->getParent()));
1216 
1217   return nullptr;
1218 }
1219 
1220 static bool isOutOfScopePreviousDeclaration(NamedDecl *,
1221                                             DeclContext*,
1222                                             ASTContext&);
1223 
1224 /// Filters out lookup results that don't fall within the given scope
1225 /// as determined by isDeclInScope.
FilterLookupForScope(LookupResult & R,DeclContext * Ctx,Scope * S,bool ConsiderLinkage,bool AllowInlineNamespace)1226 void Sema::FilterLookupForScope(LookupResult &R, DeclContext *Ctx, Scope *S,
1227                                 bool ConsiderLinkage,
1228                                 bool AllowInlineNamespace) {
1229   LookupResult::Filter F = R.makeFilter();
1230   while (F.hasNext()) {
1231     NamedDecl *D = F.next();
1232 
1233     if (isDeclInScope(D, Ctx, S, AllowInlineNamespace))
1234       continue;
1235 
1236     if (ConsiderLinkage && isOutOfScopePreviousDeclaration(D, Ctx, Context))
1237       continue;
1238 
1239     F.erase();
1240   }
1241 
1242   F.done();
1243 }
1244 
isUsingDecl(NamedDecl * D)1245 static bool isUsingDecl(NamedDecl *D) {
1246   return isa<UsingShadowDecl>(D) ||
1247          isa<UnresolvedUsingTypenameDecl>(D) ||
1248          isa<UnresolvedUsingValueDecl>(D);
1249 }
1250 
1251 /// Removes using shadow declarations from the lookup results.
RemoveUsingDecls(LookupResult & R)1252 static void RemoveUsingDecls(LookupResult &R) {
1253   LookupResult::Filter F = R.makeFilter();
1254   while (F.hasNext())
1255     if (isUsingDecl(F.next()))
1256       F.erase();
1257 
1258   F.done();
1259 }
1260 
1261 /// \brief Check for this common pattern:
1262 /// @code
1263 /// class S {
1264 ///   S(const S&); // DO NOT IMPLEMENT
1265 ///   void operator=(const S&); // DO NOT IMPLEMENT
1266 /// };
1267 /// @endcode
IsDisallowedCopyOrAssign(const CXXMethodDecl * D)1268 static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1269   // FIXME: Should check for private access too but access is set after we get
1270   // the decl here.
1271   if (D->doesThisDeclarationHaveABody())
1272     return false;
1273 
1274   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1275     return CD->isCopyConstructor();
1276   if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
1277     return Method->isCopyAssignmentOperator();
1278   return false;
1279 }
1280 
1281 // We need this to handle
1282 //
1283 // typedef struct {
1284 //   void *foo() { return 0; }
1285 // } A;
1286 //
1287 // When we see foo we don't know if after the typedef we will get 'A' or '*A'
1288 // for example. If 'A', foo will have external linkage. If we have '*A',
1289 // foo will have no linkage. Since we can't know until we get to the end
1290 // of the typedef, this function finds out if D might have non-external linkage.
1291 // Callers should verify at the end of the TU if it D has external linkage or
1292 // not.
mightHaveNonExternalLinkage(const DeclaratorDecl * D)1293 bool Sema::mightHaveNonExternalLinkage(const DeclaratorDecl *D) {
1294   const DeclContext *DC = D->getDeclContext();
1295   while (!DC->isTranslationUnit()) {
1296     if (const RecordDecl *RD = dyn_cast<RecordDecl>(DC)){
1297       if (!RD->hasNameForLinkage())
1298         return true;
1299     }
1300     DC = DC->getParent();
1301   }
1302 
1303   return !D->isExternallyVisible();
1304 }
1305 
1306 // FIXME: This needs to be refactored; some other isInMainFile users want
1307 // these semantics.
isMainFileLoc(const Sema & S,SourceLocation Loc)1308 static bool isMainFileLoc(const Sema &S, SourceLocation Loc) {
1309   if (S.TUKind != TU_Complete)
1310     return false;
1311   return S.SourceMgr.isInMainFile(Loc);
1312 }
1313 
ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl * D) const1314 bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1315   assert(D);
1316 
1317   if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1318     return false;
1319 
1320   // Ignore all entities declared within templates, and out-of-line definitions
1321   // of members of class templates.
1322   if (D->getDeclContext()->isDependentContext() ||
1323       D->getLexicalDeclContext()->isDependentContext())
1324     return false;
1325 
1326   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1327     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1328       return false;
1329 
1330     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1331       if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1332         return false;
1333     } else {
1334       // 'static inline' functions are defined in headers; don't warn.
1335       if (FD->isInlined() && !isMainFileLoc(*this, FD->getLocation()))
1336         return false;
1337     }
1338 
1339     if (FD->doesThisDeclarationHaveABody() &&
1340         Context.DeclMustBeEmitted(FD))
1341       return false;
1342   } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1343     // Constants and utility variables are defined in headers with internal
1344     // linkage; don't warn.  (Unlike functions, there isn't a convenient marker
1345     // like "inline".)
1346     if (!isMainFileLoc(*this, VD->getLocation()))
1347       return false;
1348 
1349     if (Context.DeclMustBeEmitted(VD))
1350       return false;
1351 
1352     if (VD->isStaticDataMember() &&
1353         VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1354       return false;
1355   } else {
1356     return false;
1357   }
1358 
1359   // Only warn for unused decls internal to the translation unit.
1360   // FIXME: This seems like a bogus check; it suppresses -Wunused-function
1361   // for inline functions defined in the main source file, for instance.
1362   return mightHaveNonExternalLinkage(D);
1363 }
1364 
MarkUnusedFileScopedDecl(const DeclaratorDecl * D)1365 void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1366   if (!D)
1367     return;
1368 
1369   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1370     const FunctionDecl *First = FD->getFirstDecl();
1371     if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1372       return; // First should already be in the vector.
1373   }
1374 
1375   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1376     const VarDecl *First = VD->getFirstDecl();
1377     if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1378       return; // First should already be in the vector.
1379   }
1380 
1381   if (ShouldWarnIfUnusedFileScopedDecl(D))
1382     UnusedFileScopedDecls.push_back(D);
1383 }
1384 
ShouldDiagnoseUnusedDecl(const NamedDecl * D)1385 static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1386   if (D->isInvalidDecl())
1387     return false;
1388 
1389   if (D->isReferenced() || D->isUsed() || D->hasAttr<UnusedAttr>() ||
1390       D->hasAttr<ObjCPreciseLifetimeAttr>())
1391     return false;
1392 
1393   if (isa<LabelDecl>(D))
1394     return true;
1395 
1396   // White-list anything that isn't a local variable.
1397   if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1398       !D->getDeclContext()->isFunctionOrMethod())
1399     return false;
1400 
1401   // Types of valid local variables should be complete, so this should succeed.
1402   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1403 
1404     // White-list anything with an __attribute__((unused)) type.
1405     QualType Ty = VD->getType();
1406 
1407     // Only look at the outermost level of typedef.
1408     if (const TypedefType *TT = Ty->getAs<TypedefType>()) {
1409       if (TT->getDecl()->hasAttr<UnusedAttr>())
1410         return false;
1411     }
1412 
1413     // If we failed to complete the type for some reason, or if the type is
1414     // dependent, don't diagnose the variable.
1415     if (Ty->isIncompleteType() || Ty->isDependentType())
1416       return false;
1417 
1418     if (const TagType *TT = Ty->getAs<TagType>()) {
1419       const TagDecl *Tag = TT->getDecl();
1420       if (Tag->hasAttr<UnusedAttr>())
1421         return false;
1422 
1423       if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1424         if (!RD->hasTrivialDestructor() && !RD->hasAttr<WarnUnusedAttr>())
1425           return false;
1426 
1427         if (const Expr *Init = VD->getInit()) {
1428           if (const ExprWithCleanups *Cleanups =
1429                   dyn_cast<ExprWithCleanups>(Init))
1430             Init = Cleanups->getSubExpr();
1431           const CXXConstructExpr *Construct =
1432             dyn_cast<CXXConstructExpr>(Init);
1433           if (Construct && !Construct->isElidable()) {
1434             CXXConstructorDecl *CD = Construct->getConstructor();
1435             if (!CD->isTrivial() && !RD->hasAttr<WarnUnusedAttr>())
1436               return false;
1437           }
1438         }
1439       }
1440     }
1441 
1442     // TODO: __attribute__((unused)) templates?
1443   }
1444 
1445   return true;
1446 }
1447 
GenerateFixForUnusedDecl(const NamedDecl * D,ASTContext & Ctx,FixItHint & Hint)1448 static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1449                                      FixItHint &Hint) {
1450   if (isa<LabelDecl>(D)) {
1451     SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1452                 tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(), true);
1453     if (AfterColon.isInvalid())
1454       return;
1455     Hint = FixItHint::CreateRemoval(CharSourceRange::
1456                                     getCharRange(D->getLocStart(), AfterColon));
1457   }
1458   return;
1459 }
1460 
1461 /// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1462 /// unless they are marked attr(unused).
DiagnoseUnusedDecl(const NamedDecl * D)1463 void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1464   if (!ShouldDiagnoseUnusedDecl(D))
1465     return;
1466 
1467   FixItHint Hint;
1468   GenerateFixForUnusedDecl(D, Context, Hint);
1469 
1470   unsigned DiagID;
1471   if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1472     DiagID = diag::warn_unused_exception_param;
1473   else if (isa<LabelDecl>(D))
1474     DiagID = diag::warn_unused_label;
1475   else
1476     DiagID = diag::warn_unused_variable;
1477 
1478   Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
1479 }
1480 
CheckPoppedLabel(LabelDecl * L,Sema & S)1481 static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1482   // Verify that we have no forward references left.  If so, there was a goto
1483   // or address of a label taken, but no definition of it.  Label fwd
1484   // definitions are indicated with a null substmt.
1485   if (L->getStmt() == nullptr)
1486     S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1487 }
1488 
ActOnPopScope(SourceLocation Loc,Scope * S)1489 void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1490   S->mergeNRVOIntoParent();
1491 
1492   if (S->decl_empty()) return;
1493   assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1494          "Scope shouldn't contain decls!");
1495 
1496   for (auto *TmpD : S->decls()) {
1497     assert(TmpD && "This decl didn't get pushed??");
1498 
1499     assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1500     NamedDecl *D = cast<NamedDecl>(TmpD);
1501 
1502     if (!D->getDeclName()) continue;
1503 
1504     // Diagnose unused variables in this scope.
1505     if (!S->hasUnrecoverableErrorOccurred())
1506       DiagnoseUnusedDecl(D);
1507 
1508     // If this was a forward reference to a label, verify it was defined.
1509     if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1510       CheckPoppedLabel(LD, *this);
1511 
1512     // Remove this name from our lexical scope.
1513     IdResolver.RemoveDecl(D);
1514   }
1515 }
1516 
1517 /// \brief Look for an Objective-C class in the translation unit.
1518 ///
1519 /// \param Id The name of the Objective-C class we're looking for. If
1520 /// typo-correction fixes this name, the Id will be updated
1521 /// to the fixed name.
1522 ///
1523 /// \param IdLoc The location of the name in the translation unit.
1524 ///
1525 /// \param DoTypoCorrection If true, this routine will attempt typo correction
1526 /// if there is no class with the given name.
1527 ///
1528 /// \returns The declaration of the named Objective-C class, or NULL if the
1529 /// class could not be found.
getObjCInterfaceDecl(IdentifierInfo * & Id,SourceLocation IdLoc,bool DoTypoCorrection)1530 ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1531                                               SourceLocation IdLoc,
1532                                               bool DoTypoCorrection) {
1533   // The third "scope" argument is 0 since we aren't enabling lazy built-in
1534   // creation from this context.
1535   NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1536 
1537   if (!IDecl && DoTypoCorrection) {
1538     // Perform typo correction at the given location, but only if we
1539     // find an Objective-C class name.
1540     DeclFilterCCC<ObjCInterfaceDecl> Validator;
1541     if (TypoCorrection C = CorrectTypo(DeclarationNameInfo(Id, IdLoc),
1542                                        LookupOrdinaryName, TUScope, nullptr,
1543                                        Validator, CTK_ErrorRecovery)) {
1544       diagnoseTypo(C, PDiag(diag::err_undef_interface_suggest) << Id);
1545       IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
1546       Id = IDecl->getIdentifier();
1547     }
1548   }
1549   ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1550   // This routine must always return a class definition, if any.
1551   if (Def && Def->getDefinition())
1552       Def = Def->getDefinition();
1553   return Def;
1554 }
1555 
1556 /// getNonFieldDeclScope - Retrieves the innermost scope, starting
1557 /// from S, where a non-field would be declared. This routine copes
1558 /// with the difference between C and C++ scoping rules in structs and
1559 /// unions. For example, the following code is well-formed in C but
1560 /// ill-formed in C++:
1561 /// @code
1562 /// struct S6 {
1563 ///   enum { BAR } e;
1564 /// };
1565 ///
1566 /// void test_S6() {
1567 ///   struct S6 a;
1568 ///   a.e = BAR;
1569 /// }
1570 /// @endcode
1571 /// For the declaration of BAR, this routine will return a different
1572 /// scope. The scope S will be the scope of the unnamed enumeration
1573 /// within S6. In C++, this routine will return the scope associated
1574 /// with S6, because the enumeration's scope is a transparent
1575 /// context but structures can contain non-field names. In C, this
1576 /// routine will return the translation unit scope, since the
1577 /// enumeration's scope is a transparent context and structures cannot
1578 /// contain non-field names.
getNonFieldDeclScope(Scope * S)1579 Scope *Sema::getNonFieldDeclScope(Scope *S) {
1580   while (((S->getFlags() & Scope::DeclScope) == 0) ||
1581          (S->getEntity() && S->getEntity()->isTransparentContext()) ||
1582          (S->isClassScope() && !getLangOpts().CPlusPlus))
1583     S = S->getParent();
1584   return S;
1585 }
1586 
1587 /// \brief Looks up the declaration of "struct objc_super" and
1588 /// saves it for later use in building builtin declaration of
1589 /// objc_msgSendSuper and objc_msgSendSuper_stret. If no such
1590 /// pre-existing declaration exists no action takes place.
LookupPredefedObjCSuperType(Sema & ThisSema,Scope * S,IdentifierInfo * II)1591 static void LookupPredefedObjCSuperType(Sema &ThisSema, Scope *S,
1592                                         IdentifierInfo *II) {
1593   if (!II->isStr("objc_msgSendSuper"))
1594     return;
1595   ASTContext &Context = ThisSema.Context;
1596 
1597   LookupResult Result(ThisSema, &Context.Idents.get("objc_super"),
1598                       SourceLocation(), Sema::LookupTagName);
1599   ThisSema.LookupName(Result, S);
1600   if (Result.getResultKind() == LookupResult::Found)
1601     if (const TagDecl *TD = Result.getAsSingle<TagDecl>())
1602       Context.setObjCSuperType(Context.getTagDeclType(TD));
1603 }
1604 
1605 /// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1606 /// file scope.  lazily create a decl for it. ForRedeclaration is true
1607 /// if we're creating this built-in in anticipation of redeclaring the
1608 /// built-in.
LazilyCreateBuiltin(IdentifierInfo * II,unsigned bid,Scope * S,bool ForRedeclaration,SourceLocation Loc)1609 NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1610                                      Scope *S, bool ForRedeclaration,
1611                                      SourceLocation Loc) {
1612   LookupPredefedObjCSuperType(*this, S, II);
1613 
1614   Builtin::ID BID = (Builtin::ID)bid;
1615 
1616   ASTContext::GetBuiltinTypeError Error;
1617   QualType R = Context.GetBuiltinType(BID, Error);
1618   switch (Error) {
1619   case ASTContext::GE_None:
1620     // Okay
1621     break;
1622 
1623   case ASTContext::GE_Missing_stdio:
1624     if (ForRedeclaration)
1625       Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1626         << Context.BuiltinInfo.GetName(BID);
1627     return nullptr;
1628 
1629   case ASTContext::GE_Missing_setjmp:
1630     if (ForRedeclaration)
1631       Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1632         << Context.BuiltinInfo.GetName(BID);
1633     return nullptr;
1634 
1635   case ASTContext::GE_Missing_ucontext:
1636     if (ForRedeclaration)
1637       Diag(Loc, diag::warn_implicit_decl_requires_ucontext)
1638         << Context.BuiltinInfo.GetName(BID);
1639     return nullptr;
1640   }
1641 
1642   if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1643     Diag(Loc, diag::ext_implicit_lib_function_decl)
1644       << Context.BuiltinInfo.GetName(BID)
1645       << R;
1646     if (Context.BuiltinInfo.getHeaderName(BID) &&
1647         !Diags.isIgnored(diag::ext_implicit_lib_function_decl, Loc))
1648       Diag(Loc, diag::note_please_include_header)
1649         << Context.BuiltinInfo.getHeaderName(BID)
1650         << Context.BuiltinInfo.GetName(BID);
1651   }
1652 
1653   DeclContext *Parent = Context.getTranslationUnitDecl();
1654   if (getLangOpts().CPlusPlus) {
1655     LinkageSpecDecl *CLinkageDecl =
1656         LinkageSpecDecl::Create(Context, Parent, Loc, Loc,
1657                                 LinkageSpecDecl::lang_c, false);
1658     CLinkageDecl->setImplicit();
1659     Parent->addDecl(CLinkageDecl);
1660     Parent = CLinkageDecl;
1661   }
1662 
1663   FunctionDecl *New = FunctionDecl::Create(Context,
1664                                            Parent,
1665                                            Loc, Loc, II, R, /*TInfo=*/nullptr,
1666                                            SC_Extern,
1667                                            false,
1668                                            /*hasPrototype=*/true);
1669   New->setImplicit();
1670 
1671   // Create Decl objects for each parameter, adding them to the
1672   // FunctionDecl.
1673   if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1674     SmallVector<ParmVarDecl*, 16> Params;
1675     for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1676       ParmVarDecl *parm =
1677           ParmVarDecl::Create(Context, New, SourceLocation(), SourceLocation(),
1678                               nullptr, FT->getParamType(i), /*TInfo=*/nullptr,
1679                               SC_None, nullptr);
1680       parm->setScopeInfo(0, i);
1681       Params.push_back(parm);
1682     }
1683     New->setParams(Params);
1684   }
1685 
1686   AddKnownFunctionAttributes(New);
1687   RegisterLocallyScopedExternCDecl(New, S);
1688 
1689   // TUScope is the translation-unit scope to insert this function into.
1690   // FIXME: This is hideous. We need to teach PushOnScopeChains to
1691   // relate Scopes to DeclContexts, and probably eliminate CurContext
1692   // entirely, but we're not there yet.
1693   DeclContext *SavedContext = CurContext;
1694   CurContext = Parent;
1695   PushOnScopeChains(New, TUScope);
1696   CurContext = SavedContext;
1697   return New;
1698 }
1699 
1700 /// \brief Filter out any previous declarations that the given declaration
1701 /// should not consider because they are not permitted to conflict, e.g.,
1702 /// because they come from hidden sub-modules and do not refer to the same
1703 /// entity.
filterNonConflictingPreviousDecls(ASTContext & context,NamedDecl * decl,LookupResult & previous)1704 static void filterNonConflictingPreviousDecls(ASTContext &context,
1705                                               NamedDecl *decl,
1706                                               LookupResult &previous){
1707   // This is only interesting when modules are enabled.
1708   if (!context.getLangOpts().Modules)
1709     return;
1710 
1711   // Empty sets are uninteresting.
1712   if (previous.empty())
1713     return;
1714 
1715   LookupResult::Filter filter = previous.makeFilter();
1716   while (filter.hasNext()) {
1717     NamedDecl *old = filter.next();
1718 
1719     // Non-hidden declarations are never ignored.
1720     if (!old->isHidden())
1721       continue;
1722 
1723     if (!old->isExternallyVisible())
1724       filter.erase();
1725   }
1726 
1727   filter.done();
1728 }
1729 
isIncompatibleTypedef(TypeDecl * Old,TypedefNameDecl * New)1730 bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
1731   QualType OldType;
1732   if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1733     OldType = OldTypedef->getUnderlyingType();
1734   else
1735     OldType = Context.getTypeDeclType(Old);
1736   QualType NewType = New->getUnderlyingType();
1737 
1738   if (NewType->isVariablyModifiedType()) {
1739     // Must not redefine a typedef with a variably-modified type.
1740     int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1741     Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
1742       << Kind << NewType;
1743     if (Old->getLocation().isValid())
1744       Diag(Old->getLocation(), diag::note_previous_definition);
1745     New->setInvalidDecl();
1746     return true;
1747   }
1748 
1749   if (OldType != NewType &&
1750       !OldType->isDependentType() &&
1751       !NewType->isDependentType() &&
1752       !Context.hasSameType(OldType, NewType)) {
1753     int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1754     Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1755       << Kind << NewType << OldType;
1756     if (Old->getLocation().isValid())
1757       Diag(Old->getLocation(), diag::note_previous_definition);
1758     New->setInvalidDecl();
1759     return true;
1760   }
1761   return false;
1762 }
1763 
1764 /// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1765 /// same name and scope as a previous declaration 'Old'.  Figure out
1766 /// how to resolve this situation, merging decls or emitting
1767 /// diagnostics as appropriate. If there was an error, set New to be invalid.
1768 ///
MergeTypedefNameDecl(TypedefNameDecl * New,LookupResult & OldDecls)1769 void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1770   // If the new decl is known invalid already, don't bother doing any
1771   // merging checks.
1772   if (New->isInvalidDecl()) return;
1773 
1774   // Allow multiple definitions for ObjC built-in typedefs.
1775   // FIXME: Verify the underlying types are equivalent!
1776   if (getLangOpts().ObjC1) {
1777     const IdentifierInfo *TypeID = New->getIdentifier();
1778     switch (TypeID->getLength()) {
1779     default: break;
1780     case 2:
1781       {
1782         if (!TypeID->isStr("id"))
1783           break;
1784         QualType T = New->getUnderlyingType();
1785         if (!T->isPointerType())
1786           break;
1787         if (!T->isVoidPointerType()) {
1788           QualType PT = T->getAs<PointerType>()->getPointeeType();
1789           if (!PT->isStructureType())
1790             break;
1791         }
1792         Context.setObjCIdRedefinitionType(T);
1793         // Install the built-in type for 'id', ignoring the current definition.
1794         New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1795         return;
1796       }
1797     case 5:
1798       if (!TypeID->isStr("Class"))
1799         break;
1800       Context.setObjCClassRedefinitionType(New->getUnderlyingType());
1801       // Install the built-in type for 'Class', ignoring the current definition.
1802       New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1803       return;
1804     case 3:
1805       if (!TypeID->isStr("SEL"))
1806         break;
1807       Context.setObjCSelRedefinitionType(New->getUnderlyingType());
1808       // Install the built-in type for 'SEL', ignoring the current definition.
1809       New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1810       return;
1811     }
1812     // Fall through - the typedef name was not a builtin type.
1813   }
1814 
1815   // Verify the old decl was also a type.
1816   TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1817   if (!Old) {
1818     Diag(New->getLocation(), diag::err_redefinition_different_kind)
1819       << New->getDeclName();
1820 
1821     NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1822     if (OldD->getLocation().isValid())
1823       Diag(OldD->getLocation(), diag::note_previous_definition);
1824 
1825     return New->setInvalidDecl();
1826   }
1827 
1828   // If the old declaration is invalid, just give up here.
1829   if (Old->isInvalidDecl())
1830     return New->setInvalidDecl();
1831 
1832   // If the typedef types are not identical, reject them in all languages and
1833   // with any extensions enabled.
1834   if (isIncompatibleTypedef(Old, New))
1835     return;
1836 
1837   // The types match.  Link up the redeclaration chain and merge attributes if
1838   // the old declaration was a typedef.
1839   if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old)) {
1840     New->setPreviousDecl(Typedef);
1841     mergeDeclAttributes(New, Old);
1842   }
1843 
1844   if (getLangOpts().MicrosoftExt)
1845     return;
1846 
1847   if (getLangOpts().CPlusPlus) {
1848     // C++ [dcl.typedef]p2:
1849     //   In a given non-class scope, a typedef specifier can be used to
1850     //   redefine the name of any type declared in that scope to refer
1851     //   to the type to which it already refers.
1852     if (!isa<CXXRecordDecl>(CurContext))
1853       return;
1854 
1855     // C++0x [dcl.typedef]p4:
1856     //   In a given class scope, a typedef specifier can be used to redefine
1857     //   any class-name declared in that scope that is not also a typedef-name
1858     //   to refer to the type to which it already refers.
1859     //
1860     // This wording came in via DR424, which was a correction to the
1861     // wording in DR56, which accidentally banned code like:
1862     //
1863     //   struct S {
1864     //     typedef struct A { } A;
1865     //   };
1866     //
1867     // in the C++03 standard. We implement the C++0x semantics, which
1868     // allow the above but disallow
1869     //
1870     //   struct S {
1871     //     typedef int I;
1872     //     typedef int I;
1873     //   };
1874     //
1875     // since that was the intent of DR56.
1876     if (!isa<TypedefNameDecl>(Old))
1877       return;
1878 
1879     Diag(New->getLocation(), diag::err_redefinition)
1880       << New->getDeclName();
1881     Diag(Old->getLocation(), diag::note_previous_definition);
1882     return New->setInvalidDecl();
1883   }
1884 
1885   // Modules always permit redefinition of typedefs, as does C11.
1886   if (getLangOpts().Modules || getLangOpts().C11)
1887     return;
1888 
1889   // If we have a redefinition of a typedef in C, emit a warning.  This warning
1890   // is normally mapped to an error, but can be controlled with
1891   // -Wtypedef-redefinition.  If either the original or the redefinition is
1892   // in a system header, don't emit this for compatibility with GCC.
1893   if (getDiagnostics().getSuppressSystemWarnings() &&
1894       (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1895        Context.getSourceManager().isInSystemHeader(New->getLocation())))
1896     return;
1897 
1898   Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1899     << New->getDeclName();
1900   Diag(Old->getLocation(), diag::note_previous_definition);
1901   return;
1902 }
1903 
1904 /// DeclhasAttr - returns true if decl Declaration already has the target
1905 /// attribute.
DeclHasAttr(const Decl * D,const Attr * A)1906 static bool DeclHasAttr(const Decl *D, const Attr *A) {
1907   const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1908   const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
1909   for (const auto *i : D->attrs())
1910     if (i->getKind() == A->getKind()) {
1911       if (Ann) {
1912         if (Ann->getAnnotation() == cast<AnnotateAttr>(i)->getAnnotation())
1913           return true;
1914         continue;
1915       }
1916       // FIXME: Don't hardcode this check
1917       if (OA && isa<OwnershipAttr>(i))
1918         return OA->getOwnKind() == cast<OwnershipAttr>(i)->getOwnKind();
1919       return true;
1920     }
1921 
1922   return false;
1923 }
1924 
isAttributeTargetADefinition(Decl * D)1925 static bool isAttributeTargetADefinition(Decl *D) {
1926   if (VarDecl *VD = dyn_cast<VarDecl>(D))
1927     return VD->isThisDeclarationADefinition();
1928   if (TagDecl *TD = dyn_cast<TagDecl>(D))
1929     return TD->isCompleteDefinition() || TD->isBeingDefined();
1930   return true;
1931 }
1932 
1933 /// Merge alignment attributes from \p Old to \p New, taking into account the
1934 /// special semantics of C11's _Alignas specifier and C++11's alignas attribute.
1935 ///
1936 /// \return \c true if any attributes were added to \p New.
mergeAlignedAttrs(Sema & S,NamedDecl * New,Decl * Old)1937 static bool mergeAlignedAttrs(Sema &S, NamedDecl *New, Decl *Old) {
1938   // Look for alignas attributes on Old, and pick out whichever attribute
1939   // specifies the strictest alignment requirement.
1940   AlignedAttr *OldAlignasAttr = nullptr;
1941   AlignedAttr *OldStrictestAlignAttr = nullptr;
1942   unsigned OldAlign = 0;
1943   for (auto *I : Old->specific_attrs<AlignedAttr>()) {
1944     // FIXME: We have no way of representing inherited dependent alignments
1945     // in a case like:
1946     //   template<int A, int B> struct alignas(A) X;
1947     //   template<int A, int B> struct alignas(B) X {};
1948     // For now, we just ignore any alignas attributes which are not on the
1949     // definition in such a case.
1950     if (I->isAlignmentDependent())
1951       return false;
1952 
1953     if (I->isAlignas())
1954       OldAlignasAttr = I;
1955 
1956     unsigned Align = I->getAlignment(S.Context);
1957     if (Align > OldAlign) {
1958       OldAlign = Align;
1959       OldStrictestAlignAttr = I;
1960     }
1961   }
1962 
1963   // Look for alignas attributes on New.
1964   AlignedAttr *NewAlignasAttr = nullptr;
1965   unsigned NewAlign = 0;
1966   for (auto *I : New->specific_attrs<AlignedAttr>()) {
1967     if (I->isAlignmentDependent())
1968       return false;
1969 
1970     if (I->isAlignas())
1971       NewAlignasAttr = I;
1972 
1973     unsigned Align = I->getAlignment(S.Context);
1974     if (Align > NewAlign)
1975       NewAlign = Align;
1976   }
1977 
1978   if (OldAlignasAttr && NewAlignasAttr && OldAlign != NewAlign) {
1979     // Both declarations have 'alignas' attributes. We require them to match.
1980     // C++11 [dcl.align]p6 and C11 6.7.5/7 both come close to saying this, but
1981     // fall short. (If two declarations both have alignas, they must both match
1982     // every definition, and so must match each other if there is a definition.)
1983 
1984     // If either declaration only contains 'alignas(0)' specifiers, then it
1985     // specifies the natural alignment for the type.
1986     if (OldAlign == 0 || NewAlign == 0) {
1987       QualType Ty;
1988       if (ValueDecl *VD = dyn_cast<ValueDecl>(New))
1989         Ty = VD->getType();
1990       else
1991         Ty = S.Context.getTagDeclType(cast<TagDecl>(New));
1992 
1993       if (OldAlign == 0)
1994         OldAlign = S.Context.getTypeAlign(Ty);
1995       if (NewAlign == 0)
1996         NewAlign = S.Context.getTypeAlign(Ty);
1997     }
1998 
1999     if (OldAlign != NewAlign) {
2000       S.Diag(NewAlignasAttr->getLocation(), diag::err_alignas_mismatch)
2001         << (unsigned)S.Context.toCharUnitsFromBits(OldAlign).getQuantity()
2002         << (unsigned)S.Context.toCharUnitsFromBits(NewAlign).getQuantity();
2003       S.Diag(OldAlignasAttr->getLocation(), diag::note_previous_declaration);
2004     }
2005   }
2006 
2007   if (OldAlignasAttr && !NewAlignasAttr && isAttributeTargetADefinition(New)) {
2008     // C++11 [dcl.align]p6:
2009     //   if any declaration of an entity has an alignment-specifier,
2010     //   every defining declaration of that entity shall specify an
2011     //   equivalent alignment.
2012     // C11 6.7.5/7:
2013     //   If the definition of an object does not have an alignment
2014     //   specifier, any other declaration of that object shall also
2015     //   have no alignment specifier.
2016     S.Diag(New->getLocation(), diag::err_alignas_missing_on_definition)
2017       << OldAlignasAttr;
2018     S.Diag(OldAlignasAttr->getLocation(), diag::note_alignas_on_declaration)
2019       << OldAlignasAttr;
2020   }
2021 
2022   bool AnyAdded = false;
2023 
2024   // Ensure we have an attribute representing the strictest alignment.
2025   if (OldAlign > NewAlign) {
2026     AlignedAttr *Clone = OldStrictestAlignAttr->clone(S.Context);
2027     Clone->setInherited(true);
2028     New->addAttr(Clone);
2029     AnyAdded = true;
2030   }
2031 
2032   // Ensure we have an alignas attribute if the old declaration had one.
2033   if (OldAlignasAttr && !NewAlignasAttr &&
2034       !(AnyAdded && OldStrictestAlignAttr->isAlignas())) {
2035     AlignedAttr *Clone = OldAlignasAttr->clone(S.Context);
2036     Clone->setInherited(true);
2037     New->addAttr(Clone);
2038     AnyAdded = true;
2039   }
2040 
2041   return AnyAdded;
2042 }
2043 
mergeDeclAttribute(Sema & S,NamedDecl * D,const InheritableAttr * Attr,bool Override)2044 static bool mergeDeclAttribute(Sema &S, NamedDecl *D,
2045                                const InheritableAttr *Attr, bool Override) {
2046   InheritableAttr *NewAttr = nullptr;
2047   unsigned AttrSpellingListIndex = Attr->getSpellingListIndex();
2048   if (const auto *AA = dyn_cast<AvailabilityAttr>(Attr))
2049     NewAttr = S.mergeAvailabilityAttr(D, AA->getRange(), AA->getPlatform(),
2050                                       AA->getIntroduced(), AA->getDeprecated(),
2051                                       AA->getObsoleted(), AA->getUnavailable(),
2052                                       AA->getMessage(), Override,
2053                                       AttrSpellingListIndex);
2054   else if (const auto *VA = dyn_cast<VisibilityAttr>(Attr))
2055     NewAttr = S.mergeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
2056                                     AttrSpellingListIndex);
2057   else if (const auto *VA = dyn_cast<TypeVisibilityAttr>(Attr))
2058     NewAttr = S.mergeTypeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
2059                                         AttrSpellingListIndex);
2060   else if (const auto *ImportA = dyn_cast<DLLImportAttr>(Attr))
2061     NewAttr = S.mergeDLLImportAttr(D, ImportA->getRange(),
2062                                    AttrSpellingListIndex);
2063   else if (const auto *ExportA = dyn_cast<DLLExportAttr>(Attr))
2064     NewAttr = S.mergeDLLExportAttr(D, ExportA->getRange(),
2065                                    AttrSpellingListIndex);
2066   else if (const auto *FA = dyn_cast<FormatAttr>(Attr))
2067     NewAttr = S.mergeFormatAttr(D, FA->getRange(), FA->getType(),
2068                                 FA->getFormatIdx(), FA->getFirstArg(),
2069                                 AttrSpellingListIndex);
2070   else if (const auto *SA = dyn_cast<SectionAttr>(Attr))
2071     NewAttr = S.mergeSectionAttr(D, SA->getRange(), SA->getName(),
2072                                  AttrSpellingListIndex);
2073   else if (const auto *IA = dyn_cast<MSInheritanceAttr>(Attr))
2074     NewAttr = S.mergeMSInheritanceAttr(D, IA->getRange(), IA->getBestCase(),
2075                                        AttrSpellingListIndex,
2076                                        IA->getSemanticSpelling());
2077   else if (isa<AlignedAttr>(Attr))
2078     // AlignedAttrs are handled separately, because we need to handle all
2079     // such attributes on a declaration at the same time.
2080     NewAttr = nullptr;
2081   else if (Attr->duplicatesAllowed() || !DeclHasAttr(D, Attr))
2082     NewAttr = cast<InheritableAttr>(Attr->clone(S.Context));
2083 
2084   if (NewAttr) {
2085     NewAttr->setInherited(true);
2086     D->addAttr(NewAttr);
2087     return true;
2088   }
2089 
2090   return false;
2091 }
2092 
getDefinition(const Decl * D)2093 static const Decl *getDefinition(const Decl *D) {
2094   if (const TagDecl *TD = dyn_cast<TagDecl>(D))
2095     return TD->getDefinition();
2096   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
2097     const VarDecl *Def = VD->getDefinition();
2098     if (Def)
2099       return Def;
2100     return VD->getActingDefinition();
2101   }
2102   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2103     const FunctionDecl* Def;
2104     if (FD->isDefined(Def))
2105       return Def;
2106   }
2107   return nullptr;
2108 }
2109 
hasAttribute(const Decl * D,attr::Kind Kind)2110 static bool hasAttribute(const Decl *D, attr::Kind Kind) {
2111   for (const auto *Attribute : D->attrs())
2112     if (Attribute->getKind() == Kind)
2113       return true;
2114   return false;
2115 }
2116 
2117 /// checkNewAttributesAfterDef - If we already have a definition, check that
2118 /// there are no new attributes in this declaration.
checkNewAttributesAfterDef(Sema & S,Decl * New,const Decl * Old)2119 static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) {
2120   if (!New->hasAttrs())
2121     return;
2122 
2123   const Decl *Def = getDefinition(Old);
2124   if (!Def || Def == New)
2125     return;
2126 
2127   AttrVec &NewAttributes = New->getAttrs();
2128   for (unsigned I = 0, E = NewAttributes.size(); I != E;) {
2129     const Attr *NewAttribute = NewAttributes[I];
2130 
2131     if (isa<AliasAttr>(NewAttribute)) {
2132       if (FunctionDecl *FD = dyn_cast<FunctionDecl>(New))
2133         S.CheckForFunctionRedefinition(FD, cast<FunctionDecl>(Def));
2134       else {
2135         VarDecl *VD = cast<VarDecl>(New);
2136         unsigned Diag = cast<VarDecl>(Def)->isThisDeclarationADefinition() ==
2137                                 VarDecl::TentativeDefinition
2138                             ? diag::err_alias_after_tentative
2139                             : diag::err_redefinition;
2140         S.Diag(VD->getLocation(), Diag) << VD->getDeclName();
2141         S.Diag(Def->getLocation(), diag::note_previous_definition);
2142         VD->setInvalidDecl();
2143       }
2144       ++I;
2145       continue;
2146     }
2147 
2148     if (const VarDecl *VD = dyn_cast<VarDecl>(Def)) {
2149       // Tentative definitions are only interesting for the alias check above.
2150       if (VD->isThisDeclarationADefinition() != VarDecl::Definition) {
2151         ++I;
2152         continue;
2153       }
2154     }
2155 
2156     if (hasAttribute(Def, NewAttribute->getKind())) {
2157       ++I;
2158       continue; // regular attr merging will take care of validating this.
2159     }
2160 
2161     if (isa<C11NoReturnAttr>(NewAttribute)) {
2162       // C's _Noreturn is allowed to be added to a function after it is defined.
2163       ++I;
2164       continue;
2165     } else if (const AlignedAttr *AA = dyn_cast<AlignedAttr>(NewAttribute)) {
2166       if (AA->isAlignas()) {
2167         // C++11 [dcl.align]p6:
2168         //   if any declaration of an entity has an alignment-specifier,
2169         //   every defining declaration of that entity shall specify an
2170         //   equivalent alignment.
2171         // C11 6.7.5/7:
2172         //   If the definition of an object does not have an alignment
2173         //   specifier, any other declaration of that object shall also
2174         //   have no alignment specifier.
2175         S.Diag(Def->getLocation(), diag::err_alignas_missing_on_definition)
2176           << AA;
2177         S.Diag(NewAttribute->getLocation(), diag::note_alignas_on_declaration)
2178           << AA;
2179         NewAttributes.erase(NewAttributes.begin() + I);
2180         --E;
2181         continue;
2182       }
2183     }
2184 
2185     S.Diag(NewAttribute->getLocation(),
2186            diag::warn_attribute_precede_definition);
2187     S.Diag(Def->getLocation(), diag::note_previous_definition);
2188     NewAttributes.erase(NewAttributes.begin() + I);
2189     --E;
2190   }
2191 }
2192 
2193 /// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
mergeDeclAttributes(NamedDecl * New,Decl * Old,AvailabilityMergeKind AMK)2194 void Sema::mergeDeclAttributes(NamedDecl *New, Decl *Old,
2195                                AvailabilityMergeKind AMK) {
2196   if (UsedAttr *OldAttr = Old->getMostRecentDecl()->getAttr<UsedAttr>()) {
2197     UsedAttr *NewAttr = OldAttr->clone(Context);
2198     NewAttr->setInherited(true);
2199     New->addAttr(NewAttr);
2200   }
2201 
2202   if (!Old->hasAttrs() && !New->hasAttrs())
2203     return;
2204 
2205   // attributes declared post-definition are currently ignored
2206   checkNewAttributesAfterDef(*this, New, Old);
2207 
2208   if (!Old->hasAttrs())
2209     return;
2210 
2211   bool foundAny = New->hasAttrs();
2212 
2213   // Ensure that any moving of objects within the allocated map is done before
2214   // we process them.
2215   if (!foundAny) New->setAttrs(AttrVec());
2216 
2217   for (auto *I : Old->specific_attrs<InheritableAttr>()) {
2218     bool Override = false;
2219     // Ignore deprecated/unavailable/availability attributes if requested.
2220     if (isa<DeprecatedAttr>(I) ||
2221         isa<UnavailableAttr>(I) ||
2222         isa<AvailabilityAttr>(I)) {
2223       switch (AMK) {
2224       case AMK_None:
2225         continue;
2226 
2227       case AMK_Redeclaration:
2228         break;
2229 
2230       case AMK_Override:
2231         Override = true;
2232         break;
2233       }
2234     }
2235 
2236     // Already handled.
2237     if (isa<UsedAttr>(I))
2238       continue;
2239 
2240     if (mergeDeclAttribute(*this, New, I, Override))
2241       foundAny = true;
2242   }
2243 
2244   if (mergeAlignedAttrs(*this, New, Old))
2245     foundAny = true;
2246 
2247   if (!foundAny) New->dropAttrs();
2248 }
2249 
2250 /// mergeParamDeclAttributes - Copy attributes from the old parameter
2251 /// to the new one.
mergeParamDeclAttributes(ParmVarDecl * newDecl,const ParmVarDecl * oldDecl,Sema & S)2252 static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
2253                                      const ParmVarDecl *oldDecl,
2254                                      Sema &S) {
2255   // C++11 [dcl.attr.depend]p2:
2256   //   The first declaration of a function shall specify the
2257   //   carries_dependency attribute for its declarator-id if any declaration
2258   //   of the function specifies the carries_dependency attribute.
2259   const CarriesDependencyAttr *CDA = newDecl->getAttr<CarriesDependencyAttr>();
2260   if (CDA && !oldDecl->hasAttr<CarriesDependencyAttr>()) {
2261     S.Diag(CDA->getLocation(),
2262            diag::err_carries_dependency_missing_on_first_decl) << 1/*Param*/;
2263     // Find the first declaration of the parameter.
2264     // FIXME: Should we build redeclaration chains for function parameters?
2265     const FunctionDecl *FirstFD =
2266       cast<FunctionDecl>(oldDecl->getDeclContext())->getFirstDecl();
2267     const ParmVarDecl *FirstVD =
2268       FirstFD->getParamDecl(oldDecl->getFunctionScopeIndex());
2269     S.Diag(FirstVD->getLocation(),
2270            diag::note_carries_dependency_missing_first_decl) << 1/*Param*/;
2271   }
2272 
2273   if (!oldDecl->hasAttrs())
2274     return;
2275 
2276   bool foundAny = newDecl->hasAttrs();
2277 
2278   // Ensure that any moving of objects within the allocated map is
2279   // done before we process them.
2280   if (!foundAny) newDecl->setAttrs(AttrVec());
2281 
2282   for (const auto *I : oldDecl->specific_attrs<InheritableParamAttr>()) {
2283     if (!DeclHasAttr(newDecl, I)) {
2284       InheritableAttr *newAttr =
2285         cast<InheritableParamAttr>(I->clone(S.Context));
2286       newAttr->setInherited(true);
2287       newDecl->addAttr(newAttr);
2288       foundAny = true;
2289     }
2290   }
2291 
2292   if (!foundAny) newDecl->dropAttrs();
2293 }
2294 
2295 namespace {
2296 
2297 /// Used in MergeFunctionDecl to keep track of function parameters in
2298 /// C.
2299 struct GNUCompatibleParamWarning {
2300   ParmVarDecl *OldParm;
2301   ParmVarDecl *NewParm;
2302   QualType PromotedType;
2303 };
2304 
2305 }
2306 
2307 /// getSpecialMember - get the special member enum for a method.
getSpecialMember(const CXXMethodDecl * MD)2308 Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
2309   if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
2310     if (Ctor->isDefaultConstructor())
2311       return Sema::CXXDefaultConstructor;
2312 
2313     if (Ctor->isCopyConstructor())
2314       return Sema::CXXCopyConstructor;
2315 
2316     if (Ctor->isMoveConstructor())
2317       return Sema::CXXMoveConstructor;
2318   } else if (isa<CXXDestructorDecl>(MD)) {
2319     return Sema::CXXDestructor;
2320   } else if (MD->isCopyAssignmentOperator()) {
2321     return Sema::CXXCopyAssignment;
2322   } else if (MD->isMoveAssignmentOperator()) {
2323     return Sema::CXXMoveAssignment;
2324   }
2325 
2326   return Sema::CXXInvalid;
2327 }
2328 
2329 // Determine whether the previous declaration was a definition, implicit
2330 // declaration, or a declaration.
2331 template <typename T>
2332 static std::pair<diag::kind, SourceLocation>
getNoteDiagForInvalidRedeclaration(const T * Old,const T * New)2333 getNoteDiagForInvalidRedeclaration(const T *Old, const T *New) {
2334   diag::kind PrevDiag;
2335   SourceLocation OldLocation = Old->getLocation();
2336   if (Old->isThisDeclarationADefinition())
2337     PrevDiag = diag::note_previous_definition;
2338   else if (Old->isImplicit()) {
2339     PrevDiag = diag::note_previous_implicit_declaration;
2340     if (OldLocation.isInvalid())
2341       OldLocation = New->getLocation();
2342   } else
2343     PrevDiag = diag::note_previous_declaration;
2344   return std::make_pair(PrevDiag, OldLocation);
2345 }
2346 
2347 /// canRedefineFunction - checks if a function can be redefined. Currently,
2348 /// only extern inline functions can be redefined, and even then only in
2349 /// GNU89 mode.
canRedefineFunction(const FunctionDecl * FD,const LangOptions & LangOpts)2350 static bool canRedefineFunction(const FunctionDecl *FD,
2351                                 const LangOptions& LangOpts) {
2352   return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
2353           !LangOpts.CPlusPlus &&
2354           FD->isInlineSpecified() &&
2355           FD->getStorageClass() == SC_Extern);
2356 }
2357 
getCallingConvAttributedType(QualType T) const2358 const AttributedType *Sema::getCallingConvAttributedType(QualType T) const {
2359   const AttributedType *AT = T->getAs<AttributedType>();
2360   while (AT && !AT->isCallingConv())
2361     AT = AT->getModifiedType()->getAs<AttributedType>();
2362   return AT;
2363 }
2364 
2365 template <typename T>
haveIncompatibleLanguageLinkages(const T * Old,const T * New)2366 static bool haveIncompatibleLanguageLinkages(const T *Old, const T *New) {
2367   const DeclContext *DC = Old->getDeclContext();
2368   if (DC->isRecord())
2369     return false;
2370 
2371   LanguageLinkage OldLinkage = Old->getLanguageLinkage();
2372   if (OldLinkage == CXXLanguageLinkage && New->isInExternCContext())
2373     return true;
2374   if (OldLinkage == CLanguageLinkage && New->isInExternCXXContext())
2375     return true;
2376   return false;
2377 }
2378 
2379 /// MergeFunctionDecl - We just parsed a function 'New' from
2380 /// declarator D which has the same name and scope as a previous
2381 /// declaration 'Old'.  Figure out how to resolve this situation,
2382 /// merging decls or emitting diagnostics as appropriate.
2383 ///
2384 /// In C++, New and Old must be declarations that are not
2385 /// overloaded. Use IsOverload to determine whether New and Old are
2386 /// overloaded, and to select the Old declaration that New should be
2387 /// merged with.
2388 ///
2389 /// Returns true if there was an error, false otherwise.
MergeFunctionDecl(FunctionDecl * New,NamedDecl * & OldD,Scope * S,bool MergeTypeWithOld)2390 bool Sema::MergeFunctionDecl(FunctionDecl *New, NamedDecl *&OldD,
2391                              Scope *S, bool MergeTypeWithOld) {
2392   // Verify the old decl was also a function.
2393   FunctionDecl *Old = OldD->getAsFunction();
2394   if (!Old) {
2395     if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
2396       if (New->getFriendObjectKind()) {
2397         Diag(New->getLocation(), diag::err_using_decl_friend);
2398         Diag(Shadow->getTargetDecl()->getLocation(),
2399              diag::note_using_decl_target);
2400         Diag(Shadow->getUsingDecl()->getLocation(),
2401              diag::note_using_decl) << 0;
2402         return true;
2403       }
2404 
2405       // C++11 [namespace.udecl]p14:
2406       //   If a function declaration in namespace scope or block scope has the
2407       //   same name and the same parameter-type-list as a function introduced
2408       //   by a using-declaration, and the declarations do not declare the same
2409       //   function, the program is ill-formed.
2410 
2411       // Check whether the two declarations might declare the same function.
2412       Old = dyn_cast<FunctionDecl>(Shadow->getTargetDecl());
2413       if (Old &&
2414           !Old->getDeclContext()->getRedeclContext()->Equals(
2415               New->getDeclContext()->getRedeclContext()) &&
2416           !(Old->isExternC() && New->isExternC()))
2417         Old = nullptr;
2418 
2419       if (!Old) {
2420         Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
2421         Diag(Shadow->getTargetDecl()->getLocation(),
2422              diag::note_using_decl_target);
2423         Diag(Shadow->getUsingDecl()->getLocation(), diag::note_using_decl) << 0;
2424         return true;
2425       }
2426       OldD = Old;
2427     } else {
2428       Diag(New->getLocation(), diag::err_redefinition_different_kind)
2429         << New->getDeclName();
2430       Diag(OldD->getLocation(), diag::note_previous_definition);
2431       return true;
2432     }
2433   }
2434 
2435   // If the old declaration is invalid, just give up here.
2436   if (Old->isInvalidDecl())
2437     return true;
2438 
2439   diag::kind PrevDiag;
2440   SourceLocation OldLocation;
2441   std::tie(PrevDiag, OldLocation) =
2442       getNoteDiagForInvalidRedeclaration(Old, New);
2443 
2444   // Don't complain about this if we're in GNU89 mode and the old function
2445   // is an extern inline function.
2446   // Don't complain about specializations. They are not supposed to have
2447   // storage classes.
2448   if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
2449       New->getStorageClass() == SC_Static &&
2450       Old->hasExternalFormalLinkage() &&
2451       !New->getTemplateSpecializationInfo() &&
2452       !canRedefineFunction(Old, getLangOpts())) {
2453     if (getLangOpts().MicrosoftExt) {
2454       Diag(New->getLocation(), diag::ext_static_non_static) << New;
2455       Diag(OldLocation, PrevDiag);
2456     } else {
2457       Diag(New->getLocation(), diag::err_static_non_static) << New;
2458       Diag(OldLocation, PrevDiag);
2459       return true;
2460     }
2461   }
2462 
2463 
2464   // If a function is first declared with a calling convention, but is later
2465   // declared or defined without one, all following decls assume the calling
2466   // convention of the first.
2467   //
2468   // It's OK if a function is first declared without a calling convention,
2469   // but is later declared or defined with the default calling convention.
2470   //
2471   // To test if either decl has an explicit calling convention, we look for
2472   // AttributedType sugar nodes on the type as written.  If they are missing or
2473   // were canonicalized away, we assume the calling convention was implicit.
2474   //
2475   // Note also that we DO NOT return at this point, because we still have
2476   // other tests to run.
2477   QualType OldQType = Context.getCanonicalType(Old->getType());
2478   QualType NewQType = Context.getCanonicalType(New->getType());
2479   const FunctionType *OldType = cast<FunctionType>(OldQType);
2480   const FunctionType *NewType = cast<FunctionType>(NewQType);
2481   FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
2482   FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
2483   bool RequiresAdjustment = false;
2484 
2485   if (OldTypeInfo.getCC() != NewTypeInfo.getCC()) {
2486     FunctionDecl *First = Old->getFirstDecl();
2487     const FunctionType *FT =
2488         First->getType().getCanonicalType()->castAs<FunctionType>();
2489     FunctionType::ExtInfo FI = FT->getExtInfo();
2490     bool NewCCExplicit = getCallingConvAttributedType(New->getType());
2491     if (!NewCCExplicit) {
2492       // Inherit the CC from the previous declaration if it was specified
2493       // there but not here.
2494       NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
2495       RequiresAdjustment = true;
2496     } else {
2497       // Calling conventions aren't compatible, so complain.
2498       bool FirstCCExplicit = getCallingConvAttributedType(First->getType());
2499       Diag(New->getLocation(), diag::err_cconv_change)
2500         << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
2501         << !FirstCCExplicit
2502         << (!FirstCCExplicit ? "" :
2503             FunctionType::getNameForCallConv(FI.getCC()));
2504 
2505       // Put the note on the first decl, since it is the one that matters.
2506       Diag(First->getLocation(), diag::note_previous_declaration);
2507       return true;
2508     }
2509   }
2510 
2511   // FIXME: diagnose the other way around?
2512   if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
2513     NewTypeInfo = NewTypeInfo.withNoReturn(true);
2514     RequiresAdjustment = true;
2515   }
2516 
2517   // Merge regparm attribute.
2518   if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
2519       OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
2520     if (NewTypeInfo.getHasRegParm()) {
2521       Diag(New->getLocation(), diag::err_regparm_mismatch)
2522         << NewType->getRegParmType()
2523         << OldType->getRegParmType();
2524       Diag(OldLocation, diag::note_previous_declaration);
2525       return true;
2526     }
2527 
2528     NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
2529     RequiresAdjustment = true;
2530   }
2531 
2532   // Merge ns_returns_retained attribute.
2533   if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
2534     if (NewTypeInfo.getProducesResult()) {
2535       Diag(New->getLocation(), diag::err_returns_retained_mismatch);
2536       Diag(OldLocation, diag::note_previous_declaration);
2537       return true;
2538     }
2539 
2540     NewTypeInfo = NewTypeInfo.withProducesResult(true);
2541     RequiresAdjustment = true;
2542   }
2543 
2544   if (RequiresAdjustment) {
2545     const FunctionType *AdjustedType = New->getType()->getAs<FunctionType>();
2546     AdjustedType = Context.adjustFunctionType(AdjustedType, NewTypeInfo);
2547     New->setType(QualType(AdjustedType, 0));
2548     NewQType = Context.getCanonicalType(New->getType());
2549     NewType = cast<FunctionType>(NewQType);
2550   }
2551 
2552   // If this redeclaration makes the function inline, we may need to add it to
2553   // UndefinedButUsed.
2554   if (!Old->isInlined() && New->isInlined() &&
2555       !New->hasAttr<GNUInlineAttr>() &&
2556       (getLangOpts().CPlusPlus || !getLangOpts().GNUInline) &&
2557       Old->isUsed(false) &&
2558       !Old->isDefined() && !New->isThisDeclarationADefinition())
2559     UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
2560                                            SourceLocation()));
2561 
2562   // If this redeclaration makes it newly gnu_inline, we don't want to warn
2563   // about it.
2564   if (New->hasAttr<GNUInlineAttr>() &&
2565       Old->isInlined() && !Old->hasAttr<GNUInlineAttr>()) {
2566     UndefinedButUsed.erase(Old->getCanonicalDecl());
2567   }
2568 
2569   if (getLangOpts().CPlusPlus) {
2570     // (C++98 13.1p2):
2571     //   Certain function declarations cannot be overloaded:
2572     //     -- Function declarations that differ only in the return type
2573     //        cannot be overloaded.
2574 
2575     // Go back to the type source info to compare the declared return types,
2576     // per C++1y [dcl.type.auto]p13:
2577     //   Redeclarations or specializations of a function or function template
2578     //   with a declared return type that uses a placeholder type shall also
2579     //   use that placeholder, not a deduced type.
2580     QualType OldDeclaredReturnType =
2581         (Old->getTypeSourceInfo()
2582              ? Old->getTypeSourceInfo()->getType()->castAs<FunctionType>()
2583              : OldType)->getReturnType();
2584     QualType NewDeclaredReturnType =
2585         (New->getTypeSourceInfo()
2586              ? New->getTypeSourceInfo()->getType()->castAs<FunctionType>()
2587              : NewType)->getReturnType();
2588     QualType ResQT;
2589     if (!Context.hasSameType(OldDeclaredReturnType, NewDeclaredReturnType) &&
2590         !((NewQType->isDependentType() || OldQType->isDependentType()) &&
2591           New->isLocalExternDecl())) {
2592       if (NewDeclaredReturnType->isObjCObjectPointerType() &&
2593           OldDeclaredReturnType->isObjCObjectPointerType())
2594         ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
2595       if (ResQT.isNull()) {
2596         if (New->isCXXClassMember() && New->isOutOfLine())
2597           Diag(New->getLocation(), diag::err_member_def_does_not_match_ret_type)
2598               << New << New->getReturnTypeSourceRange();
2599         else
2600           Diag(New->getLocation(), diag::err_ovl_diff_return_type)
2601               << New->getReturnTypeSourceRange();
2602         Diag(OldLocation, PrevDiag) << Old << Old->getType()
2603                                     << Old->getReturnTypeSourceRange();
2604         return true;
2605       }
2606       else
2607         NewQType = ResQT;
2608     }
2609 
2610     QualType OldReturnType = OldType->getReturnType();
2611     QualType NewReturnType = cast<FunctionType>(NewQType)->getReturnType();
2612     if (OldReturnType != NewReturnType) {
2613       // If this function has a deduced return type and has already been
2614       // defined, copy the deduced value from the old declaration.
2615       AutoType *OldAT = Old->getReturnType()->getContainedAutoType();
2616       if (OldAT && OldAT->isDeduced()) {
2617         New->setType(
2618             SubstAutoType(New->getType(),
2619                           OldAT->isDependentType() ? Context.DependentTy
2620                                                    : OldAT->getDeducedType()));
2621         NewQType = Context.getCanonicalType(
2622             SubstAutoType(NewQType,
2623                           OldAT->isDependentType() ? Context.DependentTy
2624                                                    : OldAT->getDeducedType()));
2625       }
2626     }
2627 
2628     const CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
2629     CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
2630     if (OldMethod && NewMethod) {
2631       // Preserve triviality.
2632       NewMethod->setTrivial(OldMethod->isTrivial());
2633 
2634       // MSVC allows explicit template specialization at class scope:
2635       // 2 CXXMethodDecls referring to the same function will be injected.
2636       // We don't want a redeclaration error.
2637       bool IsClassScopeExplicitSpecialization =
2638                               OldMethod->isFunctionTemplateSpecialization() &&
2639                               NewMethod->isFunctionTemplateSpecialization();
2640       bool isFriend = NewMethod->getFriendObjectKind();
2641 
2642       if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
2643           !IsClassScopeExplicitSpecialization) {
2644         //    -- Member function declarations with the same name and the
2645         //       same parameter types cannot be overloaded if any of them
2646         //       is a static member function declaration.
2647         if (OldMethod->isStatic() != NewMethod->isStatic()) {
2648           Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
2649           Diag(OldLocation, PrevDiag) << Old << Old->getType();
2650           return true;
2651         }
2652 
2653         // C++ [class.mem]p1:
2654         //   [...] A member shall not be declared twice in the
2655         //   member-specification, except that a nested class or member
2656         //   class template can be declared and then later defined.
2657         if (ActiveTemplateInstantiations.empty()) {
2658           unsigned NewDiag;
2659           if (isa<CXXConstructorDecl>(OldMethod))
2660             NewDiag = diag::err_constructor_redeclared;
2661           else if (isa<CXXDestructorDecl>(NewMethod))
2662             NewDiag = diag::err_destructor_redeclared;
2663           else if (isa<CXXConversionDecl>(NewMethod))
2664             NewDiag = diag::err_conv_function_redeclared;
2665           else
2666             NewDiag = diag::err_member_redeclared;
2667 
2668           Diag(New->getLocation(), NewDiag);
2669         } else {
2670           Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation)
2671             << New << New->getType();
2672         }
2673         Diag(OldLocation, PrevDiag) << Old << Old->getType();
2674 
2675       // Complain if this is an explicit declaration of a special
2676       // member that was initially declared implicitly.
2677       //
2678       // As an exception, it's okay to befriend such methods in order
2679       // to permit the implicit constructor/destructor/operator calls.
2680       } else if (OldMethod->isImplicit()) {
2681         if (isFriend) {
2682           NewMethod->setImplicit();
2683         } else {
2684           Diag(NewMethod->getLocation(),
2685                diag::err_definition_of_implicitly_declared_member)
2686             << New << getSpecialMember(OldMethod);
2687           return true;
2688         }
2689       } else if (OldMethod->isExplicitlyDefaulted() && !isFriend) {
2690         Diag(NewMethod->getLocation(),
2691              diag::err_definition_of_explicitly_defaulted_member)
2692           << getSpecialMember(OldMethod);
2693         return true;
2694       }
2695     }
2696 
2697     // C++11 [dcl.attr.noreturn]p1:
2698     //   The first declaration of a function shall specify the noreturn
2699     //   attribute if any declaration of that function specifies the noreturn
2700     //   attribute.
2701     const CXX11NoReturnAttr *NRA = New->getAttr<CXX11NoReturnAttr>();
2702     if (NRA && !Old->hasAttr<CXX11NoReturnAttr>()) {
2703       Diag(NRA->getLocation(), diag::err_noreturn_missing_on_first_decl);
2704       Diag(Old->getFirstDecl()->getLocation(),
2705            diag::note_noreturn_missing_first_decl);
2706     }
2707 
2708     // C++11 [dcl.attr.depend]p2:
2709     //   The first declaration of a function shall specify the
2710     //   carries_dependency attribute for its declarator-id if any declaration
2711     //   of the function specifies the carries_dependency attribute.
2712     const CarriesDependencyAttr *CDA = New->getAttr<CarriesDependencyAttr>();
2713     if (CDA && !Old->hasAttr<CarriesDependencyAttr>()) {
2714       Diag(CDA->getLocation(),
2715            diag::err_carries_dependency_missing_on_first_decl) << 0/*Function*/;
2716       Diag(Old->getFirstDecl()->getLocation(),
2717            diag::note_carries_dependency_missing_first_decl) << 0/*Function*/;
2718     }
2719 
2720     // (C++98 8.3.5p3):
2721     //   All declarations for a function shall agree exactly in both the
2722     //   return type and the parameter-type-list.
2723     // We also want to respect all the extended bits except noreturn.
2724 
2725     // noreturn should now match unless the old type info didn't have it.
2726     QualType OldQTypeForComparison = OldQType;
2727     if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
2728       assert(OldQType == QualType(OldType, 0));
2729       const FunctionType *OldTypeForComparison
2730         = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
2731       OldQTypeForComparison = QualType(OldTypeForComparison, 0);
2732       assert(OldQTypeForComparison.isCanonical());
2733     }
2734 
2735     if (haveIncompatibleLanguageLinkages(Old, New)) {
2736       // As a special case, retain the language linkage from previous
2737       // declarations of a friend function as an extension.
2738       //
2739       // This liberal interpretation of C++ [class.friend]p3 matches GCC/MSVC
2740       // and is useful because there's otherwise no way to specify language
2741       // linkage within class scope.
2742       //
2743       // Check cautiously as the friend object kind isn't yet complete.
2744       if (New->getFriendObjectKind() != Decl::FOK_None) {
2745         Diag(New->getLocation(), diag::ext_retained_language_linkage) << New;
2746         Diag(OldLocation, PrevDiag);
2747       } else {
2748         Diag(New->getLocation(), diag::err_different_language_linkage) << New;
2749         Diag(OldLocation, PrevDiag);
2750         return true;
2751       }
2752     }
2753 
2754     if (OldQTypeForComparison == NewQType)
2755       return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
2756 
2757     if ((NewQType->isDependentType() || OldQType->isDependentType()) &&
2758         New->isLocalExternDecl()) {
2759       // It's OK if we couldn't merge types for a local function declaraton
2760       // if either the old or new type is dependent. We'll merge the types
2761       // when we instantiate the function.
2762       return false;
2763     }
2764 
2765     // Fall through for conflicting redeclarations and redefinitions.
2766   }
2767 
2768   // C: Function types need to be compatible, not identical. This handles
2769   // duplicate function decls like "void f(int); void f(enum X);" properly.
2770   if (!getLangOpts().CPlusPlus &&
2771       Context.typesAreCompatible(OldQType, NewQType)) {
2772     const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
2773     const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
2774     const FunctionProtoType *OldProto = nullptr;
2775     if (MergeTypeWithOld && isa<FunctionNoProtoType>(NewFuncType) &&
2776         (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
2777       // The old declaration provided a function prototype, but the
2778       // new declaration does not. Merge in the prototype.
2779       assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
2780       SmallVector<QualType, 16> ParamTypes(OldProto->param_types());
2781       NewQType =
2782           Context.getFunctionType(NewFuncType->getReturnType(), ParamTypes,
2783                                   OldProto->getExtProtoInfo());
2784       New->setType(NewQType);
2785       New->setHasInheritedPrototype();
2786 
2787       // Synthesize parameters with the same types.
2788       SmallVector<ParmVarDecl*, 16> Params;
2789       for (const auto &ParamType : OldProto->param_types()) {
2790         ParmVarDecl *Param = ParmVarDecl::Create(Context, New, SourceLocation(),
2791                                                  SourceLocation(), nullptr,
2792                                                  ParamType, /*TInfo=*/nullptr,
2793                                                  SC_None, nullptr);
2794         Param->setScopeInfo(0, Params.size());
2795         Param->setImplicit();
2796         Params.push_back(Param);
2797       }
2798 
2799       New->setParams(Params);
2800     }
2801 
2802     return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
2803   }
2804 
2805   // GNU C permits a K&R definition to follow a prototype declaration
2806   // if the declared types of the parameters in the K&R definition
2807   // match the types in the prototype declaration, even when the
2808   // promoted types of the parameters from the K&R definition differ
2809   // from the types in the prototype. GCC then keeps the types from
2810   // the prototype.
2811   //
2812   // If a variadic prototype is followed by a non-variadic K&R definition,
2813   // the K&R definition becomes variadic.  This is sort of an edge case, but
2814   // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
2815   // C99 6.9.1p8.
2816   if (!getLangOpts().CPlusPlus &&
2817       Old->hasPrototype() && !New->hasPrototype() &&
2818       New->getType()->getAs<FunctionProtoType>() &&
2819       Old->getNumParams() == New->getNumParams()) {
2820     SmallVector<QualType, 16> ArgTypes;
2821     SmallVector<GNUCompatibleParamWarning, 16> Warnings;
2822     const FunctionProtoType *OldProto
2823       = Old->getType()->getAs<FunctionProtoType>();
2824     const FunctionProtoType *NewProto
2825       = New->getType()->getAs<FunctionProtoType>();
2826 
2827     // Determine whether this is the GNU C extension.
2828     QualType MergedReturn = Context.mergeTypes(OldProto->getReturnType(),
2829                                                NewProto->getReturnType());
2830     bool LooseCompatible = !MergedReturn.isNull();
2831     for (unsigned Idx = 0, End = Old->getNumParams();
2832          LooseCompatible && Idx != End; ++Idx) {
2833       ParmVarDecl *OldParm = Old->getParamDecl(Idx);
2834       ParmVarDecl *NewParm = New->getParamDecl(Idx);
2835       if (Context.typesAreCompatible(OldParm->getType(),
2836                                      NewProto->getParamType(Idx))) {
2837         ArgTypes.push_back(NewParm->getType());
2838       } else if (Context.typesAreCompatible(OldParm->getType(),
2839                                             NewParm->getType(),
2840                                             /*CompareUnqualified=*/true)) {
2841         GNUCompatibleParamWarning Warn = { OldParm, NewParm,
2842                                            NewProto->getParamType(Idx) };
2843         Warnings.push_back(Warn);
2844         ArgTypes.push_back(NewParm->getType());
2845       } else
2846         LooseCompatible = false;
2847     }
2848 
2849     if (LooseCompatible) {
2850       for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
2851         Diag(Warnings[Warn].NewParm->getLocation(),
2852              diag::ext_param_promoted_not_compatible_with_prototype)
2853           << Warnings[Warn].PromotedType
2854           << Warnings[Warn].OldParm->getType();
2855         if (Warnings[Warn].OldParm->getLocation().isValid())
2856           Diag(Warnings[Warn].OldParm->getLocation(),
2857                diag::note_previous_declaration);
2858       }
2859 
2860       if (MergeTypeWithOld)
2861         New->setType(Context.getFunctionType(MergedReturn, ArgTypes,
2862                                              OldProto->getExtProtoInfo()));
2863       return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
2864     }
2865 
2866     // Fall through to diagnose conflicting types.
2867   }
2868 
2869   // A function that has already been declared has been redeclared or
2870   // defined with a different type; show an appropriate diagnostic.
2871 
2872   // If the previous declaration was an implicitly-generated builtin
2873   // declaration, then at the very least we should use a specialized note.
2874   unsigned BuiltinID;
2875   if (Old->isImplicit() && (BuiltinID = Old->getBuiltinID())) {
2876     // If it's actually a library-defined builtin function like 'malloc'
2877     // or 'printf', just warn about the incompatible redeclaration.
2878     if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2879       Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
2880       Diag(OldLocation, diag::note_previous_builtin_declaration)
2881         << Old << Old->getType();
2882 
2883       // If this is a global redeclaration, just forget hereafter
2884       // about the "builtin-ness" of the function.
2885       //
2886       // Doing this for local extern declarations is problematic.  If
2887       // the builtin declaration remains visible, a second invalid
2888       // local declaration will produce a hard error; if it doesn't
2889       // remain visible, a single bogus local redeclaration (which is
2890       // actually only a warning) could break all the downstream code.
2891       if (!New->getLexicalDeclContext()->isFunctionOrMethod())
2892         New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
2893 
2894       return false;
2895     }
2896 
2897     PrevDiag = diag::note_previous_builtin_declaration;
2898   }
2899 
2900   Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
2901   Diag(OldLocation, PrevDiag) << Old << Old->getType();
2902   return true;
2903 }
2904 
2905 /// \brief Completes the merge of two function declarations that are
2906 /// known to be compatible.
2907 ///
2908 /// This routine handles the merging of attributes and other
2909 /// properties of function declarations from the old declaration to
2910 /// the new declaration, once we know that New is in fact a
2911 /// redeclaration of Old.
2912 ///
2913 /// \returns false
MergeCompatibleFunctionDecls(FunctionDecl * New,FunctionDecl * Old,Scope * S,bool MergeTypeWithOld)2914 bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
2915                                         Scope *S, bool MergeTypeWithOld) {
2916   // Merge the attributes
2917   mergeDeclAttributes(New, Old);
2918 
2919   // Merge "pure" flag.
2920   if (Old->isPure())
2921     New->setPure();
2922 
2923   // Merge "used" flag.
2924   if (Old->getMostRecentDecl()->isUsed(false))
2925     New->setIsUsed();
2926 
2927   // Merge attributes from the parameters.  These can mismatch with K&R
2928   // declarations.
2929   if (New->getNumParams() == Old->getNumParams())
2930     for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
2931       mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
2932                                *this);
2933 
2934   if (getLangOpts().CPlusPlus)
2935     return MergeCXXFunctionDecl(New, Old, S);
2936 
2937   // Merge the function types so the we get the composite types for the return
2938   // and argument types. Per C11 6.2.7/4, only update the type if the old decl
2939   // was visible.
2940   QualType Merged = Context.mergeTypes(Old->getType(), New->getType());
2941   if (!Merged.isNull() && MergeTypeWithOld)
2942     New->setType(Merged);
2943 
2944   return false;
2945 }
2946 
2947 
mergeObjCMethodDecls(ObjCMethodDecl * newMethod,ObjCMethodDecl * oldMethod)2948 void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
2949                                 ObjCMethodDecl *oldMethod) {
2950 
2951   // Merge the attributes, including deprecated/unavailable
2952   AvailabilityMergeKind MergeKind =
2953     isa<ObjCImplDecl>(newMethod->getDeclContext()) ? AMK_Redeclaration
2954                                                    : AMK_Override;
2955   mergeDeclAttributes(newMethod, oldMethod, MergeKind);
2956 
2957   // Merge attributes from the parameters.
2958   ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(),
2959                                        oe = oldMethod->param_end();
2960   for (ObjCMethodDecl::param_iterator
2961          ni = newMethod->param_begin(), ne = newMethod->param_end();
2962        ni != ne && oi != oe; ++ni, ++oi)
2963     mergeParamDeclAttributes(*ni, *oi, *this);
2964 
2965   CheckObjCMethodOverride(newMethod, oldMethod);
2966 }
2967 
2968 /// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
2969 /// scope as a previous declaration 'Old'.  Figure out how to merge their types,
2970 /// emitting diagnostics as appropriate.
2971 ///
2972 /// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
2973 /// to here in AddInitializerToDecl. We can't check them before the initializer
2974 /// is attached.
MergeVarDeclTypes(VarDecl * New,VarDecl * Old,bool MergeTypeWithOld)2975 void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old,
2976                              bool MergeTypeWithOld) {
2977   if (New->isInvalidDecl() || Old->isInvalidDecl())
2978     return;
2979 
2980   QualType MergedT;
2981   if (getLangOpts().CPlusPlus) {
2982     if (New->getType()->isUndeducedType()) {
2983       // We don't know what the new type is until the initializer is attached.
2984       return;
2985     } else if (Context.hasSameType(New->getType(), Old->getType())) {
2986       // These could still be something that needs exception specs checked.
2987       return MergeVarDeclExceptionSpecs(New, Old);
2988     }
2989     // C++ [basic.link]p10:
2990     //   [...] the types specified by all declarations referring to a given
2991     //   object or function shall be identical, except that declarations for an
2992     //   array object can specify array types that differ by the presence or
2993     //   absence of a major array bound (8.3.4).
2994     else if (Old->getType()->isIncompleteArrayType() &&
2995              New->getType()->isArrayType()) {
2996       const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
2997       const ArrayType *NewArray = Context.getAsArrayType(New->getType());
2998       if (Context.hasSameType(OldArray->getElementType(),
2999                               NewArray->getElementType()))
3000         MergedT = New->getType();
3001     } else if (Old->getType()->isArrayType() &&
3002                New->getType()->isIncompleteArrayType()) {
3003       const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
3004       const ArrayType *NewArray = Context.getAsArrayType(New->getType());
3005       if (Context.hasSameType(OldArray->getElementType(),
3006                               NewArray->getElementType()))
3007         MergedT = Old->getType();
3008     } else if (New->getType()->isObjCObjectPointerType() &&
3009                Old->getType()->isObjCObjectPointerType()) {
3010       MergedT = Context.mergeObjCGCQualifiers(New->getType(),
3011                                               Old->getType());
3012     }
3013   } else {
3014     // C 6.2.7p2:
3015     //   All declarations that refer to the same object or function shall have
3016     //   compatible type.
3017     MergedT = Context.mergeTypes(New->getType(), Old->getType());
3018   }
3019   if (MergedT.isNull()) {
3020     // It's OK if we couldn't merge types if either type is dependent, for a
3021     // block-scope variable. In other cases (static data members of class
3022     // templates, variable templates, ...), we require the types to be
3023     // equivalent.
3024     // FIXME: The C++ standard doesn't say anything about this.
3025     if ((New->getType()->isDependentType() ||
3026          Old->getType()->isDependentType()) && New->isLocalVarDecl()) {
3027       // If the old type was dependent, we can't merge with it, so the new type
3028       // becomes dependent for now. We'll reproduce the original type when we
3029       // instantiate the TypeSourceInfo for the variable.
3030       if (!New->getType()->isDependentType() && MergeTypeWithOld)
3031         New->setType(Context.DependentTy);
3032       return;
3033     }
3034 
3035     // FIXME: Even if this merging succeeds, some other non-visible declaration
3036     // of this variable might have an incompatible type. For instance:
3037     //
3038     //   extern int arr[];
3039     //   void f() { extern int arr[2]; }
3040     //   void g() { extern int arr[3]; }
3041     //
3042     // Neither C nor C++ requires a diagnostic for this, but we should still try
3043     // to diagnose it.
3044     Diag(New->getLocation(), diag::err_redefinition_different_type)
3045       << New->getDeclName() << New->getType() << Old->getType();
3046     Diag(Old->getLocation(), diag::note_previous_definition);
3047     return New->setInvalidDecl();
3048   }
3049 
3050   // Don't actually update the type on the new declaration if the old
3051   // declaration was an extern declaration in a different scope.
3052   if (MergeTypeWithOld)
3053     New->setType(MergedT);
3054 }
3055 
mergeTypeWithPrevious(Sema & S,VarDecl * NewVD,VarDecl * OldVD,LookupResult & Previous)3056 static bool mergeTypeWithPrevious(Sema &S, VarDecl *NewVD, VarDecl *OldVD,
3057                                   LookupResult &Previous) {
3058   // C11 6.2.7p4:
3059   //   For an identifier with internal or external linkage declared
3060   //   in a scope in which a prior declaration of that identifier is
3061   //   visible, if the prior declaration specifies internal or
3062   //   external linkage, the type of the identifier at the later
3063   //   declaration becomes the composite type.
3064   //
3065   // If the variable isn't visible, we do not merge with its type.
3066   if (Previous.isShadowed())
3067     return false;
3068 
3069   if (S.getLangOpts().CPlusPlus) {
3070     // C++11 [dcl.array]p3:
3071     //   If there is a preceding declaration of the entity in the same
3072     //   scope in which the bound was specified, an omitted array bound
3073     //   is taken to be the same as in that earlier declaration.
3074     return NewVD->isPreviousDeclInSameBlockScope() ||
3075            (!OldVD->getLexicalDeclContext()->isFunctionOrMethod() &&
3076             !NewVD->getLexicalDeclContext()->isFunctionOrMethod());
3077   } else {
3078     // If the old declaration was function-local, don't merge with its
3079     // type unless we're in the same function.
3080     return !OldVD->getLexicalDeclContext()->isFunctionOrMethod() ||
3081            OldVD->getLexicalDeclContext() == NewVD->getLexicalDeclContext();
3082   }
3083 }
3084 
3085 /// MergeVarDecl - We just parsed a variable 'New' which has the same name
3086 /// and scope as a previous declaration 'Old'.  Figure out how to resolve this
3087 /// situation, merging decls or emitting diagnostics as appropriate.
3088 ///
3089 /// Tentative definition rules (C99 6.9.2p2) are checked by
3090 /// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
3091 /// definitions here, since the initializer hasn't been attached.
3092 ///
MergeVarDecl(VarDecl * New,LookupResult & Previous)3093 void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
3094   // If the new decl is already invalid, don't do any other checking.
3095   if (New->isInvalidDecl())
3096     return;
3097 
3098   VarTemplateDecl *NewTemplate = New->getDescribedVarTemplate();
3099 
3100   // Verify the old decl was also a variable or variable template.
3101   VarDecl *Old = nullptr;
3102   VarTemplateDecl *OldTemplate = nullptr;
3103   if (Previous.isSingleResult()) {
3104     if (NewTemplate) {
3105       OldTemplate = dyn_cast<VarTemplateDecl>(Previous.getFoundDecl());
3106       Old = OldTemplate ? OldTemplate->getTemplatedDecl() : nullptr;
3107     } else
3108       Old = dyn_cast<VarDecl>(Previous.getFoundDecl());
3109   }
3110   if (!Old) {
3111     Diag(New->getLocation(), diag::err_redefinition_different_kind)
3112       << New->getDeclName();
3113     Diag(Previous.getRepresentativeDecl()->getLocation(),
3114          diag::note_previous_definition);
3115     return New->setInvalidDecl();
3116   }
3117 
3118   if (!shouldLinkPossiblyHiddenDecl(Old, New))
3119     return;
3120 
3121   // Ensure the template parameters are compatible.
3122   if (NewTemplate &&
3123       !TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
3124                                       OldTemplate->getTemplateParameters(),
3125                                       /*Complain=*/true, TPL_TemplateMatch))
3126     return;
3127 
3128   // C++ [class.mem]p1:
3129   //   A member shall not be declared twice in the member-specification [...]
3130   //
3131   // Here, we need only consider static data members.
3132   if (Old->isStaticDataMember() && !New->isOutOfLine()) {
3133     Diag(New->getLocation(), diag::err_duplicate_member)
3134       << New->getIdentifier();
3135     Diag(Old->getLocation(), diag::note_previous_declaration);
3136     New->setInvalidDecl();
3137   }
3138 
3139   mergeDeclAttributes(New, Old);
3140   // Warn if an already-declared variable is made a weak_import in a subsequent
3141   // declaration
3142   if (New->hasAttr<WeakImportAttr>() &&
3143       Old->getStorageClass() == SC_None &&
3144       !Old->hasAttr<WeakImportAttr>()) {
3145     Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
3146     Diag(Old->getLocation(), diag::note_previous_definition);
3147     // Remove weak_import attribute on new declaration.
3148     New->dropAttr<WeakImportAttr>();
3149   }
3150 
3151   // Merge the types.
3152   MergeVarDeclTypes(New, Old, mergeTypeWithPrevious(*this, New, Old, Previous));
3153 
3154   if (New->isInvalidDecl())
3155     return;
3156 
3157   diag::kind PrevDiag;
3158   SourceLocation OldLocation;
3159   std::tie(PrevDiag, OldLocation) =
3160       getNoteDiagForInvalidRedeclaration(Old, New);
3161 
3162   // [dcl.stc]p8: Check if we have a non-static decl followed by a static.
3163   if (New->getStorageClass() == SC_Static &&
3164       !New->isStaticDataMember() &&
3165       Old->hasExternalFormalLinkage()) {
3166     if (getLangOpts().MicrosoftExt) {
3167       Diag(New->getLocation(), diag::ext_static_non_static)
3168           << New->getDeclName();
3169       Diag(OldLocation, PrevDiag);
3170     } else {
3171       Diag(New->getLocation(), diag::err_static_non_static)
3172           << New->getDeclName();
3173       Diag(OldLocation, PrevDiag);
3174       return New->setInvalidDecl();
3175     }
3176   }
3177   // C99 6.2.2p4:
3178   //   For an identifier declared with the storage-class specifier
3179   //   extern in a scope in which a prior declaration of that
3180   //   identifier is visible,23) if the prior declaration specifies
3181   //   internal or external linkage, the linkage of the identifier at
3182   //   the later declaration is the same as the linkage specified at
3183   //   the prior declaration. If no prior declaration is visible, or
3184   //   if the prior declaration specifies no linkage, then the
3185   //   identifier has external linkage.
3186   if (New->hasExternalStorage() && Old->hasLinkage())
3187     /* Okay */;
3188   else if (New->getCanonicalDecl()->getStorageClass() != SC_Static &&
3189            !New->isStaticDataMember() &&
3190            Old->getCanonicalDecl()->getStorageClass() == SC_Static) {
3191     Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
3192     Diag(OldLocation, PrevDiag);
3193     return New->setInvalidDecl();
3194   }
3195 
3196   // Check if extern is followed by non-extern and vice-versa.
3197   if (New->hasExternalStorage() &&
3198       !Old->hasLinkage() && Old->isLocalVarDecl()) {
3199     Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
3200     Diag(OldLocation, PrevDiag);
3201     return New->setInvalidDecl();
3202   }
3203   if (Old->hasLinkage() && New->isLocalVarDecl() &&
3204       !New->hasExternalStorage()) {
3205     Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
3206     Diag(OldLocation, PrevDiag);
3207     return New->setInvalidDecl();
3208   }
3209 
3210   // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
3211 
3212   // FIXME: The test for external storage here seems wrong? We still
3213   // need to check for mismatches.
3214   if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
3215       // Don't complain about out-of-line definitions of static members.
3216       !(Old->getLexicalDeclContext()->isRecord() &&
3217         !New->getLexicalDeclContext()->isRecord())) {
3218     Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
3219     Diag(OldLocation, PrevDiag);
3220     return New->setInvalidDecl();
3221   }
3222 
3223   if (New->getTLSKind() != Old->getTLSKind()) {
3224     if (!Old->getTLSKind()) {
3225       Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
3226       Diag(OldLocation, PrevDiag);
3227     } else if (!New->getTLSKind()) {
3228       Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
3229       Diag(OldLocation, PrevDiag);
3230     } else {
3231       // Do not allow redeclaration to change the variable between requiring
3232       // static and dynamic initialization.
3233       // FIXME: GCC allows this, but uses the TLS keyword on the first
3234       // declaration to determine the kind. Do we need to be compatible here?
3235       Diag(New->getLocation(), diag::err_thread_thread_different_kind)
3236         << New->getDeclName() << (New->getTLSKind() == VarDecl::TLS_Dynamic);
3237       Diag(OldLocation, PrevDiag);
3238     }
3239   }
3240 
3241   // C++ doesn't have tentative definitions, so go right ahead and check here.
3242   const VarDecl *Def;
3243   if (getLangOpts().CPlusPlus &&
3244       New->isThisDeclarationADefinition() == VarDecl::Definition &&
3245       (Def = Old->getDefinition())) {
3246     Diag(New->getLocation(), diag::err_redefinition) << New;
3247     Diag(Def->getLocation(), diag::note_previous_definition);
3248     New->setInvalidDecl();
3249     return;
3250   }
3251 
3252   if (haveIncompatibleLanguageLinkages(Old, New)) {
3253     Diag(New->getLocation(), diag::err_different_language_linkage) << New;
3254     Diag(OldLocation, PrevDiag);
3255     New->setInvalidDecl();
3256     return;
3257   }
3258 
3259   // Merge "used" flag.
3260   if (Old->getMostRecentDecl()->isUsed(false))
3261     New->setIsUsed();
3262 
3263   // Keep a chain of previous declarations.
3264   New->setPreviousDecl(Old);
3265   if (NewTemplate)
3266     NewTemplate->setPreviousDecl(OldTemplate);
3267 
3268   // Inherit access appropriately.
3269   New->setAccess(Old->getAccess());
3270   if (NewTemplate)
3271     NewTemplate->setAccess(New->getAccess());
3272 }
3273 
3274 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
3275 /// no declarator (e.g. "struct foo;") is parsed.
ParsedFreeStandingDeclSpec(Scope * S,AccessSpecifier AS,DeclSpec & DS)3276 Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
3277                                        DeclSpec &DS) {
3278   return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg());
3279 }
3280 
HandleTagNumbering(Sema & S,const TagDecl * Tag,Scope * TagScope)3281 static void HandleTagNumbering(Sema &S, const TagDecl *Tag, Scope *TagScope) {
3282   if (!S.Context.getLangOpts().CPlusPlus)
3283     return;
3284 
3285   if (isa<CXXRecordDecl>(Tag->getParent())) {
3286     // If this tag is the direct child of a class, number it if
3287     // it is anonymous.
3288     if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl())
3289       return;
3290     MangleNumberingContext &MCtx =
3291         S.Context.getManglingNumberContext(Tag->getParent());
3292     S.Context.setManglingNumber(
3293         Tag, MCtx.getManglingNumber(Tag, TagScope->getMSLocalManglingNumber()));
3294     return;
3295   }
3296 
3297   // If this tag isn't a direct child of a class, number it if it is local.
3298   Decl *ManglingContextDecl;
3299   if (MangleNumberingContext *MCtx =
3300           S.getCurrentMangleNumberContext(Tag->getDeclContext(),
3301                                           ManglingContextDecl)) {
3302     S.Context.setManglingNumber(
3303         Tag,
3304         MCtx->getManglingNumber(Tag, TagScope->getMSLocalManglingNumber()));
3305   }
3306 }
3307 
3308 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
3309 /// no declarator (e.g. "struct foo;") is parsed. It also accepts template
3310 /// parameters to cope with template friend declarations.
ParsedFreeStandingDeclSpec(Scope * S,AccessSpecifier AS,DeclSpec & DS,MultiTemplateParamsArg TemplateParams,bool IsExplicitInstantiation)3311 Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
3312                                        DeclSpec &DS,
3313                                        MultiTemplateParamsArg TemplateParams,
3314                                        bool IsExplicitInstantiation) {
3315   Decl *TagD = nullptr;
3316   TagDecl *Tag = nullptr;
3317   if (DS.getTypeSpecType() == DeclSpec::TST_class ||
3318       DS.getTypeSpecType() == DeclSpec::TST_struct ||
3319       DS.getTypeSpecType() == DeclSpec::TST_interface ||
3320       DS.getTypeSpecType() == DeclSpec::TST_union ||
3321       DS.getTypeSpecType() == DeclSpec::TST_enum) {
3322     TagD = DS.getRepAsDecl();
3323 
3324     if (!TagD) // We probably had an error
3325       return nullptr;
3326 
3327     // Note that the above type specs guarantee that the
3328     // type rep is a Decl, whereas in many of the others
3329     // it's a Type.
3330     if (isa<TagDecl>(TagD))
3331       Tag = cast<TagDecl>(TagD);
3332     else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
3333       Tag = CTD->getTemplatedDecl();
3334   }
3335 
3336   if (Tag) {
3337     HandleTagNumbering(*this, Tag, S);
3338     Tag->setFreeStanding();
3339     if (Tag->isInvalidDecl())
3340       return Tag;
3341   }
3342 
3343   if (unsigned TypeQuals = DS.getTypeQualifiers()) {
3344     // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
3345     // or incomplete types shall not be restrict-qualified."
3346     if (TypeQuals & DeclSpec::TQ_restrict)
3347       Diag(DS.getRestrictSpecLoc(),
3348            diag::err_typecheck_invalid_restrict_not_pointer_noarg)
3349            << DS.getSourceRange();
3350   }
3351 
3352   if (DS.isConstexprSpecified()) {
3353     // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
3354     // and definitions of functions and variables.
3355     if (Tag)
3356       Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
3357         << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
3358             DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
3359             DS.getTypeSpecType() == DeclSpec::TST_interface ? 2 :
3360             DS.getTypeSpecType() == DeclSpec::TST_union ? 3 : 4);
3361     else
3362       Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
3363     // Don't emit warnings after this error.
3364     return TagD;
3365   }
3366 
3367   DiagnoseFunctionSpecifiers(DS);
3368 
3369   if (DS.isFriendSpecified()) {
3370     // If we're dealing with a decl but not a TagDecl, assume that
3371     // whatever routines created it handled the friendship aspect.
3372     if (TagD && !Tag)
3373       return nullptr;
3374     return ActOnFriendTypeDecl(S, DS, TemplateParams);
3375   }
3376 
3377   CXXScopeSpec &SS = DS.getTypeSpecScope();
3378   bool IsExplicitSpecialization =
3379     !TemplateParams.empty() && TemplateParams.back()->size() == 0;
3380   if (Tag && SS.isNotEmpty() && !Tag->isCompleteDefinition() &&
3381       !IsExplicitInstantiation && !IsExplicitSpecialization) {
3382     // Per C++ [dcl.type.elab]p1, a class declaration cannot have a
3383     // nested-name-specifier unless it is an explicit instantiation
3384     // or an explicit specialization.
3385     // Per C++ [dcl.enum]p1, an opaque-enum-declaration can't either.
3386     Diag(SS.getBeginLoc(), diag::err_standalone_class_nested_name_specifier)
3387       << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
3388           DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
3389           DS.getTypeSpecType() == DeclSpec::TST_interface ? 2 :
3390           DS.getTypeSpecType() == DeclSpec::TST_union ? 3 : 4)
3391       << SS.getRange();
3392     return nullptr;
3393   }
3394 
3395   // Track whether this decl-specifier declares anything.
3396   bool DeclaresAnything = true;
3397 
3398   // Handle anonymous struct definitions.
3399   if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
3400     if (!Record->getDeclName() && Record->isCompleteDefinition() &&
3401         DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
3402       if (getLangOpts().CPlusPlus ||
3403           Record->getDeclContext()->isRecord())
3404         return BuildAnonymousStructOrUnion(S, DS, AS, Record, Context.getPrintingPolicy());
3405 
3406       DeclaresAnything = false;
3407     }
3408   }
3409 
3410   // Check for Microsoft C extension: anonymous struct member.
3411   if (getLangOpts().MicrosoftExt && !getLangOpts().CPlusPlus &&
3412       CurContext->isRecord() &&
3413       DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
3414     // Handle 2 kinds of anonymous struct:
3415     //   struct STRUCT;
3416     // and
3417     //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
3418     RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
3419     if ((Record && Record->getDeclName() && !Record->isCompleteDefinition()) ||
3420         (DS.getTypeSpecType() == DeclSpec::TST_typename &&
3421          DS.getRepAsType().get()->isStructureType())) {
3422       Diag(DS.getLocStart(), diag::ext_ms_anonymous_struct)
3423         << DS.getSourceRange();
3424       return BuildMicrosoftCAnonymousStruct(S, DS, Record);
3425     }
3426   }
3427 
3428   // Skip all the checks below if we have a type error.
3429   if (DS.getTypeSpecType() == DeclSpec::TST_error ||
3430       (TagD && TagD->isInvalidDecl()))
3431     return TagD;
3432 
3433   if (getLangOpts().CPlusPlus &&
3434       DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
3435     if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
3436       if (Enum->enumerator_begin() == Enum->enumerator_end() &&
3437           !Enum->getIdentifier() && !Enum->isInvalidDecl())
3438         DeclaresAnything = false;
3439 
3440   if (!DS.isMissingDeclaratorOk()) {
3441     // Customize diagnostic for a typedef missing a name.
3442     if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef)
3443       Diag(DS.getLocStart(), diag::ext_typedef_without_a_name)
3444         << DS.getSourceRange();
3445     else
3446       DeclaresAnything = false;
3447   }
3448 
3449   if (DS.isModulePrivateSpecified() &&
3450       Tag && Tag->getDeclContext()->isFunctionOrMethod())
3451     Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
3452       << Tag->getTagKind()
3453       << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
3454 
3455   ActOnDocumentableDecl(TagD);
3456 
3457   // C 6.7/2:
3458   //   A declaration [...] shall declare at least a declarator [...], a tag,
3459   //   or the members of an enumeration.
3460   // C++ [dcl.dcl]p3:
3461   //   [If there are no declarators], and except for the declaration of an
3462   //   unnamed bit-field, the decl-specifier-seq shall introduce one or more
3463   //   names into the program, or shall redeclare a name introduced by a
3464   //   previous declaration.
3465   if (!DeclaresAnything) {
3466     // In C, we allow this as a (popular) extension / bug. Don't bother
3467     // producing further diagnostics for redundant qualifiers after this.
3468     Diag(DS.getLocStart(), diag::ext_no_declarators) << DS.getSourceRange();
3469     return TagD;
3470   }
3471 
3472   // C++ [dcl.stc]p1:
3473   //   If a storage-class-specifier appears in a decl-specifier-seq, [...] the
3474   //   init-declarator-list of the declaration shall not be empty.
3475   // C++ [dcl.fct.spec]p1:
3476   //   If a cv-qualifier appears in a decl-specifier-seq, the
3477   //   init-declarator-list of the declaration shall not be empty.
3478   //
3479   // Spurious qualifiers here appear to be valid in C.
3480   unsigned DiagID = diag::warn_standalone_specifier;
3481   if (getLangOpts().CPlusPlus)
3482     DiagID = diag::ext_standalone_specifier;
3483 
3484   // Note that a linkage-specification sets a storage class, but
3485   // 'extern "C" struct foo;' is actually valid and not theoretically
3486   // useless.
3487   if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
3488     if (SCS == DeclSpec::SCS_mutable)
3489       // Since mutable is not a viable storage class specifier in C, there is
3490       // no reason to treat it as an extension. Instead, diagnose as an error.
3491       Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_nonmember);
3492     else if (!DS.isExternInLinkageSpec() && SCS != DeclSpec::SCS_typedef)
3493       Diag(DS.getStorageClassSpecLoc(), DiagID)
3494         << DeclSpec::getSpecifierName(SCS);
3495   }
3496 
3497   if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
3498     Diag(DS.getThreadStorageClassSpecLoc(), DiagID)
3499       << DeclSpec::getSpecifierName(TSCS);
3500   if (DS.getTypeQualifiers()) {
3501     if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
3502       Diag(DS.getConstSpecLoc(), DiagID) << "const";
3503     if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
3504       Diag(DS.getConstSpecLoc(), DiagID) << "volatile";
3505     // Restrict is covered above.
3506     if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
3507       Diag(DS.getAtomicSpecLoc(), DiagID) << "_Atomic";
3508   }
3509 
3510   // Warn about ignored type attributes, for example:
3511   // __attribute__((aligned)) struct A;
3512   // Attributes should be placed after tag to apply to type declaration.
3513   if (!DS.getAttributes().empty()) {
3514     DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
3515     if (TypeSpecType == DeclSpec::TST_class ||
3516         TypeSpecType == DeclSpec::TST_struct ||
3517         TypeSpecType == DeclSpec::TST_interface ||
3518         TypeSpecType == DeclSpec::TST_union ||
3519         TypeSpecType == DeclSpec::TST_enum) {
3520       AttributeList* attrs = DS.getAttributes().getList();
3521       while (attrs) {
3522         Diag(attrs->getLoc(), diag::warn_declspec_attribute_ignored)
3523         << attrs->getName()
3524         << (TypeSpecType == DeclSpec::TST_class ? 0 :
3525             TypeSpecType == DeclSpec::TST_struct ? 1 :
3526             TypeSpecType == DeclSpec::TST_union ? 2 :
3527             TypeSpecType == DeclSpec::TST_interface ? 3 : 4);
3528         attrs = attrs->getNext();
3529       }
3530     }
3531   }
3532 
3533   return TagD;
3534 }
3535 
3536 /// We are trying to inject an anonymous member into the given scope;
3537 /// check if there's an existing declaration that can't be overloaded.
3538 ///
3539 /// \return true if this is a forbidden redeclaration
CheckAnonMemberRedeclaration(Sema & SemaRef,Scope * S,DeclContext * Owner,DeclarationName Name,SourceLocation NameLoc,unsigned diagnostic)3540 static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
3541                                          Scope *S,
3542                                          DeclContext *Owner,
3543                                          DeclarationName Name,
3544                                          SourceLocation NameLoc,
3545                                          unsigned diagnostic) {
3546   LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
3547                  Sema::ForRedeclaration);
3548   if (!SemaRef.LookupName(R, S)) return false;
3549 
3550   if (R.getAsSingle<TagDecl>())
3551     return false;
3552 
3553   // Pick a representative declaration.
3554   NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
3555   assert(PrevDecl && "Expected a non-null Decl");
3556 
3557   if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
3558     return false;
3559 
3560   SemaRef.Diag(NameLoc, diagnostic) << Name;
3561   SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3562 
3563   return true;
3564 }
3565 
3566 /// InjectAnonymousStructOrUnionMembers - Inject the members of the
3567 /// anonymous struct or union AnonRecord into the owning context Owner
3568 /// and scope S. This routine will be invoked just after we realize
3569 /// that an unnamed union or struct is actually an anonymous union or
3570 /// struct, e.g.,
3571 ///
3572 /// @code
3573 /// union {
3574 ///   int i;
3575 ///   float f;
3576 /// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
3577 ///    // f into the surrounding scope.x
3578 /// @endcode
3579 ///
3580 /// This routine is recursive, injecting the names of nested anonymous
3581 /// structs/unions into the owning context and scope as well.
InjectAnonymousStructOrUnionMembers(Sema & SemaRef,Scope * S,DeclContext * Owner,RecordDecl * AnonRecord,AccessSpecifier AS,SmallVectorImpl<NamedDecl * > & Chaining,bool MSAnonStruct)3582 static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
3583                                          DeclContext *Owner,
3584                                          RecordDecl *AnonRecord,
3585                                          AccessSpecifier AS,
3586                                          SmallVectorImpl<NamedDecl *> &Chaining,
3587                                          bool MSAnonStruct) {
3588   unsigned diagKind
3589     = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
3590                             : diag::err_anonymous_struct_member_redecl;
3591 
3592   bool Invalid = false;
3593 
3594   // Look every FieldDecl and IndirectFieldDecl with a name.
3595   for (auto *D : AnonRecord->decls()) {
3596     if ((isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D)) &&
3597         cast<NamedDecl>(D)->getDeclName()) {
3598       ValueDecl *VD = cast<ValueDecl>(D);
3599       if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
3600                                        VD->getLocation(), diagKind)) {
3601         // C++ [class.union]p2:
3602         //   The names of the members of an anonymous union shall be
3603         //   distinct from the names of any other entity in the
3604         //   scope in which the anonymous union is declared.
3605         Invalid = true;
3606       } else {
3607         // C++ [class.union]p2:
3608         //   For the purpose of name lookup, after the anonymous union
3609         //   definition, the members of the anonymous union are
3610         //   considered to have been defined in the scope in which the
3611         //   anonymous union is declared.
3612         unsigned OldChainingSize = Chaining.size();
3613         if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
3614           for (auto *PI : IF->chain())
3615             Chaining.push_back(PI);
3616         else
3617           Chaining.push_back(VD);
3618 
3619         assert(Chaining.size() >= 2);
3620         NamedDecl **NamedChain =
3621           new (SemaRef.Context)NamedDecl*[Chaining.size()];
3622         for (unsigned i = 0; i < Chaining.size(); i++)
3623           NamedChain[i] = Chaining[i];
3624 
3625         IndirectFieldDecl* IndirectField =
3626           IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
3627                                     VD->getIdentifier(), VD->getType(),
3628                                     NamedChain, Chaining.size());
3629 
3630         IndirectField->setAccess(AS);
3631         IndirectField->setImplicit();
3632         SemaRef.PushOnScopeChains(IndirectField, S);
3633 
3634         // That includes picking up the appropriate access specifier.
3635         if (AS != AS_none) IndirectField->setAccess(AS);
3636 
3637         Chaining.resize(OldChainingSize);
3638       }
3639     }
3640   }
3641 
3642   return Invalid;
3643 }
3644 
3645 /// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
3646 /// a VarDecl::StorageClass. Any error reporting is up to the caller:
3647 /// illegal input values are mapped to SC_None.
3648 static StorageClass
StorageClassSpecToVarDeclStorageClass(const DeclSpec & DS)3649 StorageClassSpecToVarDeclStorageClass(const DeclSpec &DS) {
3650   DeclSpec::SCS StorageClassSpec = DS.getStorageClassSpec();
3651   assert(StorageClassSpec != DeclSpec::SCS_typedef &&
3652          "Parser allowed 'typedef' as storage class VarDecl.");
3653   switch (StorageClassSpec) {
3654   case DeclSpec::SCS_unspecified:    return SC_None;
3655   case DeclSpec::SCS_extern:
3656     if (DS.isExternInLinkageSpec())
3657       return SC_None;
3658     return SC_Extern;
3659   case DeclSpec::SCS_static:         return SC_Static;
3660   case DeclSpec::SCS_auto:           return SC_Auto;
3661   case DeclSpec::SCS_register:       return SC_Register;
3662   case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
3663     // Illegal SCSs map to None: error reporting is up to the caller.
3664   case DeclSpec::SCS_mutable:        // Fall through.
3665   case DeclSpec::SCS_typedef:        return SC_None;
3666   }
3667   llvm_unreachable("unknown storage class specifier");
3668 }
3669 
findDefaultInitializer(const CXXRecordDecl * Record)3670 static SourceLocation findDefaultInitializer(const CXXRecordDecl *Record) {
3671   assert(Record->hasInClassInitializer());
3672 
3673   for (const auto *I : Record->decls()) {
3674     const auto *FD = dyn_cast<FieldDecl>(I);
3675     if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I))
3676       FD = IFD->getAnonField();
3677     if (FD && FD->hasInClassInitializer())
3678       return FD->getLocation();
3679   }
3680 
3681   llvm_unreachable("couldn't find in-class initializer");
3682 }
3683 
checkDuplicateDefaultInit(Sema & S,CXXRecordDecl * Parent,SourceLocation DefaultInitLoc)3684 static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent,
3685                                       SourceLocation DefaultInitLoc) {
3686   if (!Parent->isUnion() || !Parent->hasInClassInitializer())
3687     return;
3688 
3689   S.Diag(DefaultInitLoc, diag::err_multiple_mem_union_initialization);
3690   S.Diag(findDefaultInitializer(Parent), diag::note_previous_initializer) << 0;
3691 }
3692 
checkDuplicateDefaultInit(Sema & S,CXXRecordDecl * Parent,CXXRecordDecl * AnonUnion)3693 static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent,
3694                                       CXXRecordDecl *AnonUnion) {
3695   if (!Parent->isUnion() || !Parent->hasInClassInitializer())
3696     return;
3697 
3698   checkDuplicateDefaultInit(S, Parent, findDefaultInitializer(AnonUnion));
3699 }
3700 
3701 /// BuildAnonymousStructOrUnion - Handle the declaration of an
3702 /// anonymous structure or union. Anonymous unions are a C++ feature
3703 /// (C++ [class.union]) and a C11 feature; anonymous structures
3704 /// are a C11 feature and GNU C++ extension.
BuildAnonymousStructOrUnion(Scope * S,DeclSpec & DS,AccessSpecifier AS,RecordDecl * Record,const PrintingPolicy & Policy)3705 Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
3706                                         AccessSpecifier AS,
3707                                         RecordDecl *Record,
3708                                         const PrintingPolicy &Policy) {
3709   DeclContext *Owner = Record->getDeclContext();
3710 
3711   // Diagnose whether this anonymous struct/union is an extension.
3712   if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
3713     Diag(Record->getLocation(), diag::ext_anonymous_union);
3714   else if (!Record->isUnion() && getLangOpts().CPlusPlus)
3715     Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
3716   else if (!Record->isUnion() && !getLangOpts().C11)
3717     Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
3718 
3719   // C and C++ require different kinds of checks for anonymous
3720   // structs/unions.
3721   bool Invalid = false;
3722   if (getLangOpts().CPlusPlus) {
3723     const char *PrevSpec = nullptr;
3724     unsigned DiagID;
3725     if (Record->isUnion()) {
3726       // C++ [class.union]p6:
3727       //   Anonymous unions declared in a named namespace or in the
3728       //   global namespace shall be declared static.
3729       if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
3730           (isa<TranslationUnitDecl>(Owner) ||
3731            (isa<NamespaceDecl>(Owner) &&
3732             cast<NamespaceDecl>(Owner)->getDeclName()))) {
3733         Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
3734           << FixItHint::CreateInsertion(Record->getLocation(), "static ");
3735 
3736         // Recover by adding 'static'.
3737         DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
3738                                PrevSpec, DiagID, Policy);
3739       }
3740       // C++ [class.union]p6:
3741       //   A storage class is not allowed in a declaration of an
3742       //   anonymous union in a class scope.
3743       else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
3744                isa<RecordDecl>(Owner)) {
3745         Diag(DS.getStorageClassSpecLoc(),
3746              diag::err_anonymous_union_with_storage_spec)
3747           << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
3748 
3749         // Recover by removing the storage specifier.
3750         DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
3751                                SourceLocation(),
3752                                PrevSpec, DiagID, Context.getPrintingPolicy());
3753       }
3754     }
3755 
3756     // Ignore const/volatile/restrict qualifiers.
3757     if (DS.getTypeQualifiers()) {
3758       if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
3759         Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
3760           << Record->isUnion() << "const"
3761           << FixItHint::CreateRemoval(DS.getConstSpecLoc());
3762       if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
3763         Diag(DS.getVolatileSpecLoc(),
3764              diag::ext_anonymous_struct_union_qualified)
3765           << Record->isUnion() << "volatile"
3766           << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
3767       if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
3768         Diag(DS.getRestrictSpecLoc(),
3769              diag::ext_anonymous_struct_union_qualified)
3770           << Record->isUnion() << "restrict"
3771           << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
3772       if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
3773         Diag(DS.getAtomicSpecLoc(),
3774              diag::ext_anonymous_struct_union_qualified)
3775           << Record->isUnion() << "_Atomic"
3776           << FixItHint::CreateRemoval(DS.getAtomicSpecLoc());
3777 
3778       DS.ClearTypeQualifiers();
3779     }
3780 
3781     // C++ [class.union]p2:
3782     //   The member-specification of an anonymous union shall only
3783     //   define non-static data members. [Note: nested types and
3784     //   functions cannot be declared within an anonymous union. ]
3785     for (auto *Mem : Record->decls()) {
3786       if (auto *FD = dyn_cast<FieldDecl>(Mem)) {
3787         // C++ [class.union]p3:
3788         //   An anonymous union shall not have private or protected
3789         //   members (clause 11).
3790         assert(FD->getAccess() != AS_none);
3791         if (FD->getAccess() != AS_public) {
3792           Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
3793             << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
3794           Invalid = true;
3795         }
3796 
3797         // C++ [class.union]p1
3798         //   An object of a class with a non-trivial constructor, a non-trivial
3799         //   copy constructor, a non-trivial destructor, or a non-trivial copy
3800         //   assignment operator cannot be a member of a union, nor can an
3801         //   array of such objects.
3802         if (CheckNontrivialField(FD))
3803           Invalid = true;
3804       } else if (Mem->isImplicit()) {
3805         // Any implicit members are fine.
3806       } else if (isa<TagDecl>(Mem) && Mem->getDeclContext() != Record) {
3807         // This is a type that showed up in an
3808         // elaborated-type-specifier inside the anonymous struct or
3809         // union, but which actually declares a type outside of the
3810         // anonymous struct or union. It's okay.
3811       } else if (auto *MemRecord = dyn_cast<RecordDecl>(Mem)) {
3812         if (!MemRecord->isAnonymousStructOrUnion() &&
3813             MemRecord->getDeclName()) {
3814           // Visual C++ allows type definition in anonymous struct or union.
3815           if (getLangOpts().MicrosoftExt)
3816             Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
3817               << (int)Record->isUnion();
3818           else {
3819             // This is a nested type declaration.
3820             Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
3821               << (int)Record->isUnion();
3822             Invalid = true;
3823           }
3824         } else {
3825           // This is an anonymous type definition within another anonymous type.
3826           // This is a popular extension, provided by Plan9, MSVC and GCC, but
3827           // not part of standard C++.
3828           Diag(MemRecord->getLocation(),
3829                diag::ext_anonymous_record_with_anonymous_type)
3830             << (int)Record->isUnion();
3831         }
3832       } else if (isa<AccessSpecDecl>(Mem)) {
3833         // Any access specifier is fine.
3834       } else if (isa<StaticAssertDecl>(Mem)) {
3835         // In C++1z, static_assert declarations are also fine.
3836       } else {
3837         // We have something that isn't a non-static data
3838         // member. Complain about it.
3839         unsigned DK = diag::err_anonymous_record_bad_member;
3840         if (isa<TypeDecl>(Mem))
3841           DK = diag::err_anonymous_record_with_type;
3842         else if (isa<FunctionDecl>(Mem))
3843           DK = diag::err_anonymous_record_with_function;
3844         else if (isa<VarDecl>(Mem))
3845           DK = diag::err_anonymous_record_with_static;
3846 
3847         // Visual C++ allows type definition in anonymous struct or union.
3848         if (getLangOpts().MicrosoftExt &&
3849             DK == diag::err_anonymous_record_with_type)
3850           Diag(Mem->getLocation(), diag::ext_anonymous_record_with_type)
3851             << (int)Record->isUnion();
3852         else {
3853           Diag(Mem->getLocation(), DK)
3854               << (int)Record->isUnion();
3855           Invalid = true;
3856         }
3857       }
3858     }
3859 
3860     // C++11 [class.union]p8 (DR1460):
3861     //   At most one variant member of a union may have a
3862     //   brace-or-equal-initializer.
3863     if (cast<CXXRecordDecl>(Record)->hasInClassInitializer() &&
3864         Owner->isRecord())
3865       checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Owner),
3866                                 cast<CXXRecordDecl>(Record));
3867   }
3868 
3869   if (!Record->isUnion() && !Owner->isRecord()) {
3870     Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
3871       << (int)getLangOpts().CPlusPlus;
3872     Invalid = true;
3873   }
3874 
3875   // Mock up a declarator.
3876   Declarator Dc(DS, Declarator::MemberContext);
3877   TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
3878   assert(TInfo && "couldn't build declarator info for anonymous struct/union");
3879 
3880   // Create a declaration for this anonymous struct/union.
3881   NamedDecl *Anon = nullptr;
3882   if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
3883     Anon = FieldDecl::Create(Context, OwningClass,
3884                              DS.getLocStart(),
3885                              Record->getLocation(),
3886                              /*IdentifierInfo=*/nullptr,
3887                              Context.getTypeDeclType(Record),
3888                              TInfo,
3889                              /*BitWidth=*/nullptr, /*Mutable=*/false,
3890                              /*InitStyle=*/ICIS_NoInit);
3891     Anon->setAccess(AS);
3892     if (getLangOpts().CPlusPlus)
3893       FieldCollector->Add(cast<FieldDecl>(Anon));
3894   } else {
3895     DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
3896     VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(DS);
3897     if (SCSpec == DeclSpec::SCS_mutable) {
3898       // mutable can only appear on non-static class members, so it's always
3899       // an error here
3900       Diag(Record->getLocation(), diag::err_mutable_nonmember);
3901       Invalid = true;
3902       SC = SC_None;
3903     }
3904 
3905     Anon = VarDecl::Create(Context, Owner,
3906                            DS.getLocStart(),
3907                            Record->getLocation(), /*IdentifierInfo=*/nullptr,
3908                            Context.getTypeDeclType(Record),
3909                            TInfo, SC);
3910 
3911     // Default-initialize the implicit variable. This initialization will be
3912     // trivial in almost all cases, except if a union member has an in-class
3913     // initializer:
3914     //   union { int n = 0; };
3915     ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
3916   }
3917   Anon->setImplicit();
3918 
3919   // Mark this as an anonymous struct/union type.
3920   Record->setAnonymousStructOrUnion(true);
3921 
3922   // Add the anonymous struct/union object to the current
3923   // context. We'll be referencing this object when we refer to one of
3924   // its members.
3925   Owner->addDecl(Anon);
3926 
3927   // Inject the members of the anonymous struct/union into the owning
3928   // context and into the identifier resolver chain for name lookup
3929   // purposes.
3930   SmallVector<NamedDecl*, 2> Chain;
3931   Chain.push_back(Anon);
3932 
3933   if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
3934                                           Chain, false))
3935     Invalid = true;
3936 
3937   if (VarDecl *NewVD = dyn_cast<VarDecl>(Anon)) {
3938     if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
3939       Decl *ManglingContextDecl;
3940       if (MangleNumberingContext *MCtx =
3941               getCurrentMangleNumberContext(NewVD->getDeclContext(),
3942                                             ManglingContextDecl)) {
3943         Context.setManglingNumber(NewVD, MCtx->getManglingNumber(NewVD, S->getMSLocalManglingNumber()));
3944         Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD));
3945       }
3946     }
3947   }
3948 
3949   if (Invalid)
3950     Anon->setInvalidDecl();
3951 
3952   return Anon;
3953 }
3954 
3955 /// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
3956 /// Microsoft C anonymous structure.
3957 /// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
3958 /// Example:
3959 ///
3960 /// struct A { int a; };
3961 /// struct B { struct A; int b; };
3962 ///
3963 /// void foo() {
3964 ///   B var;
3965 ///   var.a = 3;
3966 /// }
3967 ///
BuildMicrosoftCAnonymousStruct(Scope * S,DeclSpec & DS,RecordDecl * Record)3968 Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
3969                                            RecordDecl *Record) {
3970 
3971   // If there is no Record, get the record via the typedef.
3972   if (!Record)
3973     Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
3974 
3975   // Mock up a declarator.
3976   Declarator Dc(DS, Declarator::TypeNameContext);
3977   TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
3978   assert(TInfo && "couldn't build declarator info for anonymous struct");
3979 
3980   // Create a declaration for this anonymous struct.
3981   NamedDecl *Anon = FieldDecl::Create(Context,
3982                              cast<RecordDecl>(CurContext),
3983                              DS.getLocStart(),
3984                              DS.getLocStart(),
3985                              /*IdentifierInfo=*/nullptr,
3986                              Context.getTypeDeclType(Record),
3987                              TInfo,
3988                              /*BitWidth=*/nullptr, /*Mutable=*/false,
3989                              /*InitStyle=*/ICIS_NoInit);
3990   Anon->setImplicit();
3991 
3992   // Add the anonymous struct object to the current context.
3993   CurContext->addDecl(Anon);
3994 
3995   // Inject the members of the anonymous struct into the current
3996   // context and into the identifier resolver chain for name lookup
3997   // purposes.
3998   SmallVector<NamedDecl*, 2> Chain;
3999   Chain.push_back(Anon);
4000 
4001   RecordDecl *RecordDef = Record->getDefinition();
4002   if (!RecordDef || InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
4003                                                         RecordDef, AS_none,
4004                                                         Chain, true))
4005     Anon->setInvalidDecl();
4006 
4007   return Anon;
4008 }
4009 
4010 /// GetNameForDeclarator - Determine the full declaration name for the
4011 /// given Declarator.
GetNameForDeclarator(Declarator & D)4012 DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
4013   return GetNameFromUnqualifiedId(D.getName());
4014 }
4015 
4016 /// \brief Retrieves the declaration name from a parsed unqualified-id.
4017 DeclarationNameInfo
GetNameFromUnqualifiedId(const UnqualifiedId & Name)4018 Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
4019   DeclarationNameInfo NameInfo;
4020   NameInfo.setLoc(Name.StartLocation);
4021 
4022   switch (Name.getKind()) {
4023 
4024   case UnqualifiedId::IK_ImplicitSelfParam:
4025   case UnqualifiedId::IK_Identifier:
4026     NameInfo.setName(Name.Identifier);
4027     NameInfo.setLoc(Name.StartLocation);
4028     return NameInfo;
4029 
4030   case UnqualifiedId::IK_OperatorFunctionId:
4031     NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
4032                                            Name.OperatorFunctionId.Operator));
4033     NameInfo.setLoc(Name.StartLocation);
4034     NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
4035       = Name.OperatorFunctionId.SymbolLocations[0];
4036     NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
4037       = Name.EndLocation.getRawEncoding();
4038     return NameInfo;
4039 
4040   case UnqualifiedId::IK_LiteralOperatorId:
4041     NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
4042                                                            Name.Identifier));
4043     NameInfo.setLoc(Name.StartLocation);
4044     NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
4045     return NameInfo;
4046 
4047   case UnqualifiedId::IK_ConversionFunctionId: {
4048     TypeSourceInfo *TInfo;
4049     QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
4050     if (Ty.isNull())
4051       return DeclarationNameInfo();
4052     NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
4053                                                Context.getCanonicalType(Ty)));
4054     NameInfo.setLoc(Name.StartLocation);
4055     NameInfo.setNamedTypeInfo(TInfo);
4056     return NameInfo;
4057   }
4058 
4059   case UnqualifiedId::IK_ConstructorName: {
4060     TypeSourceInfo *TInfo;
4061     QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
4062     if (Ty.isNull())
4063       return DeclarationNameInfo();
4064     NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
4065                                               Context.getCanonicalType(Ty)));
4066     NameInfo.setLoc(Name.StartLocation);
4067     NameInfo.setNamedTypeInfo(TInfo);
4068     return NameInfo;
4069   }
4070 
4071   case UnqualifiedId::IK_ConstructorTemplateId: {
4072     // In well-formed code, we can only have a constructor
4073     // template-id that refers to the current context, so go there
4074     // to find the actual type being constructed.
4075     CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
4076     if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
4077       return DeclarationNameInfo();
4078 
4079     // Determine the type of the class being constructed.
4080     QualType CurClassType = Context.getTypeDeclType(CurClass);
4081 
4082     // FIXME: Check two things: that the template-id names the same type as
4083     // CurClassType, and that the template-id does not occur when the name
4084     // was qualified.
4085 
4086     NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
4087                                     Context.getCanonicalType(CurClassType)));
4088     NameInfo.setLoc(Name.StartLocation);
4089     // FIXME: should we retrieve TypeSourceInfo?
4090     NameInfo.setNamedTypeInfo(nullptr);
4091     return NameInfo;
4092   }
4093 
4094   case UnqualifiedId::IK_DestructorName: {
4095     TypeSourceInfo *TInfo;
4096     QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
4097     if (Ty.isNull())
4098       return DeclarationNameInfo();
4099     NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
4100                                               Context.getCanonicalType(Ty)));
4101     NameInfo.setLoc(Name.StartLocation);
4102     NameInfo.setNamedTypeInfo(TInfo);
4103     return NameInfo;
4104   }
4105 
4106   case UnqualifiedId::IK_TemplateId: {
4107     TemplateName TName = Name.TemplateId->Template.get();
4108     SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
4109     return Context.getNameForTemplate(TName, TNameLoc);
4110   }
4111 
4112   } // switch (Name.getKind())
4113 
4114   llvm_unreachable("Unknown name kind");
4115 }
4116 
getCoreType(QualType Ty)4117 static QualType getCoreType(QualType Ty) {
4118   do {
4119     if (Ty->isPointerType() || Ty->isReferenceType())
4120       Ty = Ty->getPointeeType();
4121     else if (Ty->isArrayType())
4122       Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
4123     else
4124       return Ty.withoutLocalFastQualifiers();
4125   } while (true);
4126 }
4127 
4128 /// hasSimilarParameters - Determine whether the C++ functions Declaration
4129 /// and Definition have "nearly" matching parameters. This heuristic is
4130 /// used to improve diagnostics in the case where an out-of-line function
4131 /// definition doesn't match any declaration within the class or namespace.
4132 /// Also sets Params to the list of indices to the parameters that differ
4133 /// between the declaration and the definition. If hasSimilarParameters
4134 /// returns true and Params is empty, then all of the parameters match.
hasSimilarParameters(ASTContext & Context,FunctionDecl * Declaration,FunctionDecl * Definition,SmallVectorImpl<unsigned> & Params)4135 static bool hasSimilarParameters(ASTContext &Context,
4136                                      FunctionDecl *Declaration,
4137                                      FunctionDecl *Definition,
4138                                      SmallVectorImpl<unsigned> &Params) {
4139   Params.clear();
4140   if (Declaration->param_size() != Definition->param_size())
4141     return false;
4142   for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
4143     QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
4144     QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
4145 
4146     // The parameter types are identical
4147     if (Context.hasSameType(DefParamTy, DeclParamTy))
4148       continue;
4149 
4150     QualType DeclParamBaseTy = getCoreType(DeclParamTy);
4151     QualType DefParamBaseTy = getCoreType(DefParamTy);
4152     const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
4153     const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
4154 
4155     if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
4156         (DeclTyName && DeclTyName == DefTyName))
4157       Params.push_back(Idx);
4158     else  // The two parameters aren't even close
4159       return false;
4160   }
4161 
4162   return true;
4163 }
4164 
4165 /// NeedsRebuildingInCurrentInstantiation - Checks whether the given
4166 /// declarator needs to be rebuilt in the current instantiation.
4167 /// Any bits of declarator which appear before the name are valid for
4168 /// consideration here.  That's specifically the type in the decl spec
4169 /// and the base type in any member-pointer chunks.
RebuildDeclaratorInCurrentInstantiation(Sema & S,Declarator & D,DeclarationName Name)4170 static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
4171                                                     DeclarationName Name) {
4172   // The types we specifically need to rebuild are:
4173   //   - typenames, typeofs, and decltypes
4174   //   - types which will become injected class names
4175   // Of course, we also need to rebuild any type referencing such a
4176   // type.  It's safest to just say "dependent", but we call out a
4177   // few cases here.
4178 
4179   DeclSpec &DS = D.getMutableDeclSpec();
4180   switch (DS.getTypeSpecType()) {
4181   case DeclSpec::TST_typename:
4182   case DeclSpec::TST_typeofType:
4183   case DeclSpec::TST_underlyingType:
4184   case DeclSpec::TST_atomic: {
4185     // Grab the type from the parser.
4186     TypeSourceInfo *TSI = nullptr;
4187     QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
4188     if (T.isNull() || !T->isDependentType()) break;
4189 
4190     // Make sure there's a type source info.  This isn't really much
4191     // of a waste; most dependent types should have type source info
4192     // attached already.
4193     if (!TSI)
4194       TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
4195 
4196     // Rebuild the type in the current instantiation.
4197     TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
4198     if (!TSI) return true;
4199 
4200     // Store the new type back in the decl spec.
4201     ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
4202     DS.UpdateTypeRep(LocType);
4203     break;
4204   }
4205 
4206   case DeclSpec::TST_decltype:
4207   case DeclSpec::TST_typeofExpr: {
4208     Expr *E = DS.getRepAsExpr();
4209     ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
4210     if (Result.isInvalid()) return true;
4211     DS.UpdateExprRep(Result.get());
4212     break;
4213   }
4214 
4215   default:
4216     // Nothing to do for these decl specs.
4217     break;
4218   }
4219 
4220   // It doesn't matter what order we do this in.
4221   for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
4222     DeclaratorChunk &Chunk = D.getTypeObject(I);
4223 
4224     // The only type information in the declarator which can come
4225     // before the declaration name is the base type of a member
4226     // pointer.
4227     if (Chunk.Kind != DeclaratorChunk::MemberPointer)
4228       continue;
4229 
4230     // Rebuild the scope specifier in-place.
4231     CXXScopeSpec &SS = Chunk.Mem.Scope();
4232     if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
4233       return true;
4234   }
4235 
4236   return false;
4237 }
4238 
ActOnDeclarator(Scope * S,Declarator & D)4239 Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
4240   D.setFunctionDefinitionKind(FDK_Declaration);
4241   Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg());
4242 
4243   if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
4244       Dcl && Dcl->getDeclContext()->isFileContext())
4245     Dcl->setTopLevelDeclInObjCContainer();
4246 
4247   return Dcl;
4248 }
4249 
4250 /// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
4251 ///   If T is the name of a class, then each of the following shall have a
4252 ///   name different from T:
4253 ///     - every static data member of class T;
4254 ///     - every member function of class T
4255 ///     - every member of class T that is itself a type;
4256 /// \returns true if the declaration name violates these rules.
DiagnoseClassNameShadow(DeclContext * DC,DeclarationNameInfo NameInfo)4257 bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
4258                                    DeclarationNameInfo NameInfo) {
4259   DeclarationName Name = NameInfo.getName();
4260 
4261   if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
4262     if (Record->getIdentifier() && Record->getDeclName() == Name) {
4263       Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
4264       return true;
4265     }
4266 
4267   return false;
4268 }
4269 
4270 /// \brief Diagnose a declaration whose declarator-id has the given
4271 /// nested-name-specifier.
4272 ///
4273 /// \param SS The nested-name-specifier of the declarator-id.
4274 ///
4275 /// \param DC The declaration context to which the nested-name-specifier
4276 /// resolves.
4277 ///
4278 /// \param Name The name of the entity being declared.
4279 ///
4280 /// \param Loc The location of the name of the entity being declared.
4281 ///
4282 /// \returns true if we cannot safely recover from this error, false otherwise.
diagnoseQualifiedDeclaration(CXXScopeSpec & SS,DeclContext * DC,DeclarationName Name,SourceLocation Loc)4283 bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
4284                                         DeclarationName Name,
4285                                         SourceLocation Loc) {
4286   DeclContext *Cur = CurContext;
4287   while (isa<LinkageSpecDecl>(Cur) || isa<CapturedDecl>(Cur))
4288     Cur = Cur->getParent();
4289 
4290   // If the user provided a superfluous scope specifier that refers back to the
4291   // class in which the entity is already declared, diagnose and ignore it.
4292   //
4293   // class X {
4294   //   void X::f();
4295   // };
4296   //
4297   // Note, it was once ill-formed to give redundant qualification in all
4298   // contexts, but that rule was removed by DR482.
4299   if (Cur->Equals(DC)) {
4300     if (Cur->isRecord()) {
4301       Diag(Loc, LangOpts.MicrosoftExt ? diag::warn_member_extra_qualification
4302                                       : diag::err_member_extra_qualification)
4303         << Name << FixItHint::CreateRemoval(SS.getRange());
4304       SS.clear();
4305     } else {
4306       Diag(Loc, diag::warn_namespace_member_extra_qualification) << Name;
4307     }
4308     return false;
4309   }
4310 
4311   // Check whether the qualifying scope encloses the scope of the original
4312   // declaration.
4313   if (!Cur->Encloses(DC)) {
4314     if (Cur->isRecord())
4315       Diag(Loc, diag::err_member_qualification)
4316         << Name << SS.getRange();
4317     else if (isa<TranslationUnitDecl>(DC))
4318       Diag(Loc, diag::err_invalid_declarator_global_scope)
4319         << Name << SS.getRange();
4320     else if (isa<FunctionDecl>(Cur))
4321       Diag(Loc, diag::err_invalid_declarator_in_function)
4322         << Name << SS.getRange();
4323     else if (isa<BlockDecl>(Cur))
4324       Diag(Loc, diag::err_invalid_declarator_in_block)
4325         << Name << SS.getRange();
4326     else
4327       Diag(Loc, diag::err_invalid_declarator_scope)
4328       << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
4329 
4330     return true;
4331   }
4332 
4333   if (Cur->isRecord()) {
4334     // Cannot qualify members within a class.
4335     Diag(Loc, diag::err_member_qualification)
4336       << Name << SS.getRange();
4337     SS.clear();
4338 
4339     // C++ constructors and destructors with incorrect scopes can break
4340     // our AST invariants by having the wrong underlying types. If
4341     // that's the case, then drop this declaration entirely.
4342     if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
4343          Name.getNameKind() == DeclarationName::CXXDestructorName) &&
4344         !Context.hasSameType(Name.getCXXNameType(),
4345                              Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
4346       return true;
4347 
4348     return false;
4349   }
4350 
4351   // C++11 [dcl.meaning]p1:
4352   //   [...] "The nested-name-specifier of the qualified declarator-id shall
4353   //   not begin with a decltype-specifer"
4354   NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
4355   while (SpecLoc.getPrefix())
4356     SpecLoc = SpecLoc.getPrefix();
4357   if (dyn_cast_or_null<DecltypeType>(
4358         SpecLoc.getNestedNameSpecifier()->getAsType()))
4359     Diag(Loc, diag::err_decltype_in_declarator)
4360       << SpecLoc.getTypeLoc().getSourceRange();
4361 
4362   return false;
4363 }
4364 
HandleDeclarator(Scope * S,Declarator & D,MultiTemplateParamsArg TemplateParamLists)4365 NamedDecl *Sema::HandleDeclarator(Scope *S, Declarator &D,
4366                                   MultiTemplateParamsArg TemplateParamLists) {
4367   // TODO: consider using NameInfo for diagnostic.
4368   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
4369   DeclarationName Name = NameInfo.getName();
4370 
4371   // All of these full declarators require an identifier.  If it doesn't have
4372   // one, the ParsedFreeStandingDeclSpec action should be used.
4373   if (!Name) {
4374     if (!D.isInvalidType())  // Reject this if we think it is valid.
4375       Diag(D.getDeclSpec().getLocStart(),
4376            diag::err_declarator_need_ident)
4377         << D.getDeclSpec().getSourceRange() << D.getSourceRange();
4378     return nullptr;
4379   } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
4380     return nullptr;
4381 
4382   // The scope passed in may not be a decl scope.  Zip up the scope tree until
4383   // we find one that is.
4384   while ((S->getFlags() & Scope::DeclScope) == 0 ||
4385          (S->getFlags() & Scope::TemplateParamScope) != 0)
4386     S = S->getParent();
4387 
4388   DeclContext *DC = CurContext;
4389   if (D.getCXXScopeSpec().isInvalid())
4390     D.setInvalidType();
4391   else if (D.getCXXScopeSpec().isSet()) {
4392     if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
4393                                         UPPC_DeclarationQualifier))
4394       return nullptr;
4395 
4396     bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
4397     DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
4398     if (!DC || isa<EnumDecl>(DC)) {
4399       // If we could not compute the declaration context, it's because the
4400       // declaration context is dependent but does not refer to a class,
4401       // class template, or class template partial specialization. Complain
4402       // and return early, to avoid the coming semantic disaster.
4403       Diag(D.getIdentifierLoc(),
4404            diag::err_template_qualified_declarator_no_match)
4405         << D.getCXXScopeSpec().getScopeRep()
4406         << D.getCXXScopeSpec().getRange();
4407       return nullptr;
4408     }
4409     bool IsDependentContext = DC->isDependentContext();
4410 
4411     if (!IsDependentContext &&
4412         RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
4413       return nullptr;
4414 
4415     if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
4416       Diag(D.getIdentifierLoc(),
4417            diag::err_member_def_undefined_record)
4418         << Name << DC << D.getCXXScopeSpec().getRange();
4419       D.setInvalidType();
4420     } else if (!D.getDeclSpec().isFriendSpecified()) {
4421       if (diagnoseQualifiedDeclaration(D.getCXXScopeSpec(), DC,
4422                                       Name, D.getIdentifierLoc())) {
4423         if (DC->isRecord())
4424           return nullptr;
4425 
4426         D.setInvalidType();
4427       }
4428     }
4429 
4430     // Check whether we need to rebuild the type of the given
4431     // declaration in the current instantiation.
4432     if (EnteringContext && IsDependentContext &&
4433         TemplateParamLists.size() != 0) {
4434       ContextRAII SavedContext(*this, DC);
4435       if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
4436         D.setInvalidType();
4437     }
4438   }
4439 
4440   if (DiagnoseClassNameShadow(DC, NameInfo))
4441     // If this is a typedef, we'll end up spewing multiple diagnostics.
4442     // Just return early; it's safer.
4443     if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
4444       return nullptr;
4445 
4446   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
4447   QualType R = TInfo->getType();
4448 
4449   if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
4450                                       UPPC_DeclarationType))
4451     D.setInvalidType();
4452 
4453   LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
4454                         ForRedeclaration);
4455 
4456   // See if this is a redefinition of a variable in the same scope.
4457   if (!D.getCXXScopeSpec().isSet()) {
4458     bool IsLinkageLookup = false;
4459     bool CreateBuiltins = false;
4460 
4461     // If the declaration we're planning to build will be a function
4462     // or object with linkage, then look for another declaration with
4463     // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
4464     //
4465     // If the declaration we're planning to build will be declared with
4466     // external linkage in the translation unit, create any builtin with
4467     // the same name.
4468     if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
4469       /* Do nothing*/;
4470     else if (CurContext->isFunctionOrMethod() &&
4471              (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern ||
4472               R->isFunctionType())) {
4473       IsLinkageLookup = true;
4474       CreateBuiltins =
4475           CurContext->getEnclosingNamespaceContext()->isTranslationUnit();
4476     } else if (CurContext->getRedeclContext()->isTranslationUnit() &&
4477                D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
4478       CreateBuiltins = true;
4479 
4480     if (IsLinkageLookup)
4481       Previous.clear(LookupRedeclarationWithLinkage);
4482 
4483     LookupName(Previous, S, CreateBuiltins);
4484   } else { // Something like "int foo::x;"
4485     LookupQualifiedName(Previous, DC);
4486 
4487     // C++ [dcl.meaning]p1:
4488     //   When the declarator-id is qualified, the declaration shall refer to a
4489     //  previously declared member of the class or namespace to which the
4490     //  qualifier refers (or, in the case of a namespace, of an element of the
4491     //  inline namespace set of that namespace (7.3.1)) or to a specialization
4492     //  thereof; [...]
4493     //
4494     // Note that we already checked the context above, and that we do not have
4495     // enough information to make sure that Previous contains the declaration
4496     // we want to match. For example, given:
4497     //
4498     //   class X {
4499     //     void f();
4500     //     void f(float);
4501     //   };
4502     //
4503     //   void X::f(int) { } // ill-formed
4504     //
4505     // In this case, Previous will point to the overload set
4506     // containing the two f's declared in X, but neither of them
4507     // matches.
4508 
4509     // C++ [dcl.meaning]p1:
4510     //   [...] the member shall not merely have been introduced by a
4511     //   using-declaration in the scope of the class or namespace nominated by
4512     //   the nested-name-specifier of the declarator-id.
4513     RemoveUsingDecls(Previous);
4514   }
4515 
4516   if (Previous.isSingleResult() &&
4517       Previous.getFoundDecl()->isTemplateParameter()) {
4518     // Maybe we will complain about the shadowed template parameter.
4519     if (!D.isInvalidType())
4520       DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
4521                                       Previous.getFoundDecl());
4522 
4523     // Just pretend that we didn't see the previous declaration.
4524     Previous.clear();
4525   }
4526 
4527   // In C++, the previous declaration we find might be a tag type
4528   // (class or enum). In this case, the new declaration will hide the
4529   // tag type. Note that this does does not apply if we're declaring a
4530   // typedef (C++ [dcl.typedef]p4).
4531   if (Previous.isSingleTagDecl() &&
4532       D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
4533     Previous.clear();
4534 
4535   // Check that there are no default arguments other than in the parameters
4536   // of a function declaration (C++ only).
4537   if (getLangOpts().CPlusPlus)
4538     CheckExtraCXXDefaultArguments(D);
4539 
4540   NamedDecl *New;
4541 
4542   bool AddToScope = true;
4543   if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
4544     if (TemplateParamLists.size()) {
4545       Diag(D.getIdentifierLoc(), diag::err_template_typedef);
4546       return nullptr;
4547     }
4548 
4549     New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
4550   } else if (R->isFunctionType()) {
4551     New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
4552                                   TemplateParamLists,
4553                                   AddToScope);
4554   } else {
4555     New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous, TemplateParamLists,
4556                                   AddToScope);
4557   }
4558 
4559   if (!New)
4560     return nullptr;
4561 
4562   // If this has an identifier and is not an invalid redeclaration or
4563   // function template specialization, add it to the scope stack.
4564   if (New->getDeclName() && AddToScope &&
4565        !(D.isRedeclaration() && New->isInvalidDecl())) {
4566     // Only make a locally-scoped extern declaration visible if it is the first
4567     // declaration of this entity. Qualified lookup for such an entity should
4568     // only find this declaration if there is no visible declaration of it.
4569     bool AddToContext = !D.isRedeclaration() || !New->isLocalExternDecl();
4570     PushOnScopeChains(New, S, AddToContext);
4571     if (!AddToContext)
4572       CurContext->addHiddenDecl(New);
4573   }
4574 
4575   return New;
4576 }
4577 
4578 /// Helper method to turn variable array types into constant array
4579 /// types in certain situations which would otherwise be errors (for
4580 /// GCC compatibility).
TryToFixInvalidVariablyModifiedType(QualType T,ASTContext & Context,bool & SizeIsNegative,llvm::APSInt & Oversized)4581 static QualType TryToFixInvalidVariablyModifiedType(QualType T,
4582                                                     ASTContext &Context,
4583                                                     bool &SizeIsNegative,
4584                                                     llvm::APSInt &Oversized) {
4585   // This method tries to turn a variable array into a constant
4586   // array even when the size isn't an ICE.  This is necessary
4587   // for compatibility with code that depends on gcc's buggy
4588   // constant expression folding, like struct {char x[(int)(char*)2];}
4589   SizeIsNegative = false;
4590   Oversized = 0;
4591 
4592   if (T->isDependentType())
4593     return QualType();
4594 
4595   QualifierCollector Qs;
4596   const Type *Ty = Qs.strip(T);
4597 
4598   if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
4599     QualType Pointee = PTy->getPointeeType();
4600     QualType FixedType =
4601         TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
4602                                             Oversized);
4603     if (FixedType.isNull()) return FixedType;
4604     FixedType = Context.getPointerType(FixedType);
4605     return Qs.apply(Context, FixedType);
4606   }
4607   if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
4608     QualType Inner = PTy->getInnerType();
4609     QualType FixedType =
4610         TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
4611                                             Oversized);
4612     if (FixedType.isNull()) return FixedType;
4613     FixedType = Context.getParenType(FixedType);
4614     return Qs.apply(Context, FixedType);
4615   }
4616 
4617   const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
4618   if (!VLATy)
4619     return QualType();
4620   // FIXME: We should probably handle this case
4621   if (VLATy->getElementType()->isVariablyModifiedType())
4622     return QualType();
4623 
4624   llvm::APSInt Res;
4625   if (!VLATy->getSizeExpr() ||
4626       !VLATy->getSizeExpr()->EvaluateAsInt(Res, Context))
4627     return QualType();
4628 
4629   // Check whether the array size is negative.
4630   if (Res.isSigned() && Res.isNegative()) {
4631     SizeIsNegative = true;
4632     return QualType();
4633   }
4634 
4635   // Check whether the array is too large to be addressed.
4636   unsigned ActiveSizeBits
4637     = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
4638                                               Res);
4639   if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
4640     Oversized = Res;
4641     return QualType();
4642   }
4643 
4644   return Context.getConstantArrayType(VLATy->getElementType(),
4645                                       Res, ArrayType::Normal, 0);
4646 }
4647 
4648 static void
FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL,TypeLoc DstTL)4649 FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) {
4650   if (PointerTypeLoc SrcPTL = SrcTL.getAs<PointerTypeLoc>()) {
4651     PointerTypeLoc DstPTL = DstTL.castAs<PointerTypeLoc>();
4652     FixInvalidVariablyModifiedTypeLoc(SrcPTL.getPointeeLoc(),
4653                                       DstPTL.getPointeeLoc());
4654     DstPTL.setStarLoc(SrcPTL.getStarLoc());
4655     return;
4656   }
4657   if (ParenTypeLoc SrcPTL = SrcTL.getAs<ParenTypeLoc>()) {
4658     ParenTypeLoc DstPTL = DstTL.castAs<ParenTypeLoc>();
4659     FixInvalidVariablyModifiedTypeLoc(SrcPTL.getInnerLoc(),
4660                                       DstPTL.getInnerLoc());
4661     DstPTL.setLParenLoc(SrcPTL.getLParenLoc());
4662     DstPTL.setRParenLoc(SrcPTL.getRParenLoc());
4663     return;
4664   }
4665   ArrayTypeLoc SrcATL = SrcTL.castAs<ArrayTypeLoc>();
4666   ArrayTypeLoc DstATL = DstTL.castAs<ArrayTypeLoc>();
4667   TypeLoc SrcElemTL = SrcATL.getElementLoc();
4668   TypeLoc DstElemTL = DstATL.getElementLoc();
4669   DstElemTL.initializeFullCopy(SrcElemTL);
4670   DstATL.setLBracketLoc(SrcATL.getLBracketLoc());
4671   DstATL.setSizeExpr(SrcATL.getSizeExpr());
4672   DstATL.setRBracketLoc(SrcATL.getRBracketLoc());
4673 }
4674 
4675 /// Helper method to turn variable array types into constant array
4676 /// types in certain situations which would otherwise be errors (for
4677 /// GCC compatibility).
4678 static TypeSourceInfo*
TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo * TInfo,ASTContext & Context,bool & SizeIsNegative,llvm::APSInt & Oversized)4679 TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo,
4680                                               ASTContext &Context,
4681                                               bool &SizeIsNegative,
4682                                               llvm::APSInt &Oversized) {
4683   QualType FixedTy
4684     = TryToFixInvalidVariablyModifiedType(TInfo->getType(), Context,
4685                                           SizeIsNegative, Oversized);
4686   if (FixedTy.isNull())
4687     return nullptr;
4688   TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(FixedTy);
4689   FixInvalidVariablyModifiedTypeLoc(TInfo->getTypeLoc(),
4690                                     FixedTInfo->getTypeLoc());
4691   return FixedTInfo;
4692 }
4693 
4694 /// \brief Register the given locally-scoped extern "C" declaration so
4695 /// that it can be found later for redeclarations. We include any extern "C"
4696 /// declaration that is not visible in the translation unit here, not just
4697 /// function-scope declarations.
4698 void
RegisterLocallyScopedExternCDecl(NamedDecl * ND,Scope * S)4699 Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, Scope *S) {
4700   if (!getLangOpts().CPlusPlus &&
4701       ND->getLexicalDeclContext()->getRedeclContext()->isTranslationUnit())
4702     // Don't need to track declarations in the TU in C.
4703     return;
4704 
4705   // Note that we have a locally-scoped external with this name.
4706   // FIXME: There can be multiple such declarations if they are functions marked
4707   // __attribute__((overloadable)) declared in function scope in C.
4708   LocallyScopedExternCDecls[ND->getDeclName()] = ND;
4709 }
4710 
findLocallyScopedExternCDecl(DeclarationName Name)4711 NamedDecl *Sema::findLocallyScopedExternCDecl(DeclarationName Name) {
4712   if (ExternalSource) {
4713     // Load locally-scoped external decls from the external source.
4714     // FIXME: This is inefficient. Maybe add a DeclContext for extern "C" decls?
4715     SmallVector<NamedDecl *, 4> Decls;
4716     ExternalSource->ReadLocallyScopedExternCDecls(Decls);
4717     for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
4718       llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4719         = LocallyScopedExternCDecls.find(Decls[I]->getDeclName());
4720       if (Pos == LocallyScopedExternCDecls.end())
4721         LocallyScopedExternCDecls[Decls[I]->getDeclName()] = Decls[I];
4722     }
4723   }
4724 
4725   NamedDecl *D = LocallyScopedExternCDecls.lookup(Name);
4726   return D ? D->getMostRecentDecl() : nullptr;
4727 }
4728 
4729 /// \brief Diagnose function specifiers on a declaration of an identifier that
4730 /// does not identify a function.
DiagnoseFunctionSpecifiers(const DeclSpec & DS)4731 void Sema::DiagnoseFunctionSpecifiers(const DeclSpec &DS) {
4732   // FIXME: We should probably indicate the identifier in question to avoid
4733   // confusion for constructs like "inline int a(), b;"
4734   if (DS.isInlineSpecified())
4735     Diag(DS.getInlineSpecLoc(),
4736          diag::err_inline_non_function);
4737 
4738   if (DS.isVirtualSpecified())
4739     Diag(DS.getVirtualSpecLoc(),
4740          diag::err_virtual_non_function);
4741 
4742   if (DS.isExplicitSpecified())
4743     Diag(DS.getExplicitSpecLoc(),
4744          diag::err_explicit_non_function);
4745 
4746   if (DS.isNoreturnSpecified())
4747     Diag(DS.getNoreturnSpecLoc(),
4748          diag::err_noreturn_non_function);
4749 }
4750 
4751 NamedDecl*
ActOnTypedefDeclarator(Scope * S,Declarator & D,DeclContext * DC,TypeSourceInfo * TInfo,LookupResult & Previous)4752 Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
4753                              TypeSourceInfo *TInfo, LookupResult &Previous) {
4754   // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
4755   if (D.getCXXScopeSpec().isSet()) {
4756     Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
4757       << D.getCXXScopeSpec().getRange();
4758     D.setInvalidType();
4759     // Pretend we didn't see the scope specifier.
4760     DC = CurContext;
4761     Previous.clear();
4762   }
4763 
4764   DiagnoseFunctionSpecifiers(D.getDeclSpec());
4765 
4766   if (D.getDeclSpec().isConstexprSpecified())
4767     Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
4768       << 1;
4769 
4770   if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
4771     Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
4772       << D.getName().getSourceRange();
4773     return nullptr;
4774   }
4775 
4776   TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
4777   if (!NewTD) return nullptr;
4778 
4779   // Handle attributes prior to checking for duplicates in MergeVarDecl
4780   ProcessDeclAttributes(S, NewTD, D);
4781 
4782   CheckTypedefForVariablyModifiedType(S, NewTD);
4783 
4784   bool Redeclaration = D.isRedeclaration();
4785   NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
4786   D.setRedeclaration(Redeclaration);
4787   return ND;
4788 }
4789 
4790 void
CheckTypedefForVariablyModifiedType(Scope * S,TypedefNameDecl * NewTD)4791 Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
4792   // C99 6.7.7p2: If a typedef name specifies a variably modified type
4793   // then it shall have block scope.
4794   // Note that variably modified types must be fixed before merging the decl so
4795   // that redeclarations will match.
4796   TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo();
4797   QualType T = TInfo->getType();
4798   if (T->isVariablyModifiedType()) {
4799     getCurFunction()->setHasBranchProtectedScope();
4800 
4801     if (S->getFnParent() == nullptr) {
4802       bool SizeIsNegative;
4803       llvm::APSInt Oversized;
4804       TypeSourceInfo *FixedTInfo =
4805         TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
4806                                                       SizeIsNegative,
4807                                                       Oversized);
4808       if (FixedTInfo) {
4809         Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
4810         NewTD->setTypeSourceInfo(FixedTInfo);
4811       } else {
4812         if (SizeIsNegative)
4813           Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
4814         else if (T->isVariableArrayType())
4815           Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
4816         else if (Oversized.getBoolValue())
4817           Diag(NewTD->getLocation(), diag::err_array_too_large)
4818             << Oversized.toString(10);
4819         else
4820           Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
4821         NewTD->setInvalidDecl();
4822       }
4823     }
4824   }
4825 }
4826 
4827 
4828 /// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
4829 /// declares a typedef-name, either using the 'typedef' type specifier or via
4830 /// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
4831 NamedDecl*
ActOnTypedefNameDecl(Scope * S,DeclContext * DC,TypedefNameDecl * NewTD,LookupResult & Previous,bool & Redeclaration)4832 Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
4833                            LookupResult &Previous, bool &Redeclaration) {
4834   // Merge the decl with the existing one if appropriate. If the decl is
4835   // in an outer scope, it isn't the same thing.
4836   FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/false,
4837                        /*AllowInlineNamespace*/false);
4838   filterNonConflictingPreviousDecls(Context, NewTD, Previous);
4839   if (!Previous.empty()) {
4840     Redeclaration = true;
4841     MergeTypedefNameDecl(NewTD, Previous);
4842   }
4843 
4844   // If this is the C FILE type, notify the AST context.
4845   if (IdentifierInfo *II = NewTD->getIdentifier())
4846     if (!NewTD->isInvalidDecl() &&
4847         NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
4848       if (II->isStr("FILE"))
4849         Context.setFILEDecl(NewTD);
4850       else if (II->isStr("jmp_buf"))
4851         Context.setjmp_bufDecl(NewTD);
4852       else if (II->isStr("sigjmp_buf"))
4853         Context.setsigjmp_bufDecl(NewTD);
4854       else if (II->isStr("ucontext_t"))
4855         Context.setucontext_tDecl(NewTD);
4856     }
4857 
4858   return NewTD;
4859 }
4860 
4861 /// \brief Determines whether the given declaration is an out-of-scope
4862 /// previous declaration.
4863 ///
4864 /// This routine should be invoked when name lookup has found a
4865 /// previous declaration (PrevDecl) that is not in the scope where a
4866 /// new declaration by the same name is being introduced. If the new
4867 /// declaration occurs in a local scope, previous declarations with
4868 /// linkage may still be considered previous declarations (C99
4869 /// 6.2.2p4-5, C++ [basic.link]p6).
4870 ///
4871 /// \param PrevDecl the previous declaration found by name
4872 /// lookup
4873 ///
4874 /// \param DC the context in which the new declaration is being
4875 /// declared.
4876 ///
4877 /// \returns true if PrevDecl is an out-of-scope previous declaration
4878 /// for a new delcaration with the same name.
4879 static bool
isOutOfScopePreviousDeclaration(NamedDecl * PrevDecl,DeclContext * DC,ASTContext & Context)4880 isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
4881                                 ASTContext &Context) {
4882   if (!PrevDecl)
4883     return false;
4884 
4885   if (!PrevDecl->hasLinkage())
4886     return false;
4887 
4888   if (Context.getLangOpts().CPlusPlus) {
4889     // C++ [basic.link]p6:
4890     //   If there is a visible declaration of an entity with linkage
4891     //   having the same name and type, ignoring entities declared
4892     //   outside the innermost enclosing namespace scope, the block
4893     //   scope declaration declares that same entity and receives the
4894     //   linkage of the previous declaration.
4895     DeclContext *OuterContext = DC->getRedeclContext();
4896     if (!OuterContext->isFunctionOrMethod())
4897       // This rule only applies to block-scope declarations.
4898       return false;
4899 
4900     DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
4901     if (PrevOuterContext->isRecord())
4902       // We found a member function: ignore it.
4903       return false;
4904 
4905     // Find the innermost enclosing namespace for the new and
4906     // previous declarations.
4907     OuterContext = OuterContext->getEnclosingNamespaceContext();
4908     PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
4909 
4910     // The previous declaration is in a different namespace, so it
4911     // isn't the same function.
4912     if (!OuterContext->Equals(PrevOuterContext))
4913       return false;
4914   }
4915 
4916   return true;
4917 }
4918 
SetNestedNameSpecifier(DeclaratorDecl * DD,Declarator & D)4919 static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
4920   CXXScopeSpec &SS = D.getCXXScopeSpec();
4921   if (!SS.isSet()) return;
4922   DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
4923 }
4924 
inferObjCARCLifetime(ValueDecl * decl)4925 bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
4926   QualType type = decl->getType();
4927   Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
4928   if (lifetime == Qualifiers::OCL_Autoreleasing) {
4929     // Various kinds of declaration aren't allowed to be __autoreleasing.
4930     unsigned kind = -1U;
4931     if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
4932       if (var->hasAttr<BlocksAttr>())
4933         kind = 0; // __block
4934       else if (!var->hasLocalStorage())
4935         kind = 1; // global
4936     } else if (isa<ObjCIvarDecl>(decl)) {
4937       kind = 3; // ivar
4938     } else if (isa<FieldDecl>(decl)) {
4939       kind = 2; // field
4940     }
4941 
4942     if (kind != -1U) {
4943       Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
4944         << kind;
4945     }
4946   } else if (lifetime == Qualifiers::OCL_None) {
4947     // Try to infer lifetime.
4948     if (!type->isObjCLifetimeType())
4949       return false;
4950 
4951     lifetime = type->getObjCARCImplicitLifetime();
4952     type = Context.getLifetimeQualifiedType(type, lifetime);
4953     decl->setType(type);
4954   }
4955 
4956   if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
4957     // Thread-local variables cannot have lifetime.
4958     if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
4959         var->getTLSKind()) {
4960       Diag(var->getLocation(), diag::err_arc_thread_ownership)
4961         << var->getType();
4962       return true;
4963     }
4964   }
4965 
4966   return false;
4967 }
4968 
checkAttributesAfterMerging(Sema & S,NamedDecl & ND)4969 static void checkAttributesAfterMerging(Sema &S, NamedDecl &ND) {
4970   // Ensure that an auto decl is deduced otherwise the checks below might cache
4971   // the wrong linkage.
4972   assert(S.ParsingInitForAutoVars.count(&ND) == 0);
4973 
4974   // 'weak' only applies to declarations with external linkage.
4975   if (WeakAttr *Attr = ND.getAttr<WeakAttr>()) {
4976     if (!ND.isExternallyVisible()) {
4977       S.Diag(Attr->getLocation(), diag::err_attribute_weak_static);
4978       ND.dropAttr<WeakAttr>();
4979     }
4980   }
4981   if (WeakRefAttr *Attr = ND.getAttr<WeakRefAttr>()) {
4982     if (ND.isExternallyVisible()) {
4983       S.Diag(Attr->getLocation(), diag::err_attribute_weakref_not_static);
4984       ND.dropAttr<WeakRefAttr>();
4985     }
4986   }
4987 
4988   // 'selectany' only applies to externally visible varable declarations.
4989   // It does not apply to functions.
4990   if (SelectAnyAttr *Attr = ND.getAttr<SelectAnyAttr>()) {
4991     if (isa<FunctionDecl>(ND) || !ND.isExternallyVisible()) {
4992       S.Diag(Attr->getLocation(), diag::err_attribute_selectany_non_extern_data);
4993       ND.dropAttr<SelectAnyAttr>();
4994     }
4995   }
4996 
4997   // dll attributes require external linkage.
4998   if (const DLLImportAttr *Attr = ND.getAttr<DLLImportAttr>()) {
4999     if (!ND.isExternallyVisible()) {
5000       S.Diag(ND.getLocation(), diag::err_attribute_dll_not_extern)
5001         << &ND << Attr;
5002       ND.setInvalidDecl();
5003     }
5004   }
5005   if (const DLLExportAttr *Attr = ND.getAttr<DLLExportAttr>()) {
5006     if (!ND.isExternallyVisible()) {
5007       S.Diag(ND.getLocation(), diag::err_attribute_dll_not_extern)
5008         << &ND << Attr;
5009       ND.setInvalidDecl();
5010     }
5011   }
5012 }
5013 
checkDLLAttributeRedeclaration(Sema & S,NamedDecl * OldDecl,NamedDecl * NewDecl,bool IsSpecialization)5014 static void checkDLLAttributeRedeclaration(Sema &S, NamedDecl *OldDecl,
5015                                            NamedDecl *NewDecl,
5016                                            bool IsSpecialization) {
5017   if (TemplateDecl *OldTD = dyn_cast<TemplateDecl>(OldDecl))
5018     OldDecl = OldTD->getTemplatedDecl();
5019   if (TemplateDecl *NewTD = dyn_cast<TemplateDecl>(NewDecl))
5020     NewDecl = NewTD->getTemplatedDecl();
5021 
5022   if (!OldDecl || !NewDecl)
5023       return;
5024 
5025   const DLLImportAttr *OldImportAttr = OldDecl->getAttr<DLLImportAttr>();
5026   const DLLExportAttr *OldExportAttr = OldDecl->getAttr<DLLExportAttr>();
5027   const DLLImportAttr *NewImportAttr = NewDecl->getAttr<DLLImportAttr>();
5028   const DLLExportAttr *NewExportAttr = NewDecl->getAttr<DLLExportAttr>();
5029 
5030   // dllimport and dllexport are inheritable attributes so we have to exclude
5031   // inherited attribute instances.
5032   bool HasNewAttr = (NewImportAttr && !NewImportAttr->isInherited()) ||
5033                     (NewExportAttr && !NewExportAttr->isInherited());
5034 
5035   // A redeclaration is not allowed to add a dllimport or dllexport attribute,
5036   // the only exception being explicit specializations.
5037   // Implicitly generated declarations are also excluded for now because there
5038   // is no other way to switch these to use dllimport or dllexport.
5039   bool AddsAttr = !(OldImportAttr || OldExportAttr) && HasNewAttr;
5040   if (AddsAttr && !IsSpecialization && !OldDecl->isImplicit()) {
5041     S.Diag(NewDecl->getLocation(), diag::err_attribute_dll_redeclaration)
5042       << NewDecl
5043       << (NewImportAttr ? (const Attr *)NewImportAttr : NewExportAttr);
5044     S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
5045     NewDecl->setInvalidDecl();
5046     return;
5047   }
5048 
5049   // A redeclaration is not allowed to drop a dllimport attribute, the only
5050   // exception being inline function definitions.
5051   // NB: MSVC converts such a declaration to dllexport.
5052   bool IsInline = false, IsStaticDataMember = false;
5053   if (const auto *VD = dyn_cast<VarDecl>(NewDecl))
5054     // Ignore static data because out-of-line definitions are diagnosed
5055     // separately.
5056     IsStaticDataMember = VD->isStaticDataMember();
5057   else if (const auto *FD = dyn_cast<FunctionDecl>(NewDecl))
5058     IsInline = FD->isInlined();
5059 
5060   if (OldImportAttr && !HasNewAttr && !IsInline && !IsStaticDataMember) {
5061     S.Diag(NewDecl->getLocation(),
5062            diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
5063       << NewDecl << OldImportAttr;
5064     S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
5065     S.Diag(OldImportAttr->getLocation(), diag::note_previous_attribute);
5066     OldDecl->dropAttr<DLLImportAttr>();
5067     NewDecl->dropAttr<DLLImportAttr>();
5068   }
5069 }
5070 
5071 /// Given that we are within the definition of the given function,
5072 /// will that definition behave like C99's 'inline', where the
5073 /// definition is discarded except for optimization purposes?
isFunctionDefinitionDiscarded(Sema & S,FunctionDecl * FD)5074 static bool isFunctionDefinitionDiscarded(Sema &S, FunctionDecl *FD) {
5075   // Try to avoid calling GetGVALinkageForFunction.
5076 
5077   // All cases of this require the 'inline' keyword.
5078   if (!FD->isInlined()) return false;
5079 
5080   // This is only possible in C++ with the gnu_inline attribute.
5081   if (S.getLangOpts().CPlusPlus && !FD->hasAttr<GNUInlineAttr>())
5082     return false;
5083 
5084   // Okay, go ahead and call the relatively-more-expensive function.
5085 
5086 #ifndef NDEBUG
5087   // AST quite reasonably asserts that it's working on a function
5088   // definition.  We don't really have a way to tell it that we're
5089   // currently defining the function, so just lie to it in +Asserts
5090   // builds.  This is an awful hack.
5091   FD->setLazyBody(1);
5092 #endif
5093 
5094   bool isC99Inline =
5095       S.Context.GetGVALinkageForFunction(FD) == GVA_AvailableExternally;
5096 
5097 #ifndef NDEBUG
5098   FD->setLazyBody(0);
5099 #endif
5100 
5101   return isC99Inline;
5102 }
5103 
5104 /// Determine whether a variable is extern "C" prior to attaching
5105 /// an initializer. We can't just call isExternC() here, because that
5106 /// will also compute and cache whether the declaration is externally
5107 /// visible, which might change when we attach the initializer.
5108 ///
5109 /// This can only be used if the declaration is known to not be a
5110 /// redeclaration of an internal linkage declaration.
5111 ///
5112 /// For instance:
5113 ///
5114 ///   auto x = []{};
5115 ///
5116 /// Attaching the initializer here makes this declaration not externally
5117 /// visible, because its type has internal linkage.
5118 ///
5119 /// FIXME: This is a hack.
5120 template<typename T>
isIncompleteDeclExternC(Sema & S,const T * D)5121 static bool isIncompleteDeclExternC(Sema &S, const T *D) {
5122   if (S.getLangOpts().CPlusPlus) {
5123     // In C++, the overloadable attribute negates the effects of extern "C".
5124     if (!D->isInExternCContext() || D->template hasAttr<OverloadableAttr>())
5125       return false;
5126   }
5127   return D->isExternC();
5128 }
5129 
shouldConsiderLinkage(const VarDecl * VD)5130 static bool shouldConsiderLinkage(const VarDecl *VD) {
5131   const DeclContext *DC = VD->getDeclContext()->getRedeclContext();
5132   if (DC->isFunctionOrMethod())
5133     return VD->hasExternalStorage();
5134   if (DC->isFileContext())
5135     return true;
5136   if (DC->isRecord())
5137     return false;
5138   llvm_unreachable("Unexpected context");
5139 }
5140 
shouldConsiderLinkage(const FunctionDecl * FD)5141 static bool shouldConsiderLinkage(const FunctionDecl *FD) {
5142   const DeclContext *DC = FD->getDeclContext()->getRedeclContext();
5143   if (DC->isFileContext() || DC->isFunctionOrMethod())
5144     return true;
5145   if (DC->isRecord())
5146     return false;
5147   llvm_unreachable("Unexpected context");
5148 }
5149 
hasParsedAttr(Scope * S,const AttributeList * AttrList,AttributeList::Kind Kind)5150 static bool hasParsedAttr(Scope *S, const AttributeList *AttrList,
5151                           AttributeList::Kind Kind) {
5152   for (const AttributeList *L = AttrList; L; L = L->getNext())
5153     if (L->getKind() == Kind)
5154       return true;
5155   return false;
5156 }
5157 
hasParsedAttr(Scope * S,const Declarator & PD,AttributeList::Kind Kind)5158 static bool hasParsedAttr(Scope *S, const Declarator &PD,
5159                           AttributeList::Kind Kind) {
5160   // Check decl attributes on the DeclSpec.
5161   if (hasParsedAttr(S, PD.getDeclSpec().getAttributes().getList(), Kind))
5162     return true;
5163 
5164   // Walk the declarator structure, checking decl attributes that were in a type
5165   // position to the decl itself.
5166   for (unsigned I = 0, E = PD.getNumTypeObjects(); I != E; ++I) {
5167     if (hasParsedAttr(S, PD.getTypeObject(I).getAttrs(), Kind))
5168       return true;
5169   }
5170 
5171   // Finally, check attributes on the decl itself.
5172   return hasParsedAttr(S, PD.getAttributes(), Kind);
5173 }
5174 
5175 /// Adjust the \c DeclContext for a function or variable that might be a
5176 /// function-local external declaration.
adjustContextForLocalExternDecl(DeclContext * & DC)5177 bool Sema::adjustContextForLocalExternDecl(DeclContext *&DC) {
5178   if (!DC->isFunctionOrMethod())
5179     return false;
5180 
5181   // If this is a local extern function or variable declared within a function
5182   // template, don't add it into the enclosing namespace scope until it is
5183   // instantiated; it might have a dependent type right now.
5184   if (DC->isDependentContext())
5185     return true;
5186 
5187   // C++11 [basic.link]p7:
5188   //   When a block scope declaration of an entity with linkage is not found to
5189   //   refer to some other declaration, then that entity is a member of the
5190   //   innermost enclosing namespace.
5191   //
5192   // Per C++11 [namespace.def]p6, the innermost enclosing namespace is a
5193   // semantically-enclosing namespace, not a lexically-enclosing one.
5194   while (!DC->isFileContext() && !isa<LinkageSpecDecl>(DC))
5195     DC = DC->getParent();
5196   return true;
5197 }
5198 
5199 NamedDecl *
ActOnVariableDeclarator(Scope * S,Declarator & D,DeclContext * DC,TypeSourceInfo * TInfo,LookupResult & Previous,MultiTemplateParamsArg TemplateParamLists,bool & AddToScope)5200 Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
5201                               TypeSourceInfo *TInfo, LookupResult &Previous,
5202                               MultiTemplateParamsArg TemplateParamLists,
5203                               bool &AddToScope) {
5204   QualType R = TInfo->getType();
5205   DeclarationName Name = GetNameForDeclarator(D).getName();
5206 
5207   DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
5208   VarDecl::StorageClass SC =
5209     StorageClassSpecToVarDeclStorageClass(D.getDeclSpec());
5210 
5211   // dllimport globals without explicit storage class are treated as extern. We
5212   // have to change the storage class this early to get the right DeclContext.
5213   if (SC == SC_None && !DC->isRecord() &&
5214       hasParsedAttr(S, D, AttributeList::AT_DLLImport) &&
5215       !hasParsedAttr(S, D, AttributeList::AT_DLLExport))
5216     SC = SC_Extern;
5217 
5218   DeclContext *OriginalDC = DC;
5219   bool IsLocalExternDecl = SC == SC_Extern &&
5220                            adjustContextForLocalExternDecl(DC);
5221 
5222   if (getLangOpts().OpenCL) {
5223     // OpenCL v1.0 s6.8.a.3: Pointers to functions are not allowed.
5224     QualType NR = R;
5225     while (NR->isPointerType()) {
5226       if (NR->isFunctionPointerType()) {
5227         Diag(D.getIdentifierLoc(), diag::err_opencl_function_pointer_variable);
5228         D.setInvalidType();
5229         break;
5230       }
5231       NR = NR->getPointeeType();
5232     }
5233 
5234     if (!getOpenCLOptions().cl_khr_fp16) {
5235       // OpenCL v1.2 s6.1.1.1: reject declaring variables of the half and
5236       // half array type (unless the cl_khr_fp16 extension is enabled).
5237       if (Context.getBaseElementType(R)->isHalfType()) {
5238         Diag(D.getIdentifierLoc(), diag::err_opencl_half_declaration) << R;
5239         D.setInvalidType();
5240       }
5241     }
5242   }
5243 
5244   if (SCSpec == DeclSpec::SCS_mutable) {
5245     // mutable can only appear on non-static class members, so it's always
5246     // an error here
5247     Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
5248     D.setInvalidType();
5249     SC = SC_None;
5250   }
5251 
5252   if (getLangOpts().CPlusPlus11 && SCSpec == DeclSpec::SCS_register &&
5253       !D.getAsmLabel() && !getSourceManager().isInSystemMacro(
5254                               D.getDeclSpec().getStorageClassSpecLoc())) {
5255     // In C++11, the 'register' storage class specifier is deprecated.
5256     // Suppress the warning in system macros, it's used in macros in some
5257     // popular C system headers, such as in glibc's htonl() macro.
5258     Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5259          diag::warn_deprecated_register)
5260       << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5261   }
5262 
5263   IdentifierInfo *II = Name.getAsIdentifierInfo();
5264   if (!II) {
5265     Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
5266       << Name;
5267     return nullptr;
5268   }
5269 
5270   DiagnoseFunctionSpecifiers(D.getDeclSpec());
5271 
5272   if (!DC->isRecord() && S->getFnParent() == nullptr) {
5273     // C99 6.9p2: The storage-class specifiers auto and register shall not
5274     // appear in the declaration specifiers in an external declaration.
5275     // Global Register+Asm is a GNU extension we support.
5276     if (SC == SC_Auto || (SC == SC_Register && !D.getAsmLabel())) {
5277       Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
5278       D.setInvalidType();
5279     }
5280   }
5281 
5282   if (getLangOpts().OpenCL) {
5283     // Set up the special work-group-local storage class for variables in the
5284     // OpenCL __local address space.
5285     if (R.getAddressSpace() == LangAS::opencl_local) {
5286       SC = SC_OpenCLWorkGroupLocal;
5287     }
5288 
5289     // OpenCL v1.2 s6.9.b p4:
5290     // The sampler type cannot be used with the __local and __global address
5291     // space qualifiers.
5292     if (R->isSamplerT() && (R.getAddressSpace() == LangAS::opencl_local ||
5293       R.getAddressSpace() == LangAS::opencl_global)) {
5294       Diag(D.getIdentifierLoc(), diag::err_wrong_sampler_addressspace);
5295     }
5296 
5297     // OpenCL 1.2 spec, p6.9 r:
5298     // The event type cannot be used to declare a program scope variable.
5299     // The event type cannot be used with the __local, __constant and __global
5300     // address space qualifiers.
5301     if (R->isEventT()) {
5302       if (S->getParent() == nullptr) {
5303         Diag(D.getLocStart(), diag::err_event_t_global_var);
5304         D.setInvalidType();
5305       }
5306 
5307       if (R.getAddressSpace()) {
5308         Diag(D.getLocStart(), diag::err_event_t_addr_space_qual);
5309         D.setInvalidType();
5310       }
5311     }
5312   }
5313 
5314   bool IsExplicitSpecialization = false;
5315   bool IsVariableTemplateSpecialization = false;
5316   bool IsPartialSpecialization = false;
5317   bool IsVariableTemplate = false;
5318   VarDecl *NewVD = nullptr;
5319   VarTemplateDecl *NewTemplate = nullptr;
5320   TemplateParameterList *TemplateParams = nullptr;
5321   if (!getLangOpts().CPlusPlus) {
5322     NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
5323                             D.getIdentifierLoc(), II,
5324                             R, TInfo, SC);
5325 
5326     if (D.isInvalidType())
5327       NewVD->setInvalidDecl();
5328   } else {
5329     bool Invalid = false;
5330 
5331     if (DC->isRecord() && !CurContext->isRecord()) {
5332       // This is an out-of-line definition of a static data member.
5333       switch (SC) {
5334       case SC_None:
5335         break;
5336       case SC_Static:
5337         Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5338              diag::err_static_out_of_line)
5339           << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5340         break;
5341       case SC_Auto:
5342       case SC_Register:
5343       case SC_Extern:
5344         // [dcl.stc] p2: The auto or register specifiers shall be applied only
5345         // to names of variables declared in a block or to function parameters.
5346         // [dcl.stc] p6: The extern specifier cannot be used in the declaration
5347         // of class members
5348 
5349         Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5350              diag::err_storage_class_for_static_member)
5351           << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5352         break;
5353       case SC_PrivateExtern:
5354         llvm_unreachable("C storage class in c++!");
5355       case SC_OpenCLWorkGroupLocal:
5356         llvm_unreachable("OpenCL storage class in c++!");
5357       }
5358     }
5359 
5360     if (SC == SC_Static && CurContext->isRecord()) {
5361       if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
5362         if (RD->isLocalClass())
5363           Diag(D.getIdentifierLoc(),
5364                diag::err_static_data_member_not_allowed_in_local_class)
5365             << Name << RD->getDeclName();
5366 
5367         // C++98 [class.union]p1: If a union contains a static data member,
5368         // the program is ill-formed. C++11 drops this restriction.
5369         if (RD->isUnion())
5370           Diag(D.getIdentifierLoc(),
5371                getLangOpts().CPlusPlus11
5372                  ? diag::warn_cxx98_compat_static_data_member_in_union
5373                  : diag::ext_static_data_member_in_union) << Name;
5374         // We conservatively disallow static data members in anonymous structs.
5375         else if (!RD->getDeclName())
5376           Diag(D.getIdentifierLoc(),
5377                diag::err_static_data_member_not_allowed_in_anon_struct)
5378             << Name << RD->isUnion();
5379       }
5380     }
5381 
5382     // Match up the template parameter lists with the scope specifier, then
5383     // determine whether we have a template or a template specialization.
5384     TemplateParams = MatchTemplateParametersToScopeSpecifier(
5385         D.getDeclSpec().getLocStart(), D.getIdentifierLoc(),
5386         D.getCXXScopeSpec(),
5387         D.getName().getKind() == UnqualifiedId::IK_TemplateId
5388             ? D.getName().TemplateId
5389             : nullptr,
5390         TemplateParamLists,
5391         /*never a friend*/ false, IsExplicitSpecialization, Invalid);
5392 
5393     if (TemplateParams) {
5394       if (!TemplateParams->size() &&
5395           D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
5396         // There is an extraneous 'template<>' for this variable. Complain
5397         // about it, but allow the declaration of the variable.
5398         Diag(TemplateParams->getTemplateLoc(),
5399              diag::err_template_variable_noparams)
5400           << II
5401           << SourceRange(TemplateParams->getTemplateLoc(),
5402                          TemplateParams->getRAngleLoc());
5403         TemplateParams = nullptr;
5404       } else {
5405         if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5406           // This is an explicit specialization or a partial specialization.
5407           // FIXME: Check that we can declare a specialization here.
5408           IsVariableTemplateSpecialization = true;
5409           IsPartialSpecialization = TemplateParams->size() > 0;
5410         } else { // if (TemplateParams->size() > 0)
5411           // This is a template declaration.
5412           IsVariableTemplate = true;
5413 
5414           // Check that we can declare a template here.
5415           if (CheckTemplateDeclScope(S, TemplateParams))
5416             return nullptr;
5417 
5418           // Only C++1y supports variable templates (N3651).
5419           Diag(D.getIdentifierLoc(),
5420                getLangOpts().CPlusPlus1y
5421                    ? diag::warn_cxx11_compat_variable_template
5422                    : diag::ext_variable_template);
5423         }
5424       }
5425     } else {
5426       assert(D.getName().getKind() != UnqualifiedId::IK_TemplateId &&
5427              "should have a 'template<>' for this decl");
5428     }
5429 
5430     if (IsVariableTemplateSpecialization) {
5431       SourceLocation TemplateKWLoc =
5432           TemplateParamLists.size() > 0
5433               ? TemplateParamLists[0]->getTemplateLoc()
5434               : SourceLocation();
5435       DeclResult Res = ActOnVarTemplateSpecialization(
5436           S, D, TInfo, TemplateKWLoc, TemplateParams, SC,
5437           IsPartialSpecialization);
5438       if (Res.isInvalid())
5439         return nullptr;
5440       NewVD = cast<VarDecl>(Res.get());
5441       AddToScope = false;
5442     } else
5443       NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
5444                               D.getIdentifierLoc(), II, R, TInfo, SC);
5445 
5446     // If this is supposed to be a variable template, create it as such.
5447     if (IsVariableTemplate) {
5448       NewTemplate =
5449           VarTemplateDecl::Create(Context, DC, D.getIdentifierLoc(), Name,
5450                                   TemplateParams, NewVD);
5451       NewVD->setDescribedVarTemplate(NewTemplate);
5452     }
5453 
5454     // If this decl has an auto type in need of deduction, make a note of the
5455     // Decl so we can diagnose uses of it in its own initializer.
5456     if (D.getDeclSpec().containsPlaceholderType() && R->getContainedAutoType())
5457       ParsingInitForAutoVars.insert(NewVD);
5458 
5459     if (D.isInvalidType() || Invalid) {
5460       NewVD->setInvalidDecl();
5461       if (NewTemplate)
5462         NewTemplate->setInvalidDecl();
5463     }
5464 
5465     SetNestedNameSpecifier(NewVD, D);
5466 
5467     // If we have any template parameter lists that don't directly belong to
5468     // the variable (matching the scope specifier), store them.
5469     unsigned VDTemplateParamLists = TemplateParams ? 1 : 0;
5470     if (TemplateParamLists.size() > VDTemplateParamLists)
5471       NewVD->setTemplateParameterListsInfo(
5472           Context, TemplateParamLists.size() - VDTemplateParamLists,
5473           TemplateParamLists.data());
5474 
5475     if (D.getDeclSpec().isConstexprSpecified())
5476       NewVD->setConstexpr(true);
5477   }
5478 
5479   // Set the lexical context. If the declarator has a C++ scope specifier, the
5480   // lexical context will be different from the semantic context.
5481   NewVD->setLexicalDeclContext(CurContext);
5482   if (NewTemplate)
5483     NewTemplate->setLexicalDeclContext(CurContext);
5484 
5485   if (IsLocalExternDecl)
5486     NewVD->setLocalExternDecl();
5487 
5488   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) {
5489     if (NewVD->hasLocalStorage()) {
5490       // C++11 [dcl.stc]p4:
5491       //   When thread_local is applied to a variable of block scope the
5492       //   storage-class-specifier static is implied if it does not appear
5493       //   explicitly.
5494       // Core issue: 'static' is not implied if the variable is declared
5495       //   'extern'.
5496       if (SCSpec == DeclSpec::SCS_unspecified &&
5497           TSCS == DeclSpec::TSCS_thread_local &&
5498           DC->isFunctionOrMethod())
5499         NewVD->setTSCSpec(TSCS);
5500       else
5501         Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
5502              diag::err_thread_non_global)
5503           << DeclSpec::getSpecifierName(TSCS);
5504     } else if (!Context.getTargetInfo().isTLSSupported())
5505       Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
5506            diag::err_thread_unsupported);
5507     else
5508       NewVD->setTSCSpec(TSCS);
5509   }
5510 
5511   // C99 6.7.4p3
5512   //   An inline definition of a function with external linkage shall
5513   //   not contain a definition of a modifiable object with static or
5514   //   thread storage duration...
5515   // We only apply this when the function is required to be defined
5516   // elsewhere, i.e. when the function is not 'extern inline'.  Note
5517   // that a local variable with thread storage duration still has to
5518   // be marked 'static'.  Also note that it's possible to get these
5519   // semantics in C++ using __attribute__((gnu_inline)).
5520   if (SC == SC_Static && S->getFnParent() != nullptr &&
5521       !NewVD->getType().isConstQualified()) {
5522     FunctionDecl *CurFD = getCurFunctionDecl();
5523     if (CurFD && isFunctionDefinitionDiscarded(*this, CurFD)) {
5524       Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5525            diag::warn_static_local_in_extern_inline);
5526       MaybeSuggestAddingStaticToDecl(CurFD);
5527     }
5528   }
5529 
5530   if (D.getDeclSpec().isModulePrivateSpecified()) {
5531     if (IsVariableTemplateSpecialization)
5532       Diag(NewVD->getLocation(), diag::err_module_private_specialization)
5533           << (IsPartialSpecialization ? 1 : 0)
5534           << FixItHint::CreateRemoval(
5535                  D.getDeclSpec().getModulePrivateSpecLoc());
5536     else if (IsExplicitSpecialization)
5537       Diag(NewVD->getLocation(), diag::err_module_private_specialization)
5538         << 2
5539         << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
5540     else if (NewVD->hasLocalStorage())
5541       Diag(NewVD->getLocation(), diag::err_module_private_local)
5542         << 0 << NewVD->getDeclName()
5543         << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
5544         << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
5545     else {
5546       NewVD->setModulePrivate();
5547       if (NewTemplate)
5548         NewTemplate->setModulePrivate();
5549     }
5550   }
5551 
5552   // Handle attributes prior to checking for duplicates in MergeVarDecl
5553   ProcessDeclAttributes(S, NewVD, D);
5554 
5555   if (getLangOpts().CUDA) {
5556     // CUDA B.2.5: "__shared__ and __constant__ variables have implied static
5557     // storage [duration]."
5558     if (SC == SC_None && S->getFnParent() != nullptr &&
5559         (NewVD->hasAttr<CUDASharedAttr>() ||
5560          NewVD->hasAttr<CUDAConstantAttr>())) {
5561       NewVD->setStorageClass(SC_Static);
5562     }
5563   }
5564 
5565   // Ensure that dllimport globals without explicit storage class are treated as
5566   // extern. The storage class is set above using parsed attributes. Now we can
5567   // check the VarDecl itself.
5568   assert(!NewVD->hasAttr<DLLImportAttr>() ||
5569          NewVD->getAttr<DLLImportAttr>()->isInherited() ||
5570          NewVD->isStaticDataMember() || NewVD->getStorageClass() != SC_None);
5571 
5572   // In auto-retain/release, infer strong retension for variables of
5573   // retainable type.
5574   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
5575     NewVD->setInvalidDecl();
5576 
5577   // Handle GNU asm-label extension (encoded as an attribute).
5578   if (Expr *E = (Expr*)D.getAsmLabel()) {
5579     // The parser guarantees this is a string.
5580     StringLiteral *SE = cast<StringLiteral>(E);
5581     StringRef Label = SE->getString();
5582     if (S->getFnParent() != nullptr) {
5583       switch (SC) {
5584       case SC_None:
5585       case SC_Auto:
5586         Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
5587         break;
5588       case SC_Register:
5589         // Local Named register
5590         if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
5591           Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
5592         break;
5593       case SC_Static:
5594       case SC_Extern:
5595       case SC_PrivateExtern:
5596       case SC_OpenCLWorkGroupLocal:
5597         break;
5598       }
5599     } else if (SC == SC_Register) {
5600       // Global Named register
5601       if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
5602         Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
5603       if (!R->isIntegralType(Context) && !R->isPointerType()) {
5604         Diag(D.getLocStart(), diag::err_asm_bad_register_type);
5605         NewVD->setInvalidDecl(true);
5606       }
5607     }
5608 
5609     NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
5610                                                 Context, Label, 0));
5611   } else if (!ExtnameUndeclaredIdentifiers.empty()) {
5612     llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
5613       ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
5614     if (I != ExtnameUndeclaredIdentifiers.end()) {
5615       NewVD->addAttr(I->second);
5616       ExtnameUndeclaredIdentifiers.erase(I);
5617     }
5618   }
5619 
5620   // Diagnose shadowed variables before filtering for scope.
5621   if (D.getCXXScopeSpec().isEmpty())
5622     CheckShadow(S, NewVD, Previous);
5623 
5624   // Don't consider existing declarations that are in a different
5625   // scope and are out-of-semantic-context declarations (if the new
5626   // declaration has linkage).
5627   FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewVD),
5628                        D.getCXXScopeSpec().isNotEmpty() ||
5629                        IsExplicitSpecialization ||
5630                        IsVariableTemplateSpecialization);
5631 
5632   // Check whether the previous declaration is in the same block scope. This
5633   // affects whether we merge types with it, per C++11 [dcl.array]p3.
5634   if (getLangOpts().CPlusPlus &&
5635       NewVD->isLocalVarDecl() && NewVD->hasExternalStorage())
5636     NewVD->setPreviousDeclInSameBlockScope(
5637         Previous.isSingleResult() && !Previous.isShadowed() &&
5638         isDeclInScope(Previous.getFoundDecl(), OriginalDC, S, false));
5639 
5640   if (!getLangOpts().CPlusPlus) {
5641     D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
5642   } else {
5643     // If this is an explicit specialization of a static data member, check it.
5644     if (IsExplicitSpecialization && !NewVD->isInvalidDecl() &&
5645         CheckMemberSpecialization(NewVD, Previous))
5646       NewVD->setInvalidDecl();
5647 
5648     // Merge the decl with the existing one if appropriate.
5649     if (!Previous.empty()) {
5650       if (Previous.isSingleResult() &&
5651           isa<FieldDecl>(Previous.getFoundDecl()) &&
5652           D.getCXXScopeSpec().isSet()) {
5653         // The user tried to define a non-static data member
5654         // out-of-line (C++ [dcl.meaning]p1).
5655         Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
5656           << D.getCXXScopeSpec().getRange();
5657         Previous.clear();
5658         NewVD->setInvalidDecl();
5659       }
5660     } else if (D.getCXXScopeSpec().isSet()) {
5661       // No previous declaration in the qualifying scope.
5662       Diag(D.getIdentifierLoc(), diag::err_no_member)
5663         << Name << computeDeclContext(D.getCXXScopeSpec(), true)
5664         << D.getCXXScopeSpec().getRange();
5665       NewVD->setInvalidDecl();
5666     }
5667 
5668     if (!IsVariableTemplateSpecialization)
5669       D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
5670 
5671     if (NewTemplate) {
5672       VarTemplateDecl *PrevVarTemplate =
5673           NewVD->getPreviousDecl()
5674               ? NewVD->getPreviousDecl()->getDescribedVarTemplate()
5675               : nullptr;
5676 
5677       // Check the template parameter list of this declaration, possibly
5678       // merging in the template parameter list from the previous variable
5679       // template declaration.
5680       if (CheckTemplateParameterList(
5681               TemplateParams,
5682               PrevVarTemplate ? PrevVarTemplate->getTemplateParameters()
5683                               : nullptr,
5684               (D.getCXXScopeSpec().isSet() && DC && DC->isRecord() &&
5685                DC->isDependentContext())
5686                   ? TPC_ClassTemplateMember
5687                   : TPC_VarTemplate))
5688         NewVD->setInvalidDecl();
5689 
5690       // If we are providing an explicit specialization of a static variable
5691       // template, make a note of that.
5692       if (PrevVarTemplate &&
5693           PrevVarTemplate->getInstantiatedFromMemberTemplate())
5694         PrevVarTemplate->setMemberSpecialization();
5695     }
5696   }
5697 
5698   ProcessPragmaWeak(S, NewVD);
5699 
5700   // If this is the first declaration of an extern C variable, update
5701   // the map of such variables.
5702   if (NewVD->isFirstDecl() && !NewVD->isInvalidDecl() &&
5703       isIncompleteDeclExternC(*this, NewVD))
5704     RegisterLocallyScopedExternCDecl(NewVD, S);
5705 
5706   if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
5707     Decl *ManglingContextDecl;
5708     if (MangleNumberingContext *MCtx =
5709             getCurrentMangleNumberContext(NewVD->getDeclContext(),
5710                                           ManglingContextDecl)) {
5711       Context.setManglingNumber(
5712           NewVD, MCtx->getManglingNumber(NewVD, S->getMSLocalManglingNumber()));
5713       Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD));
5714     }
5715   }
5716 
5717   if (D.isRedeclaration() && !Previous.empty()) {
5718     checkDLLAttributeRedeclaration(
5719         *this, dyn_cast<NamedDecl>(Previous.getRepresentativeDecl()), NewVD,
5720         IsExplicitSpecialization);
5721   }
5722 
5723   if (NewTemplate) {
5724     if (NewVD->isInvalidDecl())
5725       NewTemplate->setInvalidDecl();
5726     ActOnDocumentableDecl(NewTemplate);
5727     return NewTemplate;
5728   }
5729 
5730   return NewVD;
5731 }
5732 
5733 /// \brief Diagnose variable or built-in function shadowing.  Implements
5734 /// -Wshadow.
5735 ///
5736 /// This method is called whenever a VarDecl is added to a "useful"
5737 /// scope.
5738 ///
5739 /// \param S the scope in which the shadowing name is being declared
5740 /// \param R the lookup of the name
5741 ///
CheckShadow(Scope * S,VarDecl * D,const LookupResult & R)5742 void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
5743   // Return if warning is ignored.
5744   if (Diags.isIgnored(diag::warn_decl_shadow, R.getNameLoc()))
5745     return;
5746 
5747   // Don't diagnose declarations at file scope.
5748   if (D->hasGlobalStorage())
5749     return;
5750 
5751   DeclContext *NewDC = D->getDeclContext();
5752 
5753   // Only diagnose if we're shadowing an unambiguous field or variable.
5754   if (R.getResultKind() != LookupResult::Found)
5755     return;
5756 
5757   NamedDecl* ShadowedDecl = R.getFoundDecl();
5758   if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
5759     return;
5760 
5761   // Fields are not shadowed by variables in C++ static methods.
5762   if (isa<FieldDecl>(ShadowedDecl))
5763     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
5764       if (MD->isStatic())
5765         return;
5766 
5767   if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
5768     if (shadowedVar->isExternC()) {
5769       // For shadowing external vars, make sure that we point to the global
5770       // declaration, not a locally scoped extern declaration.
5771       for (auto I : shadowedVar->redecls())
5772         if (I->isFileVarDecl()) {
5773           ShadowedDecl = I;
5774           break;
5775         }
5776     }
5777 
5778   DeclContext *OldDC = ShadowedDecl->getDeclContext();
5779 
5780   // Only warn about certain kinds of shadowing for class members.
5781   if (NewDC && NewDC->isRecord()) {
5782     // In particular, don't warn about shadowing non-class members.
5783     if (!OldDC->isRecord())
5784       return;
5785 
5786     // TODO: should we warn about static data members shadowing
5787     // static data members from base classes?
5788 
5789     // TODO: don't diagnose for inaccessible shadowed members.
5790     // This is hard to do perfectly because we might friend the
5791     // shadowing context, but that's just a false negative.
5792   }
5793 
5794   // Determine what kind of declaration we're shadowing.
5795   unsigned Kind;
5796   if (isa<RecordDecl>(OldDC)) {
5797     if (isa<FieldDecl>(ShadowedDecl))
5798       Kind = 3; // field
5799     else
5800       Kind = 2; // static data member
5801   } else if (OldDC->isFileContext())
5802     Kind = 1; // global
5803   else
5804     Kind = 0; // local
5805 
5806   DeclarationName Name = R.getLookupName();
5807 
5808   // Emit warning and note.
5809   if (getSourceManager().isInSystemMacro(R.getNameLoc()))
5810     return;
5811   Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
5812   Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
5813 }
5814 
5815 /// \brief Check -Wshadow without the advantage of a previous lookup.
CheckShadow(Scope * S,VarDecl * D)5816 void Sema::CheckShadow(Scope *S, VarDecl *D) {
5817   if (Diags.isIgnored(diag::warn_decl_shadow, D->getLocation()))
5818     return;
5819 
5820   LookupResult R(*this, D->getDeclName(), D->getLocation(),
5821                  Sema::LookupOrdinaryName, Sema::ForRedeclaration);
5822   LookupName(R, S);
5823   CheckShadow(S, D, R);
5824 }
5825 
5826 /// Check for conflict between this global or extern "C" declaration and
5827 /// previous global or extern "C" declarations. This is only used in C++.
5828 template<typename T>
checkGlobalOrExternCConflict(Sema & S,const T * ND,bool IsGlobal,LookupResult & Previous)5829 static bool checkGlobalOrExternCConflict(
5830     Sema &S, const T *ND, bool IsGlobal, LookupResult &Previous) {
5831   assert(S.getLangOpts().CPlusPlus && "only C++ has extern \"C\"");
5832   NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName());
5833 
5834   if (!Prev && IsGlobal && !isIncompleteDeclExternC(S, ND)) {
5835     // The common case: this global doesn't conflict with any extern "C"
5836     // declaration.
5837     return false;
5838   }
5839 
5840   if (Prev) {
5841     if (!IsGlobal || isIncompleteDeclExternC(S, ND)) {
5842       // Both the old and new declarations have C language linkage. This is a
5843       // redeclaration.
5844       Previous.clear();
5845       Previous.addDecl(Prev);
5846       return true;
5847     }
5848 
5849     // This is a global, non-extern "C" declaration, and there is a previous
5850     // non-global extern "C" declaration. Diagnose if this is a variable
5851     // declaration.
5852     if (!isa<VarDecl>(ND))
5853       return false;
5854   } else {
5855     // The declaration is extern "C". Check for any declaration in the
5856     // translation unit which might conflict.
5857     if (IsGlobal) {
5858       // We have already performed the lookup into the translation unit.
5859       IsGlobal = false;
5860       for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
5861            I != E; ++I) {
5862         if (isa<VarDecl>(*I)) {
5863           Prev = *I;
5864           break;
5865         }
5866       }
5867     } else {
5868       DeclContext::lookup_result R =
5869           S.Context.getTranslationUnitDecl()->lookup(ND->getDeclName());
5870       for (DeclContext::lookup_result::iterator I = R.begin(), E = R.end();
5871            I != E; ++I) {
5872         if (isa<VarDecl>(*I)) {
5873           Prev = *I;
5874           break;
5875         }
5876         // FIXME: If we have any other entity with this name in global scope,
5877         // the declaration is ill-formed, but that is a defect: it breaks the
5878         // 'stat' hack, for instance. Only variables can have mangled name
5879         // clashes with extern "C" declarations, so only they deserve a
5880         // diagnostic.
5881       }
5882     }
5883 
5884     if (!Prev)
5885       return false;
5886   }
5887 
5888   // Use the first declaration's location to ensure we point at something which
5889   // is lexically inside an extern "C" linkage-spec.
5890   assert(Prev && "should have found a previous declaration to diagnose");
5891   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Prev))
5892     Prev = FD->getFirstDecl();
5893   else
5894     Prev = cast<VarDecl>(Prev)->getFirstDecl();
5895 
5896   S.Diag(ND->getLocation(), diag::err_extern_c_global_conflict)
5897     << IsGlobal << ND;
5898   S.Diag(Prev->getLocation(), diag::note_extern_c_global_conflict)
5899     << IsGlobal;
5900   return false;
5901 }
5902 
5903 /// Apply special rules for handling extern "C" declarations. Returns \c true
5904 /// if we have found that this is a redeclaration of some prior entity.
5905 ///
5906 /// Per C++ [dcl.link]p6:
5907 ///   Two declarations [for a function or variable] with C language linkage
5908 ///   with the same name that appear in different scopes refer to the same
5909 ///   [entity]. An entity with C language linkage shall not be declared with
5910 ///   the same name as an entity in global scope.
5911 template<typename T>
checkForConflictWithNonVisibleExternC(Sema & S,const T * ND,LookupResult & Previous)5912 static bool checkForConflictWithNonVisibleExternC(Sema &S, const T *ND,
5913                                                   LookupResult &Previous) {
5914   if (!S.getLangOpts().CPlusPlus) {
5915     // In C, when declaring a global variable, look for a corresponding 'extern'
5916     // variable declared in function scope. We don't need this in C++, because
5917     // we find local extern decls in the surrounding file-scope DeclContext.
5918     if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
5919       if (NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName())) {
5920         Previous.clear();
5921         Previous.addDecl(Prev);
5922         return true;
5923       }
5924     }
5925     return false;
5926   }
5927 
5928   // A declaration in the translation unit can conflict with an extern "C"
5929   // declaration.
5930   if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit())
5931     return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/true, Previous);
5932 
5933   // An extern "C" declaration can conflict with a declaration in the
5934   // translation unit or can be a redeclaration of an extern "C" declaration
5935   // in another scope.
5936   if (isIncompleteDeclExternC(S,ND))
5937     return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/false, Previous);
5938 
5939   // Neither global nor extern "C": nothing to do.
5940   return false;
5941 }
5942 
CheckVariableDeclarationType(VarDecl * NewVD)5943 void Sema::CheckVariableDeclarationType(VarDecl *NewVD) {
5944   // If the decl is already known invalid, don't check it.
5945   if (NewVD->isInvalidDecl())
5946     return;
5947 
5948   TypeSourceInfo *TInfo = NewVD->getTypeSourceInfo();
5949   QualType T = TInfo->getType();
5950 
5951   // Defer checking an 'auto' type until its initializer is attached.
5952   if (T->isUndeducedType())
5953     return;
5954 
5955   if (NewVD->hasAttrs())
5956     CheckAlignasUnderalignment(NewVD);
5957 
5958   if (T->isObjCObjectType()) {
5959     Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
5960       << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
5961     T = Context.getObjCObjectPointerType(T);
5962     NewVD->setType(T);
5963   }
5964 
5965   // Emit an error if an address space was applied to decl with local storage.
5966   // This includes arrays of objects with address space qualifiers, but not
5967   // automatic variables that point to other address spaces.
5968   // ISO/IEC TR 18037 S5.1.2
5969   if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
5970     Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
5971     NewVD->setInvalidDecl();
5972     return;
5973   }
5974 
5975   // OpenCL v1.2 s6.5 - All program scope variables must be declared in the
5976   // __constant address space.
5977   if (getLangOpts().OpenCL && NewVD->isFileVarDecl()
5978       && T.getAddressSpace() != LangAS::opencl_constant
5979       && !T->isSamplerT()){
5980     Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space);
5981     NewVD->setInvalidDecl();
5982     return;
5983   }
5984 
5985   // OpenCL v1.2 s6.8 -- The static qualifier is valid only in program
5986   // scope.
5987   if ((getLangOpts().OpenCLVersion >= 120)
5988       && NewVD->isStaticLocal()) {
5989     Diag(NewVD->getLocation(), diag::err_static_function_scope);
5990     NewVD->setInvalidDecl();
5991     return;
5992   }
5993 
5994   if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
5995       && !NewVD->hasAttr<BlocksAttr>()) {
5996     if (getLangOpts().getGC() != LangOptions::NonGC)
5997       Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
5998     else {
5999       assert(!getLangOpts().ObjCAutoRefCount);
6000       Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
6001     }
6002   }
6003 
6004   bool isVM = T->isVariablyModifiedType();
6005   if (isVM || NewVD->hasAttr<CleanupAttr>() ||
6006       NewVD->hasAttr<BlocksAttr>())
6007     getCurFunction()->setHasBranchProtectedScope();
6008 
6009   if ((isVM && NewVD->hasLinkage()) ||
6010       (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
6011     bool SizeIsNegative;
6012     llvm::APSInt Oversized;
6013     TypeSourceInfo *FixedTInfo =
6014       TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
6015                                                     SizeIsNegative, Oversized);
6016     if (!FixedTInfo && T->isVariableArrayType()) {
6017       const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
6018       // FIXME: This won't give the correct result for
6019       // int a[10][n];
6020       SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
6021 
6022       if (NewVD->isFileVarDecl())
6023         Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
6024         << SizeRange;
6025       else if (NewVD->isStaticLocal())
6026         Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
6027         << SizeRange;
6028       else
6029         Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
6030         << SizeRange;
6031       NewVD->setInvalidDecl();
6032       return;
6033     }
6034 
6035     if (!FixedTInfo) {
6036       if (NewVD->isFileVarDecl())
6037         Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
6038       else
6039         Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
6040       NewVD->setInvalidDecl();
6041       return;
6042     }
6043 
6044     Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
6045     NewVD->setType(FixedTInfo->getType());
6046     NewVD->setTypeSourceInfo(FixedTInfo);
6047   }
6048 
6049   if (T->isVoidType()) {
6050     // C++98 [dcl.stc]p5: The extern specifier can be applied only to the names
6051     //                    of objects and functions.
6052     if (NewVD->isThisDeclarationADefinition() || getLangOpts().CPlusPlus) {
6053       Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
6054         << T;
6055       NewVD->setInvalidDecl();
6056       return;
6057     }
6058   }
6059 
6060   if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
6061     Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
6062     NewVD->setInvalidDecl();
6063     return;
6064   }
6065 
6066   if (isVM && NewVD->hasAttr<BlocksAttr>()) {
6067     Diag(NewVD->getLocation(), diag::err_block_on_vm);
6068     NewVD->setInvalidDecl();
6069     return;
6070   }
6071 
6072   if (NewVD->isConstexpr() && !T->isDependentType() &&
6073       RequireLiteralType(NewVD->getLocation(), T,
6074                          diag::err_constexpr_var_non_literal)) {
6075     NewVD->setInvalidDecl();
6076     return;
6077   }
6078 }
6079 
6080 /// \brief Perform semantic checking on a newly-created variable
6081 /// declaration.
6082 ///
6083 /// This routine performs all of the type-checking required for a
6084 /// variable declaration once it has been built. It is used both to
6085 /// check variables after they have been parsed and their declarators
6086 /// have been translated into a declaration, and to check variables
6087 /// that have been instantiated from a template.
6088 ///
6089 /// Sets NewVD->isInvalidDecl() if an error was encountered.
6090 ///
6091 /// Returns true if the variable declaration is a redeclaration.
CheckVariableDeclaration(VarDecl * NewVD,LookupResult & Previous)6092 bool Sema::CheckVariableDeclaration(VarDecl *NewVD, LookupResult &Previous) {
6093   CheckVariableDeclarationType(NewVD);
6094 
6095   // If the decl is already known invalid, don't check it.
6096   if (NewVD->isInvalidDecl())
6097     return false;
6098 
6099   // If we did not find anything by this name, look for a non-visible
6100   // extern "C" declaration with the same name.
6101   if (Previous.empty() &&
6102       checkForConflictWithNonVisibleExternC(*this, NewVD, Previous))
6103     Previous.setShadowed();
6104 
6105   // Filter out any non-conflicting previous declarations.
6106   filterNonConflictingPreviousDecls(Context, NewVD, Previous);
6107 
6108   if (!Previous.empty()) {
6109     MergeVarDecl(NewVD, Previous);
6110     return true;
6111   }
6112   return false;
6113 }
6114 
6115 /// \brief Data used with FindOverriddenMethod
6116 struct FindOverriddenMethodData {
6117   Sema *S;
6118   CXXMethodDecl *Method;
6119 };
6120 
6121 /// \brief Member lookup function that determines whether a given C++
6122 /// method overrides a method in a base class, to be used with
6123 /// CXXRecordDecl::lookupInBases().
FindOverriddenMethod(const CXXBaseSpecifier * Specifier,CXXBasePath & Path,void * UserData)6124 static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
6125                                  CXXBasePath &Path,
6126                                  void *UserData) {
6127   RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
6128 
6129   FindOverriddenMethodData *Data
6130     = reinterpret_cast<FindOverriddenMethodData*>(UserData);
6131 
6132   DeclarationName Name = Data->Method->getDeclName();
6133 
6134   // FIXME: Do we care about other names here too?
6135   if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
6136     // We really want to find the base class destructor here.
6137     QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
6138     CanQualType CT = Data->S->Context.getCanonicalType(T);
6139 
6140     Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
6141   }
6142 
6143   for (Path.Decls = BaseRecord->lookup(Name);
6144        !Path.Decls.empty();
6145        Path.Decls = Path.Decls.slice(1)) {
6146     NamedDecl *D = Path.Decls.front();
6147     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
6148       if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
6149         return true;
6150     }
6151   }
6152 
6153   return false;
6154 }
6155 
6156 namespace {
6157   enum OverrideErrorKind { OEK_All, OEK_NonDeleted, OEK_Deleted };
6158 }
6159 /// \brief Report an error regarding overriding, along with any relevant
6160 /// overriden methods.
6161 ///
6162 /// \param DiagID the primary error to report.
6163 /// \param MD the overriding method.
6164 /// \param OEK which overrides to include as notes.
ReportOverrides(Sema & S,unsigned DiagID,const CXXMethodDecl * MD,OverrideErrorKind OEK=OEK_All)6165 static void ReportOverrides(Sema& S, unsigned DiagID, const CXXMethodDecl *MD,
6166                             OverrideErrorKind OEK = OEK_All) {
6167   S.Diag(MD->getLocation(), DiagID) << MD->getDeclName();
6168   for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
6169                                       E = MD->end_overridden_methods();
6170        I != E; ++I) {
6171     // This check (& the OEK parameter) could be replaced by a predicate, but
6172     // without lambdas that would be overkill. This is still nicer than writing
6173     // out the diag loop 3 times.
6174     if ((OEK == OEK_All) ||
6175         (OEK == OEK_NonDeleted && !(*I)->isDeleted()) ||
6176         (OEK == OEK_Deleted && (*I)->isDeleted()))
6177       S.Diag((*I)->getLocation(), diag::note_overridden_virtual_function);
6178   }
6179 }
6180 
6181 /// AddOverriddenMethods - See if a method overrides any in the base classes,
6182 /// and if so, check that it's a valid override and remember it.
AddOverriddenMethods(CXXRecordDecl * DC,CXXMethodDecl * MD)6183 bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
6184   // Look for virtual methods in base classes that this method might override.
6185   CXXBasePaths Paths;
6186   FindOverriddenMethodData Data;
6187   Data.Method = MD;
6188   Data.S = this;
6189   bool hasDeletedOverridenMethods = false;
6190   bool hasNonDeletedOverridenMethods = false;
6191   bool AddedAny = false;
6192   if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
6193     for (auto *I : Paths.found_decls()) {
6194       if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(I)) {
6195         MD->addOverriddenMethod(OldMD->getCanonicalDecl());
6196         if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
6197             !CheckOverridingFunctionAttributes(MD, OldMD) &&
6198             !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
6199             !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
6200           hasDeletedOverridenMethods |= OldMD->isDeleted();
6201           hasNonDeletedOverridenMethods |= !OldMD->isDeleted();
6202           AddedAny = true;
6203         }
6204       }
6205     }
6206   }
6207 
6208   if (hasDeletedOverridenMethods && !MD->isDeleted()) {
6209     ReportOverrides(*this, diag::err_non_deleted_override, MD, OEK_Deleted);
6210   }
6211   if (hasNonDeletedOverridenMethods && MD->isDeleted()) {
6212     ReportOverrides(*this, diag::err_deleted_override, MD, OEK_NonDeleted);
6213   }
6214 
6215   return AddedAny;
6216 }
6217 
6218 namespace {
6219   // Struct for holding all of the extra arguments needed by
6220   // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
6221   struct ActOnFDArgs {
6222     Scope *S;
6223     Declarator &D;
6224     MultiTemplateParamsArg TemplateParamLists;
6225     bool AddToScope;
6226   };
6227 }
6228 
6229 namespace {
6230 
6231 // Callback to only accept typo corrections that have a non-zero edit distance.
6232 // Also only accept corrections that have the same parent decl.
6233 class DifferentNameValidatorCCC : public CorrectionCandidateCallback {
6234  public:
DifferentNameValidatorCCC(ASTContext & Context,FunctionDecl * TypoFD,CXXRecordDecl * Parent)6235   DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD,
6236                             CXXRecordDecl *Parent)
6237       : Context(Context), OriginalFD(TypoFD),
6238         ExpectedParent(Parent ? Parent->getCanonicalDecl() : nullptr) {}
6239 
ValidateCandidate(const TypoCorrection & candidate)6240   bool ValidateCandidate(const TypoCorrection &candidate) override {
6241     if (candidate.getEditDistance() == 0)
6242       return false;
6243 
6244     SmallVector<unsigned, 1> MismatchedParams;
6245     for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(),
6246                                           CDeclEnd = candidate.end();
6247          CDecl != CDeclEnd; ++CDecl) {
6248       FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
6249 
6250       if (FD && !FD->hasBody() &&
6251           hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) {
6252         if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
6253           CXXRecordDecl *Parent = MD->getParent();
6254           if (Parent && Parent->getCanonicalDecl() == ExpectedParent)
6255             return true;
6256         } else if (!ExpectedParent) {
6257           return true;
6258         }
6259       }
6260     }
6261 
6262     return false;
6263   }
6264 
6265  private:
6266   ASTContext &Context;
6267   FunctionDecl *OriginalFD;
6268   CXXRecordDecl *ExpectedParent;
6269 };
6270 
6271 }
6272 
6273 /// \brief Generate diagnostics for an invalid function redeclaration.
6274 ///
6275 /// This routine handles generating the diagnostic messages for an invalid
6276 /// function redeclaration, including finding possible similar declarations
6277 /// or performing typo correction if there are no previous declarations with
6278 /// the same name.
6279 ///
6280 /// Returns a NamedDecl iff typo correction was performed and substituting in
6281 /// the new declaration name does not cause new errors.
DiagnoseInvalidRedeclaration(Sema & SemaRef,LookupResult & Previous,FunctionDecl * NewFD,ActOnFDArgs & ExtraArgs,bool IsLocalFriend,Scope * S)6282 static NamedDecl *DiagnoseInvalidRedeclaration(
6283     Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
6284     ActOnFDArgs &ExtraArgs, bool IsLocalFriend, Scope *S) {
6285   DeclarationName Name = NewFD->getDeclName();
6286   DeclContext *NewDC = NewFD->getDeclContext();
6287   SmallVector<unsigned, 1> MismatchedParams;
6288   SmallVector<std::pair<FunctionDecl *, unsigned>, 1> NearMatches;
6289   TypoCorrection Correction;
6290   bool IsDefinition = ExtraArgs.D.isFunctionDefinition();
6291   unsigned DiagMsg = IsLocalFriend ? diag::err_no_matching_local_friend
6292                                    : diag::err_member_decl_does_not_match;
6293   LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
6294                     IsLocalFriend ? Sema::LookupLocalFriendName
6295                                   : Sema::LookupOrdinaryName,
6296                     Sema::ForRedeclaration);
6297 
6298   NewFD->setInvalidDecl();
6299   if (IsLocalFriend)
6300     SemaRef.LookupName(Prev, S);
6301   else
6302     SemaRef.LookupQualifiedName(Prev, NewDC);
6303   assert(!Prev.isAmbiguous() &&
6304          "Cannot have an ambiguity in previous-declaration lookup");
6305   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
6306   DifferentNameValidatorCCC Validator(SemaRef.Context, NewFD,
6307                                       MD ? MD->getParent() : nullptr);
6308   if (!Prev.empty()) {
6309     for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
6310          Func != FuncEnd; ++Func) {
6311       FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
6312       if (FD &&
6313           hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
6314         // Add 1 to the index so that 0 can mean the mismatch didn't
6315         // involve a parameter
6316         unsigned ParamNum =
6317             MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
6318         NearMatches.push_back(std::make_pair(FD, ParamNum));
6319       }
6320     }
6321   // If the qualified name lookup yielded nothing, try typo correction
6322   } else if ((Correction = SemaRef.CorrectTypo(
6323                  Prev.getLookupNameInfo(), Prev.getLookupKind(), S,
6324                  &ExtraArgs.D.getCXXScopeSpec(), Validator,
6325                  Sema::CTK_ErrorRecovery, IsLocalFriend ? nullptr : NewDC))) {
6326     // Set up everything for the call to ActOnFunctionDeclarator
6327     ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
6328                               ExtraArgs.D.getIdentifierLoc());
6329     Previous.clear();
6330     Previous.setLookupName(Correction.getCorrection());
6331     for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
6332                                     CDeclEnd = Correction.end();
6333          CDecl != CDeclEnd; ++CDecl) {
6334       FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
6335       if (FD && !FD->hasBody() &&
6336           hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
6337         Previous.addDecl(FD);
6338       }
6339     }
6340     bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
6341 
6342     NamedDecl *Result;
6343     // Retry building the function declaration with the new previous
6344     // declarations, and with errors suppressed.
6345     {
6346       // Trap errors.
6347       Sema::SFINAETrap Trap(SemaRef);
6348 
6349       // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
6350       // pieces need to verify the typo-corrected C++ declaration and hopefully
6351       // eliminate the need for the parameter pack ExtraArgs.
6352       Result = SemaRef.ActOnFunctionDeclarator(
6353           ExtraArgs.S, ExtraArgs.D,
6354           Correction.getCorrectionDecl()->getDeclContext(),
6355           NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
6356           ExtraArgs.AddToScope);
6357 
6358       if (Trap.hasErrorOccurred())
6359         Result = nullptr;
6360     }
6361 
6362     if (Result) {
6363       // Determine which correction we picked.
6364       Decl *Canonical = Result->getCanonicalDecl();
6365       for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6366            I != E; ++I)
6367         if ((*I)->getCanonicalDecl() == Canonical)
6368           Correction.setCorrectionDecl(*I);
6369 
6370       SemaRef.diagnoseTypo(
6371           Correction,
6372           SemaRef.PDiag(IsLocalFriend
6373                           ? diag::err_no_matching_local_friend_suggest
6374                           : diag::err_member_decl_does_not_match_suggest)
6375             << Name << NewDC << IsDefinition);
6376       return Result;
6377     }
6378 
6379     // Pretend the typo correction never occurred
6380     ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
6381                               ExtraArgs.D.getIdentifierLoc());
6382     ExtraArgs.D.setRedeclaration(wasRedeclaration);
6383     Previous.clear();
6384     Previous.setLookupName(Name);
6385   }
6386 
6387   SemaRef.Diag(NewFD->getLocation(), DiagMsg)
6388       << Name << NewDC << IsDefinition << NewFD->getLocation();
6389 
6390   bool NewFDisConst = false;
6391   if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
6392     NewFDisConst = NewMD->isConst();
6393 
6394   for (SmallVectorImpl<std::pair<FunctionDecl *, unsigned> >::iterator
6395        NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
6396        NearMatch != NearMatchEnd; ++NearMatch) {
6397     FunctionDecl *FD = NearMatch->first;
6398     CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
6399     bool FDisConst = MD && MD->isConst();
6400     bool IsMember = MD || !IsLocalFriend;
6401 
6402     // FIXME: These notes are poorly worded for the local friend case.
6403     if (unsigned Idx = NearMatch->second) {
6404       ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
6405       SourceLocation Loc = FDParam->getTypeSpecStartLoc();
6406       if (Loc.isInvalid()) Loc = FD->getLocation();
6407       SemaRef.Diag(Loc, IsMember ? diag::note_member_def_close_param_match
6408                                  : diag::note_local_decl_close_param_match)
6409         << Idx << FDParam->getType()
6410         << NewFD->getParamDecl(Idx - 1)->getType();
6411     } else if (FDisConst != NewFDisConst) {
6412       SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
6413           << NewFDisConst << FD->getSourceRange().getEnd();
6414     } else
6415       SemaRef.Diag(FD->getLocation(),
6416                    IsMember ? diag::note_member_def_close_match
6417                             : diag::note_local_decl_close_match);
6418   }
6419   return nullptr;
6420 }
6421 
getFunctionStorageClass(Sema & SemaRef,Declarator & D)6422 static FunctionDecl::StorageClass getFunctionStorageClass(Sema &SemaRef,
6423                                                           Declarator &D) {
6424   switch (D.getDeclSpec().getStorageClassSpec()) {
6425   default: llvm_unreachable("Unknown storage class!");
6426   case DeclSpec::SCS_auto:
6427   case DeclSpec::SCS_register:
6428   case DeclSpec::SCS_mutable:
6429     SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6430                  diag::err_typecheck_sclass_func);
6431     D.setInvalidType();
6432     break;
6433   case DeclSpec::SCS_unspecified: break;
6434   case DeclSpec::SCS_extern:
6435     if (D.getDeclSpec().isExternInLinkageSpec())
6436       return SC_None;
6437     return SC_Extern;
6438   case DeclSpec::SCS_static: {
6439     if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
6440       // C99 6.7.1p5:
6441       //   The declaration of an identifier for a function that has
6442       //   block scope shall have no explicit storage-class specifier
6443       //   other than extern
6444       // See also (C++ [dcl.stc]p4).
6445       SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6446                    diag::err_static_block_func);
6447       break;
6448     } else
6449       return SC_Static;
6450   }
6451   case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
6452   }
6453 
6454   // No explicit storage class has already been returned
6455   return SC_None;
6456 }
6457 
CreateNewFunctionDecl(Sema & SemaRef,Declarator & D,DeclContext * DC,QualType & R,TypeSourceInfo * TInfo,FunctionDecl::StorageClass SC,bool & IsVirtualOkay)6458 static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
6459                                            DeclContext *DC, QualType &R,
6460                                            TypeSourceInfo *TInfo,
6461                                            FunctionDecl::StorageClass SC,
6462                                            bool &IsVirtualOkay) {
6463   DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
6464   DeclarationName Name = NameInfo.getName();
6465 
6466   FunctionDecl *NewFD = nullptr;
6467   bool isInline = D.getDeclSpec().isInlineSpecified();
6468 
6469   if (!SemaRef.getLangOpts().CPlusPlus) {
6470     // Determine whether the function was written with a
6471     // prototype. This true when:
6472     //   - there is a prototype in the declarator, or
6473     //   - the type R of the function is some kind of typedef or other reference
6474     //     to a type name (which eventually refers to a function type).
6475     bool HasPrototype =
6476       (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
6477       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
6478 
6479     NewFD = FunctionDecl::Create(SemaRef.Context, DC,
6480                                  D.getLocStart(), NameInfo, R,
6481                                  TInfo, SC, isInline,
6482                                  HasPrototype, false);
6483     if (D.isInvalidType())
6484       NewFD->setInvalidDecl();
6485 
6486     // Set the lexical context.
6487     NewFD->setLexicalDeclContext(SemaRef.CurContext);
6488 
6489     return NewFD;
6490   }
6491 
6492   bool isExplicit = D.getDeclSpec().isExplicitSpecified();
6493   bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
6494 
6495   // Check that the return type is not an abstract class type.
6496   // For record types, this is done by the AbstractClassUsageDiagnoser once
6497   // the class has been completely parsed.
6498   if (!DC->isRecord() &&
6499       SemaRef.RequireNonAbstractType(
6500           D.getIdentifierLoc(), R->getAs<FunctionType>()->getReturnType(),
6501           diag::err_abstract_type_in_decl, SemaRef.AbstractReturnType))
6502     D.setInvalidType();
6503 
6504   if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
6505     // This is a C++ constructor declaration.
6506     assert(DC->isRecord() &&
6507            "Constructors can only be declared in a member context");
6508 
6509     R = SemaRef.CheckConstructorDeclarator(D, R, SC);
6510     return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
6511                                       D.getLocStart(), NameInfo,
6512                                       R, TInfo, isExplicit, isInline,
6513                                       /*isImplicitlyDeclared=*/false,
6514                                       isConstexpr);
6515 
6516   } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
6517     // This is a C++ destructor declaration.
6518     if (DC->isRecord()) {
6519       R = SemaRef.CheckDestructorDeclarator(D, R, SC);
6520       CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
6521       CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
6522                                         SemaRef.Context, Record,
6523                                         D.getLocStart(),
6524                                         NameInfo, R, TInfo, isInline,
6525                                         /*isImplicitlyDeclared=*/false);
6526 
6527       // If the class is complete, then we now create the implicit exception
6528       // specification. If the class is incomplete or dependent, we can't do
6529       // it yet.
6530       if (SemaRef.getLangOpts().CPlusPlus11 && !Record->isDependentType() &&
6531           Record->getDefinition() && !Record->isBeingDefined() &&
6532           R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
6533         SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
6534       }
6535 
6536       IsVirtualOkay = true;
6537       return NewDD;
6538 
6539     } else {
6540       SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
6541       D.setInvalidType();
6542 
6543       // Create a FunctionDecl to satisfy the function definition parsing
6544       // code path.
6545       return FunctionDecl::Create(SemaRef.Context, DC,
6546                                   D.getLocStart(),
6547                                   D.getIdentifierLoc(), Name, R, TInfo,
6548                                   SC, isInline,
6549                                   /*hasPrototype=*/true, isConstexpr);
6550     }
6551 
6552   } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
6553     if (!DC->isRecord()) {
6554       SemaRef.Diag(D.getIdentifierLoc(),
6555            diag::err_conv_function_not_member);
6556       return nullptr;
6557     }
6558 
6559     SemaRef.CheckConversionDeclarator(D, R, SC);
6560     IsVirtualOkay = true;
6561     return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
6562                                      D.getLocStart(), NameInfo,
6563                                      R, TInfo, isInline, isExplicit,
6564                                      isConstexpr, SourceLocation());
6565 
6566   } else if (DC->isRecord()) {
6567     // If the name of the function is the same as the name of the record,
6568     // then this must be an invalid constructor that has a return type.
6569     // (The parser checks for a return type and makes the declarator a
6570     // constructor if it has no return type).
6571     if (Name.getAsIdentifierInfo() &&
6572         Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
6573       SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
6574         << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
6575         << SourceRange(D.getIdentifierLoc());
6576       return nullptr;
6577     }
6578 
6579     // This is a C++ method declaration.
6580     CXXMethodDecl *Ret = CXXMethodDecl::Create(SemaRef.Context,
6581                                                cast<CXXRecordDecl>(DC),
6582                                                D.getLocStart(), NameInfo, R,
6583                                                TInfo, SC, isInline,
6584                                                isConstexpr, SourceLocation());
6585     IsVirtualOkay = !Ret->isStatic();
6586     return Ret;
6587   } else {
6588     // Determine whether the function was written with a
6589     // prototype. This true when:
6590     //   - we're in C++ (where every function has a prototype),
6591     return FunctionDecl::Create(SemaRef.Context, DC,
6592                                 D.getLocStart(),
6593                                 NameInfo, R, TInfo, SC, isInline,
6594                                 true/*HasPrototype*/, isConstexpr);
6595   }
6596 }
6597 
6598 enum OpenCLParamType {
6599   ValidKernelParam,
6600   PtrPtrKernelParam,
6601   PtrKernelParam,
6602   PrivatePtrKernelParam,
6603   InvalidKernelParam,
6604   RecordKernelParam
6605 };
6606 
getOpenCLKernelParameterType(QualType PT)6607 static OpenCLParamType getOpenCLKernelParameterType(QualType PT) {
6608   if (PT->isPointerType()) {
6609     QualType PointeeType = PT->getPointeeType();
6610     if (PointeeType->isPointerType())
6611       return PtrPtrKernelParam;
6612     return PointeeType.getAddressSpace() == 0 ? PrivatePtrKernelParam
6613                                               : PtrKernelParam;
6614   }
6615 
6616   // TODO: Forbid the other integer types (size_t, ptrdiff_t...) when they can
6617   // be used as builtin types.
6618 
6619   if (PT->isImageType())
6620     return PtrKernelParam;
6621 
6622   if (PT->isBooleanType())
6623     return InvalidKernelParam;
6624 
6625   if (PT->isEventT())
6626     return InvalidKernelParam;
6627 
6628   if (PT->isHalfType())
6629     return InvalidKernelParam;
6630 
6631   if (PT->isRecordType())
6632     return RecordKernelParam;
6633 
6634   return ValidKernelParam;
6635 }
6636 
checkIsValidOpenCLKernelParameter(Sema & S,Declarator & D,ParmVarDecl * Param,llvm::SmallPtrSet<const Type *,16> & ValidTypes)6637 static void checkIsValidOpenCLKernelParameter(
6638   Sema &S,
6639   Declarator &D,
6640   ParmVarDecl *Param,
6641   llvm::SmallPtrSet<const Type *, 16> &ValidTypes) {
6642   QualType PT = Param->getType();
6643 
6644   // Cache the valid types we encounter to avoid rechecking structs that are
6645   // used again
6646   if (ValidTypes.count(PT.getTypePtr()))
6647     return;
6648 
6649   switch (getOpenCLKernelParameterType(PT)) {
6650   case PtrPtrKernelParam:
6651     // OpenCL v1.2 s6.9.a:
6652     // A kernel function argument cannot be declared as a
6653     // pointer to a pointer type.
6654     S.Diag(Param->getLocation(), diag::err_opencl_ptrptr_kernel_param);
6655     D.setInvalidType();
6656     return;
6657 
6658   case PrivatePtrKernelParam:
6659     // OpenCL v1.2 s6.9.a:
6660     // A kernel function argument cannot be declared as a
6661     // pointer to the private address space.
6662     S.Diag(Param->getLocation(), diag::err_opencl_private_ptr_kernel_param);
6663     D.setInvalidType();
6664     return;
6665 
6666     // OpenCL v1.2 s6.9.k:
6667     // Arguments to kernel functions in a program cannot be declared with the
6668     // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and
6669     // uintptr_t or a struct and/or union that contain fields declared to be
6670     // one of these built-in scalar types.
6671 
6672   case InvalidKernelParam:
6673     // OpenCL v1.2 s6.8 n:
6674     // A kernel function argument cannot be declared
6675     // of event_t type.
6676     S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
6677     D.setInvalidType();
6678     return;
6679 
6680   case PtrKernelParam:
6681   case ValidKernelParam:
6682     ValidTypes.insert(PT.getTypePtr());
6683     return;
6684 
6685   case RecordKernelParam:
6686     break;
6687   }
6688 
6689   // Track nested structs we will inspect
6690   SmallVector<const Decl *, 4> VisitStack;
6691 
6692   // Track where we are in the nested structs. Items will migrate from
6693   // VisitStack to HistoryStack as we do the DFS for bad field.
6694   SmallVector<const FieldDecl *, 4> HistoryStack;
6695   HistoryStack.push_back(nullptr);
6696 
6697   const RecordDecl *PD = PT->castAs<RecordType>()->getDecl();
6698   VisitStack.push_back(PD);
6699 
6700   assert(VisitStack.back() && "First decl null?");
6701 
6702   do {
6703     const Decl *Next = VisitStack.pop_back_val();
6704     if (!Next) {
6705       assert(!HistoryStack.empty());
6706       // Found a marker, we have gone up a level
6707       if (const FieldDecl *Hist = HistoryStack.pop_back_val())
6708         ValidTypes.insert(Hist->getType().getTypePtr());
6709 
6710       continue;
6711     }
6712 
6713     // Adds everything except the original parameter declaration (which is not a
6714     // field itself) to the history stack.
6715     const RecordDecl *RD;
6716     if (const FieldDecl *Field = dyn_cast<FieldDecl>(Next)) {
6717       HistoryStack.push_back(Field);
6718       RD = Field->getType()->castAs<RecordType>()->getDecl();
6719     } else {
6720       RD = cast<RecordDecl>(Next);
6721     }
6722 
6723     // Add a null marker so we know when we've gone back up a level
6724     VisitStack.push_back(nullptr);
6725 
6726     for (const auto *FD : RD->fields()) {
6727       QualType QT = FD->getType();
6728 
6729       if (ValidTypes.count(QT.getTypePtr()))
6730         continue;
6731 
6732       OpenCLParamType ParamType = getOpenCLKernelParameterType(QT);
6733       if (ParamType == ValidKernelParam)
6734         continue;
6735 
6736       if (ParamType == RecordKernelParam) {
6737         VisitStack.push_back(FD);
6738         continue;
6739       }
6740 
6741       // OpenCL v1.2 s6.9.p:
6742       // Arguments to kernel functions that are declared to be a struct or union
6743       // do not allow OpenCL objects to be passed as elements of the struct or
6744       // union.
6745       if (ParamType == PtrKernelParam || ParamType == PtrPtrKernelParam ||
6746           ParamType == PrivatePtrKernelParam) {
6747         S.Diag(Param->getLocation(),
6748                diag::err_record_with_pointers_kernel_param)
6749           << PT->isUnionType()
6750           << PT;
6751       } else {
6752         S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
6753       }
6754 
6755       S.Diag(PD->getLocation(), diag::note_within_field_of_type)
6756         << PD->getDeclName();
6757 
6758       // We have an error, now let's go back up through history and show where
6759       // the offending field came from
6760       for (ArrayRef<const FieldDecl *>::const_iterator I = HistoryStack.begin() + 1,
6761              E = HistoryStack.end(); I != E; ++I) {
6762         const FieldDecl *OuterField = *I;
6763         S.Diag(OuterField->getLocation(), diag::note_within_field_of_type)
6764           << OuterField->getType();
6765       }
6766 
6767       S.Diag(FD->getLocation(), diag::note_illegal_field_declared_here)
6768         << QT->isPointerType()
6769         << QT;
6770       D.setInvalidType();
6771       return;
6772     }
6773   } while (!VisitStack.empty());
6774 }
6775 
6776 NamedDecl*
ActOnFunctionDeclarator(Scope * S,Declarator & D,DeclContext * DC,TypeSourceInfo * TInfo,LookupResult & Previous,MultiTemplateParamsArg TemplateParamLists,bool & AddToScope)6777 Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
6778                               TypeSourceInfo *TInfo, LookupResult &Previous,
6779                               MultiTemplateParamsArg TemplateParamLists,
6780                               bool &AddToScope) {
6781   QualType R = TInfo->getType();
6782 
6783   assert(R.getTypePtr()->isFunctionType());
6784 
6785   // TODO: consider using NameInfo for diagnostic.
6786   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
6787   DeclarationName Name = NameInfo.getName();
6788   FunctionDecl::StorageClass SC = getFunctionStorageClass(*this, D);
6789 
6790   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
6791     Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
6792          diag::err_invalid_thread)
6793       << DeclSpec::getSpecifierName(TSCS);
6794 
6795   if (D.isFirstDeclarationOfMember())
6796     adjustMemberFunctionCC(R, D.isStaticMember());
6797 
6798   bool isFriend = false;
6799   FunctionTemplateDecl *FunctionTemplate = nullptr;
6800   bool isExplicitSpecialization = false;
6801   bool isFunctionTemplateSpecialization = false;
6802 
6803   bool isDependentClassScopeExplicitSpecialization = false;
6804   bool HasExplicitTemplateArgs = false;
6805   TemplateArgumentListInfo TemplateArgs;
6806 
6807   bool isVirtualOkay = false;
6808 
6809   DeclContext *OriginalDC = DC;
6810   bool IsLocalExternDecl = adjustContextForLocalExternDecl(DC);
6811 
6812   FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
6813                                               isVirtualOkay);
6814   if (!NewFD) return nullptr;
6815 
6816   if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
6817     NewFD->setTopLevelDeclInObjCContainer();
6818 
6819   // Set the lexical context. If this is a function-scope declaration, or has a
6820   // C++ scope specifier, or is the object of a friend declaration, the lexical
6821   // context will be different from the semantic context.
6822   NewFD->setLexicalDeclContext(CurContext);
6823 
6824   if (IsLocalExternDecl)
6825     NewFD->setLocalExternDecl();
6826 
6827   if (getLangOpts().CPlusPlus) {
6828     bool isInline = D.getDeclSpec().isInlineSpecified();
6829     bool isVirtual = D.getDeclSpec().isVirtualSpecified();
6830     bool isExplicit = D.getDeclSpec().isExplicitSpecified();
6831     bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
6832     isFriend = D.getDeclSpec().isFriendSpecified();
6833     if (isFriend && !isInline && D.isFunctionDefinition()) {
6834       // C++ [class.friend]p5
6835       //   A function can be defined in a friend declaration of a
6836       //   class . . . . Such a function is implicitly inline.
6837       NewFD->setImplicitlyInline();
6838     }
6839 
6840     // If this is a method defined in an __interface, and is not a constructor
6841     // or an overloaded operator, then set the pure flag (isVirtual will already
6842     // return true).
6843     if (const CXXRecordDecl *Parent =
6844           dyn_cast<CXXRecordDecl>(NewFD->getDeclContext())) {
6845       if (Parent->isInterface() && cast<CXXMethodDecl>(NewFD)->isUserProvided())
6846         NewFD->setPure(true);
6847     }
6848 
6849     SetNestedNameSpecifier(NewFD, D);
6850     isExplicitSpecialization = false;
6851     isFunctionTemplateSpecialization = false;
6852     if (D.isInvalidType())
6853       NewFD->setInvalidDecl();
6854 
6855     // Match up the template parameter lists with the scope specifier, then
6856     // determine whether we have a template or a template specialization.
6857     bool Invalid = false;
6858     if (TemplateParameterList *TemplateParams =
6859             MatchTemplateParametersToScopeSpecifier(
6860                 D.getDeclSpec().getLocStart(), D.getIdentifierLoc(),
6861                 D.getCXXScopeSpec(),
6862                 D.getName().getKind() == UnqualifiedId::IK_TemplateId
6863                     ? D.getName().TemplateId
6864                     : nullptr,
6865                 TemplateParamLists, isFriend, isExplicitSpecialization,
6866                 Invalid)) {
6867       if (TemplateParams->size() > 0) {
6868         // This is a function template
6869 
6870         // Check that we can declare a template here.
6871         if (CheckTemplateDeclScope(S, TemplateParams))
6872           return nullptr;
6873 
6874         // A destructor cannot be a template.
6875         if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
6876           Diag(NewFD->getLocation(), diag::err_destructor_template);
6877           return nullptr;
6878         }
6879 
6880         // If we're adding a template to a dependent context, we may need to
6881         // rebuilding some of the types used within the template parameter list,
6882         // now that we know what the current instantiation is.
6883         if (DC->isDependentContext()) {
6884           ContextRAII SavedContext(*this, DC);
6885           if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
6886             Invalid = true;
6887         }
6888 
6889 
6890         FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
6891                                                         NewFD->getLocation(),
6892                                                         Name, TemplateParams,
6893                                                         NewFD);
6894         FunctionTemplate->setLexicalDeclContext(CurContext);
6895         NewFD->setDescribedFunctionTemplate(FunctionTemplate);
6896 
6897         // For source fidelity, store the other template param lists.
6898         if (TemplateParamLists.size() > 1) {
6899           NewFD->setTemplateParameterListsInfo(Context,
6900                                                TemplateParamLists.size() - 1,
6901                                                TemplateParamLists.data());
6902         }
6903       } else {
6904         // This is a function template specialization.
6905         isFunctionTemplateSpecialization = true;
6906         // For source fidelity, store all the template param lists.
6907         if (TemplateParamLists.size() > 0)
6908           NewFD->setTemplateParameterListsInfo(Context,
6909                                                TemplateParamLists.size(),
6910                                                TemplateParamLists.data());
6911 
6912         // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
6913         if (isFriend) {
6914           // We want to remove the "template<>", found here.
6915           SourceRange RemoveRange = TemplateParams->getSourceRange();
6916 
6917           // If we remove the template<> and the name is not a
6918           // template-id, we're actually silently creating a problem:
6919           // the friend declaration will refer to an untemplated decl,
6920           // and clearly the user wants a template specialization.  So
6921           // we need to insert '<>' after the name.
6922           SourceLocation InsertLoc;
6923           if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
6924             InsertLoc = D.getName().getSourceRange().getEnd();
6925             InsertLoc = getLocForEndOfToken(InsertLoc);
6926           }
6927 
6928           Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
6929             << Name << RemoveRange
6930             << FixItHint::CreateRemoval(RemoveRange)
6931             << FixItHint::CreateInsertion(InsertLoc, "<>");
6932         }
6933       }
6934     }
6935     else {
6936       // All template param lists were matched against the scope specifier:
6937       // this is NOT (an explicit specialization of) a template.
6938       if (TemplateParamLists.size() > 0)
6939         // For source fidelity, store all the template param lists.
6940         NewFD->setTemplateParameterListsInfo(Context,
6941                                              TemplateParamLists.size(),
6942                                              TemplateParamLists.data());
6943     }
6944 
6945     if (Invalid) {
6946       NewFD->setInvalidDecl();
6947       if (FunctionTemplate)
6948         FunctionTemplate->setInvalidDecl();
6949     }
6950 
6951     // C++ [dcl.fct.spec]p5:
6952     //   The virtual specifier shall only be used in declarations of
6953     //   nonstatic class member functions that appear within a
6954     //   member-specification of a class declaration; see 10.3.
6955     //
6956     if (isVirtual && !NewFD->isInvalidDecl()) {
6957       if (!isVirtualOkay) {
6958         Diag(D.getDeclSpec().getVirtualSpecLoc(),
6959              diag::err_virtual_non_function);
6960       } else if (!CurContext->isRecord()) {
6961         // 'virtual' was specified outside of the class.
6962         Diag(D.getDeclSpec().getVirtualSpecLoc(),
6963              diag::err_virtual_out_of_class)
6964           << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
6965       } else if (NewFD->getDescribedFunctionTemplate()) {
6966         // C++ [temp.mem]p3:
6967         //  A member function template shall not be virtual.
6968         Diag(D.getDeclSpec().getVirtualSpecLoc(),
6969              diag::err_virtual_member_function_template)
6970           << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
6971       } else {
6972         // Okay: Add virtual to the method.
6973         NewFD->setVirtualAsWritten(true);
6974       }
6975 
6976       if (getLangOpts().CPlusPlus1y &&
6977           NewFD->getReturnType()->isUndeducedType())
6978         Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_auto_fn_virtual);
6979     }
6980 
6981     if (getLangOpts().CPlusPlus1y &&
6982         (NewFD->isDependentContext() ||
6983          (isFriend && CurContext->isDependentContext())) &&
6984         NewFD->getReturnType()->isUndeducedType()) {
6985       // If the function template is referenced directly (for instance, as a
6986       // member of the current instantiation), pretend it has a dependent type.
6987       // This is not really justified by the standard, but is the only sane
6988       // thing to do.
6989       // FIXME: For a friend function, we have not marked the function as being
6990       // a friend yet, so 'isDependentContext' on the FD doesn't work.
6991       const FunctionProtoType *FPT =
6992           NewFD->getType()->castAs<FunctionProtoType>();
6993       QualType Result =
6994           SubstAutoType(FPT->getReturnType(), Context.DependentTy);
6995       NewFD->setType(Context.getFunctionType(Result, FPT->getParamTypes(),
6996                                              FPT->getExtProtoInfo()));
6997     }
6998 
6999     // C++ [dcl.fct.spec]p3:
7000     //  The inline specifier shall not appear on a block scope function
7001     //  declaration.
7002     if (isInline && !NewFD->isInvalidDecl()) {
7003       if (CurContext->isFunctionOrMethod()) {
7004         // 'inline' is not allowed on block scope function declaration.
7005         Diag(D.getDeclSpec().getInlineSpecLoc(),
7006              diag::err_inline_declaration_block_scope) << Name
7007           << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
7008       }
7009     }
7010 
7011     // C++ [dcl.fct.spec]p6:
7012     //  The explicit specifier shall be used only in the declaration of a
7013     //  constructor or conversion function within its class definition;
7014     //  see 12.3.1 and 12.3.2.
7015     if (isExplicit && !NewFD->isInvalidDecl()) {
7016       if (!CurContext->isRecord()) {
7017         // 'explicit' was specified outside of the class.
7018         Diag(D.getDeclSpec().getExplicitSpecLoc(),
7019              diag::err_explicit_out_of_class)
7020           << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
7021       } else if (!isa<CXXConstructorDecl>(NewFD) &&
7022                  !isa<CXXConversionDecl>(NewFD)) {
7023         // 'explicit' was specified on a function that wasn't a constructor
7024         // or conversion function.
7025         Diag(D.getDeclSpec().getExplicitSpecLoc(),
7026              diag::err_explicit_non_ctor_or_conv_function)
7027           << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
7028       }
7029     }
7030 
7031     if (isConstexpr) {
7032       // C++11 [dcl.constexpr]p2: constexpr functions and constexpr constructors
7033       // are implicitly inline.
7034       NewFD->setImplicitlyInline();
7035 
7036       // C++11 [dcl.constexpr]p3: functions declared constexpr are required to
7037       // be either constructors or to return a literal type. Therefore,
7038       // destructors cannot be declared constexpr.
7039       if (isa<CXXDestructorDecl>(NewFD))
7040         Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
7041     }
7042 
7043     // If __module_private__ was specified, mark the function accordingly.
7044     if (D.getDeclSpec().isModulePrivateSpecified()) {
7045       if (isFunctionTemplateSpecialization) {
7046         SourceLocation ModulePrivateLoc
7047           = D.getDeclSpec().getModulePrivateSpecLoc();
7048         Diag(ModulePrivateLoc, diag::err_module_private_specialization)
7049           << 0
7050           << FixItHint::CreateRemoval(ModulePrivateLoc);
7051       } else {
7052         NewFD->setModulePrivate();
7053         if (FunctionTemplate)
7054           FunctionTemplate->setModulePrivate();
7055       }
7056     }
7057 
7058     if (isFriend) {
7059       if (FunctionTemplate) {
7060         FunctionTemplate->setObjectOfFriendDecl();
7061         FunctionTemplate->setAccess(AS_public);
7062       }
7063       NewFD->setObjectOfFriendDecl();
7064       NewFD->setAccess(AS_public);
7065     }
7066 
7067     // If a function is defined as defaulted or deleted, mark it as such now.
7068     // FIXME: Does this ever happen? ActOnStartOfFunctionDef forces the function
7069     // definition kind to FDK_Definition.
7070     switch (D.getFunctionDefinitionKind()) {
7071       case FDK_Declaration:
7072       case FDK_Definition:
7073         break;
7074 
7075       case FDK_Defaulted:
7076         NewFD->setDefaulted();
7077         break;
7078 
7079       case FDK_Deleted:
7080         NewFD->setDeletedAsWritten();
7081         break;
7082     }
7083 
7084     if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
7085         D.isFunctionDefinition()) {
7086       // C++ [class.mfct]p2:
7087       //   A member function may be defined (8.4) in its class definition, in
7088       //   which case it is an inline member function (7.1.2)
7089       NewFD->setImplicitlyInline();
7090     }
7091 
7092     if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
7093         !CurContext->isRecord()) {
7094       // C++ [class.static]p1:
7095       //   A data or function member of a class may be declared static
7096       //   in a class definition, in which case it is a static member of
7097       //   the class.
7098 
7099       // Complain about the 'static' specifier if it's on an out-of-line
7100       // member function definition.
7101       Diag(D.getDeclSpec().getStorageClassSpecLoc(),
7102            diag::err_static_out_of_line)
7103         << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
7104     }
7105 
7106     // C++11 [except.spec]p15:
7107     //   A deallocation function with no exception-specification is treated
7108     //   as if it were specified with noexcept(true).
7109     const FunctionProtoType *FPT = R->getAs<FunctionProtoType>();
7110     if ((Name.getCXXOverloadedOperator() == OO_Delete ||
7111          Name.getCXXOverloadedOperator() == OO_Array_Delete) &&
7112         getLangOpts().CPlusPlus11 && FPT && !FPT->hasExceptionSpec()) {
7113       FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
7114       EPI.ExceptionSpecType = EST_BasicNoexcept;
7115       NewFD->setType(Context.getFunctionType(FPT->getReturnType(),
7116                                              FPT->getParamTypes(), EPI));
7117     }
7118   }
7119 
7120   // Filter out previous declarations that don't match the scope.
7121   FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewFD),
7122                        D.getCXXScopeSpec().isNotEmpty() ||
7123                        isExplicitSpecialization ||
7124                        isFunctionTemplateSpecialization);
7125 
7126   // Handle GNU asm-label extension (encoded as an attribute).
7127   if (Expr *E = (Expr*) D.getAsmLabel()) {
7128     // The parser guarantees this is a string.
7129     StringLiteral *SE = cast<StringLiteral>(E);
7130     NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
7131                                                 SE->getString(), 0));
7132   } else if (!ExtnameUndeclaredIdentifiers.empty()) {
7133     llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
7134       ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
7135     if (I != ExtnameUndeclaredIdentifiers.end()) {
7136       NewFD->addAttr(I->second);
7137       ExtnameUndeclaredIdentifiers.erase(I);
7138     }
7139   }
7140 
7141   // Copy the parameter declarations from the declarator D to the function
7142   // declaration NewFD, if they are available.  First scavenge them into Params.
7143   SmallVector<ParmVarDecl*, 16> Params;
7144   if (D.isFunctionDeclarator()) {
7145     DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
7146 
7147     // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
7148     // function that takes no arguments, not a function that takes a
7149     // single void argument.
7150     // We let through "const void" here because Sema::GetTypeForDeclarator
7151     // already checks for that case.
7152     if (FTIHasNonVoidParameters(FTI) && FTI.Params[0].Param) {
7153       for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) {
7154         ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
7155         assert(Param->getDeclContext() != NewFD && "Was set before ?");
7156         Param->setDeclContext(NewFD);
7157         Params.push_back(Param);
7158 
7159         if (Param->isInvalidDecl())
7160           NewFD->setInvalidDecl();
7161       }
7162     }
7163 
7164   } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
7165     // When we're declaring a function with a typedef, typeof, etc as in the
7166     // following example, we'll need to synthesize (unnamed)
7167     // parameters for use in the declaration.
7168     //
7169     // @code
7170     // typedef void fn(int);
7171     // fn f;
7172     // @endcode
7173 
7174     // Synthesize a parameter for each argument type.
7175     for (const auto &AI : FT->param_types()) {
7176       ParmVarDecl *Param =
7177           BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), AI);
7178       Param->setScopeInfo(0, Params.size());
7179       Params.push_back(Param);
7180     }
7181   } else {
7182     assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
7183            "Should not need args for typedef of non-prototype fn");
7184   }
7185 
7186   // Finally, we know we have the right number of parameters, install them.
7187   NewFD->setParams(Params);
7188 
7189   // Find all anonymous symbols defined during the declaration of this function
7190   // and add to NewFD. This lets us track decls such 'enum Y' in:
7191   //
7192   //   void f(enum Y {AA} x) {}
7193   //
7194   // which would otherwise incorrectly end up in the translation unit scope.
7195   NewFD->setDeclsInPrototypeScope(DeclsInPrototypeScope);
7196   DeclsInPrototypeScope.clear();
7197 
7198   if (D.getDeclSpec().isNoreturnSpecified())
7199     NewFD->addAttr(
7200         ::new(Context) C11NoReturnAttr(D.getDeclSpec().getNoreturnSpecLoc(),
7201                                        Context, 0));
7202 
7203   // Functions returning a variably modified type violate C99 6.7.5.2p2
7204   // because all functions have linkage.
7205   if (!NewFD->isInvalidDecl() &&
7206       NewFD->getReturnType()->isVariablyModifiedType()) {
7207     Diag(NewFD->getLocation(), diag::err_vm_func_decl);
7208     NewFD->setInvalidDecl();
7209   }
7210 
7211   if (D.isFunctionDefinition() && CodeSegStack.CurrentValue &&
7212       !NewFD->hasAttr<SectionAttr>()) {
7213     NewFD->addAttr(
7214         SectionAttr::CreateImplicit(Context, SectionAttr::Declspec_allocate,
7215                                     CodeSegStack.CurrentValue->getString(),
7216                                     CodeSegStack.CurrentPragmaLocation));
7217     if (UnifySection(CodeSegStack.CurrentValue->getString(),
7218                      PSF_Implicit | PSF_Execute | PSF_Read, NewFD))
7219       NewFD->dropAttr<SectionAttr>();
7220   }
7221 
7222   // Handle attributes.
7223   ProcessDeclAttributes(S, NewFD, D);
7224 
7225   QualType RetType = NewFD->getReturnType();
7226   const CXXRecordDecl *Ret = RetType->isRecordType() ?
7227       RetType->getAsCXXRecordDecl() : RetType->getPointeeCXXRecordDecl();
7228   if (!NewFD->isInvalidDecl() && !NewFD->hasAttr<WarnUnusedResultAttr>() &&
7229       Ret && Ret->hasAttr<WarnUnusedResultAttr>()) {
7230     const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
7231     // Attach WarnUnusedResult to functions returning types with that attribute.
7232     // Don't apply the attribute to that type's own non-static member functions
7233     // (to avoid warning on things like assignment operators)
7234     if (!MD || MD->getParent() != Ret)
7235       NewFD->addAttr(WarnUnusedResultAttr::CreateImplicit(Context));
7236   }
7237 
7238   if (getLangOpts().OpenCL) {
7239     // OpenCL v1.1 s6.5: Using an address space qualifier in a function return
7240     // type declaration will generate a compilation error.
7241     unsigned AddressSpace = RetType.getAddressSpace();
7242     if (AddressSpace == LangAS::opencl_local ||
7243         AddressSpace == LangAS::opencl_global ||
7244         AddressSpace == LangAS::opencl_constant) {
7245       Diag(NewFD->getLocation(),
7246            diag::err_opencl_return_value_with_address_space);
7247       NewFD->setInvalidDecl();
7248     }
7249   }
7250 
7251   if (!getLangOpts().CPlusPlus) {
7252     // Perform semantic checking on the function declaration.
7253     bool isExplicitSpecialization=false;
7254     if (!NewFD->isInvalidDecl() && NewFD->isMain())
7255       CheckMain(NewFD, D.getDeclSpec());
7256 
7257     if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
7258       CheckMSVCRTEntryPoint(NewFD);
7259 
7260     if (!NewFD->isInvalidDecl())
7261       D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
7262                                                   isExplicitSpecialization));
7263     else if (!Previous.empty())
7264       // Make graceful recovery from an invalid redeclaration.
7265       D.setRedeclaration(true);
7266     assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
7267             Previous.getResultKind() != LookupResult::FoundOverloaded) &&
7268            "previous declaration set still overloaded");
7269   } else {
7270     // C++11 [replacement.functions]p3:
7271     //  The program's definitions shall not be specified as inline.
7272     //
7273     // N.B. We diagnose declarations instead of definitions per LWG issue 2340.
7274     //
7275     // Suppress the diagnostic if the function is __attribute__((used)), since
7276     // that forces an external definition to be emitted.
7277     if (D.getDeclSpec().isInlineSpecified() &&
7278         NewFD->isReplaceableGlobalAllocationFunction() &&
7279         !NewFD->hasAttr<UsedAttr>())
7280       Diag(D.getDeclSpec().getInlineSpecLoc(),
7281            diag::ext_operator_new_delete_declared_inline)
7282         << NewFD->getDeclName();
7283 
7284     // If the declarator is a template-id, translate the parser's template
7285     // argument list into our AST format.
7286     if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
7287       TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
7288       TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
7289       TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
7290       ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
7291                                          TemplateId->NumArgs);
7292       translateTemplateArguments(TemplateArgsPtr,
7293                                  TemplateArgs);
7294 
7295       HasExplicitTemplateArgs = true;
7296 
7297       if (NewFD->isInvalidDecl()) {
7298         HasExplicitTemplateArgs = false;
7299       } else if (FunctionTemplate) {
7300         // Function template with explicit template arguments.
7301         Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
7302           << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
7303 
7304         HasExplicitTemplateArgs = false;
7305       } else {
7306         assert((isFunctionTemplateSpecialization ||
7307                 D.getDeclSpec().isFriendSpecified()) &&
7308                "should have a 'template<>' for this decl");
7309         // "friend void foo<>(int);" is an implicit specialization decl.
7310         isFunctionTemplateSpecialization = true;
7311       }
7312     } else if (isFriend && isFunctionTemplateSpecialization) {
7313       // This combination is only possible in a recovery case;  the user
7314       // wrote something like:
7315       //   template <> friend void foo(int);
7316       // which we're recovering from as if the user had written:
7317       //   friend void foo<>(int);
7318       // Go ahead and fake up a template id.
7319       HasExplicitTemplateArgs = true;
7320       TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
7321       TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
7322     }
7323 
7324     // If it's a friend (and only if it's a friend), it's possible
7325     // that either the specialized function type or the specialized
7326     // template is dependent, and therefore matching will fail.  In
7327     // this case, don't check the specialization yet.
7328     bool InstantiationDependent = false;
7329     if (isFunctionTemplateSpecialization && isFriend &&
7330         (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
7331          TemplateSpecializationType::anyDependentTemplateArguments(
7332             TemplateArgs.getArgumentArray(), TemplateArgs.size(),
7333             InstantiationDependent))) {
7334       assert(HasExplicitTemplateArgs &&
7335              "friend function specialization without template args");
7336       if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
7337                                                        Previous))
7338         NewFD->setInvalidDecl();
7339     } else if (isFunctionTemplateSpecialization) {
7340       if (CurContext->isDependentContext() && CurContext->isRecord()
7341           && !isFriend) {
7342         isDependentClassScopeExplicitSpecialization = true;
7343         Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
7344           diag::ext_function_specialization_in_class :
7345           diag::err_function_specialization_in_class)
7346           << NewFD->getDeclName();
7347       } else if (CheckFunctionTemplateSpecialization(NewFD,
7348                                   (HasExplicitTemplateArgs ? &TemplateArgs
7349                                                            : nullptr),
7350                                                      Previous))
7351         NewFD->setInvalidDecl();
7352 
7353       // C++ [dcl.stc]p1:
7354       //   A storage-class-specifier shall not be specified in an explicit
7355       //   specialization (14.7.3)
7356       FunctionTemplateSpecializationInfo *Info =
7357           NewFD->getTemplateSpecializationInfo();
7358       if (Info && SC != SC_None) {
7359         if (SC != Info->getTemplate()->getTemplatedDecl()->getStorageClass())
7360           Diag(NewFD->getLocation(),
7361                diag::err_explicit_specialization_inconsistent_storage_class)
7362             << SC
7363             << FixItHint::CreateRemoval(
7364                                       D.getDeclSpec().getStorageClassSpecLoc());
7365 
7366         else
7367           Diag(NewFD->getLocation(),
7368                diag::ext_explicit_specialization_storage_class)
7369             << FixItHint::CreateRemoval(
7370                                       D.getDeclSpec().getStorageClassSpecLoc());
7371       }
7372 
7373     } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
7374       if (CheckMemberSpecialization(NewFD, Previous))
7375           NewFD->setInvalidDecl();
7376     }
7377 
7378     // Perform semantic checking on the function declaration.
7379     if (!isDependentClassScopeExplicitSpecialization) {
7380       if (!NewFD->isInvalidDecl() && NewFD->isMain())
7381         CheckMain(NewFD, D.getDeclSpec());
7382 
7383       if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
7384         CheckMSVCRTEntryPoint(NewFD);
7385 
7386       if (!NewFD->isInvalidDecl())
7387         D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
7388                                                     isExplicitSpecialization));
7389     }
7390 
7391     assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
7392             Previous.getResultKind() != LookupResult::FoundOverloaded) &&
7393            "previous declaration set still overloaded");
7394 
7395     NamedDecl *PrincipalDecl = (FunctionTemplate
7396                                 ? cast<NamedDecl>(FunctionTemplate)
7397                                 : NewFD);
7398 
7399     if (isFriend && D.isRedeclaration()) {
7400       AccessSpecifier Access = AS_public;
7401       if (!NewFD->isInvalidDecl())
7402         Access = NewFD->getPreviousDecl()->getAccess();
7403 
7404       NewFD->setAccess(Access);
7405       if (FunctionTemplate) FunctionTemplate->setAccess(Access);
7406     }
7407 
7408     if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
7409         PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
7410       PrincipalDecl->setNonMemberOperator();
7411 
7412     // If we have a function template, check the template parameter
7413     // list. This will check and merge default template arguments.
7414     if (FunctionTemplate) {
7415       FunctionTemplateDecl *PrevTemplate =
7416                                      FunctionTemplate->getPreviousDecl();
7417       CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
7418                        PrevTemplate ? PrevTemplate->getTemplateParameters()
7419                                     : nullptr,
7420                             D.getDeclSpec().isFriendSpecified()
7421                               ? (D.isFunctionDefinition()
7422                                    ? TPC_FriendFunctionTemplateDefinition
7423                                    : TPC_FriendFunctionTemplate)
7424                               : (D.getCXXScopeSpec().isSet() &&
7425                                  DC && DC->isRecord() &&
7426                                  DC->isDependentContext())
7427                                   ? TPC_ClassTemplateMember
7428                                   : TPC_FunctionTemplate);
7429     }
7430 
7431     if (NewFD->isInvalidDecl()) {
7432       // Ignore all the rest of this.
7433     } else if (!D.isRedeclaration()) {
7434       struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
7435                                        AddToScope };
7436       // Fake up an access specifier if it's supposed to be a class member.
7437       if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
7438         NewFD->setAccess(AS_public);
7439 
7440       // Qualified decls generally require a previous declaration.
7441       if (D.getCXXScopeSpec().isSet()) {
7442         // ...with the major exception of templated-scope or
7443         // dependent-scope friend declarations.
7444 
7445         // TODO: we currently also suppress this check in dependent
7446         // contexts because (1) the parameter depth will be off when
7447         // matching friend templates and (2) we might actually be
7448         // selecting a friend based on a dependent factor.  But there
7449         // are situations where these conditions don't apply and we
7450         // can actually do this check immediately.
7451         if (isFriend &&
7452             (TemplateParamLists.size() ||
7453              D.getCXXScopeSpec().getScopeRep()->isDependent() ||
7454              CurContext->isDependentContext())) {
7455           // ignore these
7456         } else {
7457           // The user tried to provide an out-of-line definition for a
7458           // function that is a member of a class or namespace, but there
7459           // was no such member function declared (C++ [class.mfct]p2,
7460           // C++ [namespace.memdef]p2). For example:
7461           //
7462           // class X {
7463           //   void f() const;
7464           // };
7465           //
7466           // void X::f() { } // ill-formed
7467           //
7468           // Complain about this problem, and attempt to suggest close
7469           // matches (e.g., those that differ only in cv-qualifiers and
7470           // whether the parameter types are references).
7471 
7472           if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
7473                   *this, Previous, NewFD, ExtraArgs, false, nullptr)) {
7474             AddToScope = ExtraArgs.AddToScope;
7475             return Result;
7476           }
7477         }
7478 
7479         // Unqualified local friend declarations are required to resolve
7480         // to something.
7481       } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
7482         if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
7483                 *this, Previous, NewFD, ExtraArgs, true, S)) {
7484           AddToScope = ExtraArgs.AddToScope;
7485           return Result;
7486         }
7487       }
7488 
7489     } else if (!D.isFunctionDefinition() &&
7490                isa<CXXMethodDecl>(NewFD) && NewFD->isOutOfLine() &&
7491                !isFriend && !isFunctionTemplateSpecialization &&
7492                !isExplicitSpecialization) {
7493       // An out-of-line member function declaration must also be a
7494       // definition (C++ [class.mfct]p2).
7495       // Note that this is not the case for explicit specializations of
7496       // function templates or member functions of class templates, per
7497       // C++ [temp.expl.spec]p2. We also allow these declarations as an
7498       // extension for compatibility with old SWIG code which likes to
7499       // generate them.
7500       Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
7501         << D.getCXXScopeSpec().getRange();
7502     }
7503   }
7504 
7505   ProcessPragmaWeak(S, NewFD);
7506   checkAttributesAfterMerging(*this, *NewFD);
7507 
7508   AddKnownFunctionAttributes(NewFD);
7509 
7510   if (NewFD->hasAttr<OverloadableAttr>() &&
7511       !NewFD->getType()->getAs<FunctionProtoType>()) {
7512     Diag(NewFD->getLocation(),
7513          diag::err_attribute_overloadable_no_prototype)
7514       << NewFD;
7515 
7516     // Turn this into a variadic function with no parameters.
7517     const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
7518     FunctionProtoType::ExtProtoInfo EPI(
7519         Context.getDefaultCallingConvention(true, false));
7520     EPI.Variadic = true;
7521     EPI.ExtInfo = FT->getExtInfo();
7522 
7523     QualType R = Context.getFunctionType(FT->getReturnType(), None, EPI);
7524     NewFD->setType(R);
7525   }
7526 
7527   // If there's a #pragma GCC visibility in scope, and this isn't a class
7528   // member, set the visibility of this function.
7529   if (!DC->isRecord() && NewFD->isExternallyVisible())
7530     AddPushedVisibilityAttribute(NewFD);
7531 
7532   // If there's a #pragma clang arc_cf_code_audited in scope, consider
7533   // marking the function.
7534   AddCFAuditedAttribute(NewFD);
7535 
7536   // If this is a function definition, check if we have to apply optnone due to
7537   // a pragma.
7538   if(D.isFunctionDefinition())
7539     AddRangeBasedOptnone(NewFD);
7540 
7541   // If this is the first declaration of an extern C variable, update
7542   // the map of such variables.
7543   if (NewFD->isFirstDecl() && !NewFD->isInvalidDecl() &&
7544       isIncompleteDeclExternC(*this, NewFD))
7545     RegisterLocallyScopedExternCDecl(NewFD, S);
7546 
7547   // Set this FunctionDecl's range up to the right paren.
7548   NewFD->setRangeEnd(D.getSourceRange().getEnd());
7549 
7550   if (D.isRedeclaration() && !Previous.empty()) {
7551     checkDLLAttributeRedeclaration(
7552         *this, dyn_cast<NamedDecl>(Previous.getRepresentativeDecl()), NewFD,
7553         isExplicitSpecialization || isFunctionTemplateSpecialization);
7554   }
7555 
7556   if (getLangOpts().CPlusPlus) {
7557     if (FunctionTemplate) {
7558       if (NewFD->isInvalidDecl())
7559         FunctionTemplate->setInvalidDecl();
7560       return FunctionTemplate;
7561     }
7562   }
7563 
7564   if (NewFD->hasAttr<OpenCLKernelAttr>()) {
7565     // OpenCL v1.2 s6.8 static is invalid for kernel functions.
7566     if ((getLangOpts().OpenCLVersion >= 120)
7567         && (SC == SC_Static)) {
7568       Diag(D.getIdentifierLoc(), diag::err_static_kernel);
7569       D.setInvalidType();
7570     }
7571 
7572     // OpenCL v1.2, s6.9 -- Kernels can only have return type void.
7573     if (!NewFD->getReturnType()->isVoidType()) {
7574       SourceRange RTRange = NewFD->getReturnTypeSourceRange();
7575       Diag(D.getIdentifierLoc(), diag::err_expected_kernel_void_return_type)
7576           << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "void")
7577                                 : FixItHint());
7578       D.setInvalidType();
7579     }
7580 
7581     llvm::SmallPtrSet<const Type *, 16> ValidTypes;
7582     for (auto Param : NewFD->params())
7583       checkIsValidOpenCLKernelParameter(*this, D, Param, ValidTypes);
7584   }
7585 
7586   MarkUnusedFileScopedDecl(NewFD);
7587 
7588   if (getLangOpts().CUDA)
7589     if (IdentifierInfo *II = NewFD->getIdentifier())
7590       if (!NewFD->isInvalidDecl() &&
7591           NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
7592         if (II->isStr("cudaConfigureCall")) {
7593           if (!R->getAs<FunctionType>()->getReturnType()->isScalarType())
7594             Diag(NewFD->getLocation(), diag::err_config_scalar_return);
7595 
7596           Context.setcudaConfigureCallDecl(NewFD);
7597         }
7598       }
7599 
7600   // Here we have an function template explicit specialization at class scope.
7601   // The actually specialization will be postponed to template instatiation
7602   // time via the ClassScopeFunctionSpecializationDecl node.
7603   if (isDependentClassScopeExplicitSpecialization) {
7604     ClassScopeFunctionSpecializationDecl *NewSpec =
7605                          ClassScopeFunctionSpecializationDecl::Create(
7606                                 Context, CurContext, SourceLocation(),
7607                                 cast<CXXMethodDecl>(NewFD),
7608                                 HasExplicitTemplateArgs, TemplateArgs);
7609     CurContext->addDecl(NewSpec);
7610     AddToScope = false;
7611   }
7612 
7613   return NewFD;
7614 }
7615 
7616 /// \brief Perform semantic checking of a new function declaration.
7617 ///
7618 /// Performs semantic analysis of the new function declaration
7619 /// NewFD. This routine performs all semantic checking that does not
7620 /// require the actual declarator involved in the declaration, and is
7621 /// used both for the declaration of functions as they are parsed
7622 /// (called via ActOnDeclarator) and for the declaration of functions
7623 /// that have been instantiated via C++ template instantiation (called
7624 /// via InstantiateDecl).
7625 ///
7626 /// \param IsExplicitSpecialization whether this new function declaration is
7627 /// an explicit specialization of the previous declaration.
7628 ///
7629 /// This sets NewFD->isInvalidDecl() to true if there was an error.
7630 ///
7631 /// \returns true if the function declaration is a redeclaration.
CheckFunctionDeclaration(Scope * S,FunctionDecl * NewFD,LookupResult & Previous,bool IsExplicitSpecialization)7632 bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
7633                                     LookupResult &Previous,
7634                                     bool IsExplicitSpecialization) {
7635   assert(!NewFD->getReturnType()->isVariablyModifiedType() &&
7636          "Variably modified return types are not handled here");
7637 
7638   // Determine whether the type of this function should be merged with
7639   // a previous visible declaration. This never happens for functions in C++,
7640   // and always happens in C if the previous declaration was visible.
7641   bool MergeTypeWithPrevious = !getLangOpts().CPlusPlus &&
7642                                !Previous.isShadowed();
7643 
7644   // Filter out any non-conflicting previous declarations.
7645   filterNonConflictingPreviousDecls(Context, NewFD, Previous);
7646 
7647   bool Redeclaration = false;
7648   NamedDecl *OldDecl = nullptr;
7649 
7650   // Merge or overload the declaration with an existing declaration of
7651   // the same name, if appropriate.
7652   if (!Previous.empty()) {
7653     // Determine whether NewFD is an overload of PrevDecl or
7654     // a declaration that requires merging. If it's an overload,
7655     // there's no more work to do here; we'll just add the new
7656     // function to the scope.
7657     if (!AllowOverloadingOfFunction(Previous, Context)) {
7658       NamedDecl *Candidate = Previous.getFoundDecl();
7659       if (shouldLinkPossiblyHiddenDecl(Candidate, NewFD)) {
7660         Redeclaration = true;
7661         OldDecl = Candidate;
7662       }
7663     } else {
7664       switch (CheckOverload(S, NewFD, Previous, OldDecl,
7665                             /*NewIsUsingDecl*/ false)) {
7666       case Ovl_Match:
7667         Redeclaration = true;
7668         break;
7669 
7670       case Ovl_NonFunction:
7671         Redeclaration = true;
7672         break;
7673 
7674       case Ovl_Overload:
7675         Redeclaration = false;
7676         break;
7677       }
7678 
7679       if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
7680         // If a function name is overloadable in C, then every function
7681         // with that name must be marked "overloadable".
7682         Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
7683           << Redeclaration << NewFD;
7684         NamedDecl *OverloadedDecl = nullptr;
7685         if (Redeclaration)
7686           OverloadedDecl = OldDecl;
7687         else if (!Previous.empty())
7688           OverloadedDecl = Previous.getRepresentativeDecl();
7689         if (OverloadedDecl)
7690           Diag(OverloadedDecl->getLocation(),
7691                diag::note_attribute_overloadable_prev_overload);
7692         NewFD->addAttr(OverloadableAttr::CreateImplicit(Context));
7693       }
7694     }
7695   }
7696 
7697   // Check for a previous extern "C" declaration with this name.
7698   if (!Redeclaration &&
7699       checkForConflictWithNonVisibleExternC(*this, NewFD, Previous)) {
7700     filterNonConflictingPreviousDecls(Context, NewFD, Previous);
7701     if (!Previous.empty()) {
7702       // This is an extern "C" declaration with the same name as a previous
7703       // declaration, and thus redeclares that entity...
7704       Redeclaration = true;
7705       OldDecl = Previous.getFoundDecl();
7706       MergeTypeWithPrevious = false;
7707 
7708       // ... except in the presence of __attribute__((overloadable)).
7709       if (OldDecl->hasAttr<OverloadableAttr>()) {
7710         if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
7711           Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
7712             << Redeclaration << NewFD;
7713           Diag(Previous.getFoundDecl()->getLocation(),
7714                diag::note_attribute_overloadable_prev_overload);
7715           NewFD->addAttr(OverloadableAttr::CreateImplicit(Context));
7716         }
7717         if (IsOverload(NewFD, cast<FunctionDecl>(OldDecl), false)) {
7718           Redeclaration = false;
7719           OldDecl = nullptr;
7720         }
7721       }
7722     }
7723   }
7724 
7725   // C++11 [dcl.constexpr]p8:
7726   //   A constexpr specifier for a non-static member function that is not
7727   //   a constructor declares that member function to be const.
7728   //
7729   // This needs to be delayed until we know whether this is an out-of-line
7730   // definition of a static member function.
7731   //
7732   // This rule is not present in C++1y, so we produce a backwards
7733   // compatibility warning whenever it happens in C++11.
7734   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
7735   if (!getLangOpts().CPlusPlus1y && MD && MD->isConstexpr() &&
7736       !MD->isStatic() && !isa<CXXConstructorDecl>(MD) &&
7737       (MD->getTypeQualifiers() & Qualifiers::Const) == 0) {
7738     CXXMethodDecl *OldMD = nullptr;
7739     if (OldDecl)
7740       OldMD = dyn_cast<CXXMethodDecl>(OldDecl->getAsFunction());
7741     if (!OldMD || !OldMD->isStatic()) {
7742       const FunctionProtoType *FPT =
7743         MD->getType()->castAs<FunctionProtoType>();
7744       FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
7745       EPI.TypeQuals |= Qualifiers::Const;
7746       MD->setType(Context.getFunctionType(FPT->getReturnType(),
7747                                           FPT->getParamTypes(), EPI));
7748 
7749       // Warn that we did this, if we're not performing template instantiation.
7750       // In that case, we'll have warned already when the template was defined.
7751       if (ActiveTemplateInstantiations.empty()) {
7752         SourceLocation AddConstLoc;
7753         if (FunctionTypeLoc FTL = MD->getTypeSourceInfo()->getTypeLoc()
7754                 .IgnoreParens().getAs<FunctionTypeLoc>())
7755           AddConstLoc = getLocForEndOfToken(FTL.getRParenLoc());
7756 
7757         Diag(MD->getLocation(), diag::warn_cxx1y_compat_constexpr_not_const)
7758           << FixItHint::CreateInsertion(AddConstLoc, " const");
7759       }
7760     }
7761   }
7762 
7763   if (Redeclaration) {
7764     // NewFD and OldDecl represent declarations that need to be
7765     // merged.
7766     if (MergeFunctionDecl(NewFD, OldDecl, S, MergeTypeWithPrevious)) {
7767       NewFD->setInvalidDecl();
7768       return Redeclaration;
7769     }
7770 
7771     Previous.clear();
7772     Previous.addDecl(OldDecl);
7773 
7774     if (FunctionTemplateDecl *OldTemplateDecl
7775                                   = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
7776       NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
7777       FunctionTemplateDecl *NewTemplateDecl
7778         = NewFD->getDescribedFunctionTemplate();
7779       assert(NewTemplateDecl && "Template/non-template mismatch");
7780       if (CXXMethodDecl *Method
7781             = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
7782         Method->setAccess(OldTemplateDecl->getAccess());
7783         NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
7784       }
7785 
7786       // If this is an explicit specialization of a member that is a function
7787       // template, mark it as a member specialization.
7788       if (IsExplicitSpecialization &&
7789           NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
7790         NewTemplateDecl->setMemberSpecialization();
7791         assert(OldTemplateDecl->isMemberSpecialization());
7792       }
7793 
7794     } else {
7795       // This needs to happen first so that 'inline' propagates.
7796       NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
7797 
7798       if (isa<CXXMethodDecl>(NewFD)) {
7799         // A valid redeclaration of a C++ method must be out-of-line,
7800         // but (unfortunately) it's not necessarily a definition
7801         // because of templates, which means that the previous
7802         // declaration is not necessarily from the class definition.
7803 
7804         // For just setting the access, that doesn't matter.
7805         CXXMethodDecl *oldMethod = cast<CXXMethodDecl>(OldDecl);
7806         NewFD->setAccess(oldMethod->getAccess());
7807 
7808         // Update the key-function state if necessary for this ABI.
7809         if (NewFD->isInlined() &&
7810             !Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
7811           // setNonKeyFunction needs to work with the original
7812           // declaration from the class definition, and isVirtual() is
7813           // just faster in that case, so map back to that now.
7814           oldMethod = cast<CXXMethodDecl>(oldMethod->getFirstDecl());
7815           if (oldMethod->isVirtual()) {
7816             Context.setNonKeyFunction(oldMethod);
7817           }
7818         }
7819       }
7820     }
7821   }
7822 
7823   // Semantic checking for this function declaration (in isolation).
7824   if (getLangOpts().CPlusPlus) {
7825     // C++-specific checks.
7826     if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
7827       CheckConstructor(Constructor);
7828     } else if (CXXDestructorDecl *Destructor =
7829                 dyn_cast<CXXDestructorDecl>(NewFD)) {
7830       CXXRecordDecl *Record = Destructor->getParent();
7831       QualType ClassType = Context.getTypeDeclType(Record);
7832 
7833       // FIXME: Shouldn't we be able to perform this check even when the class
7834       // type is dependent? Both gcc and edg can handle that.
7835       if (!ClassType->isDependentType()) {
7836         DeclarationName Name
7837           = Context.DeclarationNames.getCXXDestructorName(
7838                                         Context.getCanonicalType(ClassType));
7839         if (NewFD->getDeclName() != Name) {
7840           Diag(NewFD->getLocation(), diag::err_destructor_name);
7841           NewFD->setInvalidDecl();
7842           return Redeclaration;
7843         }
7844       }
7845     } else if (CXXConversionDecl *Conversion
7846                = dyn_cast<CXXConversionDecl>(NewFD)) {
7847       ActOnConversionDeclarator(Conversion);
7848     }
7849 
7850     // Find any virtual functions that this function overrides.
7851     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
7852       if (!Method->isFunctionTemplateSpecialization() &&
7853           !Method->getDescribedFunctionTemplate() &&
7854           Method->isCanonicalDecl()) {
7855         if (AddOverriddenMethods(Method->getParent(), Method)) {
7856           // If the function was marked as "static", we have a problem.
7857           if (NewFD->getStorageClass() == SC_Static) {
7858             ReportOverrides(*this, diag::err_static_overrides_virtual, Method);
7859           }
7860         }
7861       }
7862 
7863       if (Method->isStatic())
7864         checkThisInStaticMemberFunctionType(Method);
7865     }
7866 
7867     // Extra checking for C++ overloaded operators (C++ [over.oper]).
7868     if (NewFD->isOverloadedOperator() &&
7869         CheckOverloadedOperatorDeclaration(NewFD)) {
7870       NewFD->setInvalidDecl();
7871       return Redeclaration;
7872     }
7873 
7874     // Extra checking for C++0x literal operators (C++0x [over.literal]).
7875     if (NewFD->getLiteralIdentifier() &&
7876         CheckLiteralOperatorDeclaration(NewFD)) {
7877       NewFD->setInvalidDecl();
7878       return Redeclaration;
7879     }
7880 
7881     // In C++, check default arguments now that we have merged decls. Unless
7882     // the lexical context is the class, because in this case this is done
7883     // during delayed parsing anyway.
7884     if (!CurContext->isRecord())
7885       CheckCXXDefaultArguments(NewFD);
7886 
7887     // If this function declares a builtin function, check the type of this
7888     // declaration against the expected type for the builtin.
7889     if (unsigned BuiltinID = NewFD->getBuiltinID()) {
7890       ASTContext::GetBuiltinTypeError Error;
7891       LookupPredefedObjCSuperType(*this, S, NewFD->getIdentifier());
7892       QualType T = Context.GetBuiltinType(BuiltinID, Error);
7893       if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
7894         // The type of this function differs from the type of the builtin,
7895         // so forget about the builtin entirely.
7896         Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
7897       }
7898     }
7899 
7900     // If this function is declared as being extern "C", then check to see if
7901     // the function returns a UDT (class, struct, or union type) that is not C
7902     // compatible, and if it does, warn the user.
7903     // But, issue any diagnostic on the first declaration only.
7904     if (NewFD->isExternC() && Previous.empty()) {
7905       QualType R = NewFD->getReturnType();
7906       if (R->isIncompleteType() && !R->isVoidType())
7907         Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete)
7908             << NewFD << R;
7909       else if (!R.isPODType(Context) && !R->isVoidType() &&
7910                !R->isObjCObjectPointerType())
7911         Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R;
7912     }
7913   }
7914   return Redeclaration;
7915 }
7916 
CheckMain(FunctionDecl * FD,const DeclSpec & DS)7917 void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
7918   // C++11 [basic.start.main]p3:
7919   //   A program that [...] declares main to be inline, static or
7920   //   constexpr is ill-formed.
7921   // C11 6.7.4p4:  In a hosted environment, no function specifier(s) shall
7922   //   appear in a declaration of main.
7923   // static main is not an error under C99, but we should warn about it.
7924   // We accept _Noreturn main as an extension.
7925   if (FD->getStorageClass() == SC_Static)
7926     Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
7927          ? diag::err_static_main : diag::warn_static_main)
7928       << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
7929   if (FD->isInlineSpecified())
7930     Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
7931       << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
7932   if (DS.isNoreturnSpecified()) {
7933     SourceLocation NoreturnLoc = DS.getNoreturnSpecLoc();
7934     SourceRange NoreturnRange(NoreturnLoc, getLocForEndOfToken(NoreturnLoc));
7935     Diag(NoreturnLoc, diag::ext_noreturn_main);
7936     Diag(NoreturnLoc, diag::note_main_remove_noreturn)
7937       << FixItHint::CreateRemoval(NoreturnRange);
7938   }
7939   if (FD->isConstexpr()) {
7940     Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
7941       << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
7942     FD->setConstexpr(false);
7943   }
7944 
7945   if (getLangOpts().OpenCL) {
7946     Diag(FD->getLocation(), diag::err_opencl_no_main)
7947         << FD->hasAttr<OpenCLKernelAttr>();
7948     FD->setInvalidDecl();
7949     return;
7950   }
7951 
7952   QualType T = FD->getType();
7953   assert(T->isFunctionType() && "function decl is not of function type");
7954   const FunctionType* FT = T->castAs<FunctionType>();
7955 
7956   if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
7957     // In C with GNU extensions we allow main() to have non-integer return
7958     // type, but we should warn about the extension, and we disable the
7959     // implicit-return-zero rule.
7960 
7961     // GCC in C mode accepts qualified 'int'.
7962     if (Context.hasSameUnqualifiedType(FT->getReturnType(), Context.IntTy))
7963       FD->setHasImplicitReturnZero(true);
7964     else {
7965       Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
7966       SourceRange RTRange = FD->getReturnTypeSourceRange();
7967       if (RTRange.isValid())
7968         Diag(RTRange.getBegin(), diag::note_main_change_return_type)
7969             << FixItHint::CreateReplacement(RTRange, "int");
7970     }
7971   } else {
7972     // In C and C++, main magically returns 0 if you fall off the end;
7973     // set the flag which tells us that.
7974     // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
7975 
7976     // All the standards say that main() should return 'int'.
7977     if (Context.hasSameType(FT->getReturnType(), Context.IntTy))
7978       FD->setHasImplicitReturnZero(true);
7979     else {
7980       // Otherwise, this is just a flat-out error.
7981       SourceRange RTRange = FD->getReturnTypeSourceRange();
7982       Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint)
7983           << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "int")
7984                                 : FixItHint());
7985       FD->setInvalidDecl(true);
7986     }
7987   }
7988 
7989   // Treat protoless main() as nullary.
7990   if (isa<FunctionNoProtoType>(FT)) return;
7991 
7992   const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
7993   unsigned nparams = FTP->getNumParams();
7994   assert(FD->getNumParams() == nparams);
7995 
7996   bool HasExtraParameters = (nparams > 3);
7997 
7998   // Darwin passes an undocumented fourth argument of type char**.  If
7999   // other platforms start sprouting these, the logic below will start
8000   // getting shifty.
8001   if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
8002     HasExtraParameters = false;
8003 
8004   if (HasExtraParameters) {
8005     Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
8006     FD->setInvalidDecl(true);
8007     nparams = 3;
8008   }
8009 
8010   // FIXME: a lot of the following diagnostics would be improved
8011   // if we had some location information about types.
8012 
8013   QualType CharPP =
8014     Context.getPointerType(Context.getPointerType(Context.CharTy));
8015   QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
8016 
8017   for (unsigned i = 0; i < nparams; ++i) {
8018     QualType AT = FTP->getParamType(i);
8019 
8020     bool mismatch = true;
8021 
8022     if (Context.hasSameUnqualifiedType(AT, Expected[i]))
8023       mismatch = false;
8024     else if (Expected[i] == CharPP) {
8025       // As an extension, the following forms are okay:
8026       //   char const **
8027       //   char const * const *
8028       //   char * const *
8029 
8030       QualifierCollector qs;
8031       const PointerType* PT;
8032       if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
8033           (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
8034           Context.hasSameType(QualType(qs.strip(PT->getPointeeType()), 0),
8035                               Context.CharTy)) {
8036         qs.removeConst();
8037         mismatch = !qs.empty();
8038       }
8039     }
8040 
8041     if (mismatch) {
8042       Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
8043       // TODO: suggest replacing given type with expected type
8044       FD->setInvalidDecl(true);
8045     }
8046   }
8047 
8048   if (nparams == 1 && !FD->isInvalidDecl()) {
8049     Diag(FD->getLocation(), diag::warn_main_one_arg);
8050   }
8051 
8052   if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
8053     Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD;
8054     FD->setInvalidDecl();
8055   }
8056 }
8057 
CheckMSVCRTEntryPoint(FunctionDecl * FD)8058 void Sema::CheckMSVCRTEntryPoint(FunctionDecl *FD) {
8059   QualType T = FD->getType();
8060   assert(T->isFunctionType() && "function decl is not of function type");
8061   const FunctionType *FT = T->castAs<FunctionType>();
8062 
8063   // Set an implicit return of 'zero' if the function can return some integral,
8064   // enumeration, pointer or nullptr type.
8065   if (FT->getReturnType()->isIntegralOrEnumerationType() ||
8066       FT->getReturnType()->isAnyPointerType() ||
8067       FT->getReturnType()->isNullPtrType())
8068     // DllMain is exempt because a return value of zero means it failed.
8069     if (FD->getName() != "DllMain")
8070       FD->setHasImplicitReturnZero(true);
8071 
8072   if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
8073     Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD;
8074     FD->setInvalidDecl();
8075   }
8076 }
8077 
CheckForConstantInitializer(Expr * Init,QualType DclT)8078 bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
8079   // FIXME: Need strict checking.  In C89, we need to check for
8080   // any assignment, increment, decrement, function-calls, or
8081   // commas outside of a sizeof.  In C99, it's the same list,
8082   // except that the aforementioned are allowed in unevaluated
8083   // expressions.  Everything else falls under the
8084   // "may accept other forms of constant expressions" exception.
8085   // (We never end up here for C++, so the constant expression
8086   // rules there don't matter.)
8087   const Expr *Culprit;
8088   if (Init->isConstantInitializer(Context, false, &Culprit))
8089     return false;
8090   Diag(Culprit->getExprLoc(), diag::err_init_element_not_constant)
8091     << Culprit->getSourceRange();
8092   return true;
8093 }
8094 
8095 namespace {
8096   // Visits an initialization expression to see if OrigDecl is evaluated in
8097   // its own initialization and throws a warning if it does.
8098   class SelfReferenceChecker
8099       : public EvaluatedExprVisitor<SelfReferenceChecker> {
8100     Sema &S;
8101     Decl *OrigDecl;
8102     bool isRecordType;
8103     bool isPODType;
8104     bool isReferenceType;
8105 
8106   public:
8107     typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
8108 
SelfReferenceChecker(Sema & S,Decl * OrigDecl)8109     SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
8110                                                     S(S), OrigDecl(OrigDecl) {
8111       isPODType = false;
8112       isRecordType = false;
8113       isReferenceType = false;
8114       if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
8115         isPODType = VD->getType().isPODType(S.Context);
8116         isRecordType = VD->getType()->isRecordType();
8117         isReferenceType = VD->getType()->isReferenceType();
8118       }
8119     }
8120 
8121     // For most expressions, the cast is directly above the DeclRefExpr.
8122     // For conditional operators, the cast can be outside the conditional
8123     // operator if both expressions are DeclRefExpr's.
HandleValue(Expr * E)8124     void HandleValue(Expr *E) {
8125       if (isReferenceType)
8126         return;
8127       E = E->IgnoreParenImpCasts();
8128       if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) {
8129         HandleDeclRefExpr(DRE);
8130         return;
8131       }
8132 
8133       if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
8134         HandleValue(CO->getTrueExpr());
8135         HandleValue(CO->getFalseExpr());
8136         return;
8137       }
8138 
8139       if (isa<MemberExpr>(E)) {
8140         Expr *Base = E->IgnoreParenImpCasts();
8141         while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
8142           // Check for static member variables and don't warn on them.
8143           if (!isa<FieldDecl>(ME->getMemberDecl()))
8144             return;
8145           Base = ME->getBase()->IgnoreParenImpCasts();
8146         }
8147         if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base))
8148           HandleDeclRefExpr(DRE);
8149         return;
8150       }
8151     }
8152 
8153     // Reference types are handled here since all uses of references are
8154     // bad, not just r-value uses.
VisitDeclRefExpr(DeclRefExpr * E)8155     void VisitDeclRefExpr(DeclRefExpr *E) {
8156       if (isReferenceType)
8157         HandleDeclRefExpr(E);
8158     }
8159 
VisitImplicitCastExpr(ImplicitCastExpr * E)8160     void VisitImplicitCastExpr(ImplicitCastExpr *E) {
8161       if (E->getCastKind() == CK_LValueToRValue ||
8162           (isRecordType && E->getCastKind() == CK_NoOp))
8163         HandleValue(E->getSubExpr());
8164 
8165       Inherited::VisitImplicitCastExpr(E);
8166     }
8167 
VisitMemberExpr(MemberExpr * E)8168     void VisitMemberExpr(MemberExpr *E) {
8169       // Don't warn on arrays since they can be treated as pointers.
8170       if (E->getType()->canDecayToPointerType()) return;
8171 
8172       // Warn when a non-static method call is followed by non-static member
8173       // field accesses, which is followed by a DeclRefExpr.
8174       CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl());
8175       bool Warn = (MD && !MD->isStatic());
8176       Expr *Base = E->getBase()->IgnoreParenImpCasts();
8177       while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
8178         if (!isa<FieldDecl>(ME->getMemberDecl()))
8179           Warn = false;
8180         Base = ME->getBase()->IgnoreParenImpCasts();
8181       }
8182 
8183       if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
8184         if (Warn)
8185           HandleDeclRefExpr(DRE);
8186         return;
8187       }
8188 
8189       // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr.
8190       // Visit that expression.
8191       Visit(Base);
8192     }
8193 
VisitCXXOperatorCallExpr(CXXOperatorCallExpr * E)8194     void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
8195       if (E->getNumArgs() > 0)
8196         if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->getArg(0)))
8197           HandleDeclRefExpr(DRE);
8198 
8199       Inherited::VisitCXXOperatorCallExpr(E);
8200     }
8201 
VisitUnaryOperator(UnaryOperator * E)8202     void VisitUnaryOperator(UnaryOperator *E) {
8203       // For POD record types, addresses of its own members are well-defined.
8204       if (E->getOpcode() == UO_AddrOf && isRecordType &&
8205           isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) {
8206         if (!isPODType)
8207           HandleValue(E->getSubExpr());
8208         return;
8209       }
8210       Inherited::VisitUnaryOperator(E);
8211     }
8212 
VisitObjCMessageExpr(ObjCMessageExpr * E)8213     void VisitObjCMessageExpr(ObjCMessageExpr *E) { return; }
8214 
HandleDeclRefExpr(DeclRefExpr * DRE)8215     void HandleDeclRefExpr(DeclRefExpr *DRE) {
8216       Decl* ReferenceDecl = DRE->getDecl();
8217       if (OrigDecl != ReferenceDecl) return;
8218       unsigned diag;
8219       if (isReferenceType) {
8220         diag = diag::warn_uninit_self_reference_in_reference_init;
8221       } else if (cast<VarDecl>(OrigDecl)->isStaticLocal()) {
8222         diag = diag::warn_static_self_reference_in_init;
8223       } else {
8224         diag = diag::warn_uninit_self_reference_in_init;
8225       }
8226 
8227       S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
8228                             S.PDiag(diag)
8229                               << DRE->getNameInfo().getName()
8230                               << OrigDecl->getLocation()
8231                               << DRE->getSourceRange());
8232     }
8233   };
8234 
8235   /// CheckSelfReference - Warns if OrigDecl is used in expression E.
CheckSelfReference(Sema & S,Decl * OrigDecl,Expr * E,bool DirectInit)8236   static void CheckSelfReference(Sema &S, Decl* OrigDecl, Expr *E,
8237                                  bool DirectInit) {
8238     // Parameters arguments are occassionially constructed with itself,
8239     // for instance, in recursive functions.  Skip them.
8240     if (isa<ParmVarDecl>(OrigDecl))
8241       return;
8242 
8243     E = E->IgnoreParens();
8244 
8245     // Skip checking T a = a where T is not a record or reference type.
8246     // Doing so is a way to silence uninitialized warnings.
8247     if (!DirectInit && !cast<VarDecl>(OrigDecl)->getType()->isRecordType())
8248       if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
8249         if (ICE->getCastKind() == CK_LValueToRValue)
8250           if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()))
8251             if (DRE->getDecl() == OrigDecl)
8252               return;
8253 
8254     SelfReferenceChecker(S, OrigDecl).Visit(E);
8255   }
8256 }
8257 
8258 /// AddInitializerToDecl - Adds the initializer Init to the
8259 /// declaration dcl. If DirectInit is true, this is C++ direct
8260 /// initialization rather than copy initialization.
AddInitializerToDecl(Decl * RealDecl,Expr * Init,bool DirectInit,bool TypeMayContainAuto)8261 void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
8262                                 bool DirectInit, bool TypeMayContainAuto) {
8263   // If there is no declaration, there was an error parsing it.  Just ignore
8264   // the initializer.
8265   if (!RealDecl || RealDecl->isInvalidDecl())
8266     return;
8267 
8268   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
8269     // With declarators parsed the way they are, the parser cannot
8270     // distinguish between a normal initializer and a pure-specifier.
8271     // Thus this grotesque test.
8272     IntegerLiteral *IL;
8273     if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
8274         Context.getCanonicalType(IL->getType()) == Context.IntTy)
8275       CheckPureMethod(Method, Init->getSourceRange());
8276     else {
8277       Diag(Method->getLocation(), diag::err_member_function_initialization)
8278         << Method->getDeclName() << Init->getSourceRange();
8279       Method->setInvalidDecl();
8280     }
8281     return;
8282   }
8283 
8284   VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
8285   if (!VDecl) {
8286     assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
8287     Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
8288     RealDecl->setInvalidDecl();
8289     return;
8290   }
8291   ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
8292 
8293   // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
8294   if (TypeMayContainAuto && VDecl->getType()->isUndeducedType()) {
8295     Expr *DeduceInit = Init;
8296     // Initializer could be a C++ direct-initializer. Deduction only works if it
8297     // contains exactly one expression.
8298     if (CXXDirectInit) {
8299       if (CXXDirectInit->getNumExprs() == 0) {
8300         // It isn't possible to write this directly, but it is possible to
8301         // end up in this situation with "auto x(some_pack...);"
8302         Diag(CXXDirectInit->getLocStart(),
8303              VDecl->isInitCapture() ? diag::err_init_capture_no_expression
8304                                     : diag::err_auto_var_init_no_expression)
8305           << VDecl->getDeclName() << VDecl->getType()
8306           << VDecl->getSourceRange();
8307         RealDecl->setInvalidDecl();
8308         return;
8309       } else if (CXXDirectInit->getNumExprs() > 1) {
8310         Diag(CXXDirectInit->getExpr(1)->getLocStart(),
8311              VDecl->isInitCapture()
8312                  ? diag::err_init_capture_multiple_expressions
8313                  : diag::err_auto_var_init_multiple_expressions)
8314           << VDecl->getDeclName() << VDecl->getType()
8315           << VDecl->getSourceRange();
8316         RealDecl->setInvalidDecl();
8317         return;
8318       } else {
8319         DeduceInit = CXXDirectInit->getExpr(0);
8320         if (isa<InitListExpr>(DeduceInit))
8321           Diag(CXXDirectInit->getLocStart(),
8322                diag::err_auto_var_init_paren_braces)
8323             << VDecl->getDeclName() << VDecl->getType()
8324             << VDecl->getSourceRange();
8325       }
8326     }
8327 
8328     // Expressions default to 'id' when we're in a debugger.
8329     bool DefaultedToAuto = false;
8330     if (getLangOpts().DebuggerCastResultToId &&
8331         Init->getType() == Context.UnknownAnyTy) {
8332       ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
8333       if (Result.isInvalid()) {
8334         VDecl->setInvalidDecl();
8335         return;
8336       }
8337       Init = Result.get();
8338       DefaultedToAuto = true;
8339     }
8340 
8341     QualType DeducedType;
8342     if (DeduceAutoType(VDecl->getTypeSourceInfo(), DeduceInit, DeducedType) ==
8343             DAR_Failed)
8344       DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
8345     if (DeducedType.isNull()) {
8346       RealDecl->setInvalidDecl();
8347       return;
8348     }
8349     VDecl->setType(DeducedType);
8350     assert(VDecl->isLinkageValid());
8351 
8352     // In ARC, infer lifetime.
8353     if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
8354       VDecl->setInvalidDecl();
8355 
8356     // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
8357     // 'id' instead of a specific object type prevents most of our usual checks.
8358     // We only want to warn outside of template instantiations, though:
8359     // inside a template, the 'id' could have come from a parameter.
8360     if (ActiveTemplateInstantiations.empty() && !DefaultedToAuto &&
8361         DeducedType->isObjCIdType()) {
8362       SourceLocation Loc =
8363           VDecl->getTypeSourceInfo()->getTypeLoc().getBeginLoc();
8364       Diag(Loc, diag::warn_auto_var_is_id)
8365         << VDecl->getDeclName() << DeduceInit->getSourceRange();
8366     }
8367 
8368     // If this is a redeclaration, check that the type we just deduced matches
8369     // the previously declared type.
8370     if (VarDecl *Old = VDecl->getPreviousDecl()) {
8371       // We never need to merge the type, because we cannot form an incomplete
8372       // array of auto, nor deduce such a type.
8373       MergeVarDeclTypes(VDecl, Old, /*MergeTypeWithPrevious*/false);
8374     }
8375 
8376     // Check the deduced type is valid for a variable declaration.
8377     CheckVariableDeclarationType(VDecl);
8378     if (VDecl->isInvalidDecl())
8379       return;
8380   }
8381 
8382   // dllimport cannot be used on variable definitions.
8383   if (VDecl->hasAttr<DLLImportAttr>() && !VDecl->isStaticDataMember()) {
8384     Diag(VDecl->getLocation(), diag::err_attribute_dllimport_data_definition);
8385     VDecl->setInvalidDecl();
8386     return;
8387   }
8388 
8389   if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
8390     // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
8391     Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
8392     VDecl->setInvalidDecl();
8393     return;
8394   }
8395 
8396   if (!VDecl->getType()->isDependentType()) {
8397     // A definition must end up with a complete type, which means it must be
8398     // complete with the restriction that an array type might be completed by
8399     // the initializer; note that later code assumes this restriction.
8400     QualType BaseDeclType = VDecl->getType();
8401     if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
8402       BaseDeclType = Array->getElementType();
8403     if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
8404                             diag::err_typecheck_decl_incomplete_type)) {
8405       RealDecl->setInvalidDecl();
8406       return;
8407     }
8408 
8409     // The variable can not have an abstract class type.
8410     if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
8411                                diag::err_abstract_type_in_decl,
8412                                AbstractVariableType))
8413       VDecl->setInvalidDecl();
8414   }
8415 
8416   const VarDecl *Def;
8417   if ((Def = VDecl->getDefinition()) && Def != VDecl) {
8418     Diag(VDecl->getLocation(), diag::err_redefinition)
8419       << VDecl->getDeclName();
8420     Diag(Def->getLocation(), diag::note_previous_definition);
8421     VDecl->setInvalidDecl();
8422     return;
8423   }
8424 
8425   const VarDecl *PrevInit = nullptr;
8426   if (getLangOpts().CPlusPlus) {
8427     // C++ [class.static.data]p4
8428     //   If a static data member is of const integral or const
8429     //   enumeration type, its declaration in the class definition can
8430     //   specify a constant-initializer which shall be an integral
8431     //   constant expression (5.19). In that case, the member can appear
8432     //   in integral constant expressions. The member shall still be
8433     //   defined in a namespace scope if it is used in the program and the
8434     //   namespace scope definition shall not contain an initializer.
8435     //
8436     // We already performed a redefinition check above, but for static
8437     // data members we also need to check whether there was an in-class
8438     // declaration with an initializer.
8439     if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
8440       Diag(Init->getExprLoc(), diag::err_static_data_member_reinitialization)
8441           << VDecl->getDeclName();
8442       Diag(PrevInit->getInit()->getExprLoc(), diag::note_previous_initializer) << 0;
8443       return;
8444     }
8445 
8446     if (VDecl->hasLocalStorage())
8447       getCurFunction()->setHasBranchProtectedScope();
8448 
8449     if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
8450       VDecl->setInvalidDecl();
8451       return;
8452     }
8453   }
8454 
8455   // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
8456   // a kernel function cannot be initialized."
8457   if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) {
8458     Diag(VDecl->getLocation(), diag::err_local_cant_init);
8459     VDecl->setInvalidDecl();
8460     return;
8461   }
8462 
8463   // Get the decls type and save a reference for later, since
8464   // CheckInitializerTypes may change it.
8465   QualType DclT = VDecl->getType(), SavT = DclT;
8466 
8467   // Expressions default to 'id' when we're in a debugger
8468   // and we are assigning it to a variable of Objective-C pointer type.
8469   if (getLangOpts().DebuggerCastResultToId && DclT->isObjCObjectPointerType() &&
8470       Init->getType() == Context.UnknownAnyTy) {
8471     ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
8472     if (Result.isInvalid()) {
8473       VDecl->setInvalidDecl();
8474       return;
8475     }
8476     Init = Result.get();
8477   }
8478 
8479   // Perform the initialization.
8480   if (!VDecl->isInvalidDecl()) {
8481     InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
8482     InitializationKind Kind
8483       = DirectInit ?
8484           CXXDirectInit ? InitializationKind::CreateDirect(VDecl->getLocation(),
8485                                                            Init->getLocStart(),
8486                                                            Init->getLocEnd())
8487                         : InitializationKind::CreateDirectList(
8488                                                           VDecl->getLocation())
8489                    : InitializationKind::CreateCopy(VDecl->getLocation(),
8490                                                     Init->getLocStart());
8491 
8492     MultiExprArg Args = Init;
8493     if (CXXDirectInit)
8494       Args = MultiExprArg(CXXDirectInit->getExprs(),
8495                           CXXDirectInit->getNumExprs());
8496 
8497     InitializationSequence InitSeq(*this, Entity, Kind, Args);
8498     ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
8499     if (Result.isInvalid()) {
8500       VDecl->setInvalidDecl();
8501       return;
8502     }
8503 
8504     Init = Result.getAs<Expr>();
8505   }
8506 
8507   // Check for self-references within variable initializers.
8508   // Variables declared within a function/method body (except for references)
8509   // are handled by a dataflow analysis.
8510   if (!VDecl->hasLocalStorage() || VDecl->getType()->isRecordType() ||
8511       VDecl->getType()->isReferenceType()) {
8512     CheckSelfReference(*this, RealDecl, Init, DirectInit);
8513   }
8514 
8515   // If the type changed, it means we had an incomplete type that was
8516   // completed by the initializer. For example:
8517   //   int ary[] = { 1, 3, 5 };
8518   // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
8519   if (!VDecl->isInvalidDecl() && (DclT != SavT))
8520     VDecl->setType(DclT);
8521 
8522   if (!VDecl->isInvalidDecl()) {
8523     checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
8524 
8525     if (VDecl->hasAttr<BlocksAttr>())
8526       checkRetainCycles(VDecl, Init);
8527 
8528     // It is safe to assign a weak reference into a strong variable.
8529     // Although this code can still have problems:
8530     //   id x = self.weakProp;
8531     //   id y = self.weakProp;
8532     // we do not warn to warn spuriously when 'x' and 'y' are on separate
8533     // paths through the function. This should be revisited if
8534     // -Wrepeated-use-of-weak is made flow-sensitive.
8535     if (VDecl->getType().getObjCLifetime() == Qualifiers::OCL_Strong &&
8536         !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak,
8537                          Init->getLocStart()))
8538         getCurFunction()->markSafeWeakUse(Init);
8539   }
8540 
8541   // The initialization is usually a full-expression.
8542   //
8543   // FIXME: If this is a braced initialization of an aggregate, it is not
8544   // an expression, and each individual field initializer is a separate
8545   // full-expression. For instance, in:
8546   //
8547   //   struct Temp { ~Temp(); };
8548   //   struct S { S(Temp); };
8549   //   struct T { S a, b; } t = { Temp(), Temp() }
8550   //
8551   // we should destroy the first Temp before constructing the second.
8552   ExprResult Result = ActOnFinishFullExpr(Init, VDecl->getLocation(),
8553                                           false,
8554                                           VDecl->isConstexpr());
8555   if (Result.isInvalid()) {
8556     VDecl->setInvalidDecl();
8557     return;
8558   }
8559   Init = Result.get();
8560 
8561   // Attach the initializer to the decl.
8562   VDecl->setInit(Init);
8563 
8564   if (VDecl->isLocalVarDecl()) {
8565     // C99 6.7.8p4: All the expressions in an initializer for an object that has
8566     // static storage duration shall be constant expressions or string literals.
8567     // C++ does not have this restriction.
8568     if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl()) {
8569       const Expr *Culprit;
8570       if (VDecl->getStorageClass() == SC_Static)
8571         CheckForConstantInitializer(Init, DclT);
8572       // C89 is stricter than C99 for non-static aggregate types.
8573       // C89 6.5.7p3: All the expressions [...] in an initializer list
8574       // for an object that has aggregate or union type shall be
8575       // constant expressions.
8576       else if (!getLangOpts().C99 && VDecl->getType()->isAggregateType() &&
8577                isa<InitListExpr>(Init) &&
8578                !Init->isConstantInitializer(Context, false, &Culprit))
8579         Diag(Culprit->getExprLoc(),
8580              diag::ext_aggregate_init_not_constant)
8581           << Culprit->getSourceRange();
8582     }
8583   } else if (VDecl->isStaticDataMember() &&
8584              VDecl->getLexicalDeclContext()->isRecord()) {
8585     // This is an in-class initialization for a static data member, e.g.,
8586     //
8587     // struct S {
8588     //   static const int value = 17;
8589     // };
8590 
8591     // C++ [class.mem]p4:
8592     //   A member-declarator can contain a constant-initializer only
8593     //   if it declares a static member (9.4) of const integral or
8594     //   const enumeration type, see 9.4.2.
8595     //
8596     // C++11 [class.static.data]p3:
8597     //   If a non-volatile const static data member is of integral or
8598     //   enumeration type, its declaration in the class definition can
8599     //   specify a brace-or-equal-initializer in which every initalizer-clause
8600     //   that is an assignment-expression is a constant expression. A static
8601     //   data member of literal type can be declared in the class definition
8602     //   with the constexpr specifier; if so, its declaration shall specify a
8603     //   brace-or-equal-initializer in which every initializer-clause that is
8604     //   an assignment-expression is a constant expression.
8605 
8606     // Do nothing on dependent types.
8607     if (DclT->isDependentType()) {
8608 
8609     // Allow any 'static constexpr' members, whether or not they are of literal
8610     // type. We separately check that every constexpr variable is of literal
8611     // type.
8612     } else if (VDecl->isConstexpr()) {
8613 
8614     // Require constness.
8615     } else if (!DclT.isConstQualified()) {
8616       Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
8617         << Init->getSourceRange();
8618       VDecl->setInvalidDecl();
8619 
8620     // We allow integer constant expressions in all cases.
8621     } else if (DclT->isIntegralOrEnumerationType()) {
8622       // Check whether the expression is a constant expression.
8623       SourceLocation Loc;
8624       if (getLangOpts().CPlusPlus11 && DclT.isVolatileQualified())
8625         // In C++11, a non-constexpr const static data member with an
8626         // in-class initializer cannot be volatile.
8627         Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
8628       else if (Init->isValueDependent())
8629         ; // Nothing to check.
8630       else if (Init->isIntegerConstantExpr(Context, &Loc))
8631         ; // Ok, it's an ICE!
8632       else if (Init->isEvaluatable(Context)) {
8633         // If we can constant fold the initializer through heroics, accept it,
8634         // but report this as a use of an extension for -pedantic.
8635         Diag(Loc, diag::ext_in_class_initializer_non_constant)
8636           << Init->getSourceRange();
8637       } else {
8638         // Otherwise, this is some crazy unknown case.  Report the issue at the
8639         // location provided by the isIntegerConstantExpr failed check.
8640         Diag(Loc, diag::err_in_class_initializer_non_constant)
8641           << Init->getSourceRange();
8642         VDecl->setInvalidDecl();
8643       }
8644 
8645     // We allow foldable floating-point constants as an extension.
8646     } else if (DclT->isFloatingType()) { // also permits complex, which is ok
8647       // In C++98, this is a GNU extension. In C++11, it is not, but we support
8648       // it anyway and provide a fixit to add the 'constexpr'.
8649       if (getLangOpts().CPlusPlus11) {
8650         Diag(VDecl->getLocation(),
8651              diag::ext_in_class_initializer_float_type_cxx11)
8652             << DclT << Init->getSourceRange();
8653         Diag(VDecl->getLocStart(),
8654              diag::note_in_class_initializer_float_type_cxx11)
8655             << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
8656       } else {
8657         Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
8658           << DclT << Init->getSourceRange();
8659 
8660         if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
8661           Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
8662             << Init->getSourceRange();
8663           VDecl->setInvalidDecl();
8664         }
8665       }
8666 
8667     // Suggest adding 'constexpr' in C++11 for literal types.
8668     } else if (getLangOpts().CPlusPlus11 && DclT->isLiteralType(Context)) {
8669       Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
8670         << DclT << Init->getSourceRange()
8671         << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
8672       VDecl->setConstexpr(true);
8673 
8674     } else {
8675       Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
8676         << DclT << Init->getSourceRange();
8677       VDecl->setInvalidDecl();
8678     }
8679   } else if (VDecl->isFileVarDecl()) {
8680     if (VDecl->getStorageClass() == SC_Extern &&
8681         (!getLangOpts().CPlusPlus ||
8682          !(Context.getBaseElementType(VDecl->getType()).isConstQualified() ||
8683            VDecl->isExternC())) &&
8684         !isTemplateInstantiation(VDecl->getTemplateSpecializationKind()))
8685       Diag(VDecl->getLocation(), diag::warn_extern_init);
8686 
8687     // C99 6.7.8p4. All file scoped initializers need to be constant.
8688     if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
8689       CheckForConstantInitializer(Init, DclT);
8690   }
8691 
8692   // We will represent direct-initialization similarly to copy-initialization:
8693   //    int x(1);  -as-> int x = 1;
8694   //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
8695   //
8696   // Clients that want to distinguish between the two forms, can check for
8697   // direct initializer using VarDecl::getInitStyle().
8698   // A major benefit is that clients that don't particularly care about which
8699   // exactly form was it (like the CodeGen) can handle both cases without
8700   // special case code.
8701 
8702   // C++ 8.5p11:
8703   // The form of initialization (using parentheses or '=') is generally
8704   // insignificant, but does matter when the entity being initialized has a
8705   // class type.
8706   if (CXXDirectInit) {
8707     assert(DirectInit && "Call-style initializer must be direct init.");
8708     VDecl->setInitStyle(VarDecl::CallInit);
8709   } else if (DirectInit) {
8710     // This must be list-initialization. No other way is direct-initialization.
8711     VDecl->setInitStyle(VarDecl::ListInit);
8712   }
8713 
8714   CheckCompleteVariableDeclaration(VDecl);
8715 }
8716 
8717 /// ActOnInitializerError - Given that there was an error parsing an
8718 /// initializer for the given declaration, try to return to some form
8719 /// of sanity.
ActOnInitializerError(Decl * D)8720 void Sema::ActOnInitializerError(Decl *D) {
8721   // Our main concern here is re-establishing invariants like "a
8722   // variable's type is either dependent or complete".
8723   if (!D || D->isInvalidDecl()) return;
8724 
8725   VarDecl *VD = dyn_cast<VarDecl>(D);
8726   if (!VD) return;
8727 
8728   // Auto types are meaningless if we can't make sense of the initializer.
8729   if (ParsingInitForAutoVars.count(D)) {
8730     D->setInvalidDecl();
8731     return;
8732   }
8733 
8734   QualType Ty = VD->getType();
8735   if (Ty->isDependentType()) return;
8736 
8737   // Require a complete type.
8738   if (RequireCompleteType(VD->getLocation(),
8739                           Context.getBaseElementType(Ty),
8740                           diag::err_typecheck_decl_incomplete_type)) {
8741     VD->setInvalidDecl();
8742     return;
8743   }
8744 
8745   // Require a non-abstract type.
8746   if (RequireNonAbstractType(VD->getLocation(), Ty,
8747                              diag::err_abstract_type_in_decl,
8748                              AbstractVariableType)) {
8749     VD->setInvalidDecl();
8750     return;
8751   }
8752 
8753   // Don't bother complaining about constructors or destructors,
8754   // though.
8755 }
8756 
ActOnUninitializedDecl(Decl * RealDecl,bool TypeMayContainAuto)8757 void Sema::ActOnUninitializedDecl(Decl *RealDecl,
8758                                   bool TypeMayContainAuto) {
8759   // If there is no declaration, there was an error parsing it. Just ignore it.
8760   if (!RealDecl)
8761     return;
8762 
8763   if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
8764     QualType Type = Var->getType();
8765 
8766     // C++11 [dcl.spec.auto]p3
8767     if (TypeMayContainAuto && Type->getContainedAutoType()) {
8768       Diag(Var->getLocation(), diag::err_auto_var_requires_init)
8769         << Var->getDeclName() << Type;
8770       Var->setInvalidDecl();
8771       return;
8772     }
8773 
8774     // C++11 [class.static.data]p3: A static data member can be declared with
8775     // the constexpr specifier; if so, its declaration shall specify
8776     // a brace-or-equal-initializer.
8777     // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
8778     // the definition of a variable [...] or the declaration of a static data
8779     // member.
8780     if (Var->isConstexpr() && !Var->isThisDeclarationADefinition()) {
8781       if (Var->isStaticDataMember())
8782         Diag(Var->getLocation(),
8783              diag::err_constexpr_static_mem_var_requires_init)
8784           << Var->getDeclName();
8785       else
8786         Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
8787       Var->setInvalidDecl();
8788       return;
8789     }
8790 
8791     // OpenCL v1.1 s6.5.3: variables declared in the constant address space must
8792     // be initialized.
8793     if (!Var->isInvalidDecl() &&
8794         Var->getType().getAddressSpace() == LangAS::opencl_constant &&
8795         Var->getStorageClass() != SC_Extern && !Var->getInit()) {
8796       Diag(Var->getLocation(), diag::err_opencl_constant_no_init);
8797       Var->setInvalidDecl();
8798       return;
8799     }
8800 
8801     switch (Var->isThisDeclarationADefinition()) {
8802     case VarDecl::Definition:
8803       if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
8804         break;
8805 
8806       // We have an out-of-line definition of a static data member
8807       // that has an in-class initializer, so we type-check this like
8808       // a declaration.
8809       //
8810       // Fall through
8811 
8812     case VarDecl::DeclarationOnly:
8813       // It's only a declaration.
8814 
8815       // Block scope. C99 6.7p7: If an identifier for an object is
8816       // declared with no linkage (C99 6.2.2p6), the type for the
8817       // object shall be complete.
8818       if (!Type->isDependentType() && Var->isLocalVarDecl() &&
8819           !Var->hasLinkage() && !Var->isInvalidDecl() &&
8820           RequireCompleteType(Var->getLocation(), Type,
8821                               diag::err_typecheck_decl_incomplete_type))
8822         Var->setInvalidDecl();
8823 
8824       // Make sure that the type is not abstract.
8825       if (!Type->isDependentType() && !Var->isInvalidDecl() &&
8826           RequireNonAbstractType(Var->getLocation(), Type,
8827                                  diag::err_abstract_type_in_decl,
8828                                  AbstractVariableType))
8829         Var->setInvalidDecl();
8830       if (!Type->isDependentType() && !Var->isInvalidDecl() &&
8831           Var->getStorageClass() == SC_PrivateExtern) {
8832         Diag(Var->getLocation(), diag::warn_private_extern);
8833         Diag(Var->getLocation(), diag::note_private_extern);
8834       }
8835 
8836       return;
8837 
8838     case VarDecl::TentativeDefinition:
8839       // File scope. C99 6.9.2p2: A declaration of an identifier for an
8840       // object that has file scope without an initializer, and without a
8841       // storage-class specifier or with the storage-class specifier "static",
8842       // constitutes a tentative definition. Note: A tentative definition with
8843       // external linkage is valid (C99 6.2.2p5).
8844       if (!Var->isInvalidDecl()) {
8845         if (const IncompleteArrayType *ArrayT
8846                                     = Context.getAsIncompleteArrayType(Type)) {
8847           if (RequireCompleteType(Var->getLocation(),
8848                                   ArrayT->getElementType(),
8849                                   diag::err_illegal_decl_array_incomplete_type))
8850             Var->setInvalidDecl();
8851         } else if (Var->getStorageClass() == SC_Static) {
8852           // C99 6.9.2p3: If the declaration of an identifier for an object is
8853           // a tentative definition and has internal linkage (C99 6.2.2p3), the
8854           // declared type shall not be an incomplete type.
8855           // NOTE: code such as the following
8856           //     static struct s;
8857           //     struct s { int a; };
8858           // is accepted by gcc. Hence here we issue a warning instead of
8859           // an error and we do not invalidate the static declaration.
8860           // NOTE: to avoid multiple warnings, only check the first declaration.
8861           if (Var->isFirstDecl())
8862             RequireCompleteType(Var->getLocation(), Type,
8863                                 diag::ext_typecheck_decl_incomplete_type);
8864         }
8865       }
8866 
8867       // Record the tentative definition; we're done.
8868       if (!Var->isInvalidDecl())
8869         TentativeDefinitions.push_back(Var);
8870       return;
8871     }
8872 
8873     // Provide a specific diagnostic for uninitialized variable
8874     // definitions with incomplete array type.
8875     if (Type->isIncompleteArrayType()) {
8876       Diag(Var->getLocation(),
8877            diag::err_typecheck_incomplete_array_needs_initializer);
8878       Var->setInvalidDecl();
8879       return;
8880     }
8881 
8882     // Provide a specific diagnostic for uninitialized variable
8883     // definitions with reference type.
8884     if (Type->isReferenceType()) {
8885       Diag(Var->getLocation(), diag::err_reference_var_requires_init)
8886         << Var->getDeclName()
8887         << SourceRange(Var->getLocation(), Var->getLocation());
8888       Var->setInvalidDecl();
8889       return;
8890     }
8891 
8892     // Do not attempt to type-check the default initializer for a
8893     // variable with dependent type.
8894     if (Type->isDependentType())
8895       return;
8896 
8897     if (Var->isInvalidDecl())
8898       return;
8899 
8900     if (!Var->hasAttr<AliasAttr>()) {
8901       if (RequireCompleteType(Var->getLocation(),
8902                               Context.getBaseElementType(Type),
8903                               diag::err_typecheck_decl_incomplete_type)) {
8904         Var->setInvalidDecl();
8905         return;
8906       }
8907     }
8908 
8909     // The variable can not have an abstract class type.
8910     if (RequireNonAbstractType(Var->getLocation(), Type,
8911                                diag::err_abstract_type_in_decl,
8912                                AbstractVariableType)) {
8913       Var->setInvalidDecl();
8914       return;
8915     }
8916 
8917     // Check for jumps past the implicit initializer.  C++0x
8918     // clarifies that this applies to a "variable with automatic
8919     // storage duration", not a "local variable".
8920     // C++11 [stmt.dcl]p3
8921     //   A program that jumps from a point where a variable with automatic
8922     //   storage duration is not in scope to a point where it is in scope is
8923     //   ill-formed unless the variable has scalar type, class type with a
8924     //   trivial default constructor and a trivial destructor, a cv-qualified
8925     //   version of one of these types, or an array of one of the preceding
8926     //   types and is declared without an initializer.
8927     if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
8928       if (const RecordType *Record
8929             = Context.getBaseElementType(Type)->getAs<RecordType>()) {
8930         CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
8931         // Mark the function for further checking even if the looser rules of
8932         // C++11 do not require such checks, so that we can diagnose
8933         // incompatibilities with C++98.
8934         if (!CXXRecord->isPOD())
8935           getCurFunction()->setHasBranchProtectedScope();
8936       }
8937     }
8938 
8939     // C++03 [dcl.init]p9:
8940     //   If no initializer is specified for an object, and the
8941     //   object is of (possibly cv-qualified) non-POD class type (or
8942     //   array thereof), the object shall be default-initialized; if
8943     //   the object is of const-qualified type, the underlying class
8944     //   type shall have a user-declared default
8945     //   constructor. Otherwise, if no initializer is specified for
8946     //   a non- static object, the object and its subobjects, if
8947     //   any, have an indeterminate initial value); if the object
8948     //   or any of its subobjects are of const-qualified type, the
8949     //   program is ill-formed.
8950     // C++0x [dcl.init]p11:
8951     //   If no initializer is specified for an object, the object is
8952     //   default-initialized; [...].
8953     InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
8954     InitializationKind Kind
8955       = InitializationKind::CreateDefault(Var->getLocation());
8956 
8957     InitializationSequence InitSeq(*this, Entity, Kind, None);
8958     ExprResult Init = InitSeq.Perform(*this, Entity, Kind, None);
8959     if (Init.isInvalid())
8960       Var->setInvalidDecl();
8961     else if (Init.get()) {
8962       Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
8963       // This is important for template substitution.
8964       Var->setInitStyle(VarDecl::CallInit);
8965     }
8966 
8967     CheckCompleteVariableDeclaration(Var);
8968   }
8969 }
8970 
ActOnCXXForRangeDecl(Decl * D)8971 void Sema::ActOnCXXForRangeDecl(Decl *D) {
8972   VarDecl *VD = dyn_cast<VarDecl>(D);
8973   if (!VD) {
8974     Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
8975     D->setInvalidDecl();
8976     return;
8977   }
8978 
8979   VD->setCXXForRangeDecl(true);
8980 
8981   // for-range-declaration cannot be given a storage class specifier.
8982   int Error = -1;
8983   switch (VD->getStorageClass()) {
8984   case SC_None:
8985     break;
8986   case SC_Extern:
8987     Error = 0;
8988     break;
8989   case SC_Static:
8990     Error = 1;
8991     break;
8992   case SC_PrivateExtern:
8993     Error = 2;
8994     break;
8995   case SC_Auto:
8996     Error = 3;
8997     break;
8998   case SC_Register:
8999     Error = 4;
9000     break;
9001   case SC_OpenCLWorkGroupLocal:
9002     llvm_unreachable("Unexpected storage class");
9003   }
9004   if (VD->isConstexpr())
9005     Error = 5;
9006   if (Error != -1) {
9007     Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
9008       << VD->getDeclName() << Error;
9009     D->setInvalidDecl();
9010   }
9011 }
9012 
9013 StmtResult
ActOnCXXForRangeIdentifier(Scope * S,SourceLocation IdentLoc,IdentifierInfo * Ident,ParsedAttributes & Attrs,SourceLocation AttrEnd)9014 Sema::ActOnCXXForRangeIdentifier(Scope *S, SourceLocation IdentLoc,
9015                                  IdentifierInfo *Ident,
9016                                  ParsedAttributes &Attrs,
9017                                  SourceLocation AttrEnd) {
9018   // C++1y [stmt.iter]p1:
9019   //   A range-based for statement of the form
9020   //      for ( for-range-identifier : for-range-initializer ) statement
9021   //   is equivalent to
9022   //      for ( auto&& for-range-identifier : for-range-initializer ) statement
9023   DeclSpec DS(Attrs.getPool().getFactory());
9024 
9025   const char *PrevSpec;
9026   unsigned DiagID;
9027   DS.SetTypeSpecType(DeclSpec::TST_auto, IdentLoc, PrevSpec, DiagID,
9028                      getPrintingPolicy());
9029 
9030   Declarator D(DS, Declarator::ForContext);
9031   D.SetIdentifier(Ident, IdentLoc);
9032   D.takeAttributes(Attrs, AttrEnd);
9033 
9034   ParsedAttributes EmptyAttrs(Attrs.getPool().getFactory());
9035   D.AddTypeInfo(DeclaratorChunk::getReference(0, IdentLoc, /*lvalue*/false),
9036                 EmptyAttrs, IdentLoc);
9037   Decl *Var = ActOnDeclarator(S, D);
9038   cast<VarDecl>(Var)->setCXXForRangeDecl(true);
9039   FinalizeDeclaration(Var);
9040   return ActOnDeclStmt(FinalizeDeclaratorGroup(S, DS, Var), IdentLoc,
9041                        AttrEnd.isValid() ? AttrEnd : IdentLoc);
9042 }
9043 
CheckCompleteVariableDeclaration(VarDecl * var)9044 void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
9045   if (var->isInvalidDecl()) return;
9046 
9047   // In ARC, don't allow jumps past the implicit initialization of a
9048   // local retaining variable.
9049   if (getLangOpts().ObjCAutoRefCount &&
9050       var->hasLocalStorage()) {
9051     switch (var->getType().getObjCLifetime()) {
9052     case Qualifiers::OCL_None:
9053     case Qualifiers::OCL_ExplicitNone:
9054     case Qualifiers::OCL_Autoreleasing:
9055       break;
9056 
9057     case Qualifiers::OCL_Weak:
9058     case Qualifiers::OCL_Strong:
9059       getCurFunction()->setHasBranchProtectedScope();
9060       break;
9061     }
9062   }
9063 
9064   // Warn about externally-visible variables being defined without a
9065   // prior declaration.  We only want to do this for global
9066   // declarations, but we also specifically need to avoid doing it for
9067   // class members because the linkage of an anonymous class can
9068   // change if it's later given a typedef name.
9069   if (var->isThisDeclarationADefinition() &&
9070       var->getDeclContext()->getRedeclContext()->isFileContext() &&
9071       var->isExternallyVisible() && var->hasLinkage() &&
9072       !getDiagnostics().isIgnored(diag::warn_missing_variable_declarations,
9073                                   var->getLocation())) {
9074     // Find a previous declaration that's not a definition.
9075     VarDecl *prev = var->getPreviousDecl();
9076     while (prev && prev->isThisDeclarationADefinition())
9077       prev = prev->getPreviousDecl();
9078 
9079     if (!prev)
9080       Diag(var->getLocation(), diag::warn_missing_variable_declarations) << var;
9081   }
9082 
9083   if (var->getTLSKind() == VarDecl::TLS_Static) {
9084     const Expr *Culprit;
9085     if (var->getType().isDestructedType()) {
9086       // GNU C++98 edits for __thread, [basic.start.term]p3:
9087       //   The type of an object with thread storage duration shall not
9088       //   have a non-trivial destructor.
9089       Diag(var->getLocation(), diag::err_thread_nontrivial_dtor);
9090       if (getLangOpts().CPlusPlus11)
9091         Diag(var->getLocation(), diag::note_use_thread_local);
9092     } else if (getLangOpts().CPlusPlus && var->hasInit() &&
9093                !var->getInit()->isConstantInitializer(
9094                    Context, var->getType()->isReferenceType(), &Culprit)) {
9095       // GNU C++98 edits for __thread, [basic.start.init]p4:
9096       //   An object of thread storage duration shall not require dynamic
9097       //   initialization.
9098       // FIXME: Need strict checking here.
9099       Diag(Culprit->getExprLoc(), diag::err_thread_dynamic_init)
9100         << Culprit->getSourceRange();
9101       if (getLangOpts().CPlusPlus11)
9102         Diag(var->getLocation(), diag::note_use_thread_local);
9103     }
9104 
9105   }
9106 
9107   if (var->isThisDeclarationADefinition() &&
9108       ActiveTemplateInstantiations.empty()) {
9109     PragmaStack<StringLiteral *> *Stack = nullptr;
9110     int SectionFlags = PSF_Implicit | PSF_Read;
9111     if (var->getType().isConstQualified())
9112       Stack = &ConstSegStack;
9113     else if (!var->getInit()) {
9114       Stack = &BSSSegStack;
9115       SectionFlags |= PSF_Write;
9116     } else {
9117       Stack = &DataSegStack;
9118       SectionFlags |= PSF_Write;
9119     }
9120     if (!var->hasAttr<SectionAttr>() && Stack->CurrentValue)
9121       var->addAttr(
9122           SectionAttr::CreateImplicit(Context, SectionAttr::Declspec_allocate,
9123                                       Stack->CurrentValue->getString(),
9124                                       Stack->CurrentPragmaLocation));
9125     if (const SectionAttr *SA = var->getAttr<SectionAttr>())
9126       if (UnifySection(SA->getName(), SectionFlags, var))
9127         var->dropAttr<SectionAttr>();
9128   }
9129 
9130   // All the following checks are C++ only.
9131   if (!getLangOpts().CPlusPlus) return;
9132 
9133   QualType type = var->getType();
9134   if (type->isDependentType()) return;
9135 
9136   // __block variables might require us to capture a copy-initializer.
9137   if (var->hasAttr<BlocksAttr>()) {
9138     // It's currently invalid to ever have a __block variable with an
9139     // array type; should we diagnose that here?
9140 
9141     // Regardless, we don't want to ignore array nesting when
9142     // constructing this copy.
9143     if (type->isStructureOrClassType()) {
9144       EnterExpressionEvaluationContext scope(*this, PotentiallyEvaluated);
9145       SourceLocation poi = var->getLocation();
9146       Expr *varRef =new (Context) DeclRefExpr(var, false, type, VK_LValue, poi);
9147       ExprResult result
9148         = PerformMoveOrCopyInitialization(
9149             InitializedEntity::InitializeBlock(poi, type, false),
9150             var, var->getType(), varRef, /*AllowNRVO=*/true);
9151       if (!result.isInvalid()) {
9152         result = MaybeCreateExprWithCleanups(result);
9153         Expr *init = result.getAs<Expr>();
9154         Context.setBlockVarCopyInits(var, init);
9155       }
9156     }
9157   }
9158 
9159   Expr *Init = var->getInit();
9160   bool IsGlobal = var->hasGlobalStorage() && !var->isStaticLocal();
9161   QualType baseType = Context.getBaseElementType(type);
9162 
9163   if (!var->getDeclContext()->isDependentContext() &&
9164       Init && !Init->isValueDependent()) {
9165     if (IsGlobal && !var->isConstexpr() &&
9166         !getDiagnostics().isIgnored(diag::warn_global_constructor,
9167                                     var->getLocation())) {
9168       // Warn about globals which don't have a constant initializer.  Don't
9169       // warn about globals with a non-trivial destructor because we already
9170       // warned about them.
9171       CXXRecordDecl *RD = baseType->getAsCXXRecordDecl();
9172       if (!(RD && !RD->hasTrivialDestructor()) &&
9173           !Init->isConstantInitializer(Context, baseType->isReferenceType()))
9174         Diag(var->getLocation(), diag::warn_global_constructor)
9175           << Init->getSourceRange();
9176     }
9177 
9178     if (var->isConstexpr()) {
9179       SmallVector<PartialDiagnosticAt, 8> Notes;
9180       if (!var->evaluateValue(Notes) || !var->isInitICE()) {
9181         SourceLocation DiagLoc = var->getLocation();
9182         // If the note doesn't add any useful information other than a source
9183         // location, fold it into the primary diagnostic.
9184         if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
9185               diag::note_invalid_subexpr_in_const_expr) {
9186           DiagLoc = Notes[0].first;
9187           Notes.clear();
9188         }
9189         Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
9190           << var << Init->getSourceRange();
9191         for (unsigned I = 0, N = Notes.size(); I != N; ++I)
9192           Diag(Notes[I].first, Notes[I].second);
9193       }
9194     } else if (var->isUsableInConstantExpressions(Context)) {
9195       // Check whether the initializer of a const variable of integral or
9196       // enumeration type is an ICE now, since we can't tell whether it was
9197       // initialized by a constant expression if we check later.
9198       var->checkInitIsICE();
9199     }
9200   }
9201 
9202   // Require the destructor.
9203   if (const RecordType *recordType = baseType->getAs<RecordType>())
9204     FinalizeVarWithDestructor(var, recordType);
9205 }
9206 
9207 /// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
9208 /// any semantic actions necessary after any initializer has been attached.
9209 void
FinalizeDeclaration(Decl * ThisDecl)9210 Sema::FinalizeDeclaration(Decl *ThisDecl) {
9211   // Note that we are no longer parsing the initializer for this declaration.
9212   ParsingInitForAutoVars.erase(ThisDecl);
9213 
9214   VarDecl *VD = dyn_cast_or_null<VarDecl>(ThisDecl);
9215   if (!VD)
9216     return;
9217 
9218   checkAttributesAfterMerging(*this, *VD);
9219 
9220   // Static locals inherit dll attributes from their function.
9221   if (VD->isStaticLocal()) {
9222     if (FunctionDecl *FD =
9223             dyn_cast<FunctionDecl>(VD->getParentFunctionOrMethod())) {
9224       if (Attr *A = getDLLAttr(FD)) {
9225         auto *NewAttr = cast<InheritableAttr>(A->clone(getASTContext()));
9226         NewAttr->setInherited(true);
9227         VD->addAttr(NewAttr);
9228       }
9229     }
9230   }
9231 
9232   // Imported static data members cannot be defined out-of-line.
9233   if (const DLLImportAttr *IA = VD->getAttr<DLLImportAttr>()) {
9234     if (VD->isStaticDataMember() && VD->isOutOfLine() &&
9235         VD->isThisDeclarationADefinition()) {
9236       // We allow definitions of dllimport class template static data members
9237       // with a warning.
9238       CXXRecordDecl *Context =
9239         cast<CXXRecordDecl>(VD->getFirstDecl()->getDeclContext());
9240       bool IsClassTemplateMember =
9241           isa<ClassTemplatePartialSpecializationDecl>(Context) ||
9242           Context->getDescribedClassTemplate();
9243 
9244       Diag(VD->getLocation(),
9245            IsClassTemplateMember
9246                ? diag::warn_attribute_dllimport_static_field_definition
9247                : diag::err_attribute_dllimport_static_field_definition);
9248       Diag(IA->getLocation(), diag::note_attribute);
9249       if (!IsClassTemplateMember)
9250         VD->setInvalidDecl();
9251     }
9252   }
9253 
9254   if (UsedAttr *Attr = VD->getAttr<UsedAttr>()) {
9255     if (!Attr->isInherited() && !VD->isThisDeclarationADefinition()) {
9256       Diag(Attr->getLocation(), diag::warn_attribute_ignored) << Attr;
9257       VD->dropAttr<UsedAttr>();
9258     }
9259   }
9260 
9261   if (!VD->isInvalidDecl() &&
9262       VD->isThisDeclarationADefinition() == VarDecl::TentativeDefinition) {
9263     if (const VarDecl *Def = VD->getDefinition()) {
9264       if (Def->hasAttr<AliasAttr>()) {
9265         Diag(VD->getLocation(), diag::err_tentative_after_alias)
9266             << VD->getDeclName();
9267         Diag(Def->getLocation(), diag::note_previous_definition);
9268         VD->setInvalidDecl();
9269       }
9270     }
9271   }
9272 
9273   const DeclContext *DC = VD->getDeclContext();
9274   // If there's a #pragma GCC visibility in scope, and this isn't a class
9275   // member, set the visibility of this variable.
9276   if (DC->getRedeclContext()->isFileContext() && VD->isExternallyVisible())
9277     AddPushedVisibilityAttribute(VD);
9278 
9279   // FIXME: Warn on unused templates.
9280   if (VD->isFileVarDecl() && !VD->getDescribedVarTemplate() &&
9281       !isa<VarTemplatePartialSpecializationDecl>(VD))
9282     MarkUnusedFileScopedDecl(VD);
9283 
9284   // Now we have parsed the initializer and can update the table of magic
9285   // tag values.
9286   if (!VD->hasAttr<TypeTagForDatatypeAttr>() ||
9287       !VD->getType()->isIntegralOrEnumerationType())
9288     return;
9289 
9290   for (const auto *I : ThisDecl->specific_attrs<TypeTagForDatatypeAttr>()) {
9291     const Expr *MagicValueExpr = VD->getInit();
9292     if (!MagicValueExpr) {
9293       continue;
9294     }
9295     llvm::APSInt MagicValueInt;
9296     if (!MagicValueExpr->isIntegerConstantExpr(MagicValueInt, Context)) {
9297       Diag(I->getRange().getBegin(),
9298            diag::err_type_tag_for_datatype_not_ice)
9299         << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
9300       continue;
9301     }
9302     if (MagicValueInt.getActiveBits() > 64) {
9303       Diag(I->getRange().getBegin(),
9304            diag::err_type_tag_for_datatype_too_large)
9305         << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
9306       continue;
9307     }
9308     uint64_t MagicValue = MagicValueInt.getZExtValue();
9309     RegisterTypeTagForDatatype(I->getArgumentKind(),
9310                                MagicValue,
9311                                I->getMatchingCType(),
9312                                I->getLayoutCompatible(),
9313                                I->getMustBeNull());
9314   }
9315 }
9316 
FinalizeDeclaratorGroup(Scope * S,const DeclSpec & DS,ArrayRef<Decl * > Group)9317 Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
9318                                                    ArrayRef<Decl *> Group) {
9319   SmallVector<Decl*, 8> Decls;
9320 
9321   if (DS.isTypeSpecOwned())
9322     Decls.push_back(DS.getRepAsDecl());
9323 
9324   DeclaratorDecl *FirstDeclaratorInGroup = nullptr;
9325   for (unsigned i = 0, e = Group.size(); i != e; ++i)
9326     if (Decl *D = Group[i]) {
9327       if (DeclaratorDecl *DD = dyn_cast<DeclaratorDecl>(D))
9328         if (!FirstDeclaratorInGroup)
9329           FirstDeclaratorInGroup = DD;
9330       Decls.push_back(D);
9331     }
9332 
9333   if (DeclSpec::isDeclRep(DS.getTypeSpecType())) {
9334     if (TagDecl *Tag = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl())) {
9335       HandleTagNumbering(*this, Tag, S);
9336       if (!Tag->hasNameForLinkage() && !Tag->hasDeclaratorForAnonDecl())
9337         Tag->setDeclaratorForAnonDecl(FirstDeclaratorInGroup);
9338     }
9339   }
9340 
9341   return BuildDeclaratorGroup(Decls, DS.containsPlaceholderType());
9342 }
9343 
9344 /// BuildDeclaratorGroup - convert a list of declarations into a declaration
9345 /// group, performing any necessary semantic checking.
9346 Sema::DeclGroupPtrTy
BuildDeclaratorGroup(MutableArrayRef<Decl * > Group,bool TypeMayContainAuto)9347 Sema::BuildDeclaratorGroup(MutableArrayRef<Decl *> Group,
9348                            bool TypeMayContainAuto) {
9349   // C++0x [dcl.spec.auto]p7:
9350   //   If the type deduced for the template parameter U is not the same in each
9351   //   deduction, the program is ill-formed.
9352   // FIXME: When initializer-list support is added, a distinction is needed
9353   // between the deduced type U and the deduced type which 'auto' stands for.
9354   //   auto a = 0, b = { 1, 2, 3 };
9355   // is legal because the deduced type U is 'int' in both cases.
9356   if (TypeMayContainAuto && Group.size() > 1) {
9357     QualType Deduced;
9358     CanQualType DeducedCanon;
9359     VarDecl *DeducedDecl = nullptr;
9360     for (unsigned i = 0, e = Group.size(); i != e; ++i) {
9361       if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
9362         AutoType *AT = D->getType()->getContainedAutoType();
9363         // Don't reissue diagnostics when instantiating a template.
9364         if (AT && D->isInvalidDecl())
9365           break;
9366         QualType U = AT ? AT->getDeducedType() : QualType();
9367         if (!U.isNull()) {
9368           CanQualType UCanon = Context.getCanonicalType(U);
9369           if (Deduced.isNull()) {
9370             Deduced = U;
9371             DeducedCanon = UCanon;
9372             DeducedDecl = D;
9373           } else if (DeducedCanon != UCanon) {
9374             Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
9375                  diag::err_auto_different_deductions)
9376               << (AT->isDecltypeAuto() ? 1 : 0)
9377               << Deduced << DeducedDecl->getDeclName()
9378               << U << D->getDeclName()
9379               << DeducedDecl->getInit()->getSourceRange()
9380               << D->getInit()->getSourceRange();
9381             D->setInvalidDecl();
9382             break;
9383           }
9384         }
9385       }
9386     }
9387   }
9388 
9389   ActOnDocumentableDecls(Group);
9390 
9391   return DeclGroupPtrTy::make(
9392       DeclGroupRef::Create(Context, Group.data(), Group.size()));
9393 }
9394 
ActOnDocumentableDecl(Decl * D)9395 void Sema::ActOnDocumentableDecl(Decl *D) {
9396   ActOnDocumentableDecls(D);
9397 }
9398 
ActOnDocumentableDecls(ArrayRef<Decl * > Group)9399 void Sema::ActOnDocumentableDecls(ArrayRef<Decl *> Group) {
9400   // Don't parse the comment if Doxygen diagnostics are ignored.
9401   if (Group.empty() || !Group[0])
9402    return;
9403 
9404   if (Diags.isIgnored(diag::warn_doc_param_not_found, Group[0]->getLocation()))
9405     return;
9406 
9407   if (Group.size() >= 2) {
9408     // This is a decl group.  Normally it will contain only declarations
9409     // produced from declarator list.  But in case we have any definitions or
9410     // additional declaration references:
9411     //   'typedef struct S {} S;'
9412     //   'typedef struct S *S;'
9413     //   'struct S *pS;'
9414     // FinalizeDeclaratorGroup adds these as separate declarations.
9415     Decl *MaybeTagDecl = Group[0];
9416     if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) {
9417       Group = Group.slice(1);
9418     }
9419   }
9420 
9421   // See if there are any new comments that are not attached to a decl.
9422   ArrayRef<RawComment *> Comments = Context.getRawCommentList().getComments();
9423   if (!Comments.empty() &&
9424       !Comments.back()->isAttached()) {
9425     // There is at least one comment that not attached to a decl.
9426     // Maybe it should be attached to one of these decls?
9427     //
9428     // Note that this way we pick up not only comments that precede the
9429     // declaration, but also comments that *follow* the declaration -- thanks to
9430     // the lookahead in the lexer: we've consumed the semicolon and looked
9431     // ahead through comments.
9432     for (unsigned i = 0, e = Group.size(); i != e; ++i)
9433       Context.getCommentForDecl(Group[i], &PP);
9434   }
9435 }
9436 
9437 /// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
9438 /// to introduce parameters into function prototype scope.
ActOnParamDeclarator(Scope * S,Declarator & D)9439 Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
9440   const DeclSpec &DS = D.getDeclSpec();
9441 
9442   // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
9443 
9444   // C++03 [dcl.stc]p2 also permits 'auto'.
9445   VarDecl::StorageClass StorageClass = SC_None;
9446   if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
9447     StorageClass = SC_Register;
9448   } else if (getLangOpts().CPlusPlus &&
9449              DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
9450     StorageClass = SC_Auto;
9451   } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
9452     Diag(DS.getStorageClassSpecLoc(),
9453          diag::err_invalid_storage_class_in_func_decl);
9454     D.getMutableDeclSpec().ClearStorageClassSpecs();
9455   }
9456 
9457   if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
9458     Diag(DS.getThreadStorageClassSpecLoc(), diag::err_invalid_thread)
9459       << DeclSpec::getSpecifierName(TSCS);
9460   if (DS.isConstexprSpecified())
9461     Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr)
9462       << 0;
9463 
9464   DiagnoseFunctionSpecifiers(DS);
9465 
9466   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9467   QualType parmDeclType = TInfo->getType();
9468 
9469   if (getLangOpts().CPlusPlus) {
9470     // Check that there are no default arguments inside the type of this
9471     // parameter.
9472     CheckExtraCXXDefaultArguments(D);
9473 
9474     // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
9475     if (D.getCXXScopeSpec().isSet()) {
9476       Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
9477         << D.getCXXScopeSpec().getRange();
9478       D.getCXXScopeSpec().clear();
9479     }
9480   }
9481 
9482   // Ensure we have a valid name
9483   IdentifierInfo *II = nullptr;
9484   if (D.hasName()) {
9485     II = D.getIdentifier();
9486     if (!II) {
9487       Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
9488         << GetNameForDeclarator(D).getName();
9489       D.setInvalidType(true);
9490     }
9491   }
9492 
9493   // Check for redeclaration of parameters, e.g. int foo(int x, int x);
9494   if (II) {
9495     LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
9496                    ForRedeclaration);
9497     LookupName(R, S);
9498     if (R.isSingleResult()) {
9499       NamedDecl *PrevDecl = R.getFoundDecl();
9500       if (PrevDecl->isTemplateParameter()) {
9501         // Maybe we will complain about the shadowed template parameter.
9502         DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
9503         // Just pretend that we didn't see the previous declaration.
9504         PrevDecl = nullptr;
9505       } else if (S->isDeclScope(PrevDecl)) {
9506         Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
9507         Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
9508 
9509         // Recover by removing the name
9510         II = nullptr;
9511         D.SetIdentifier(nullptr, D.getIdentifierLoc());
9512         D.setInvalidType(true);
9513       }
9514     }
9515   }
9516 
9517   // Temporarily put parameter variables in the translation unit, not
9518   // the enclosing context.  This prevents them from accidentally
9519   // looking like class members in C++.
9520   ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
9521                                     D.getLocStart(),
9522                                     D.getIdentifierLoc(), II,
9523                                     parmDeclType, TInfo,
9524                                     StorageClass);
9525 
9526   if (D.isInvalidType())
9527     New->setInvalidDecl();
9528 
9529   assert(S->isFunctionPrototypeScope());
9530   assert(S->getFunctionPrototypeDepth() >= 1);
9531   New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
9532                     S->getNextFunctionPrototypeIndex());
9533 
9534   // Add the parameter declaration into this scope.
9535   S->AddDecl(New);
9536   if (II)
9537     IdResolver.AddDecl(New);
9538 
9539   ProcessDeclAttributes(S, New, D);
9540 
9541   if (D.getDeclSpec().isModulePrivateSpecified())
9542     Diag(New->getLocation(), diag::err_module_private_local)
9543       << 1 << New->getDeclName()
9544       << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
9545       << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
9546 
9547   if (New->hasAttr<BlocksAttr>()) {
9548     Diag(New->getLocation(), diag::err_block_on_nonlocal);
9549   }
9550   return New;
9551 }
9552 
9553 /// \brief Synthesizes a variable for a parameter arising from a
9554 /// typedef.
BuildParmVarDeclForTypedef(DeclContext * DC,SourceLocation Loc,QualType T)9555 ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
9556                                               SourceLocation Loc,
9557                                               QualType T) {
9558   /* FIXME: setting StartLoc == Loc.
9559      Would it be worth to modify callers so as to provide proper source
9560      location for the unnamed parameters, embedding the parameter's type? */
9561   ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, nullptr,
9562                                 T, Context.getTrivialTypeSourceInfo(T, Loc),
9563                                            SC_None, nullptr);
9564   Param->setImplicit();
9565   return Param;
9566 }
9567 
DiagnoseUnusedParameters(ParmVarDecl * const * Param,ParmVarDecl * const * ParamEnd)9568 void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
9569                                     ParmVarDecl * const *ParamEnd) {
9570   // Don't diagnose unused-parameter errors in template instantiations; we
9571   // will already have done so in the template itself.
9572   if (!ActiveTemplateInstantiations.empty())
9573     return;
9574 
9575   for (; Param != ParamEnd; ++Param) {
9576     if (!(*Param)->isReferenced() && (*Param)->getDeclName() &&
9577         !(*Param)->hasAttr<UnusedAttr>()) {
9578       Diag((*Param)->getLocation(), diag::warn_unused_parameter)
9579         << (*Param)->getDeclName();
9580     }
9581   }
9582 }
9583 
DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const * Param,ParmVarDecl * const * ParamEnd,QualType ReturnTy,NamedDecl * D)9584 void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
9585                                                   ParmVarDecl * const *ParamEnd,
9586                                                   QualType ReturnTy,
9587                                                   NamedDecl *D) {
9588   if (LangOpts.NumLargeByValueCopy == 0) // No check.
9589     return;
9590 
9591   // Warn if the return value is pass-by-value and larger than the specified
9592   // threshold.
9593   if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
9594     unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
9595     if (Size > LangOpts.NumLargeByValueCopy)
9596       Diag(D->getLocation(), diag::warn_return_value_size)
9597           << D->getDeclName() << Size;
9598   }
9599 
9600   // Warn if any parameter is pass-by-value and larger than the specified
9601   // threshold.
9602   for (; Param != ParamEnd; ++Param) {
9603     QualType T = (*Param)->getType();
9604     if (T->isDependentType() || !T.isPODType(Context))
9605       continue;
9606     unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
9607     if (Size > LangOpts.NumLargeByValueCopy)
9608       Diag((*Param)->getLocation(), diag::warn_parameter_size)
9609           << (*Param)->getDeclName() << Size;
9610   }
9611 }
9612 
CheckParameter(DeclContext * DC,SourceLocation StartLoc,SourceLocation NameLoc,IdentifierInfo * Name,QualType T,TypeSourceInfo * TSInfo,VarDecl::StorageClass StorageClass)9613 ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
9614                                   SourceLocation NameLoc, IdentifierInfo *Name,
9615                                   QualType T, TypeSourceInfo *TSInfo,
9616                                   VarDecl::StorageClass StorageClass) {
9617   // In ARC, infer a lifetime qualifier for appropriate parameter types.
9618   if (getLangOpts().ObjCAutoRefCount &&
9619       T.getObjCLifetime() == Qualifiers::OCL_None &&
9620       T->isObjCLifetimeType()) {
9621 
9622     Qualifiers::ObjCLifetime lifetime;
9623 
9624     // Special cases for arrays:
9625     //   - if it's const, use __unsafe_unretained
9626     //   - otherwise, it's an error
9627     if (T->isArrayType()) {
9628       if (!T.isConstQualified()) {
9629         DelayedDiagnostics.add(
9630             sema::DelayedDiagnostic::makeForbiddenType(
9631             NameLoc, diag::err_arc_array_param_no_ownership, T, false));
9632       }
9633       lifetime = Qualifiers::OCL_ExplicitNone;
9634     } else {
9635       lifetime = T->getObjCARCImplicitLifetime();
9636     }
9637     T = Context.getLifetimeQualifiedType(T, lifetime);
9638   }
9639 
9640   ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
9641                                          Context.getAdjustedParameterType(T),
9642                                          TSInfo,
9643                                          StorageClass, nullptr);
9644 
9645   // Parameters can not be abstract class types.
9646   // For record types, this is done by the AbstractClassUsageDiagnoser once
9647   // the class has been completely parsed.
9648   if (!CurContext->isRecord() &&
9649       RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
9650                              AbstractParamType))
9651     New->setInvalidDecl();
9652 
9653   // Parameter declarators cannot be interface types. All ObjC objects are
9654   // passed by reference.
9655   if (T->isObjCObjectType()) {
9656     SourceLocation TypeEndLoc = TSInfo->getTypeLoc().getLocEnd();
9657     Diag(NameLoc,
9658          diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
9659       << FixItHint::CreateInsertion(TypeEndLoc, "*");
9660     T = Context.getObjCObjectPointerType(T);
9661     New->setType(T);
9662   }
9663 
9664   // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
9665   // duration shall not be qualified by an address-space qualifier."
9666   // Since all parameters have automatic store duration, they can not have
9667   // an address space.
9668   if (T.getAddressSpace() != 0) {
9669     // OpenCL allows function arguments declared to be an array of a type
9670     // to be qualified with an address space.
9671     if (!(getLangOpts().OpenCL && T->isArrayType())) {
9672       Diag(NameLoc, diag::err_arg_with_address_space);
9673       New->setInvalidDecl();
9674     }
9675   }
9676 
9677   return New;
9678 }
9679 
ActOnFinishKNRParamDeclarations(Scope * S,Declarator & D,SourceLocation LocAfterDecls)9680 void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
9681                                            SourceLocation LocAfterDecls) {
9682   DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
9683 
9684   // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
9685   // for a K&R function.
9686   if (!FTI.hasPrototype) {
9687     for (int i = FTI.NumParams; i != 0; /* decrement in loop */) {
9688       --i;
9689       if (FTI.Params[i].Param == nullptr) {
9690         SmallString<256> Code;
9691         llvm::raw_svector_ostream(Code)
9692             << "  int " << FTI.Params[i].Ident->getName() << ";\n";
9693         Diag(FTI.Params[i].IdentLoc, diag::ext_param_not_declared)
9694             << FTI.Params[i].Ident
9695             << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
9696 
9697         // Implicitly declare the argument as type 'int' for lack of a better
9698         // type.
9699         AttributeFactory attrs;
9700         DeclSpec DS(attrs);
9701         const char* PrevSpec; // unused
9702         unsigned DiagID; // unused
9703         DS.SetTypeSpecType(DeclSpec::TST_int, FTI.Params[i].IdentLoc, PrevSpec,
9704                            DiagID, Context.getPrintingPolicy());
9705         // Use the identifier location for the type source range.
9706         DS.SetRangeStart(FTI.Params[i].IdentLoc);
9707         DS.SetRangeEnd(FTI.Params[i].IdentLoc);
9708         Declarator ParamD(DS, Declarator::KNRTypeListContext);
9709         ParamD.SetIdentifier(FTI.Params[i].Ident, FTI.Params[i].IdentLoc);
9710         FTI.Params[i].Param = ActOnParamDeclarator(S, ParamD);
9711       }
9712     }
9713   }
9714 }
9715 
ActOnStartOfFunctionDef(Scope * FnBodyScope,Declarator & D)9716 Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
9717   assert(getCurFunctionDecl() == nullptr && "Function parsing confused");
9718   assert(D.isFunctionDeclarator() && "Not a function declarator!");
9719   Scope *ParentScope = FnBodyScope->getParent();
9720 
9721   D.setFunctionDefinitionKind(FDK_Definition);
9722   Decl *DP = HandleDeclarator(ParentScope, D, MultiTemplateParamsArg());
9723   return ActOnStartOfFunctionDef(FnBodyScope, DP);
9724 }
9725 
ActOnFinishInlineMethodDef(CXXMethodDecl * D)9726 void Sema::ActOnFinishInlineMethodDef(CXXMethodDecl *D) {
9727   Consumer.HandleInlineMethodDefinition(D);
9728 }
9729 
ShouldWarnAboutMissingPrototype(const FunctionDecl * FD,const FunctionDecl * & PossibleZeroParamPrototype)9730 static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD,
9731                              const FunctionDecl*& PossibleZeroParamPrototype) {
9732   // Don't warn about invalid declarations.
9733   if (FD->isInvalidDecl())
9734     return false;
9735 
9736   // Or declarations that aren't global.
9737   if (!FD->isGlobal())
9738     return false;
9739 
9740   // Don't warn about C++ member functions.
9741   if (isa<CXXMethodDecl>(FD))
9742     return false;
9743 
9744   // Don't warn about 'main'.
9745   if (FD->isMain())
9746     return false;
9747 
9748   // Don't warn about inline functions.
9749   if (FD->isInlined())
9750     return false;
9751 
9752   // Don't warn about function templates.
9753   if (FD->getDescribedFunctionTemplate())
9754     return false;
9755 
9756   // Don't warn about function template specializations.
9757   if (FD->isFunctionTemplateSpecialization())
9758     return false;
9759 
9760   // Don't warn for OpenCL kernels.
9761   if (FD->hasAttr<OpenCLKernelAttr>())
9762     return false;
9763 
9764   bool MissingPrototype = true;
9765   for (const FunctionDecl *Prev = FD->getPreviousDecl();
9766        Prev; Prev = Prev->getPreviousDecl()) {
9767     // Ignore any declarations that occur in function or method
9768     // scope, because they aren't visible from the header.
9769     if (Prev->getLexicalDeclContext()->isFunctionOrMethod())
9770       continue;
9771 
9772     MissingPrototype = !Prev->getType()->isFunctionProtoType();
9773     if (FD->getNumParams() == 0)
9774       PossibleZeroParamPrototype = Prev;
9775     break;
9776   }
9777 
9778   return MissingPrototype;
9779 }
9780 
9781 void
CheckForFunctionRedefinition(FunctionDecl * FD,const FunctionDecl * EffectiveDefinition)9782 Sema::CheckForFunctionRedefinition(FunctionDecl *FD,
9783                                    const FunctionDecl *EffectiveDefinition) {
9784   // Don't complain if we're in GNU89 mode and the previous definition
9785   // was an extern inline function.
9786   const FunctionDecl *Definition = EffectiveDefinition;
9787   if (!Definition)
9788     if (!FD->isDefined(Definition))
9789       return;
9790 
9791   if (canRedefineFunction(Definition, getLangOpts()))
9792     return;
9793 
9794   if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
9795       Definition->getStorageClass() == SC_Extern)
9796     Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
9797         << FD->getDeclName() << getLangOpts().CPlusPlus;
9798   else
9799     Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
9800 
9801   Diag(Definition->getLocation(), diag::note_previous_definition);
9802   FD->setInvalidDecl();
9803 }
9804 
9805 
RebuildLambdaScopeInfo(CXXMethodDecl * CallOperator,Sema & S)9806 static void RebuildLambdaScopeInfo(CXXMethodDecl *CallOperator,
9807                                    Sema &S) {
9808   CXXRecordDecl *const LambdaClass = CallOperator->getParent();
9809 
9810   LambdaScopeInfo *LSI = S.PushLambdaScope();
9811   LSI->CallOperator = CallOperator;
9812   LSI->Lambda = LambdaClass;
9813   LSI->ReturnType = CallOperator->getReturnType();
9814   const LambdaCaptureDefault LCD = LambdaClass->getLambdaCaptureDefault();
9815 
9816   if (LCD == LCD_None)
9817     LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_None;
9818   else if (LCD == LCD_ByCopy)
9819     LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByval;
9820   else if (LCD == LCD_ByRef)
9821     LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByref;
9822   DeclarationNameInfo DNI = CallOperator->getNameInfo();
9823 
9824   LSI->IntroducerRange = DNI.getCXXOperatorNameRange();
9825   LSI->Mutable = !CallOperator->isConst();
9826 
9827   // Add the captures to the LSI so they can be noted as already
9828   // captured within tryCaptureVar.
9829   for (const auto &C : LambdaClass->captures()) {
9830     if (C.capturesVariable()) {
9831       VarDecl *VD = C.getCapturedVar();
9832       if (VD->isInitCapture())
9833         S.CurrentInstantiationScope->InstantiatedLocal(VD, VD);
9834       QualType CaptureType = VD->getType();
9835       const bool ByRef = C.getCaptureKind() == LCK_ByRef;
9836       LSI->addCapture(VD, /*IsBlock*/false, ByRef,
9837           /*RefersToEnclosingLocal*/true, C.getLocation(),
9838           /*EllipsisLoc*/C.isPackExpansion()
9839                          ? C.getEllipsisLoc() : SourceLocation(),
9840           CaptureType, /*Expr*/ nullptr);
9841 
9842     } else if (C.capturesThis()) {
9843       LSI->addThisCapture(/*Nested*/ false, C.getLocation(),
9844                               S.getCurrentThisType(), /*Expr*/ nullptr);
9845     }
9846   }
9847 }
9848 
ActOnStartOfFunctionDef(Scope * FnBodyScope,Decl * D)9849 Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
9850   // Clear the last template instantiation error context.
9851   LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
9852 
9853   if (!D)
9854     return D;
9855   FunctionDecl *FD = nullptr;
9856 
9857   if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
9858     FD = FunTmpl->getTemplatedDecl();
9859   else
9860     FD = cast<FunctionDecl>(D);
9861   // If we are instantiating a generic lambda call operator, push
9862   // a LambdaScopeInfo onto the function stack.  But use the information
9863   // that's already been calculated (ActOnLambdaExpr) to prime the current
9864   // LambdaScopeInfo.
9865   // When the template operator is being specialized, the LambdaScopeInfo,
9866   // has to be properly restored so that tryCaptureVariable doesn't try
9867   // and capture any new variables. In addition when calculating potential
9868   // captures during transformation of nested lambdas, it is necessary to
9869   // have the LSI properly restored.
9870   if (isGenericLambdaCallOperatorSpecialization(FD)) {
9871     assert(ActiveTemplateInstantiations.size() &&
9872       "There should be an active template instantiation on the stack "
9873       "when instantiating a generic lambda!");
9874     RebuildLambdaScopeInfo(cast<CXXMethodDecl>(D), *this);
9875   }
9876   else
9877     // Enter a new function scope
9878     PushFunctionScope();
9879 
9880   // See if this is a redefinition.
9881   if (!FD->isLateTemplateParsed())
9882     CheckForFunctionRedefinition(FD);
9883 
9884   // Builtin functions cannot be defined.
9885   if (unsigned BuiltinID = FD->getBuiltinID()) {
9886     if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) &&
9887         !Context.BuiltinInfo.isPredefinedRuntimeFunction(BuiltinID)) {
9888       Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
9889       FD->setInvalidDecl();
9890     }
9891   }
9892 
9893   // The return type of a function definition must be complete
9894   // (C99 6.9.1p3, C++ [dcl.fct]p6).
9895   QualType ResultType = FD->getReturnType();
9896   if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
9897       !FD->isInvalidDecl() &&
9898       RequireCompleteType(FD->getLocation(), ResultType,
9899                           diag::err_func_def_incomplete_result))
9900     FD->setInvalidDecl();
9901 
9902   // GNU warning -Wmissing-prototypes:
9903   //   Warn if a global function is defined without a previous
9904   //   prototype declaration. This warning is issued even if the
9905   //   definition itself provides a prototype. The aim is to detect
9906   //   global functions that fail to be declared in header files.
9907   const FunctionDecl *PossibleZeroParamPrototype = nullptr;
9908   if (ShouldWarnAboutMissingPrototype(FD, PossibleZeroParamPrototype)) {
9909     Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
9910 
9911     if (PossibleZeroParamPrototype) {
9912       // We found a declaration that is not a prototype,
9913       // but that could be a zero-parameter prototype
9914       if (TypeSourceInfo *TI =
9915               PossibleZeroParamPrototype->getTypeSourceInfo()) {
9916         TypeLoc TL = TI->getTypeLoc();
9917         if (FunctionNoProtoTypeLoc FTL = TL.getAs<FunctionNoProtoTypeLoc>())
9918           Diag(PossibleZeroParamPrototype->getLocation(),
9919                diag::note_declaration_not_a_prototype)
9920             << PossibleZeroParamPrototype
9921             << FixItHint::CreateInsertion(FTL.getRParenLoc(), "void");
9922       }
9923     }
9924   }
9925 
9926   if (FnBodyScope)
9927     PushDeclContext(FnBodyScope, FD);
9928 
9929   // Check the validity of our function parameters
9930   CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
9931                            /*CheckParameterNames=*/true);
9932 
9933   // Introduce our parameters into the function scope
9934   for (auto Param : FD->params()) {
9935     Param->setOwningFunction(FD);
9936 
9937     // If this has an identifier, add it to the scope stack.
9938     if (Param->getIdentifier() && FnBodyScope) {
9939       CheckShadow(FnBodyScope, Param);
9940 
9941       PushOnScopeChains(Param, FnBodyScope);
9942     }
9943   }
9944 
9945   // If we had any tags defined in the function prototype,
9946   // introduce them into the function scope.
9947   if (FnBodyScope) {
9948     for (ArrayRef<NamedDecl *>::iterator
9949              I = FD->getDeclsInPrototypeScope().begin(),
9950              E = FD->getDeclsInPrototypeScope().end();
9951          I != E; ++I) {
9952       NamedDecl *D = *I;
9953 
9954       // Some of these decls (like enums) may have been pinned to the translation unit
9955       // for lack of a real context earlier. If so, remove from the translation unit
9956       // and reattach to the current context.
9957       if (D->getLexicalDeclContext() == Context.getTranslationUnitDecl()) {
9958         // Is the decl actually in the context?
9959         for (const auto *DI : Context.getTranslationUnitDecl()->decls()) {
9960           if (DI == D) {
9961             Context.getTranslationUnitDecl()->removeDecl(D);
9962             break;
9963           }
9964         }
9965         // Either way, reassign the lexical decl context to our FunctionDecl.
9966         D->setLexicalDeclContext(CurContext);
9967       }
9968 
9969       // If the decl has a non-null name, make accessible in the current scope.
9970       if (!D->getName().empty())
9971         PushOnScopeChains(D, FnBodyScope, /*AddToContext=*/false);
9972 
9973       // Similarly, dive into enums and fish their constants out, making them
9974       // accessible in this scope.
9975       if (auto *ED = dyn_cast<EnumDecl>(D)) {
9976         for (auto *EI : ED->enumerators())
9977           PushOnScopeChains(EI, FnBodyScope, /*AddToContext=*/false);
9978       }
9979     }
9980   }
9981 
9982   // Ensure that the function's exception specification is instantiated.
9983   if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
9984     ResolveExceptionSpec(D->getLocation(), FPT);
9985 
9986   // dllimport cannot be applied to non-inline function definitions.
9987   if (FD->hasAttr<DLLImportAttr>() && !FD->isInlined() &&
9988       !FD->isTemplateInstantiation()) {
9989     assert(!FD->hasAttr<DLLExportAttr>());
9990     Diag(FD->getLocation(), diag::err_attribute_dllimport_function_definition);
9991     FD->setInvalidDecl();
9992     return D;
9993   }
9994   // We want to attach documentation to original Decl (which might be
9995   // a function template).
9996   ActOnDocumentableDecl(D);
9997   if (getCurLexicalContext()->isObjCContainer() &&
9998       getCurLexicalContext()->getDeclKind() != Decl::ObjCCategoryImpl &&
9999       getCurLexicalContext()->getDeclKind() != Decl::ObjCImplementation)
10000     Diag(FD->getLocation(), diag::warn_function_def_in_objc_container);
10001 
10002   return D;
10003 }
10004 
10005 /// \brief Given the set of return statements within a function body,
10006 /// compute the variables that are subject to the named return value
10007 /// optimization.
10008 ///
10009 /// Each of the variables that is subject to the named return value
10010 /// optimization will be marked as NRVO variables in the AST, and any
10011 /// return statement that has a marked NRVO variable as its NRVO candidate can
10012 /// use the named return value optimization.
10013 ///
10014 /// This function applies a very simplistic algorithm for NRVO: if every return
10015 /// statement in the scope of a variable has the same NRVO candidate, that
10016 /// candidate is an NRVO variable.
computeNRVO(Stmt * Body,FunctionScopeInfo * Scope)10017 void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
10018   ReturnStmt **Returns = Scope->Returns.data();
10019 
10020   for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
10021     if (const VarDecl *NRVOCandidate = Returns[I]->getNRVOCandidate()) {
10022       if (!NRVOCandidate->isNRVOVariable())
10023         Returns[I]->setNRVOCandidate(nullptr);
10024     }
10025   }
10026 }
10027 
canDelayFunctionBody(const Declarator & D)10028 bool Sema::canDelayFunctionBody(const Declarator &D) {
10029   // We can't delay parsing the body of a constexpr function template (yet).
10030   if (D.getDeclSpec().isConstexprSpecified())
10031     return false;
10032 
10033   // We can't delay parsing the body of a function template with a deduced
10034   // return type (yet).
10035   if (D.getDeclSpec().containsPlaceholderType()) {
10036     // If the placeholder introduces a non-deduced trailing return type,
10037     // we can still delay parsing it.
10038     if (D.getNumTypeObjects()) {
10039       const auto &Outer = D.getTypeObject(D.getNumTypeObjects() - 1);
10040       if (Outer.Kind == DeclaratorChunk::Function &&
10041           Outer.Fun.hasTrailingReturnType()) {
10042         QualType Ty = GetTypeFromParser(Outer.Fun.getTrailingReturnType());
10043         return Ty.isNull() || !Ty->isUndeducedType();
10044       }
10045     }
10046     return false;
10047   }
10048 
10049   return true;
10050 }
10051 
canSkipFunctionBody(Decl * D)10052 bool Sema::canSkipFunctionBody(Decl *D) {
10053   // We cannot skip the body of a function (or function template) which is
10054   // constexpr, since we may need to evaluate its body in order to parse the
10055   // rest of the file.
10056   // We cannot skip the body of a function with an undeduced return type,
10057   // because any callers of that function need to know the type.
10058   if (const FunctionDecl *FD = D->getAsFunction())
10059     if (FD->isConstexpr() || FD->getReturnType()->isUndeducedType())
10060       return false;
10061   return Consumer.shouldSkipFunctionBody(D);
10062 }
10063 
ActOnSkippedFunctionBody(Decl * Decl)10064 Decl *Sema::ActOnSkippedFunctionBody(Decl *Decl) {
10065   if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Decl))
10066     FD->setHasSkippedBody();
10067   else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(Decl))
10068     MD->setHasSkippedBody();
10069   return ActOnFinishFunctionBody(Decl, nullptr);
10070 }
10071 
ActOnFinishFunctionBody(Decl * D,Stmt * BodyArg)10072 Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
10073   return ActOnFinishFunctionBody(D, BodyArg, false);
10074 }
10075 
ActOnFinishFunctionBody(Decl * dcl,Stmt * Body,bool IsInstantiation)10076 Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
10077                                     bool IsInstantiation) {
10078   FunctionDecl *FD = dcl ? dcl->getAsFunction() : nullptr;
10079 
10080   sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
10081   sema::AnalysisBasedWarnings::Policy *ActivePolicy = nullptr;
10082 
10083   if (FD) {
10084     FD->setBody(Body);
10085 
10086     if (getLangOpts().CPlusPlus1y && !FD->isInvalidDecl() && Body &&
10087         !FD->isDependentContext() && FD->getReturnType()->isUndeducedType()) {
10088       // If the function has a deduced result type but contains no 'return'
10089       // statements, the result type as written must be exactly 'auto', and
10090       // the deduced result type is 'void'.
10091       if (!FD->getReturnType()->getAs<AutoType>()) {
10092         Diag(dcl->getLocation(), diag::err_auto_fn_no_return_but_not_auto)
10093             << FD->getReturnType();
10094         FD->setInvalidDecl();
10095       } else {
10096         // Substitute 'void' for the 'auto' in the type.
10097         TypeLoc ResultType = FD->getTypeSourceInfo()->getTypeLoc().
10098             IgnoreParens().castAs<FunctionProtoTypeLoc>().getReturnLoc();
10099         Context.adjustDeducedFunctionResultType(
10100             FD, SubstAutoType(ResultType.getType(), Context.VoidTy));
10101       }
10102     }
10103 
10104     // The only way to be included in UndefinedButUsed is if there is an
10105     // ODR use before the definition. Avoid the expensive map lookup if this
10106     // is the first declaration.
10107     if (!FD->isFirstDecl() && FD->getPreviousDecl()->isUsed()) {
10108       if (!FD->isExternallyVisible())
10109         UndefinedButUsed.erase(FD);
10110       else if (FD->isInlined() &&
10111                (LangOpts.CPlusPlus || !LangOpts.GNUInline) &&
10112                (!FD->getPreviousDecl()->hasAttr<GNUInlineAttr>()))
10113         UndefinedButUsed.erase(FD);
10114     }
10115 
10116     // If the function implicitly returns zero (like 'main') or is naked,
10117     // don't complain about missing return statements.
10118     if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
10119       WP.disableCheckFallThrough();
10120 
10121     // MSVC permits the use of pure specifier (=0) on function definition,
10122     // defined at class scope, warn about this non-standard construct.
10123     if (getLangOpts().MicrosoftExt && FD->isPure() && FD->isCanonicalDecl())
10124       Diag(FD->getLocation(), diag::warn_pure_function_definition);
10125 
10126     if (!FD->isInvalidDecl()) {
10127       // Don't diagnose unused parameters of defaulted or deleted functions.
10128       if (Body)
10129         DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
10130       DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
10131                                              FD->getReturnType(), FD);
10132 
10133       // If this is a constructor, we need a vtable.
10134       if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
10135         MarkVTableUsed(FD->getLocation(), Constructor->getParent());
10136 
10137       // Try to apply the named return value optimization. We have to check
10138       // if we can do this here because lambdas keep return statements around
10139       // to deduce an implicit return type.
10140       if (getLangOpts().CPlusPlus && FD->getReturnType()->isRecordType() &&
10141           !FD->isDependentContext())
10142         computeNRVO(Body, getCurFunction());
10143     }
10144 
10145     assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&
10146            "Function parsing confused");
10147   } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
10148     assert(MD == getCurMethodDecl() && "Method parsing confused");
10149     MD->setBody(Body);
10150     if (!MD->isInvalidDecl()) {
10151       DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
10152       DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
10153                                              MD->getReturnType(), MD);
10154 
10155       if (Body)
10156         computeNRVO(Body, getCurFunction());
10157     }
10158     if (getCurFunction()->ObjCShouldCallSuper) {
10159       Diag(MD->getLocEnd(), diag::warn_objc_missing_super_call)
10160         << MD->getSelector().getAsString();
10161       getCurFunction()->ObjCShouldCallSuper = false;
10162     }
10163     if (getCurFunction()->ObjCWarnForNoDesignatedInitChain) {
10164       const ObjCMethodDecl *InitMethod = nullptr;
10165       bool isDesignated =
10166           MD->isDesignatedInitializerForTheInterface(&InitMethod);
10167       assert(isDesignated && InitMethod);
10168       (void)isDesignated;
10169 
10170       auto superIsNSObject = [&](const ObjCMethodDecl *MD) {
10171         auto IFace = MD->getClassInterface();
10172         if (!IFace)
10173           return false;
10174         auto SuperD = IFace->getSuperClass();
10175         if (!SuperD)
10176           return false;
10177         return SuperD->getIdentifier() ==
10178             NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject);
10179       };
10180       // Don't issue this warning for unavailable inits or direct subclasses
10181       // of NSObject.
10182       if (!MD->isUnavailable() && !superIsNSObject(MD)) {
10183         Diag(MD->getLocation(),
10184              diag::warn_objc_designated_init_missing_super_call);
10185         Diag(InitMethod->getLocation(),
10186              diag::note_objc_designated_init_marked_here);
10187       }
10188       getCurFunction()->ObjCWarnForNoDesignatedInitChain = false;
10189     }
10190     if (getCurFunction()->ObjCWarnForNoInitDelegation) {
10191       // Don't issue this warning for unavaialable inits.
10192       if (!MD->isUnavailable())
10193         Diag(MD->getLocation(), diag::warn_objc_secondary_init_missing_init_call);
10194       getCurFunction()->ObjCWarnForNoInitDelegation = false;
10195     }
10196   } else {
10197     return nullptr;
10198   }
10199 
10200   assert(!getCurFunction()->ObjCShouldCallSuper &&
10201          "This should only be set for ObjC methods, which should have been "
10202          "handled in the block above.");
10203 
10204   // Verify and clean out per-function state.
10205   if (Body) {
10206     // C++ constructors that have function-try-blocks can't have return
10207     // statements in the handlers of that block. (C++ [except.handle]p14)
10208     // Verify this.
10209     if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
10210       DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
10211 
10212     // Verify that gotos and switch cases don't jump into scopes illegally.
10213     if (getCurFunction()->NeedsScopeChecking() &&
10214         !PP.isCodeCompletionEnabled())
10215       DiagnoseInvalidJumps(Body);
10216 
10217     if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
10218       if (!Destructor->getParent()->isDependentType())
10219         CheckDestructor(Destructor);
10220 
10221       MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
10222                                              Destructor->getParent());
10223     }
10224 
10225     // If any errors have occurred, clear out any temporaries that may have
10226     // been leftover. This ensures that these temporaries won't be picked up for
10227     // deletion in some later function.
10228     if (getDiagnostics().hasErrorOccurred() ||
10229         getDiagnostics().getSuppressAllDiagnostics()) {
10230       DiscardCleanupsInEvaluationContext();
10231     }
10232     if (!getDiagnostics().hasUncompilableErrorOccurred() &&
10233         !isa<FunctionTemplateDecl>(dcl)) {
10234       // Since the body is valid, issue any analysis-based warnings that are
10235       // enabled.
10236       ActivePolicy = &WP;
10237     }
10238 
10239     if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
10240         (!CheckConstexprFunctionDecl(FD) ||
10241          !CheckConstexprFunctionBody(FD, Body)))
10242       FD->setInvalidDecl();
10243 
10244     assert(ExprCleanupObjects.empty() && "Leftover temporaries in function");
10245     assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
10246     assert(MaybeODRUseExprs.empty() &&
10247            "Leftover expressions for odr-use checking");
10248   }
10249 
10250   if (!IsInstantiation)
10251     PopDeclContext();
10252 
10253   PopFunctionScopeInfo(ActivePolicy, dcl);
10254   // If any errors have occurred, clear out any temporaries that may have
10255   // been leftover. This ensures that these temporaries won't be picked up for
10256   // deletion in some later function.
10257   if (getDiagnostics().hasErrorOccurred()) {
10258     DiscardCleanupsInEvaluationContext();
10259   }
10260 
10261   return dcl;
10262 }
10263 
10264 
10265 /// When we finish delayed parsing of an attribute, we must attach it to the
10266 /// relevant Decl.
ActOnFinishDelayedAttribute(Scope * S,Decl * D,ParsedAttributes & Attrs)10267 void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
10268                                        ParsedAttributes &Attrs) {
10269   // Always attach attributes to the underlying decl.
10270   if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
10271     D = TD->getTemplatedDecl();
10272   ProcessDeclAttributeList(S, D, Attrs.getList());
10273 
10274   if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
10275     if (Method->isStatic())
10276       checkThisInStaticMemberFunctionAttributes(Method);
10277 }
10278 
10279 
10280 /// ImplicitlyDefineFunction - An undeclared identifier was used in a function
10281 /// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
ImplicitlyDefineFunction(SourceLocation Loc,IdentifierInfo & II,Scope * S)10282 NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
10283                                           IdentifierInfo &II, Scope *S) {
10284   // Before we produce a declaration for an implicitly defined
10285   // function, see whether there was a locally-scoped declaration of
10286   // this name as a function or variable. If so, use that
10287   // (non-visible) declaration, and complain about it.
10288   if (NamedDecl *ExternCPrev = findLocallyScopedExternCDecl(&II)) {
10289     Diag(Loc, diag::warn_use_out_of_scope_declaration) << ExternCPrev;
10290     Diag(ExternCPrev->getLocation(), diag::note_previous_declaration);
10291     return ExternCPrev;
10292   }
10293 
10294   // Extension in C99.  Legal in C90, but warn about it.
10295   unsigned diag_id;
10296   if (II.getName().startswith("__builtin_"))
10297     diag_id = diag::warn_builtin_unknown;
10298   else if (getLangOpts().C99)
10299     diag_id = diag::ext_implicit_function_decl;
10300   else
10301     diag_id = diag::warn_implicit_function_decl;
10302   Diag(Loc, diag_id) << &II;
10303 
10304   // Because typo correction is expensive, only do it if the implicit
10305   // function declaration is going to be treated as an error.
10306   if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
10307     TypoCorrection Corrected;
10308     DeclFilterCCC<FunctionDecl> Validator;
10309     if (S && (Corrected = CorrectTypo(DeclarationNameInfo(&II, Loc),
10310                                       LookupOrdinaryName, S, nullptr, Validator,
10311                                       CTK_NonError)))
10312       diagnoseTypo(Corrected, PDiag(diag::note_function_suggestion),
10313                    /*ErrorRecovery*/false);
10314   }
10315 
10316   // Set a Declarator for the implicit definition: int foo();
10317   const char *Dummy;
10318   AttributeFactory attrFactory;
10319   DeclSpec DS(attrFactory);
10320   unsigned DiagID;
10321   bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID,
10322                                   Context.getPrintingPolicy());
10323   (void)Error; // Silence warning.
10324   assert(!Error && "Error setting up implicit decl!");
10325   SourceLocation NoLoc;
10326   Declarator D(DS, Declarator::BlockContext);
10327   D.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false,
10328                                              /*IsAmbiguous=*/false,
10329                                              /*LParenLoc=*/NoLoc,
10330                                              /*Params=*/nullptr,
10331                                              /*NumParams=*/0,
10332                                              /*EllipsisLoc=*/NoLoc,
10333                                              /*RParenLoc=*/NoLoc,
10334                                              /*TypeQuals=*/0,
10335                                              /*RefQualifierIsLvalueRef=*/true,
10336                                              /*RefQualifierLoc=*/NoLoc,
10337                                              /*ConstQualifierLoc=*/NoLoc,
10338                                              /*VolatileQualifierLoc=*/NoLoc,
10339                                              /*MutableLoc=*/NoLoc,
10340                                              EST_None,
10341                                              /*ESpecLoc=*/NoLoc,
10342                                              /*Exceptions=*/nullptr,
10343                                              /*ExceptionRanges=*/nullptr,
10344                                              /*NumExceptions=*/0,
10345                                              /*NoexceptExpr=*/nullptr,
10346                                              Loc, Loc, D),
10347                 DS.getAttributes(),
10348                 SourceLocation());
10349   D.SetIdentifier(&II, Loc);
10350 
10351   // Insert this function into translation-unit scope.
10352 
10353   DeclContext *PrevDC = CurContext;
10354   CurContext = Context.getTranslationUnitDecl();
10355 
10356   FunctionDecl *FD = cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
10357   FD->setImplicit();
10358 
10359   CurContext = PrevDC;
10360 
10361   AddKnownFunctionAttributes(FD);
10362 
10363   return FD;
10364 }
10365 
10366 /// \brief Adds any function attributes that we know a priori based on
10367 /// the declaration of this function.
10368 ///
10369 /// These attributes can apply both to implicitly-declared builtins
10370 /// (like __builtin___printf_chk) or to library-declared functions
10371 /// like NSLog or printf.
10372 ///
10373 /// We need to check for duplicate attributes both here and where user-written
10374 /// attributes are applied to declarations.
AddKnownFunctionAttributes(FunctionDecl * FD)10375 void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
10376   if (FD->isInvalidDecl())
10377     return;
10378 
10379   // If this is a built-in function, map its builtin attributes to
10380   // actual attributes.
10381   if (unsigned BuiltinID = FD->getBuiltinID()) {
10382     // Handle printf-formatting attributes.
10383     unsigned FormatIdx;
10384     bool HasVAListArg;
10385     if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
10386       if (!FD->hasAttr<FormatAttr>()) {
10387         const char *fmt = "printf";
10388         unsigned int NumParams = FD->getNumParams();
10389         if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
10390             FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
10391           fmt = "NSString";
10392         FD->addAttr(FormatAttr::CreateImplicit(Context,
10393                                                &Context.Idents.get(fmt),
10394                                                FormatIdx+1,
10395                                                HasVAListArg ? 0 : FormatIdx+2,
10396                                                FD->getLocation()));
10397       }
10398     }
10399     if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
10400                                              HasVAListArg)) {
10401      if (!FD->hasAttr<FormatAttr>())
10402        FD->addAttr(FormatAttr::CreateImplicit(Context,
10403                                               &Context.Idents.get("scanf"),
10404                                               FormatIdx+1,
10405                                               HasVAListArg ? 0 : FormatIdx+2,
10406                                               FD->getLocation()));
10407     }
10408 
10409     // Mark const if we don't care about errno and that is the only
10410     // thing preventing the function from being const. This allows
10411     // IRgen to use LLVM intrinsics for such functions.
10412     if (!getLangOpts().MathErrno &&
10413         Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
10414       if (!FD->hasAttr<ConstAttr>())
10415         FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
10416     }
10417 
10418     if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
10419         !FD->hasAttr<ReturnsTwiceAttr>())
10420       FD->addAttr(ReturnsTwiceAttr::CreateImplicit(Context,
10421                                          FD->getLocation()));
10422     if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->hasAttr<NoThrowAttr>())
10423       FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation()));
10424     if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->hasAttr<ConstAttr>())
10425       FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
10426   }
10427 
10428   IdentifierInfo *Name = FD->getIdentifier();
10429   if (!Name)
10430     return;
10431   if ((!getLangOpts().CPlusPlus &&
10432        FD->getDeclContext()->isTranslationUnit()) ||
10433       (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
10434        cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
10435        LinkageSpecDecl::lang_c)) {
10436     // Okay: this could be a libc/libm/Objective-C function we know
10437     // about.
10438   } else
10439     return;
10440 
10441   if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
10442     // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
10443     // target-specific builtins, perhaps?
10444     if (!FD->hasAttr<FormatAttr>())
10445       FD->addAttr(FormatAttr::CreateImplicit(Context,
10446                                              &Context.Idents.get("printf"), 2,
10447                                              Name->isStr("vasprintf") ? 0 : 3,
10448                                              FD->getLocation()));
10449   }
10450 
10451   if (Name->isStr("__CFStringMakeConstantString")) {
10452     // We already have a __builtin___CFStringMakeConstantString,
10453     // but builds that use -fno-constant-cfstrings don't go through that.
10454     if (!FD->hasAttr<FormatArgAttr>())
10455       FD->addAttr(FormatArgAttr::CreateImplicit(Context, 1,
10456                                                 FD->getLocation()));
10457   }
10458 }
10459 
ParseTypedefDecl(Scope * S,Declarator & D,QualType T,TypeSourceInfo * TInfo)10460 TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
10461                                     TypeSourceInfo *TInfo) {
10462   assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
10463   assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
10464 
10465   if (!TInfo) {
10466     assert(D.isInvalidType() && "no declarator info for valid type");
10467     TInfo = Context.getTrivialTypeSourceInfo(T);
10468   }
10469 
10470   // Scope manipulation handled by caller.
10471   TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
10472                                            D.getLocStart(),
10473                                            D.getIdentifierLoc(),
10474                                            D.getIdentifier(),
10475                                            TInfo);
10476 
10477   // Bail out immediately if we have an invalid declaration.
10478   if (D.isInvalidType()) {
10479     NewTD->setInvalidDecl();
10480     return NewTD;
10481   }
10482 
10483   if (D.getDeclSpec().isModulePrivateSpecified()) {
10484     if (CurContext->isFunctionOrMethod())
10485       Diag(NewTD->getLocation(), diag::err_module_private_local)
10486         << 2 << NewTD->getDeclName()
10487         << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
10488         << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
10489     else
10490       NewTD->setModulePrivate();
10491   }
10492 
10493   // C++ [dcl.typedef]p8:
10494   //   If the typedef declaration defines an unnamed class (or
10495   //   enum), the first typedef-name declared by the declaration
10496   //   to be that class type (or enum type) is used to denote the
10497   //   class type (or enum type) for linkage purposes only.
10498   // We need to check whether the type was declared in the declaration.
10499   switch (D.getDeclSpec().getTypeSpecType()) {
10500   case TST_enum:
10501   case TST_struct:
10502   case TST_interface:
10503   case TST_union:
10504   case TST_class: {
10505     TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
10506 
10507     // Do nothing if the tag is not anonymous or already has an
10508     // associated typedef (from an earlier typedef in this decl group).
10509     if (tagFromDeclSpec->getIdentifier()) break;
10510     if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
10511 
10512     // A well-formed anonymous tag must always be a TUK_Definition.
10513     assert(tagFromDeclSpec->isThisDeclarationADefinition());
10514 
10515     // The type must match the tag exactly;  no qualifiers allowed.
10516     if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
10517       break;
10518 
10519     // If we've already computed linkage for the anonymous tag, then
10520     // adding a typedef name for the anonymous decl can change that
10521     // linkage, which might be a serious problem.  Diagnose this as
10522     // unsupported and ignore the typedef name.  TODO: we should
10523     // pursue this as a language defect and establish a formal rule
10524     // for how to handle it.
10525     if (tagFromDeclSpec->hasLinkageBeenComputed()) {
10526       Diag(D.getIdentifierLoc(), diag::err_typedef_changes_linkage);
10527 
10528       SourceLocation tagLoc = D.getDeclSpec().getTypeSpecTypeLoc();
10529       tagLoc = getLocForEndOfToken(tagLoc);
10530 
10531       llvm::SmallString<40> textToInsert;
10532       textToInsert += ' ';
10533       textToInsert += D.getIdentifier()->getName();
10534       Diag(tagLoc, diag::note_typedef_changes_linkage)
10535         << FixItHint::CreateInsertion(tagLoc, textToInsert);
10536       break;
10537     }
10538 
10539     // Otherwise, set this is the anon-decl typedef for the tag.
10540     tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
10541     break;
10542   }
10543 
10544   default:
10545     break;
10546   }
10547 
10548   return NewTD;
10549 }
10550 
10551 
10552 /// \brief Check that this is a valid underlying type for an enum declaration.
CheckEnumUnderlyingType(TypeSourceInfo * TI)10553 bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
10554   SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
10555   QualType T = TI->getType();
10556 
10557   if (T->isDependentType())
10558     return false;
10559 
10560   if (const BuiltinType *BT = T->getAs<BuiltinType>())
10561     if (BT->isInteger())
10562       return false;
10563 
10564   Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T;
10565   return true;
10566 }
10567 
10568 /// Check whether this is a valid redeclaration of a previous enumeration.
10569 /// \return true if the redeclaration was invalid.
CheckEnumRedeclaration(SourceLocation EnumLoc,bool IsScoped,QualType EnumUnderlyingTy,const EnumDecl * Prev)10570 bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
10571                                   QualType EnumUnderlyingTy,
10572                                   const EnumDecl *Prev) {
10573   bool IsFixed = !EnumUnderlyingTy.isNull();
10574 
10575   if (IsScoped != Prev->isScoped()) {
10576     Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
10577       << Prev->isScoped();
10578     Diag(Prev->getLocation(), diag::note_previous_declaration);
10579     return true;
10580   }
10581 
10582   if (IsFixed && Prev->isFixed()) {
10583     if (!EnumUnderlyingTy->isDependentType() &&
10584         !Prev->getIntegerType()->isDependentType() &&
10585         !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
10586                                         Prev->getIntegerType())) {
10587       // TODO: Highlight the underlying type of the redeclaration.
10588       Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
10589         << EnumUnderlyingTy << Prev->getIntegerType();
10590       Diag(Prev->getLocation(), diag::note_previous_declaration)
10591           << Prev->getIntegerTypeRange();
10592       return true;
10593     }
10594   } else if (IsFixed != Prev->isFixed()) {
10595     Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
10596       << Prev->isFixed();
10597     Diag(Prev->getLocation(), diag::note_previous_declaration);
10598     return true;
10599   }
10600 
10601   return false;
10602 }
10603 
10604 /// \brief Get diagnostic %select index for tag kind for
10605 /// redeclaration diagnostic message.
10606 /// WARNING: Indexes apply to particular diagnostics only!
10607 ///
10608 /// \returns diagnostic %select index.
getRedeclDiagFromTagKind(TagTypeKind Tag)10609 static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) {
10610   switch (Tag) {
10611   case TTK_Struct: return 0;
10612   case TTK_Interface: return 1;
10613   case TTK_Class:  return 2;
10614   default: llvm_unreachable("Invalid tag kind for redecl diagnostic!");
10615   }
10616 }
10617 
10618 /// \brief Determine if tag kind is a class-key compatible with
10619 /// class for redeclaration (class, struct, or __interface).
10620 ///
10621 /// \returns true iff the tag kind is compatible.
isClassCompatTagKind(TagTypeKind Tag)10622 static bool isClassCompatTagKind(TagTypeKind Tag)
10623 {
10624   return Tag == TTK_Struct || Tag == TTK_Class || Tag == TTK_Interface;
10625 }
10626 
10627 /// \brief Determine whether a tag with a given kind is acceptable
10628 /// as a redeclaration of the given tag declaration.
10629 ///
10630 /// \returns true if the new tag kind is acceptable, false otherwise.
isAcceptableTagRedeclaration(const TagDecl * Previous,TagTypeKind NewTag,bool isDefinition,SourceLocation NewTagLoc,const IdentifierInfo & Name)10631 bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
10632                                         TagTypeKind NewTag, bool isDefinition,
10633                                         SourceLocation NewTagLoc,
10634                                         const IdentifierInfo &Name) {
10635   // C++ [dcl.type.elab]p3:
10636   //   The class-key or enum keyword present in the
10637   //   elaborated-type-specifier shall agree in kind with the
10638   //   declaration to which the name in the elaborated-type-specifier
10639   //   refers. This rule also applies to the form of
10640   //   elaborated-type-specifier that declares a class-name or
10641   //   friend class since it can be construed as referring to the
10642   //   definition of the class. Thus, in any
10643   //   elaborated-type-specifier, the enum keyword shall be used to
10644   //   refer to an enumeration (7.2), the union class-key shall be
10645   //   used to refer to a union (clause 9), and either the class or
10646   //   struct class-key shall be used to refer to a class (clause 9)
10647   //   declared using the class or struct class-key.
10648   TagTypeKind OldTag = Previous->getTagKind();
10649   if (!isDefinition || !isClassCompatTagKind(NewTag))
10650     if (OldTag == NewTag)
10651       return true;
10652 
10653   if (isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag)) {
10654     // Warn about the struct/class tag mismatch.
10655     bool isTemplate = false;
10656     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
10657       isTemplate = Record->getDescribedClassTemplate();
10658 
10659     if (!ActiveTemplateInstantiations.empty()) {
10660       // In a template instantiation, do not offer fix-its for tag mismatches
10661       // since they usually mess up the template instead of fixing the problem.
10662       Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
10663         << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
10664         << getRedeclDiagFromTagKind(OldTag);
10665       return true;
10666     }
10667 
10668     if (isDefinition) {
10669       // On definitions, check previous tags and issue a fix-it for each
10670       // one that doesn't match the current tag.
10671       if (Previous->getDefinition()) {
10672         // Don't suggest fix-its for redefinitions.
10673         return true;
10674       }
10675 
10676       bool previousMismatch = false;
10677       for (auto I : Previous->redecls()) {
10678         if (I->getTagKind() != NewTag) {
10679           if (!previousMismatch) {
10680             previousMismatch = true;
10681             Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
10682               << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
10683               << getRedeclDiagFromTagKind(I->getTagKind());
10684           }
10685           Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
10686             << getRedeclDiagFromTagKind(NewTag)
10687             << FixItHint::CreateReplacement(I->getInnerLocStart(),
10688                  TypeWithKeyword::getTagTypeKindName(NewTag));
10689         }
10690       }
10691       return true;
10692     }
10693 
10694     // Check for a previous definition.  If current tag and definition
10695     // are same type, do nothing.  If no definition, but disagree with
10696     // with previous tag type, give a warning, but no fix-it.
10697     const TagDecl *Redecl = Previous->getDefinition() ?
10698                             Previous->getDefinition() : Previous;
10699     if (Redecl->getTagKind() == NewTag) {
10700       return true;
10701     }
10702 
10703     Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
10704       << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
10705       << getRedeclDiagFromTagKind(OldTag);
10706     Diag(Redecl->getLocation(), diag::note_previous_use);
10707 
10708     // If there is a previous definition, suggest a fix-it.
10709     if (Previous->getDefinition()) {
10710         Diag(NewTagLoc, diag::note_struct_class_suggestion)
10711           << getRedeclDiagFromTagKind(Redecl->getTagKind())
10712           << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
10713                TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind()));
10714     }
10715 
10716     return true;
10717   }
10718   return false;
10719 }
10720 
10721 /// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
10722 /// former case, Name will be non-null.  In the later case, Name will be null.
10723 /// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
10724 /// reference/declaration/definition of a tag.
10725 ///
10726 /// IsTypeSpecifier is true if this is a type-specifier (or
10727 /// trailing-type-specifier) other than one in an alias-declaration.
ActOnTag(Scope * S,unsigned TagSpec,TagUseKind TUK,SourceLocation KWLoc,CXXScopeSpec & SS,IdentifierInfo * Name,SourceLocation NameLoc,AttributeList * Attr,AccessSpecifier AS,SourceLocation ModulePrivateLoc,MultiTemplateParamsArg TemplateParameterLists,bool & OwnedDecl,bool & IsDependent,SourceLocation ScopedEnumKWLoc,bool ScopedEnumUsesClassTag,TypeResult UnderlyingType,bool IsTypeSpecifier)10728 Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
10729                      SourceLocation KWLoc, CXXScopeSpec &SS,
10730                      IdentifierInfo *Name, SourceLocation NameLoc,
10731                      AttributeList *Attr, AccessSpecifier AS,
10732                      SourceLocation ModulePrivateLoc,
10733                      MultiTemplateParamsArg TemplateParameterLists,
10734                      bool &OwnedDecl, bool &IsDependent,
10735                      SourceLocation ScopedEnumKWLoc,
10736                      bool ScopedEnumUsesClassTag,
10737                      TypeResult UnderlyingType,
10738                      bool IsTypeSpecifier) {
10739   // If this is not a definition, it must have a name.
10740   IdentifierInfo *OrigName = Name;
10741   assert((Name != nullptr || TUK == TUK_Definition) &&
10742          "Nameless record must be a definition!");
10743   assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
10744 
10745   OwnedDecl = false;
10746   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
10747   bool ScopedEnum = ScopedEnumKWLoc.isValid();
10748 
10749   // FIXME: Check explicit specializations more carefully.
10750   bool isExplicitSpecialization = false;
10751   bool Invalid = false;
10752 
10753   // We only need to do this matching if we have template parameters
10754   // or a scope specifier, which also conveniently avoids this work
10755   // for non-C++ cases.
10756   if (TemplateParameterLists.size() > 0 ||
10757       (SS.isNotEmpty() && TUK != TUK_Reference)) {
10758     if (TemplateParameterList *TemplateParams =
10759             MatchTemplateParametersToScopeSpecifier(
10760                 KWLoc, NameLoc, SS, nullptr, TemplateParameterLists,
10761                 TUK == TUK_Friend, isExplicitSpecialization, Invalid)) {
10762       if (Kind == TTK_Enum) {
10763         Diag(KWLoc, diag::err_enum_template);
10764         return nullptr;
10765       }
10766 
10767       if (TemplateParams->size() > 0) {
10768         // This is a declaration or definition of a class template (which may
10769         // be a member of another template).
10770 
10771         if (Invalid)
10772           return nullptr;
10773 
10774         OwnedDecl = false;
10775         DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
10776                                                SS, Name, NameLoc, Attr,
10777                                                TemplateParams, AS,
10778                                                ModulePrivateLoc,
10779                                                TemplateParameterLists.size()-1,
10780                                                TemplateParameterLists.data());
10781         return Result.get();
10782       } else {
10783         // The "template<>" header is extraneous.
10784         Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
10785           << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
10786         isExplicitSpecialization = true;
10787       }
10788     }
10789   }
10790 
10791   // Figure out the underlying type if this a enum declaration. We need to do
10792   // this early, because it's needed to detect if this is an incompatible
10793   // redeclaration.
10794   llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
10795 
10796   if (Kind == TTK_Enum) {
10797     if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
10798       // No underlying type explicitly specified, or we failed to parse the
10799       // type, default to int.
10800       EnumUnderlying = Context.IntTy.getTypePtr();
10801     else if (UnderlyingType.get()) {
10802       // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
10803       // integral type; any cv-qualification is ignored.
10804       TypeSourceInfo *TI = nullptr;
10805       GetTypeFromParser(UnderlyingType.get(), &TI);
10806       EnumUnderlying = TI;
10807 
10808       if (CheckEnumUnderlyingType(TI))
10809         // Recover by falling back to int.
10810         EnumUnderlying = Context.IntTy.getTypePtr();
10811 
10812       if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
10813                                           UPPC_FixedUnderlyingType))
10814         EnumUnderlying = Context.IntTy.getTypePtr();
10815 
10816     } else if (getLangOpts().MSVCCompat)
10817       // Microsoft enums are always of int type.
10818       EnumUnderlying = Context.IntTy.getTypePtr();
10819   }
10820 
10821   DeclContext *SearchDC = CurContext;
10822   DeclContext *DC = CurContext;
10823   bool isStdBadAlloc = false;
10824 
10825   RedeclarationKind Redecl = ForRedeclaration;
10826   if (TUK == TUK_Friend || TUK == TUK_Reference)
10827     Redecl = NotForRedeclaration;
10828 
10829   LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
10830   bool FriendSawTagOutsideEnclosingNamespace = false;
10831   if (Name && SS.isNotEmpty()) {
10832     // We have a nested-name tag ('struct foo::bar').
10833 
10834     // Check for invalid 'foo::'.
10835     if (SS.isInvalid()) {
10836       Name = nullptr;
10837       goto CreateNewDecl;
10838     }
10839 
10840     // If this is a friend or a reference to a class in a dependent
10841     // context, don't try to make a decl for it.
10842     if (TUK == TUK_Friend || TUK == TUK_Reference) {
10843       DC = computeDeclContext(SS, false);
10844       if (!DC) {
10845         IsDependent = true;
10846         return nullptr;
10847       }
10848     } else {
10849       DC = computeDeclContext(SS, true);
10850       if (!DC) {
10851         Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
10852           << SS.getRange();
10853         return nullptr;
10854       }
10855     }
10856 
10857     if (RequireCompleteDeclContext(SS, DC))
10858       return nullptr;
10859 
10860     SearchDC = DC;
10861     // Look-up name inside 'foo::'.
10862     LookupQualifiedName(Previous, DC);
10863 
10864     if (Previous.isAmbiguous())
10865       return nullptr;
10866 
10867     if (Previous.empty()) {
10868       // Name lookup did not find anything. However, if the
10869       // nested-name-specifier refers to the current instantiation,
10870       // and that current instantiation has any dependent base
10871       // classes, we might find something at instantiation time: treat
10872       // this as a dependent elaborated-type-specifier.
10873       // But this only makes any sense for reference-like lookups.
10874       if (Previous.wasNotFoundInCurrentInstantiation() &&
10875           (TUK == TUK_Reference || TUK == TUK_Friend)) {
10876         IsDependent = true;
10877         return nullptr;
10878       }
10879 
10880       // A tag 'foo::bar' must already exist.
10881       Diag(NameLoc, diag::err_not_tag_in_scope)
10882         << Kind << Name << DC << SS.getRange();
10883       Name = nullptr;
10884       Invalid = true;
10885       goto CreateNewDecl;
10886     }
10887   } else if (Name) {
10888     // If this is a named struct, check to see if there was a previous forward
10889     // declaration or definition.
10890     // FIXME: We're looking into outer scopes here, even when we
10891     // shouldn't be. Doing so can result in ambiguities that we
10892     // shouldn't be diagnosing.
10893     LookupName(Previous, S);
10894 
10895     // When declaring or defining a tag, ignore ambiguities introduced
10896     // by types using'ed into this scope.
10897     if (Previous.isAmbiguous() &&
10898         (TUK == TUK_Definition || TUK == TUK_Declaration)) {
10899       LookupResult::Filter F = Previous.makeFilter();
10900       while (F.hasNext()) {
10901         NamedDecl *ND = F.next();
10902         if (ND->getDeclContext()->getRedeclContext() != SearchDC)
10903           F.erase();
10904       }
10905       F.done();
10906     }
10907 
10908     // C++11 [namespace.memdef]p3:
10909     //   If the name in a friend declaration is neither qualified nor
10910     //   a template-id and the declaration is a function or an
10911     //   elaborated-type-specifier, the lookup to determine whether
10912     //   the entity has been previously declared shall not consider
10913     //   any scopes outside the innermost enclosing namespace.
10914     //
10915     // Does it matter that this should be by scope instead of by
10916     // semantic context?
10917     if (!Previous.empty() && TUK == TUK_Friend) {
10918       DeclContext *EnclosingNS = SearchDC->getEnclosingNamespaceContext();
10919       LookupResult::Filter F = Previous.makeFilter();
10920       while (F.hasNext()) {
10921         NamedDecl *ND = F.next();
10922         DeclContext *DC = ND->getDeclContext()->getRedeclContext();
10923         if (DC->isFileContext() &&
10924             !EnclosingNS->Encloses(ND->getDeclContext())) {
10925           F.erase();
10926           FriendSawTagOutsideEnclosingNamespace = true;
10927         }
10928       }
10929       F.done();
10930     }
10931 
10932     // Note:  there used to be some attempt at recovery here.
10933     if (Previous.isAmbiguous())
10934       return nullptr;
10935 
10936     if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
10937       // FIXME: This makes sure that we ignore the contexts associated
10938       // with C structs, unions, and enums when looking for a matching
10939       // tag declaration or definition. See the similar lookup tweak
10940       // in Sema::LookupName; is there a better way to deal with this?
10941       while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
10942         SearchDC = SearchDC->getParent();
10943     }
10944   }
10945 
10946   if (Previous.isSingleResult() &&
10947       Previous.getFoundDecl()->isTemplateParameter()) {
10948     // Maybe we will complain about the shadowed template parameter.
10949     DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
10950     // Just pretend that we didn't see the previous declaration.
10951     Previous.clear();
10952   }
10953 
10954   if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
10955       DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
10956     // This is a declaration of or a reference to "std::bad_alloc".
10957     isStdBadAlloc = true;
10958 
10959     if (Previous.empty() && StdBadAlloc) {
10960       // std::bad_alloc has been implicitly declared (but made invisible to
10961       // name lookup). Fill in this implicit declaration as the previous
10962       // declaration, so that the declarations get chained appropriately.
10963       Previous.addDecl(getStdBadAlloc());
10964     }
10965   }
10966 
10967   // If we didn't find a previous declaration, and this is a reference
10968   // (or friend reference), move to the correct scope.  In C++, we
10969   // also need to do a redeclaration lookup there, just in case
10970   // there's a shadow friend decl.
10971   if (Name && Previous.empty() &&
10972       (TUK == TUK_Reference || TUK == TUK_Friend)) {
10973     if (Invalid) goto CreateNewDecl;
10974     assert(SS.isEmpty());
10975 
10976     if (TUK == TUK_Reference) {
10977       // C++ [basic.scope.pdecl]p5:
10978       //   -- for an elaborated-type-specifier of the form
10979       //
10980       //          class-key identifier
10981       //
10982       //      if the elaborated-type-specifier is used in the
10983       //      decl-specifier-seq or parameter-declaration-clause of a
10984       //      function defined in namespace scope, the identifier is
10985       //      declared as a class-name in the namespace that contains
10986       //      the declaration; otherwise, except as a friend
10987       //      declaration, the identifier is declared in the smallest
10988       //      non-class, non-function-prototype scope that contains the
10989       //      declaration.
10990       //
10991       // C99 6.7.2.3p8 has a similar (but not identical!) provision for
10992       // C structs and unions.
10993       //
10994       // It is an error in C++ to declare (rather than define) an enum
10995       // type, including via an elaborated type specifier.  We'll
10996       // diagnose that later; for now, declare the enum in the same
10997       // scope as we would have picked for any other tag type.
10998       //
10999       // GNU C also supports this behavior as part of its incomplete
11000       // enum types extension, while GNU C++ does not.
11001       //
11002       // Find the context where we'll be declaring the tag.
11003       // FIXME: We would like to maintain the current DeclContext as the
11004       // lexical context,
11005       while (!SearchDC->isFileContext() && !SearchDC->isFunctionOrMethod())
11006         SearchDC = SearchDC->getParent();
11007 
11008       // Find the scope where we'll be declaring the tag.
11009       while (S->isClassScope() ||
11010              (getLangOpts().CPlusPlus &&
11011               S->isFunctionPrototypeScope()) ||
11012              ((S->getFlags() & Scope::DeclScope) == 0) ||
11013              (S->getEntity() && S->getEntity()->isTransparentContext()))
11014         S = S->getParent();
11015     } else {
11016       assert(TUK == TUK_Friend);
11017       // C++ [namespace.memdef]p3:
11018       //   If a friend declaration in a non-local class first declares a
11019       //   class or function, the friend class or function is a member of
11020       //   the innermost enclosing namespace.
11021       SearchDC = SearchDC->getEnclosingNamespaceContext();
11022     }
11023 
11024     // In C++, we need to do a redeclaration lookup to properly
11025     // diagnose some problems.
11026     if (getLangOpts().CPlusPlus) {
11027       Previous.setRedeclarationKind(ForRedeclaration);
11028       LookupQualifiedName(Previous, SearchDC);
11029     }
11030   }
11031 
11032   if (!Previous.empty()) {
11033     NamedDecl *PrevDecl = Previous.getFoundDecl();
11034     NamedDecl *DirectPrevDecl =
11035         getLangOpts().MSVCCompat ? *Previous.begin() : PrevDecl;
11036 
11037     // It's okay to have a tag decl in the same scope as a typedef
11038     // which hides a tag decl in the same scope.  Finding this
11039     // insanity with a redeclaration lookup can only actually happen
11040     // in C++.
11041     //
11042     // This is also okay for elaborated-type-specifiers, which is
11043     // technically forbidden by the current standard but which is
11044     // okay according to the likely resolution of an open issue;
11045     // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
11046     if (getLangOpts().CPlusPlus) {
11047       if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
11048         if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
11049           TagDecl *Tag = TT->getDecl();
11050           if (Tag->getDeclName() == Name &&
11051               Tag->getDeclContext()->getRedeclContext()
11052                           ->Equals(TD->getDeclContext()->getRedeclContext())) {
11053             PrevDecl = Tag;
11054             Previous.clear();
11055             Previous.addDecl(Tag);
11056             Previous.resolveKind();
11057           }
11058         }
11059       }
11060     }
11061 
11062     if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
11063       // If this is a use of a previous tag, or if the tag is already declared
11064       // in the same scope (so that the definition/declaration completes or
11065       // rementions the tag), reuse the decl.
11066       if (TUK == TUK_Reference || TUK == TUK_Friend ||
11067           isDeclInScope(DirectPrevDecl, SearchDC, S,
11068                         SS.isNotEmpty() || isExplicitSpecialization)) {
11069         // Make sure that this wasn't declared as an enum and now used as a
11070         // struct or something similar.
11071         if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
11072                                           TUK == TUK_Definition, KWLoc,
11073                                           *Name)) {
11074           bool SafeToContinue
11075             = (PrevTagDecl->getTagKind() != TTK_Enum &&
11076                Kind != TTK_Enum);
11077           if (SafeToContinue)
11078             Diag(KWLoc, diag::err_use_with_wrong_tag)
11079               << Name
11080               << FixItHint::CreateReplacement(SourceRange(KWLoc),
11081                                               PrevTagDecl->getKindName());
11082           else
11083             Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
11084           Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
11085 
11086           if (SafeToContinue)
11087             Kind = PrevTagDecl->getTagKind();
11088           else {
11089             // Recover by making this an anonymous redefinition.
11090             Name = nullptr;
11091             Previous.clear();
11092             Invalid = true;
11093           }
11094         }
11095 
11096         if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
11097           const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
11098 
11099           // If this is an elaborated-type-specifier for a scoped enumeration,
11100           // the 'class' keyword is not necessary and not permitted.
11101           if (TUK == TUK_Reference || TUK == TUK_Friend) {
11102             if (ScopedEnum)
11103               Diag(ScopedEnumKWLoc, diag::err_enum_class_reference)
11104                 << PrevEnum->isScoped()
11105                 << FixItHint::CreateRemoval(ScopedEnumKWLoc);
11106             return PrevTagDecl;
11107           }
11108 
11109           QualType EnumUnderlyingTy;
11110           if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
11111             EnumUnderlyingTy = TI->getType().getUnqualifiedType();
11112           else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
11113             EnumUnderlyingTy = QualType(T, 0);
11114 
11115           // All conflicts with previous declarations are recovered by
11116           // returning the previous declaration, unless this is a definition,
11117           // in which case we want the caller to bail out.
11118           if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
11119                                      ScopedEnum, EnumUnderlyingTy, PrevEnum))
11120             return TUK == TUK_Declaration ? PrevTagDecl : nullptr;
11121         }
11122 
11123         // C++11 [class.mem]p1:
11124         //   A member shall not be declared twice in the member-specification,
11125         //   except that a nested class or member class template can be declared
11126         //   and then later defined.
11127         if (TUK == TUK_Declaration && PrevDecl->isCXXClassMember() &&
11128             S->isDeclScope(PrevDecl)) {
11129           Diag(NameLoc, diag::ext_member_redeclared);
11130           Diag(PrevTagDecl->getLocation(), diag::note_previous_declaration);
11131         }
11132 
11133         if (!Invalid) {
11134           // If this is a use, just return the declaration we found, unless
11135           // we have attributes.
11136 
11137           // FIXME: In the future, return a variant or some other clue
11138           // for the consumer of this Decl to know it doesn't own it.
11139           // For our current ASTs this shouldn't be a problem, but will
11140           // need to be changed with DeclGroups.
11141           if (!Attr &&
11142               ((TUK == TUK_Reference &&
11143                 (!PrevTagDecl->getFriendObjectKind() || getLangOpts().MicrosoftExt))
11144                || TUK == TUK_Friend))
11145             return PrevTagDecl;
11146 
11147           // Diagnose attempts to redefine a tag.
11148           if (TUK == TUK_Definition) {
11149             if (TagDecl *Def = PrevTagDecl->getDefinition()) {
11150               // If we're defining a specialization and the previous definition
11151               // is from an implicit instantiation, don't emit an error
11152               // here; we'll catch this in the general case below.
11153               bool IsExplicitSpecializationAfterInstantiation = false;
11154               if (isExplicitSpecialization) {
11155                 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
11156                   IsExplicitSpecializationAfterInstantiation =
11157                     RD->getTemplateSpecializationKind() !=
11158                     TSK_ExplicitSpecialization;
11159                 else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
11160                   IsExplicitSpecializationAfterInstantiation =
11161                     ED->getTemplateSpecializationKind() !=
11162                     TSK_ExplicitSpecialization;
11163               }
11164 
11165               if (!IsExplicitSpecializationAfterInstantiation) {
11166                 // A redeclaration in function prototype scope in C isn't
11167                 // visible elsewhere, so merely issue a warning.
11168                 if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
11169                   Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
11170                 else
11171                   Diag(NameLoc, diag::err_redefinition) << Name;
11172                 Diag(Def->getLocation(), diag::note_previous_definition);
11173                 // If this is a redefinition, recover by making this
11174                 // struct be anonymous, which will make any later
11175                 // references get the previous definition.
11176                 Name = nullptr;
11177                 Previous.clear();
11178                 Invalid = true;
11179               }
11180             } else {
11181               // If the type is currently being defined, complain
11182               // about a nested redefinition.
11183               const TagType *Tag
11184                 = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
11185               if (Tag->isBeingDefined()) {
11186                 Diag(NameLoc, diag::err_nested_redefinition) << Name;
11187                 Diag(PrevTagDecl->getLocation(),
11188                      diag::note_previous_definition);
11189                 Name = nullptr;
11190                 Previous.clear();
11191                 Invalid = true;
11192               }
11193             }
11194 
11195             // Okay, this is definition of a previously declared or referenced
11196             // tag. We're going to create a new Decl for it.
11197           }
11198 
11199           // Okay, we're going to make a redeclaration.  If this is some kind
11200           // of reference, make sure we build the redeclaration in the same DC
11201           // as the original, and ignore the current access specifier.
11202           if (TUK == TUK_Friend || TUK == TUK_Reference) {
11203             SearchDC = PrevTagDecl->getDeclContext();
11204             AS = AS_none;
11205           }
11206         }
11207         // If we get here we have (another) forward declaration or we
11208         // have a definition.  Just create a new decl.
11209 
11210       } else {
11211         // If we get here, this is a definition of a new tag type in a nested
11212         // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
11213         // new decl/type.  We set PrevDecl to NULL so that the entities
11214         // have distinct types.
11215         Previous.clear();
11216       }
11217       // If we get here, we're going to create a new Decl. If PrevDecl
11218       // is non-NULL, it's a definition of the tag declared by
11219       // PrevDecl. If it's NULL, we have a new definition.
11220 
11221 
11222     // Otherwise, PrevDecl is not a tag, but was found with tag
11223     // lookup.  This is only actually possible in C++, where a few
11224     // things like templates still live in the tag namespace.
11225     } else {
11226       // Use a better diagnostic if an elaborated-type-specifier
11227       // found the wrong kind of type on the first
11228       // (non-redeclaration) lookup.
11229       if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
11230           !Previous.isForRedeclaration()) {
11231         unsigned Kind = 0;
11232         if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
11233         else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
11234         else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
11235         Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
11236         Diag(PrevDecl->getLocation(), diag::note_declared_at);
11237         Invalid = true;
11238 
11239       // Otherwise, only diagnose if the declaration is in scope.
11240       } else if (!isDeclInScope(PrevDecl, SearchDC, S,
11241                                 SS.isNotEmpty() || isExplicitSpecialization)) {
11242         // do nothing
11243 
11244       // Diagnose implicit declarations introduced by elaborated types.
11245       } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
11246         unsigned Kind = 0;
11247         if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
11248         else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
11249         else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
11250         Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
11251         Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
11252         Invalid = true;
11253 
11254       // Otherwise it's a declaration.  Call out a particularly common
11255       // case here.
11256       } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
11257         unsigned Kind = 0;
11258         if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
11259         Diag(NameLoc, diag::err_tag_definition_of_typedef)
11260           << Name << Kind << TND->getUnderlyingType();
11261         Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
11262         Invalid = true;
11263 
11264       // Otherwise, diagnose.
11265       } else {
11266         // The tag name clashes with something else in the target scope,
11267         // issue an error and recover by making this tag be anonymous.
11268         Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
11269         Diag(PrevDecl->getLocation(), diag::note_previous_definition);
11270         Name = nullptr;
11271         Invalid = true;
11272       }
11273 
11274       // The existing declaration isn't relevant to us; we're in a
11275       // new scope, so clear out the previous declaration.
11276       Previous.clear();
11277     }
11278   }
11279 
11280 CreateNewDecl:
11281 
11282   TagDecl *PrevDecl = nullptr;
11283   if (Previous.isSingleResult())
11284     PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
11285 
11286   // If there is an identifier, use the location of the identifier as the
11287   // location of the decl, otherwise use the location of the struct/union
11288   // keyword.
11289   SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
11290 
11291   // Otherwise, create a new declaration. If there is a previous
11292   // declaration of the same entity, the two will be linked via
11293   // PrevDecl.
11294   TagDecl *New;
11295 
11296   bool IsForwardReference = false;
11297   if (Kind == TTK_Enum) {
11298     // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
11299     // enum X { A, B, C } D;    D should chain to X.
11300     New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
11301                            cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
11302                            ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
11303     // If this is an undefined enum, warn.
11304     if (TUK != TUK_Definition && !Invalid) {
11305       TagDecl *Def;
11306       if ((getLangOpts().CPlusPlus11 || getLangOpts().ObjC2) &&
11307           cast<EnumDecl>(New)->isFixed()) {
11308         // C++0x: 7.2p2: opaque-enum-declaration.
11309         // Conflicts are diagnosed above. Do nothing.
11310       }
11311       else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
11312         Diag(Loc, diag::ext_forward_ref_enum_def)
11313           << New;
11314         Diag(Def->getLocation(), diag::note_previous_definition);
11315       } else {
11316         unsigned DiagID = diag::ext_forward_ref_enum;
11317         if (getLangOpts().MSVCCompat)
11318           DiagID = diag::ext_ms_forward_ref_enum;
11319         else if (getLangOpts().CPlusPlus)
11320           DiagID = diag::err_forward_ref_enum;
11321         Diag(Loc, DiagID);
11322 
11323         // If this is a forward-declared reference to an enumeration, make a
11324         // note of it; we won't actually be introducing the declaration into
11325         // the declaration context.
11326         if (TUK == TUK_Reference)
11327           IsForwardReference = true;
11328       }
11329     }
11330 
11331     if (EnumUnderlying) {
11332       EnumDecl *ED = cast<EnumDecl>(New);
11333       if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
11334         ED->setIntegerTypeSourceInfo(TI);
11335       else
11336         ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
11337       ED->setPromotionType(ED->getIntegerType());
11338     }
11339 
11340   } else {
11341     // struct/union/class
11342 
11343     // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
11344     // struct X { int A; } D;    D should chain to X.
11345     if (getLangOpts().CPlusPlus) {
11346       // FIXME: Look for a way to use RecordDecl for simple structs.
11347       New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
11348                                   cast_or_null<CXXRecordDecl>(PrevDecl));
11349 
11350       if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
11351         StdBadAlloc = cast<CXXRecordDecl>(New);
11352     } else
11353       New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
11354                                cast_or_null<RecordDecl>(PrevDecl));
11355   }
11356 
11357   // C++11 [dcl.type]p3:
11358   //   A type-specifier-seq shall not define a class or enumeration [...].
11359   if (getLangOpts().CPlusPlus && IsTypeSpecifier && TUK == TUK_Definition) {
11360     Diag(New->getLocation(), diag::err_type_defined_in_type_specifier)
11361       << Context.getTagDeclType(New);
11362     Invalid = true;
11363   }
11364 
11365   // Maybe add qualifier info.
11366   if (SS.isNotEmpty()) {
11367     if (SS.isSet()) {
11368       // If this is either a declaration or a definition, check the
11369       // nested-name-specifier against the current context. We don't do this
11370       // for explicit specializations, because they have similar checking
11371       // (with more specific diagnostics) in the call to
11372       // CheckMemberSpecialization, below.
11373       if (!isExplicitSpecialization &&
11374           (TUK == TUK_Definition || TUK == TUK_Declaration) &&
11375           diagnoseQualifiedDeclaration(SS, DC, OrigName, NameLoc))
11376         Invalid = true;
11377 
11378       New->setQualifierInfo(SS.getWithLocInContext(Context));
11379       if (TemplateParameterLists.size() > 0) {
11380         New->setTemplateParameterListsInfo(Context,
11381                                            TemplateParameterLists.size(),
11382                                            TemplateParameterLists.data());
11383       }
11384     }
11385     else
11386       Invalid = true;
11387   }
11388 
11389   if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
11390     // Add alignment attributes if necessary; these attributes are checked when
11391     // the ASTContext lays out the structure.
11392     //
11393     // It is important for implementing the correct semantics that this
11394     // happen here (in act on tag decl). The #pragma pack stack is
11395     // maintained as a result of parser callbacks which can occur at
11396     // many points during the parsing of a struct declaration (because
11397     // the #pragma tokens are effectively skipped over during the
11398     // parsing of the struct).
11399     if (TUK == TUK_Definition) {
11400       AddAlignmentAttributesForRecord(RD);
11401       AddMsStructLayoutForRecord(RD);
11402     }
11403   }
11404 
11405   if (ModulePrivateLoc.isValid()) {
11406     if (isExplicitSpecialization)
11407       Diag(New->getLocation(), diag::err_module_private_specialization)
11408         << 2
11409         << FixItHint::CreateRemoval(ModulePrivateLoc);
11410     // __module_private__ does not apply to local classes. However, we only
11411     // diagnose this as an error when the declaration specifiers are
11412     // freestanding. Here, we just ignore the __module_private__.
11413     else if (!SearchDC->isFunctionOrMethod())
11414       New->setModulePrivate();
11415   }
11416 
11417   // If this is a specialization of a member class (of a class template),
11418   // check the specialization.
11419   if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
11420     Invalid = true;
11421 
11422   // If we're declaring or defining a tag in function prototype scope in C,
11423   // note that this type can only be used within the function and add it to
11424   // the list of decls to inject into the function definition scope.
11425   if ((Name || Kind == TTK_Enum) &&
11426       getNonFieldDeclScope(S)->isFunctionPrototypeScope()) {
11427     if (getLangOpts().CPlusPlus) {
11428       // C++ [dcl.fct]p6:
11429       //   Types shall not be defined in return or parameter types.
11430       if (TUK == TUK_Definition && !IsTypeSpecifier) {
11431         Diag(Loc, diag::err_type_defined_in_param_type)
11432             << Name;
11433         Invalid = true;
11434       }
11435     } else {
11436       Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
11437     }
11438     DeclsInPrototypeScope.push_back(New);
11439   }
11440 
11441   if (Invalid)
11442     New->setInvalidDecl();
11443 
11444   if (Attr)
11445     ProcessDeclAttributeList(S, New, Attr);
11446 
11447   // Set the lexical context. If the tag has a C++ scope specifier, the
11448   // lexical context will be different from the semantic context.
11449   New->setLexicalDeclContext(CurContext);
11450 
11451   // Mark this as a friend decl if applicable.
11452   // In Microsoft mode, a friend declaration also acts as a forward
11453   // declaration so we always pass true to setObjectOfFriendDecl to make
11454   // the tag name visible.
11455   if (TUK == TUK_Friend)
11456     New->setObjectOfFriendDecl(!FriendSawTagOutsideEnclosingNamespace &&
11457                                getLangOpts().MicrosoftExt);
11458 
11459   // Set the access specifier.
11460   if (!Invalid && SearchDC->isRecord())
11461     SetMemberAccessSpecifier(New, PrevDecl, AS);
11462 
11463   if (TUK == TUK_Definition)
11464     New->startDefinition();
11465 
11466   // If this has an identifier, add it to the scope stack.
11467   if (TUK == TUK_Friend) {
11468     // We might be replacing an existing declaration in the lookup tables;
11469     // if so, borrow its access specifier.
11470     if (PrevDecl)
11471       New->setAccess(PrevDecl->getAccess());
11472 
11473     DeclContext *DC = New->getDeclContext()->getRedeclContext();
11474     DC->makeDeclVisibleInContext(New);
11475     if (Name) // can be null along some error paths
11476       if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
11477         PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
11478   } else if (Name) {
11479     S = getNonFieldDeclScope(S);
11480     PushOnScopeChains(New, S, !IsForwardReference);
11481     if (IsForwardReference)
11482       SearchDC->makeDeclVisibleInContext(New);
11483 
11484   } else {
11485     CurContext->addDecl(New);
11486   }
11487 
11488   // If this is the C FILE type, notify the AST context.
11489   if (IdentifierInfo *II = New->getIdentifier())
11490     if (!New->isInvalidDecl() &&
11491         New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
11492         II->isStr("FILE"))
11493       Context.setFILEDecl(New);
11494 
11495   if (PrevDecl)
11496     mergeDeclAttributes(New, PrevDecl);
11497 
11498   // If there's a #pragma GCC visibility in scope, set the visibility of this
11499   // record.
11500   AddPushedVisibilityAttribute(New);
11501 
11502   OwnedDecl = true;
11503   // In C++, don't return an invalid declaration. We can't recover well from
11504   // the cases where we make the type anonymous.
11505   return (Invalid && getLangOpts().CPlusPlus) ? nullptr : New;
11506 }
11507 
ActOnTagStartDefinition(Scope * S,Decl * TagD)11508 void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
11509   AdjustDeclIfTemplate(TagD);
11510   TagDecl *Tag = cast<TagDecl>(TagD);
11511 
11512   // Enter the tag context.
11513   PushDeclContext(S, Tag);
11514 
11515   ActOnDocumentableDecl(TagD);
11516 
11517   // If there's a #pragma GCC visibility in scope, set the visibility of this
11518   // record.
11519   AddPushedVisibilityAttribute(Tag);
11520 }
11521 
ActOnObjCContainerStartDefinition(Decl * IDecl)11522 Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
11523   assert(isa<ObjCContainerDecl>(IDecl) &&
11524          "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
11525   DeclContext *OCD = cast<DeclContext>(IDecl);
11526   assert(getContainingDC(OCD) == CurContext &&
11527       "The next DeclContext should be lexically contained in the current one.");
11528   CurContext = OCD;
11529   return IDecl;
11530 }
11531 
ActOnStartCXXMemberDeclarations(Scope * S,Decl * TagD,SourceLocation FinalLoc,bool IsFinalSpelledSealed,SourceLocation LBraceLoc)11532 void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
11533                                            SourceLocation FinalLoc,
11534                                            bool IsFinalSpelledSealed,
11535                                            SourceLocation LBraceLoc) {
11536   AdjustDeclIfTemplate(TagD);
11537   CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
11538 
11539   FieldCollector->StartClass();
11540 
11541   if (!Record->getIdentifier())
11542     return;
11543 
11544   if (FinalLoc.isValid())
11545     Record->addAttr(new (Context)
11546                     FinalAttr(FinalLoc, Context, IsFinalSpelledSealed));
11547 
11548   // C++ [class]p2:
11549   //   [...] The class-name is also inserted into the scope of the
11550   //   class itself; this is known as the injected-class-name. For
11551   //   purposes of access checking, the injected-class-name is treated
11552   //   as if it were a public member name.
11553   CXXRecordDecl *InjectedClassName
11554     = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
11555                             Record->getLocStart(), Record->getLocation(),
11556                             Record->getIdentifier(),
11557                             /*PrevDecl=*/nullptr,
11558                             /*DelayTypeCreation=*/true);
11559   Context.getTypeDeclType(InjectedClassName, Record);
11560   InjectedClassName->setImplicit();
11561   InjectedClassName->setAccess(AS_public);
11562   if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
11563       InjectedClassName->setDescribedClassTemplate(Template);
11564   PushOnScopeChains(InjectedClassName, S);
11565   assert(InjectedClassName->isInjectedClassName() &&
11566          "Broken injected-class-name");
11567 }
11568 
ActOnTagFinishDefinition(Scope * S,Decl * TagD,SourceLocation RBraceLoc)11569 void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
11570                                     SourceLocation RBraceLoc) {
11571   AdjustDeclIfTemplate(TagD);
11572   TagDecl *Tag = cast<TagDecl>(TagD);
11573   Tag->setRBraceLoc(RBraceLoc);
11574 
11575   // Make sure we "complete" the definition even it is invalid.
11576   if (Tag->isBeingDefined()) {
11577     assert(Tag->isInvalidDecl() && "We should already have completed it");
11578     if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
11579       RD->completeDefinition();
11580   }
11581 
11582   if (isa<CXXRecordDecl>(Tag))
11583     FieldCollector->FinishClass();
11584 
11585   // Exit this scope of this tag's definition.
11586   PopDeclContext();
11587 
11588   if (getCurLexicalContext()->isObjCContainer() &&
11589       Tag->getDeclContext()->isFileContext())
11590     Tag->setTopLevelDeclInObjCContainer();
11591 
11592   // Notify the consumer that we've defined a tag.
11593   if (!Tag->isInvalidDecl())
11594     Consumer.HandleTagDeclDefinition(Tag);
11595 }
11596 
ActOnObjCContainerFinishDefinition()11597 void Sema::ActOnObjCContainerFinishDefinition() {
11598   // Exit this scope of this interface definition.
11599   PopDeclContext();
11600 }
11601 
ActOnObjCTemporaryExitContainerContext(DeclContext * DC)11602 void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
11603   assert(DC == CurContext && "Mismatch of container contexts");
11604   OriginalLexicalContext = DC;
11605   ActOnObjCContainerFinishDefinition();
11606 }
11607 
ActOnObjCReenterContainerContext(DeclContext * DC)11608 void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
11609   ActOnObjCContainerStartDefinition(cast<Decl>(DC));
11610   OriginalLexicalContext = nullptr;
11611 }
11612 
ActOnTagDefinitionError(Scope * S,Decl * TagD)11613 void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
11614   AdjustDeclIfTemplate(TagD);
11615   TagDecl *Tag = cast<TagDecl>(TagD);
11616   Tag->setInvalidDecl();
11617 
11618   // Make sure we "complete" the definition even it is invalid.
11619   if (Tag->isBeingDefined()) {
11620     if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
11621       RD->completeDefinition();
11622   }
11623 
11624   // We're undoing ActOnTagStartDefinition here, not
11625   // ActOnStartCXXMemberDeclarations, so we don't have to mess with
11626   // the FieldCollector.
11627 
11628   PopDeclContext();
11629 }
11630 
11631 // Note that FieldName may be null for anonymous bitfields.
VerifyBitField(SourceLocation FieldLoc,IdentifierInfo * FieldName,QualType FieldTy,bool IsMsStruct,Expr * BitWidth,bool * ZeroWidth)11632 ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
11633                                 IdentifierInfo *FieldName,
11634                                 QualType FieldTy, bool IsMsStruct,
11635                                 Expr *BitWidth, bool *ZeroWidth) {
11636   // Default to true; that shouldn't confuse checks for emptiness
11637   if (ZeroWidth)
11638     *ZeroWidth = true;
11639 
11640   // C99 6.7.2.1p4 - verify the field type.
11641   // C++ 9.6p3: A bit-field shall have integral or enumeration type.
11642   if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
11643     // Handle incomplete types with specific error.
11644     if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
11645       return ExprError();
11646     if (FieldName)
11647       return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
11648         << FieldName << FieldTy << BitWidth->getSourceRange();
11649     return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
11650       << FieldTy << BitWidth->getSourceRange();
11651   } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
11652                                              UPPC_BitFieldWidth))
11653     return ExprError();
11654 
11655   // If the bit-width is type- or value-dependent, don't try to check
11656   // it now.
11657   if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
11658     return BitWidth;
11659 
11660   llvm::APSInt Value;
11661   ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value);
11662   if (ICE.isInvalid())
11663     return ICE;
11664   BitWidth = ICE.get();
11665 
11666   if (Value != 0 && ZeroWidth)
11667     *ZeroWidth = false;
11668 
11669   // Zero-width bitfield is ok for anonymous field.
11670   if (Value == 0 && FieldName)
11671     return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
11672 
11673   if (Value.isSigned() && Value.isNegative()) {
11674     if (FieldName)
11675       return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
11676                << FieldName << Value.toString(10);
11677     return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
11678       << Value.toString(10);
11679   }
11680 
11681   if (!FieldTy->isDependentType()) {
11682     uint64_t TypeSize = Context.getTypeSize(FieldTy);
11683     if (Value.getZExtValue() > TypeSize) {
11684       if (!getLangOpts().CPlusPlus || IsMsStruct ||
11685           Context.getTargetInfo().getCXXABI().isMicrosoft()) {
11686         if (FieldName)
11687           return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
11688             << FieldName << (unsigned)Value.getZExtValue()
11689             << (unsigned)TypeSize;
11690 
11691         return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
11692           << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
11693       }
11694 
11695       if (FieldName)
11696         Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
11697           << FieldName << (unsigned)Value.getZExtValue()
11698           << (unsigned)TypeSize;
11699       else
11700         Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
11701           << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
11702     }
11703   }
11704 
11705   return BitWidth;
11706 }
11707 
11708 /// ActOnField - Each field of a C struct/union is passed into this in order
11709 /// to create a FieldDecl object for it.
ActOnField(Scope * S,Decl * TagD,SourceLocation DeclStart,Declarator & D,Expr * BitfieldWidth)11710 Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
11711                        Declarator &D, Expr *BitfieldWidth) {
11712   FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
11713                                DeclStart, D, static_cast<Expr*>(BitfieldWidth),
11714                                /*InitStyle=*/ICIS_NoInit, AS_public);
11715   return Res;
11716 }
11717 
11718 /// HandleField - Analyze a field of a C struct or a C++ data member.
11719 ///
HandleField(Scope * S,RecordDecl * Record,SourceLocation DeclStart,Declarator & D,Expr * BitWidth,InClassInitStyle InitStyle,AccessSpecifier AS)11720 FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
11721                              SourceLocation DeclStart,
11722                              Declarator &D, Expr *BitWidth,
11723                              InClassInitStyle InitStyle,
11724                              AccessSpecifier AS) {
11725   IdentifierInfo *II = D.getIdentifier();
11726   SourceLocation Loc = DeclStart;
11727   if (II) Loc = D.getIdentifierLoc();
11728 
11729   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
11730   QualType T = TInfo->getType();
11731   if (getLangOpts().CPlusPlus) {
11732     CheckExtraCXXDefaultArguments(D);
11733 
11734     if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
11735                                         UPPC_DataMemberType)) {
11736       D.setInvalidType();
11737       T = Context.IntTy;
11738       TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
11739     }
11740   }
11741 
11742   // TR 18037 does not allow fields to be declared with address spaces.
11743   if (T.getQualifiers().hasAddressSpace()) {
11744     Diag(Loc, diag::err_field_with_address_space);
11745     D.setInvalidType();
11746   }
11747 
11748   // OpenCL 1.2 spec, s6.9 r:
11749   // The event type cannot be used to declare a structure or union field.
11750   if (LangOpts.OpenCL && T->isEventT()) {
11751     Diag(Loc, diag::err_event_t_struct_field);
11752     D.setInvalidType();
11753   }
11754 
11755   DiagnoseFunctionSpecifiers(D.getDeclSpec());
11756 
11757   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
11758     Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
11759          diag::err_invalid_thread)
11760       << DeclSpec::getSpecifierName(TSCS);
11761 
11762   // Check to see if this name was declared as a member previously
11763   NamedDecl *PrevDecl = nullptr;
11764   LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
11765   LookupName(Previous, S);
11766   switch (Previous.getResultKind()) {
11767     case LookupResult::Found:
11768     case LookupResult::FoundUnresolvedValue:
11769       PrevDecl = Previous.getAsSingle<NamedDecl>();
11770       break;
11771 
11772     case LookupResult::FoundOverloaded:
11773       PrevDecl = Previous.getRepresentativeDecl();
11774       break;
11775 
11776     case LookupResult::NotFound:
11777     case LookupResult::NotFoundInCurrentInstantiation:
11778     case LookupResult::Ambiguous:
11779       break;
11780   }
11781   Previous.suppressDiagnostics();
11782 
11783   if (PrevDecl && PrevDecl->isTemplateParameter()) {
11784     // Maybe we will complain about the shadowed template parameter.
11785     DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
11786     // Just pretend that we didn't see the previous declaration.
11787     PrevDecl = nullptr;
11788   }
11789 
11790   if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
11791     PrevDecl = nullptr;
11792 
11793   bool Mutable
11794     = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
11795   SourceLocation TSSL = D.getLocStart();
11796   FieldDecl *NewFD
11797     = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle,
11798                      TSSL, AS, PrevDecl, &D);
11799 
11800   if (NewFD->isInvalidDecl())
11801     Record->setInvalidDecl();
11802 
11803   if (D.getDeclSpec().isModulePrivateSpecified())
11804     NewFD->setModulePrivate();
11805 
11806   if (NewFD->isInvalidDecl() && PrevDecl) {
11807     // Don't introduce NewFD into scope; there's already something
11808     // with the same name in the same scope.
11809   } else if (II) {
11810     PushOnScopeChains(NewFD, S);
11811   } else
11812     Record->addDecl(NewFD);
11813 
11814   return NewFD;
11815 }
11816 
11817 /// \brief Build a new FieldDecl and check its well-formedness.
11818 ///
11819 /// This routine builds a new FieldDecl given the fields name, type,
11820 /// record, etc. \p PrevDecl should refer to any previous declaration
11821 /// with the same name and in the same scope as the field to be
11822 /// created.
11823 ///
11824 /// \returns a new FieldDecl.
11825 ///
11826 /// \todo The Declarator argument is a hack. It will be removed once
CheckFieldDecl(DeclarationName Name,QualType T,TypeSourceInfo * TInfo,RecordDecl * Record,SourceLocation Loc,bool Mutable,Expr * BitWidth,InClassInitStyle InitStyle,SourceLocation TSSL,AccessSpecifier AS,NamedDecl * PrevDecl,Declarator * D)11827 FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
11828                                 TypeSourceInfo *TInfo,
11829                                 RecordDecl *Record, SourceLocation Loc,
11830                                 bool Mutable, Expr *BitWidth,
11831                                 InClassInitStyle InitStyle,
11832                                 SourceLocation TSSL,
11833                                 AccessSpecifier AS, NamedDecl *PrevDecl,
11834                                 Declarator *D) {
11835   IdentifierInfo *II = Name.getAsIdentifierInfo();
11836   bool InvalidDecl = false;
11837   if (D) InvalidDecl = D->isInvalidType();
11838 
11839   // If we receive a broken type, recover by assuming 'int' and
11840   // marking this declaration as invalid.
11841   if (T.isNull()) {
11842     InvalidDecl = true;
11843     T = Context.IntTy;
11844   }
11845 
11846   QualType EltTy = Context.getBaseElementType(T);
11847   if (!EltTy->isDependentType()) {
11848     if (RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
11849       // Fields of incomplete type force their record to be invalid.
11850       Record->setInvalidDecl();
11851       InvalidDecl = true;
11852     } else {
11853       NamedDecl *Def;
11854       EltTy->isIncompleteType(&Def);
11855       if (Def && Def->isInvalidDecl()) {
11856         Record->setInvalidDecl();
11857         InvalidDecl = true;
11858       }
11859     }
11860   }
11861 
11862   // OpenCL v1.2 s6.9.c: bitfields are not supported.
11863   if (BitWidth && getLangOpts().OpenCL) {
11864     Diag(Loc, diag::err_opencl_bitfields);
11865     InvalidDecl = true;
11866   }
11867 
11868   // C99 6.7.2.1p8: A member of a structure or union may have any type other
11869   // than a variably modified type.
11870   if (!InvalidDecl && T->isVariablyModifiedType()) {
11871     bool SizeIsNegative;
11872     llvm::APSInt Oversized;
11873 
11874     TypeSourceInfo *FixedTInfo =
11875       TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
11876                                                     SizeIsNegative,
11877                                                     Oversized);
11878     if (FixedTInfo) {
11879       Diag(Loc, diag::warn_illegal_constant_array_size);
11880       TInfo = FixedTInfo;
11881       T = FixedTInfo->getType();
11882     } else {
11883       if (SizeIsNegative)
11884         Diag(Loc, diag::err_typecheck_negative_array_size);
11885       else if (Oversized.getBoolValue())
11886         Diag(Loc, diag::err_array_too_large)
11887           << Oversized.toString(10);
11888       else
11889         Diag(Loc, diag::err_typecheck_field_variable_size);
11890       InvalidDecl = true;
11891     }
11892   }
11893 
11894   // Fields can not have abstract class types
11895   if (!InvalidDecl && RequireNonAbstractType(Loc, T,
11896                                              diag::err_abstract_type_in_decl,
11897                                              AbstractFieldType))
11898     InvalidDecl = true;
11899 
11900   bool ZeroWidth = false;
11901   // If this is declared as a bit-field, check the bit-field.
11902   if (!InvalidDecl && BitWidth) {
11903     BitWidth = VerifyBitField(Loc, II, T, Record->isMsStruct(Context), BitWidth,
11904                               &ZeroWidth).get();
11905     if (!BitWidth) {
11906       InvalidDecl = true;
11907       BitWidth = nullptr;
11908       ZeroWidth = false;
11909     }
11910   }
11911 
11912   // Check that 'mutable' is consistent with the type of the declaration.
11913   if (!InvalidDecl && Mutable) {
11914     unsigned DiagID = 0;
11915     if (T->isReferenceType())
11916       DiagID = diag::err_mutable_reference;
11917     else if (T.isConstQualified())
11918       DiagID = diag::err_mutable_const;
11919 
11920     if (DiagID) {
11921       SourceLocation ErrLoc = Loc;
11922       if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
11923         ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
11924       Diag(ErrLoc, DiagID);
11925       Mutable = false;
11926       InvalidDecl = true;
11927     }
11928   }
11929 
11930   // C++11 [class.union]p8 (DR1460):
11931   //   At most one variant member of a union may have a
11932   //   brace-or-equal-initializer.
11933   if (InitStyle != ICIS_NoInit)
11934     checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Record), Loc);
11935 
11936   FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
11937                                        BitWidth, Mutable, InitStyle);
11938   if (InvalidDecl)
11939     NewFD->setInvalidDecl();
11940 
11941   if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
11942     Diag(Loc, diag::err_duplicate_member) << II;
11943     Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
11944     NewFD->setInvalidDecl();
11945   }
11946 
11947   if (!InvalidDecl && getLangOpts().CPlusPlus) {
11948     if (Record->isUnion()) {
11949       if (const RecordType *RT = EltTy->getAs<RecordType>()) {
11950         CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
11951         if (RDecl->getDefinition()) {
11952           // C++ [class.union]p1: An object of a class with a non-trivial
11953           // constructor, a non-trivial copy constructor, a non-trivial
11954           // destructor, or a non-trivial copy assignment operator
11955           // cannot be a member of a union, nor can an array of such
11956           // objects.
11957           if (CheckNontrivialField(NewFD))
11958             NewFD->setInvalidDecl();
11959         }
11960       }
11961 
11962       // C++ [class.union]p1: If a union contains a member of reference type,
11963       // the program is ill-formed, except when compiling with MSVC extensions
11964       // enabled.
11965       if (EltTy->isReferenceType()) {
11966         Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
11967                                     diag::ext_union_member_of_reference_type :
11968                                     diag::err_union_member_of_reference_type)
11969           << NewFD->getDeclName() << EltTy;
11970         if (!getLangOpts().MicrosoftExt)
11971           NewFD->setInvalidDecl();
11972       }
11973     }
11974   }
11975 
11976   // FIXME: We need to pass in the attributes given an AST
11977   // representation, not a parser representation.
11978   if (D) {
11979     // FIXME: The current scope is almost... but not entirely... correct here.
11980     ProcessDeclAttributes(getCurScope(), NewFD, *D);
11981 
11982     if (NewFD->hasAttrs())
11983       CheckAlignasUnderalignment(NewFD);
11984   }
11985 
11986   // In auto-retain/release, infer strong retension for fields of
11987   // retainable type.
11988   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
11989     NewFD->setInvalidDecl();
11990 
11991   if (T.isObjCGCWeak())
11992     Diag(Loc, diag::warn_attribute_weak_on_field);
11993 
11994   NewFD->setAccess(AS);
11995   return NewFD;
11996 }
11997 
CheckNontrivialField(FieldDecl * FD)11998 bool Sema::CheckNontrivialField(FieldDecl *FD) {
11999   assert(FD);
12000   assert(getLangOpts().CPlusPlus && "valid check only for C++");
12001 
12002   if (FD->isInvalidDecl() || FD->getType()->isDependentType())
12003     return false;
12004 
12005   QualType EltTy = Context.getBaseElementType(FD->getType());
12006   if (const RecordType *RT = EltTy->getAs<RecordType>()) {
12007     CXXRecordDecl *RDecl = cast<CXXRecordDecl>(RT->getDecl());
12008     if (RDecl->getDefinition()) {
12009       // We check for copy constructors before constructors
12010       // because otherwise we'll never get complaints about
12011       // copy constructors.
12012 
12013       CXXSpecialMember member = CXXInvalid;
12014       // We're required to check for any non-trivial constructors. Since the
12015       // implicit default constructor is suppressed if there are any
12016       // user-declared constructors, we just need to check that there is a
12017       // trivial default constructor and a trivial copy constructor. (We don't
12018       // worry about move constructors here, since this is a C++98 check.)
12019       if (RDecl->hasNonTrivialCopyConstructor())
12020         member = CXXCopyConstructor;
12021       else if (!RDecl->hasTrivialDefaultConstructor())
12022         member = CXXDefaultConstructor;
12023       else if (RDecl->hasNonTrivialCopyAssignment())
12024         member = CXXCopyAssignment;
12025       else if (RDecl->hasNonTrivialDestructor())
12026         member = CXXDestructor;
12027 
12028       if (member != CXXInvalid) {
12029         if (!getLangOpts().CPlusPlus11 &&
12030             getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
12031           // Objective-C++ ARC: it is an error to have a non-trivial field of
12032           // a union. However, system headers in Objective-C programs
12033           // occasionally have Objective-C lifetime objects within unions,
12034           // and rather than cause the program to fail, we make those
12035           // members unavailable.
12036           SourceLocation Loc = FD->getLocation();
12037           if (getSourceManager().isInSystemHeader(Loc)) {
12038             if (!FD->hasAttr<UnavailableAttr>())
12039               FD->addAttr(UnavailableAttr::CreateImplicit(Context,
12040                                   "this system field has retaining ownership",
12041                                   Loc));
12042             return false;
12043           }
12044         }
12045 
12046         Diag(FD->getLocation(), getLangOpts().CPlusPlus11 ?
12047                diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
12048                diag::err_illegal_union_or_anon_struct_member)
12049           << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
12050         DiagnoseNontrivial(RDecl, member);
12051         return !getLangOpts().CPlusPlus11;
12052       }
12053     }
12054   }
12055 
12056   return false;
12057 }
12058 
12059 /// TranslateIvarVisibility - Translate visibility from a token ID to an
12060 ///  AST enum value.
12061 static ObjCIvarDecl::AccessControl
TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility)12062 TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
12063   switch (ivarVisibility) {
12064   default: llvm_unreachable("Unknown visitibility kind");
12065   case tok::objc_private: return ObjCIvarDecl::Private;
12066   case tok::objc_public: return ObjCIvarDecl::Public;
12067   case tok::objc_protected: return ObjCIvarDecl::Protected;
12068   case tok::objc_package: return ObjCIvarDecl::Package;
12069   }
12070 }
12071 
12072 /// ActOnIvar - Each ivar field of an objective-c class is passed into this
12073 /// in order to create an IvarDecl object for it.
ActOnIvar(Scope * S,SourceLocation DeclStart,Declarator & D,Expr * BitfieldWidth,tok::ObjCKeywordKind Visibility)12074 Decl *Sema::ActOnIvar(Scope *S,
12075                                 SourceLocation DeclStart,
12076                                 Declarator &D, Expr *BitfieldWidth,
12077                                 tok::ObjCKeywordKind Visibility) {
12078 
12079   IdentifierInfo *II = D.getIdentifier();
12080   Expr *BitWidth = (Expr*)BitfieldWidth;
12081   SourceLocation Loc = DeclStart;
12082   if (II) Loc = D.getIdentifierLoc();
12083 
12084   // FIXME: Unnamed fields can be handled in various different ways, for
12085   // example, unnamed unions inject all members into the struct namespace!
12086 
12087   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
12088   QualType T = TInfo->getType();
12089 
12090   if (BitWidth) {
12091     // 6.7.2.1p3, 6.7.2.1p4
12092     BitWidth = VerifyBitField(Loc, II, T, /*IsMsStruct*/false, BitWidth).get();
12093     if (!BitWidth)
12094       D.setInvalidType();
12095   } else {
12096     // Not a bitfield.
12097 
12098     // validate II.
12099 
12100   }
12101   if (T->isReferenceType()) {
12102     Diag(Loc, diag::err_ivar_reference_type);
12103     D.setInvalidType();
12104   }
12105   // C99 6.7.2.1p8: A member of a structure or union may have any type other
12106   // than a variably modified type.
12107   else if (T->isVariablyModifiedType()) {
12108     Diag(Loc, diag::err_typecheck_ivar_variable_size);
12109     D.setInvalidType();
12110   }
12111 
12112   // Get the visibility (access control) for this ivar.
12113   ObjCIvarDecl::AccessControl ac =
12114     Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
12115                                         : ObjCIvarDecl::None;
12116   // Must set ivar's DeclContext to its enclosing interface.
12117   ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
12118   if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
12119     return nullptr;
12120   ObjCContainerDecl *EnclosingContext;
12121   if (ObjCImplementationDecl *IMPDecl =
12122       dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
12123     if (LangOpts.ObjCRuntime.isFragile()) {
12124     // Case of ivar declared in an implementation. Context is that of its class.
12125       EnclosingContext = IMPDecl->getClassInterface();
12126       assert(EnclosingContext && "Implementation has no class interface!");
12127     }
12128     else
12129       EnclosingContext = EnclosingDecl;
12130   } else {
12131     if (ObjCCategoryDecl *CDecl =
12132         dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
12133       if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
12134         Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
12135         return nullptr;
12136       }
12137     }
12138     EnclosingContext = EnclosingDecl;
12139   }
12140 
12141   // Construct the decl.
12142   ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
12143                                              DeclStart, Loc, II, T,
12144                                              TInfo, ac, (Expr *)BitfieldWidth);
12145 
12146   if (II) {
12147     NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
12148                                            ForRedeclaration);
12149     if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
12150         && !isa<TagDecl>(PrevDecl)) {
12151       Diag(Loc, diag::err_duplicate_member) << II;
12152       Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
12153       NewID->setInvalidDecl();
12154     }
12155   }
12156 
12157   // Process attributes attached to the ivar.
12158   ProcessDeclAttributes(S, NewID, D);
12159 
12160   if (D.isInvalidType())
12161     NewID->setInvalidDecl();
12162 
12163   // In ARC, infer 'retaining' for ivars of retainable type.
12164   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
12165     NewID->setInvalidDecl();
12166 
12167   if (D.getDeclSpec().isModulePrivateSpecified())
12168     NewID->setModulePrivate();
12169 
12170   if (II) {
12171     // FIXME: When interfaces are DeclContexts, we'll need to add
12172     // these to the interface.
12173     S->AddDecl(NewID);
12174     IdResolver.AddDecl(NewID);
12175   }
12176 
12177   if (LangOpts.ObjCRuntime.isNonFragile() &&
12178       !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl))
12179     Diag(Loc, diag::warn_ivars_in_interface);
12180 
12181   return NewID;
12182 }
12183 
12184 /// ActOnLastBitfield - This routine handles synthesized bitfields rules for
12185 /// class and class extensions. For every class \@interface and class
12186 /// extension \@interface, if the last ivar is a bitfield of any type,
12187 /// then add an implicit `char :0` ivar to the end of that interface.
ActOnLastBitfield(SourceLocation DeclLoc,SmallVectorImpl<Decl * > & AllIvarDecls)12188 void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
12189                              SmallVectorImpl<Decl *> &AllIvarDecls) {
12190   if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty())
12191     return;
12192 
12193   Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
12194   ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
12195 
12196   if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0)
12197     return;
12198   ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
12199   if (!ID) {
12200     if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
12201       if (!CD->IsClassExtension())
12202         return;
12203     }
12204     // No need to add this to end of @implementation.
12205     else
12206       return;
12207   }
12208   // All conditions are met. Add a new bitfield to the tail end of ivars.
12209   llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
12210   Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
12211 
12212   Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
12213                               DeclLoc, DeclLoc, nullptr,
12214                               Context.CharTy,
12215                               Context.getTrivialTypeSourceInfo(Context.CharTy,
12216                                                                DeclLoc),
12217                               ObjCIvarDecl::Private, BW,
12218                               true);
12219   AllIvarDecls.push_back(Ivar);
12220 }
12221 
ActOnFields(Scope * S,SourceLocation RecLoc,Decl * EnclosingDecl,ArrayRef<Decl * > Fields,SourceLocation LBrac,SourceLocation RBrac,AttributeList * Attr)12222 void Sema::ActOnFields(Scope *S, SourceLocation RecLoc, Decl *EnclosingDecl,
12223                        ArrayRef<Decl *> Fields, SourceLocation LBrac,
12224                        SourceLocation RBrac, AttributeList *Attr) {
12225   assert(EnclosingDecl && "missing record or interface decl");
12226 
12227   // If this is an Objective-C @implementation or category and we have
12228   // new fields here we should reset the layout of the interface since
12229   // it will now change.
12230   if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) {
12231     ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl);
12232     switch (DC->getKind()) {
12233     default: break;
12234     case Decl::ObjCCategory:
12235       Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface());
12236       break;
12237     case Decl::ObjCImplementation:
12238       Context.
12239         ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface());
12240       break;
12241     }
12242   }
12243 
12244   RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
12245 
12246   // Start counting up the number of named members; make sure to include
12247   // members of anonymous structs and unions in the total.
12248   unsigned NumNamedMembers = 0;
12249   if (Record) {
12250     for (const auto *I : Record->decls()) {
12251       if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I))
12252         if (IFD->getDeclName())
12253           ++NumNamedMembers;
12254     }
12255   }
12256 
12257   // Verify that all the fields are okay.
12258   SmallVector<FieldDecl*, 32> RecFields;
12259 
12260   bool ARCErrReported = false;
12261   for (ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
12262        i != end; ++i) {
12263     FieldDecl *FD = cast<FieldDecl>(*i);
12264 
12265     // Get the type for the field.
12266     const Type *FDTy = FD->getType().getTypePtr();
12267 
12268     if (!FD->isAnonymousStructOrUnion()) {
12269       // Remember all fields written by the user.
12270       RecFields.push_back(FD);
12271     }
12272 
12273     // If the field is already invalid for some reason, don't emit more
12274     // diagnostics about it.
12275     if (FD->isInvalidDecl()) {
12276       EnclosingDecl->setInvalidDecl();
12277       continue;
12278     }
12279 
12280     // C99 6.7.2.1p2:
12281     //   A structure or union shall not contain a member with
12282     //   incomplete or function type (hence, a structure shall not
12283     //   contain an instance of itself, but may contain a pointer to
12284     //   an instance of itself), except that the last member of a
12285     //   structure with more than one named member may have incomplete
12286     //   array type; such a structure (and any union containing,
12287     //   possibly recursively, a member that is such a structure)
12288     //   shall not be a member of a structure or an element of an
12289     //   array.
12290     if (FDTy->isFunctionType()) {
12291       // Field declared as a function.
12292       Diag(FD->getLocation(), diag::err_field_declared_as_function)
12293         << FD->getDeclName();
12294       FD->setInvalidDecl();
12295       EnclosingDecl->setInvalidDecl();
12296       continue;
12297     } else if (FDTy->isIncompleteArrayType() && Record &&
12298                ((i + 1 == Fields.end() && !Record->isUnion()) ||
12299                 ((getLangOpts().MicrosoftExt ||
12300                   getLangOpts().CPlusPlus) &&
12301                  (i + 1 == Fields.end() || Record->isUnion())))) {
12302       // Flexible array member.
12303       // Microsoft and g++ is more permissive regarding flexible array.
12304       // It will accept flexible array in union and also
12305       // as the sole element of a struct/class.
12306       unsigned DiagID = 0;
12307       if (Record->isUnion())
12308         DiagID = getLangOpts().MicrosoftExt
12309                      ? diag::ext_flexible_array_union_ms
12310                      : getLangOpts().CPlusPlus
12311                            ? diag::ext_flexible_array_union_gnu
12312                            : diag::err_flexible_array_union;
12313       else if (Fields.size() == 1)
12314         DiagID = getLangOpts().MicrosoftExt
12315                      ? diag::ext_flexible_array_empty_aggregate_ms
12316                      : getLangOpts().CPlusPlus
12317                            ? diag::ext_flexible_array_empty_aggregate_gnu
12318                            : NumNamedMembers < 1
12319                                  ? diag::err_flexible_array_empty_aggregate
12320                                  : 0;
12321 
12322       if (DiagID)
12323         Diag(FD->getLocation(), DiagID) << FD->getDeclName()
12324                                         << Record->getTagKind();
12325       // While the layout of types that contain virtual bases is not specified
12326       // by the C++ standard, both the Itanium and Microsoft C++ ABIs place
12327       // virtual bases after the derived members.  This would make a flexible
12328       // array member declared at the end of an object not adjacent to the end
12329       // of the type.
12330       if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Record))
12331         if (RD->getNumVBases() != 0)
12332           Diag(FD->getLocation(), diag::err_flexible_array_virtual_base)
12333             << FD->getDeclName() << Record->getTagKind();
12334       if (!getLangOpts().C99)
12335         Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
12336           << FD->getDeclName() << Record->getTagKind();
12337 
12338       // If the element type has a non-trivial destructor, we would not
12339       // implicitly destroy the elements, so disallow it for now.
12340       //
12341       // FIXME: GCC allows this. We should probably either implicitly delete
12342       // the destructor of the containing class, or just allow this.
12343       QualType BaseElem = Context.getBaseElementType(FD->getType());
12344       if (!BaseElem->isDependentType() && BaseElem.isDestructedType()) {
12345         Diag(FD->getLocation(), diag::err_flexible_array_has_nontrivial_dtor)
12346           << FD->getDeclName() << FD->getType();
12347         FD->setInvalidDecl();
12348         EnclosingDecl->setInvalidDecl();
12349         continue;
12350       }
12351       // Okay, we have a legal flexible array member at the end of the struct.
12352       if (Record)
12353         Record->setHasFlexibleArrayMember(true);
12354     } else if (!FDTy->isDependentType() &&
12355                RequireCompleteType(FD->getLocation(), FD->getType(),
12356                                    diag::err_field_incomplete)) {
12357       // Incomplete type
12358       FD->setInvalidDecl();
12359       EnclosingDecl->setInvalidDecl();
12360       continue;
12361     } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
12362       if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
12363         // If this is a member of a union, then entire union becomes "flexible".
12364         if (Record && Record->isUnion()) {
12365           Record->setHasFlexibleArrayMember(true);
12366         } else {
12367           // If this is a struct/class and this is not the last element, reject
12368           // it.  Note that GCC supports variable sized arrays in the middle of
12369           // structures.
12370           if (i + 1 != Fields.end())
12371             Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
12372               << FD->getDeclName() << FD->getType();
12373           else {
12374             // We support flexible arrays at the end of structs in
12375             // other structs as an extension.
12376             Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
12377               << FD->getDeclName();
12378             if (Record)
12379               Record->setHasFlexibleArrayMember(true);
12380           }
12381         }
12382       }
12383       if (isa<ObjCContainerDecl>(EnclosingDecl) &&
12384           RequireNonAbstractType(FD->getLocation(), FD->getType(),
12385                                  diag::err_abstract_type_in_decl,
12386                                  AbstractIvarType)) {
12387         // Ivars can not have abstract class types
12388         FD->setInvalidDecl();
12389       }
12390       if (Record && FDTTy->getDecl()->hasObjectMember())
12391         Record->setHasObjectMember(true);
12392       if (Record && FDTTy->getDecl()->hasVolatileMember())
12393         Record->setHasVolatileMember(true);
12394     } else if (FDTy->isObjCObjectType()) {
12395       /// A field cannot be an Objective-c object
12396       Diag(FD->getLocation(), diag::err_statically_allocated_object)
12397         << FixItHint::CreateInsertion(FD->getLocation(), "*");
12398       QualType T = Context.getObjCObjectPointerType(FD->getType());
12399       FD->setType(T);
12400     } else if (getLangOpts().ObjCAutoRefCount && Record && !ARCErrReported &&
12401                (!getLangOpts().CPlusPlus || Record->isUnion())) {
12402       // It's an error in ARC if a field has lifetime.
12403       // We don't want to report this in a system header, though,
12404       // so we just make the field unavailable.
12405       // FIXME: that's really not sufficient; we need to make the type
12406       // itself invalid to, say, initialize or copy.
12407       QualType T = FD->getType();
12408       Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
12409       if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
12410         SourceLocation loc = FD->getLocation();
12411         if (getSourceManager().isInSystemHeader(loc)) {
12412           if (!FD->hasAttr<UnavailableAttr>()) {
12413             FD->addAttr(UnavailableAttr::CreateImplicit(Context,
12414                               "this system field has retaining ownership",
12415                               loc));
12416           }
12417         } else {
12418           Diag(FD->getLocation(), diag::err_arc_objc_object_in_tag)
12419             << T->isBlockPointerType() << Record->getTagKind();
12420         }
12421         ARCErrReported = true;
12422       }
12423     } else if (getLangOpts().ObjC1 &&
12424                getLangOpts().getGC() != LangOptions::NonGC &&
12425                Record && !Record->hasObjectMember()) {
12426       if (FD->getType()->isObjCObjectPointerType() ||
12427           FD->getType().isObjCGCStrong())
12428         Record->setHasObjectMember(true);
12429       else if (Context.getAsArrayType(FD->getType())) {
12430         QualType BaseType = Context.getBaseElementType(FD->getType());
12431         if (BaseType->isRecordType() &&
12432             BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
12433           Record->setHasObjectMember(true);
12434         else if (BaseType->isObjCObjectPointerType() ||
12435                  BaseType.isObjCGCStrong())
12436                Record->setHasObjectMember(true);
12437       }
12438     }
12439     if (Record && FD->getType().isVolatileQualified())
12440       Record->setHasVolatileMember(true);
12441     // Keep track of the number of named members.
12442     if (FD->getIdentifier())
12443       ++NumNamedMembers;
12444   }
12445 
12446   // Okay, we successfully defined 'Record'.
12447   if (Record) {
12448     bool Completed = false;
12449     if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
12450       if (!CXXRecord->isInvalidDecl()) {
12451         // Set access bits correctly on the directly-declared conversions.
12452         for (CXXRecordDecl::conversion_iterator
12453                I = CXXRecord->conversion_begin(),
12454                E = CXXRecord->conversion_end(); I != E; ++I)
12455           I.setAccess((*I)->getAccess());
12456 
12457         if (!CXXRecord->isDependentType()) {
12458           if (CXXRecord->hasUserDeclaredDestructor()) {
12459             // Adjust user-defined destructor exception spec.
12460             if (getLangOpts().CPlusPlus11)
12461               AdjustDestructorExceptionSpec(CXXRecord,
12462                                             CXXRecord->getDestructor());
12463           }
12464 
12465           // Add any implicitly-declared members to this class.
12466           AddImplicitlyDeclaredMembersToClass(CXXRecord);
12467 
12468           // If we have virtual base classes, we may end up finding multiple
12469           // final overriders for a given virtual function. Check for this
12470           // problem now.
12471           if (CXXRecord->getNumVBases()) {
12472             CXXFinalOverriderMap FinalOverriders;
12473             CXXRecord->getFinalOverriders(FinalOverriders);
12474 
12475             for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
12476                                              MEnd = FinalOverriders.end();
12477                  M != MEnd; ++M) {
12478               for (OverridingMethods::iterator SO = M->second.begin(),
12479                                             SOEnd = M->second.end();
12480                    SO != SOEnd; ++SO) {
12481                 assert(SO->second.size() > 0 &&
12482                        "Virtual function without overridding functions?");
12483                 if (SO->second.size() == 1)
12484                   continue;
12485 
12486                 // C++ [class.virtual]p2:
12487                 //   In a derived class, if a virtual member function of a base
12488                 //   class subobject has more than one final overrider the
12489                 //   program is ill-formed.
12490                 Diag(Record->getLocation(), diag::err_multiple_final_overriders)
12491                   << (const NamedDecl *)M->first << Record;
12492                 Diag(M->first->getLocation(),
12493                      diag::note_overridden_virtual_function);
12494                 for (OverridingMethods::overriding_iterator
12495                           OM = SO->second.begin(),
12496                        OMEnd = SO->second.end();
12497                      OM != OMEnd; ++OM)
12498                   Diag(OM->Method->getLocation(), diag::note_final_overrider)
12499                     << (const NamedDecl *)M->first << OM->Method->getParent();
12500 
12501                 Record->setInvalidDecl();
12502               }
12503             }
12504             CXXRecord->completeDefinition(&FinalOverriders);
12505             Completed = true;
12506           }
12507         }
12508       }
12509     }
12510 
12511     if (!Completed)
12512       Record->completeDefinition();
12513 
12514     if (Record->hasAttrs()) {
12515       CheckAlignasUnderalignment(Record);
12516 
12517       if (const MSInheritanceAttr *IA = Record->getAttr<MSInheritanceAttr>())
12518         checkMSInheritanceAttrOnDefinition(cast<CXXRecordDecl>(Record),
12519                                            IA->getRange(), IA->getBestCase(),
12520                                            IA->getSemanticSpelling());
12521     }
12522 
12523     // Check if the structure/union declaration is a type that can have zero
12524     // size in C. For C this is a language extension, for C++ it may cause
12525     // compatibility problems.
12526     bool CheckForZeroSize;
12527     if (!getLangOpts().CPlusPlus) {
12528       CheckForZeroSize = true;
12529     } else {
12530       // For C++ filter out types that cannot be referenced in C code.
12531       CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
12532       CheckForZeroSize =
12533           CXXRecord->getLexicalDeclContext()->isExternCContext() &&
12534           !CXXRecord->isDependentType() &&
12535           CXXRecord->isCLike();
12536     }
12537     if (CheckForZeroSize) {
12538       bool ZeroSize = true;
12539       bool IsEmpty = true;
12540       unsigned NonBitFields = 0;
12541       for (RecordDecl::field_iterator I = Record->field_begin(),
12542                                       E = Record->field_end();
12543            (NonBitFields == 0 || ZeroSize) && I != E; ++I) {
12544         IsEmpty = false;
12545         if (I->isUnnamedBitfield()) {
12546           if (I->getBitWidthValue(Context) > 0)
12547             ZeroSize = false;
12548         } else {
12549           ++NonBitFields;
12550           QualType FieldType = I->getType();
12551           if (FieldType->isIncompleteType() ||
12552               !Context.getTypeSizeInChars(FieldType).isZero())
12553             ZeroSize = false;
12554         }
12555       }
12556 
12557       // Empty structs are an extension in C (C99 6.7.2.1p7). They are
12558       // allowed in C++, but warn if its declaration is inside
12559       // extern "C" block.
12560       if (ZeroSize) {
12561         Diag(RecLoc, getLangOpts().CPlusPlus ?
12562                          diag::warn_zero_size_struct_union_in_extern_c :
12563                          diag::warn_zero_size_struct_union_compat)
12564           << IsEmpty << Record->isUnion() << (NonBitFields > 1);
12565       }
12566 
12567       // Structs without named members are extension in C (C99 6.7.2.1p7),
12568       // but are accepted by GCC.
12569       if (NonBitFields == 0 && !getLangOpts().CPlusPlus) {
12570         Diag(RecLoc, IsEmpty ? diag::ext_empty_struct_union :
12571                                diag::ext_no_named_members_in_struct_union)
12572           << Record->isUnion();
12573       }
12574     }
12575   } else {
12576     ObjCIvarDecl **ClsFields =
12577       reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
12578     if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
12579       ID->setEndOfDefinitionLoc(RBrac);
12580       // Add ivar's to class's DeclContext.
12581       for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
12582         ClsFields[i]->setLexicalDeclContext(ID);
12583         ID->addDecl(ClsFields[i]);
12584       }
12585       // Must enforce the rule that ivars in the base classes may not be
12586       // duplicates.
12587       if (ID->getSuperClass())
12588         DiagnoseDuplicateIvars(ID, ID->getSuperClass());
12589     } else if (ObjCImplementationDecl *IMPDecl =
12590                   dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
12591       assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
12592       for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
12593         // Ivar declared in @implementation never belongs to the implementation.
12594         // Only it is in implementation's lexical context.
12595         ClsFields[I]->setLexicalDeclContext(IMPDecl);
12596       CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
12597       IMPDecl->setIvarLBraceLoc(LBrac);
12598       IMPDecl->setIvarRBraceLoc(RBrac);
12599     } else if (ObjCCategoryDecl *CDecl =
12600                 dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
12601       // case of ivars in class extension; all other cases have been
12602       // reported as errors elsewhere.
12603       // FIXME. Class extension does not have a LocEnd field.
12604       // CDecl->setLocEnd(RBrac);
12605       // Add ivar's to class extension's DeclContext.
12606       // Diagnose redeclaration of private ivars.
12607       ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
12608       for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
12609         if (IDecl) {
12610           if (const ObjCIvarDecl *ClsIvar =
12611               IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
12612             Diag(ClsFields[i]->getLocation(),
12613                  diag::err_duplicate_ivar_declaration);
12614             Diag(ClsIvar->getLocation(), diag::note_previous_definition);
12615             continue;
12616           }
12617           for (const auto *Ext : IDecl->known_extensions()) {
12618             if (const ObjCIvarDecl *ClsExtIvar
12619                   = Ext->getIvarDecl(ClsFields[i]->getIdentifier())) {
12620               Diag(ClsFields[i]->getLocation(),
12621                    diag::err_duplicate_ivar_declaration);
12622               Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
12623               continue;
12624             }
12625           }
12626         }
12627         ClsFields[i]->setLexicalDeclContext(CDecl);
12628         CDecl->addDecl(ClsFields[i]);
12629       }
12630       CDecl->setIvarLBraceLoc(LBrac);
12631       CDecl->setIvarRBraceLoc(RBrac);
12632     }
12633   }
12634 
12635   if (Attr)
12636     ProcessDeclAttributeList(S, Record, Attr);
12637 }
12638 
12639 /// \brief Determine whether the given integral value is representable within
12640 /// the given type T.
isRepresentableIntegerValue(ASTContext & Context,llvm::APSInt & Value,QualType T)12641 static bool isRepresentableIntegerValue(ASTContext &Context,
12642                                         llvm::APSInt &Value,
12643                                         QualType T) {
12644   assert(T->isIntegralType(Context) && "Integral type required!");
12645   unsigned BitWidth = Context.getIntWidth(T);
12646 
12647   if (Value.isUnsigned() || Value.isNonNegative()) {
12648     if (T->isSignedIntegerOrEnumerationType())
12649       --BitWidth;
12650     return Value.getActiveBits() <= BitWidth;
12651   }
12652   return Value.getMinSignedBits() <= BitWidth;
12653 }
12654 
12655 // \brief Given an integral type, return the next larger integral type
12656 // (or a NULL type of no such type exists).
getNextLargerIntegralType(ASTContext & Context,QualType T)12657 static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
12658   // FIXME: Int128/UInt128 support, which also needs to be introduced into
12659   // enum checking below.
12660   assert(T->isIntegralType(Context) && "Integral type required!");
12661   const unsigned NumTypes = 4;
12662   QualType SignedIntegralTypes[NumTypes] = {
12663     Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
12664   };
12665   QualType UnsignedIntegralTypes[NumTypes] = {
12666     Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
12667     Context.UnsignedLongLongTy
12668   };
12669 
12670   unsigned BitWidth = Context.getTypeSize(T);
12671   QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
12672                                                         : UnsignedIntegralTypes;
12673   for (unsigned I = 0; I != NumTypes; ++I)
12674     if (Context.getTypeSize(Types[I]) > BitWidth)
12675       return Types[I];
12676 
12677   return QualType();
12678 }
12679 
CheckEnumConstant(EnumDecl * Enum,EnumConstantDecl * LastEnumConst,SourceLocation IdLoc,IdentifierInfo * Id,Expr * Val)12680 EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
12681                                           EnumConstantDecl *LastEnumConst,
12682                                           SourceLocation IdLoc,
12683                                           IdentifierInfo *Id,
12684                                           Expr *Val) {
12685   unsigned IntWidth = Context.getTargetInfo().getIntWidth();
12686   llvm::APSInt EnumVal(IntWidth);
12687   QualType EltTy;
12688 
12689   if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
12690     Val = nullptr;
12691 
12692   if (Val)
12693     Val = DefaultLvalueConversion(Val).get();
12694 
12695   if (Val) {
12696     if (Enum->isDependentType() || Val->isTypeDependent())
12697       EltTy = Context.DependentTy;
12698     else {
12699       SourceLocation ExpLoc;
12700       if (getLangOpts().CPlusPlus11 && Enum->isFixed() &&
12701           !getLangOpts().MSVCCompat) {
12702         // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
12703         // constant-expression in the enumerator-definition shall be a converted
12704         // constant expression of the underlying type.
12705         EltTy = Enum->getIntegerType();
12706         ExprResult Converted =
12707           CheckConvertedConstantExpression(Val, EltTy, EnumVal,
12708                                            CCEK_Enumerator);
12709         if (Converted.isInvalid())
12710           Val = nullptr;
12711         else
12712           Val = Converted.get();
12713       } else if (!Val->isValueDependent() &&
12714                  !(Val = VerifyIntegerConstantExpression(Val,
12715                                                          &EnumVal).get())) {
12716         // C99 6.7.2.2p2: Make sure we have an integer constant expression.
12717       } else {
12718         if (Enum->isFixed()) {
12719           EltTy = Enum->getIntegerType();
12720 
12721           // In Obj-C and Microsoft mode, require the enumeration value to be
12722           // representable in the underlying type of the enumeration. In C++11,
12723           // we perform a non-narrowing conversion as part of converted constant
12724           // expression checking.
12725           if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
12726             if (getLangOpts().MSVCCompat) {
12727               Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
12728               Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).get();
12729             } else
12730               Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
12731           } else
12732             Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).get();
12733         } else if (getLangOpts().CPlusPlus) {
12734           // C++11 [dcl.enum]p5:
12735           //   If the underlying type is not fixed, the type of each enumerator
12736           //   is the type of its initializing value:
12737           //     - If an initializer is specified for an enumerator, the
12738           //       initializing value has the same type as the expression.
12739           EltTy = Val->getType();
12740         } else {
12741           // C99 6.7.2.2p2:
12742           //   The expression that defines the value of an enumeration constant
12743           //   shall be an integer constant expression that has a value
12744           //   representable as an int.
12745 
12746           // Complain if the value is not representable in an int.
12747           if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
12748             Diag(IdLoc, diag::ext_enum_value_not_int)
12749               << EnumVal.toString(10) << Val->getSourceRange()
12750               << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
12751           else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
12752             // Force the type of the expression to 'int'.
12753             Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).get();
12754           }
12755           EltTy = Val->getType();
12756         }
12757       }
12758     }
12759   }
12760 
12761   if (!Val) {
12762     if (Enum->isDependentType())
12763       EltTy = Context.DependentTy;
12764     else if (!LastEnumConst) {
12765       // C++0x [dcl.enum]p5:
12766       //   If the underlying type is not fixed, the type of each enumerator
12767       //   is the type of its initializing value:
12768       //     - If no initializer is specified for the first enumerator, the
12769       //       initializing value has an unspecified integral type.
12770       //
12771       // GCC uses 'int' for its unspecified integral type, as does
12772       // C99 6.7.2.2p3.
12773       if (Enum->isFixed()) {
12774         EltTy = Enum->getIntegerType();
12775       }
12776       else {
12777         EltTy = Context.IntTy;
12778       }
12779     } else {
12780       // Assign the last value + 1.
12781       EnumVal = LastEnumConst->getInitVal();
12782       ++EnumVal;
12783       EltTy = LastEnumConst->getType();
12784 
12785       // Check for overflow on increment.
12786       if (EnumVal < LastEnumConst->getInitVal()) {
12787         // C++0x [dcl.enum]p5:
12788         //   If the underlying type is not fixed, the type of each enumerator
12789         //   is the type of its initializing value:
12790         //
12791         //     - Otherwise the type of the initializing value is the same as
12792         //       the type of the initializing value of the preceding enumerator
12793         //       unless the incremented value is not representable in that type,
12794         //       in which case the type is an unspecified integral type
12795         //       sufficient to contain the incremented value. If no such type
12796         //       exists, the program is ill-formed.
12797         QualType T = getNextLargerIntegralType(Context, EltTy);
12798         if (T.isNull() || Enum->isFixed()) {
12799           // There is no integral type larger enough to represent this
12800           // value. Complain, then allow the value to wrap around.
12801           EnumVal = LastEnumConst->getInitVal();
12802           EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
12803           ++EnumVal;
12804           if (Enum->isFixed())
12805             // When the underlying type is fixed, this is ill-formed.
12806             Diag(IdLoc, diag::err_enumerator_wrapped)
12807               << EnumVal.toString(10)
12808               << EltTy;
12809           else
12810             Diag(IdLoc, diag::ext_enumerator_increment_too_large)
12811               << EnumVal.toString(10);
12812         } else {
12813           EltTy = T;
12814         }
12815 
12816         // Retrieve the last enumerator's value, extent that type to the
12817         // type that is supposed to be large enough to represent the incremented
12818         // value, then increment.
12819         EnumVal = LastEnumConst->getInitVal();
12820         EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
12821         EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
12822         ++EnumVal;
12823 
12824         // If we're not in C++, diagnose the overflow of enumerator values,
12825         // which in C99 means that the enumerator value is not representable in
12826         // an int (C99 6.7.2.2p2). However, we support GCC's extension that
12827         // permits enumerator values that are representable in some larger
12828         // integral type.
12829         if (!getLangOpts().CPlusPlus && !T.isNull())
12830           Diag(IdLoc, diag::warn_enum_value_overflow);
12831       } else if (!getLangOpts().CPlusPlus &&
12832                  !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
12833         // Enforce C99 6.7.2.2p2 even when we compute the next value.
12834         Diag(IdLoc, diag::ext_enum_value_not_int)
12835           << EnumVal.toString(10) << 1;
12836       }
12837     }
12838   }
12839 
12840   if (!EltTy->isDependentType()) {
12841     // Make the enumerator value match the signedness and size of the
12842     // enumerator's type.
12843     EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
12844     EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
12845   }
12846 
12847   return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
12848                                   Val, EnumVal);
12849 }
12850 
12851 
ActOnEnumConstant(Scope * S,Decl * theEnumDecl,Decl * lastEnumConst,SourceLocation IdLoc,IdentifierInfo * Id,AttributeList * Attr,SourceLocation EqualLoc,Expr * Val)12852 Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
12853                               SourceLocation IdLoc, IdentifierInfo *Id,
12854                               AttributeList *Attr,
12855                               SourceLocation EqualLoc, Expr *Val) {
12856   EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
12857   EnumConstantDecl *LastEnumConst =
12858     cast_or_null<EnumConstantDecl>(lastEnumConst);
12859 
12860   // The scope passed in may not be a decl scope.  Zip up the scope tree until
12861   // we find one that is.
12862   S = getNonFieldDeclScope(S);
12863 
12864   // Verify that there isn't already something declared with this name in this
12865   // scope.
12866   NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
12867                                          ForRedeclaration);
12868   if (PrevDecl && PrevDecl->isTemplateParameter()) {
12869     // Maybe we will complain about the shadowed template parameter.
12870     DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
12871     // Just pretend that we didn't see the previous declaration.
12872     PrevDecl = nullptr;
12873   }
12874 
12875   if (PrevDecl) {
12876     // When in C++, we may get a TagDecl with the same name; in this case the
12877     // enum constant will 'hide' the tag.
12878     assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
12879            "Received TagDecl when not in C++!");
12880     if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
12881       if (isa<EnumConstantDecl>(PrevDecl))
12882         Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
12883       else
12884         Diag(IdLoc, diag::err_redefinition) << Id;
12885       Diag(PrevDecl->getLocation(), diag::note_previous_definition);
12886       return nullptr;
12887     }
12888   }
12889 
12890   // C++ [class.mem]p15:
12891   // If T is the name of a class, then each of the following shall have a name
12892   // different from T:
12893   // - every enumerator of every member of class T that is an unscoped
12894   // enumerated type
12895   if (CXXRecordDecl *Record
12896                       = dyn_cast<CXXRecordDecl>(
12897                              TheEnumDecl->getDeclContext()->getRedeclContext()))
12898     if (!TheEnumDecl->isScoped() &&
12899         Record->getIdentifier() && Record->getIdentifier() == Id)
12900       Diag(IdLoc, diag::err_member_name_of_class) << Id;
12901 
12902   EnumConstantDecl *New =
12903     CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
12904 
12905   if (New) {
12906     // Process attributes.
12907     if (Attr) ProcessDeclAttributeList(S, New, Attr);
12908 
12909     // Register this decl in the current scope stack.
12910     New->setAccess(TheEnumDecl->getAccess());
12911     PushOnScopeChains(New, S);
12912   }
12913 
12914   ActOnDocumentableDecl(New);
12915 
12916   return New;
12917 }
12918 
12919 // Returns true when the enum initial expression does not trigger the
12920 // duplicate enum warning.  A few common cases are exempted as follows:
12921 // Element2 = Element1
12922 // Element2 = Element1 + 1
12923 // Element2 = Element1 - 1
12924 // Where Element2 and Element1 are from the same enum.
ValidDuplicateEnum(EnumConstantDecl * ECD,EnumDecl * Enum)12925 static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) {
12926   Expr *InitExpr = ECD->getInitExpr();
12927   if (!InitExpr)
12928     return true;
12929   InitExpr = InitExpr->IgnoreImpCasts();
12930 
12931   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) {
12932     if (!BO->isAdditiveOp())
12933       return true;
12934     IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS());
12935     if (!IL)
12936       return true;
12937     if (IL->getValue() != 1)
12938       return true;
12939 
12940     InitExpr = BO->getLHS();
12941   }
12942 
12943   // This checks if the elements are from the same enum.
12944   DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr);
12945   if (!DRE)
12946     return true;
12947 
12948   EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl());
12949   if (!EnumConstant)
12950     return true;
12951 
12952   if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) !=
12953       Enum)
12954     return true;
12955 
12956   return false;
12957 }
12958 
12959 struct DupKey {
12960   int64_t val;
12961   bool isTombstoneOrEmptyKey;
DupKeyDupKey12962   DupKey(int64_t val, bool isTombstoneOrEmptyKey)
12963     : val(val), isTombstoneOrEmptyKey(isTombstoneOrEmptyKey) {}
12964 };
12965 
GetDupKey(const llvm::APSInt & Val)12966 static DupKey GetDupKey(const llvm::APSInt& Val) {
12967   return DupKey(Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue(),
12968                 false);
12969 }
12970 
12971 struct DenseMapInfoDupKey {
getEmptyKeyDenseMapInfoDupKey12972   static DupKey getEmptyKey() { return DupKey(0, true); }
getTombstoneKeyDenseMapInfoDupKey12973   static DupKey getTombstoneKey() { return DupKey(1, true); }
getHashValueDenseMapInfoDupKey12974   static unsigned getHashValue(const DupKey Key) {
12975     return (unsigned)(Key.val * 37);
12976   }
isEqualDenseMapInfoDupKey12977   static bool isEqual(const DupKey& LHS, const DupKey& RHS) {
12978     return LHS.isTombstoneOrEmptyKey == RHS.isTombstoneOrEmptyKey &&
12979            LHS.val == RHS.val;
12980   }
12981 };
12982 
12983 // Emits a warning when an element is implicitly set a value that
12984 // a previous element has already been set to.
CheckForDuplicateEnumValues(Sema & S,ArrayRef<Decl * > Elements,EnumDecl * Enum,QualType EnumType)12985 static void CheckForDuplicateEnumValues(Sema &S, ArrayRef<Decl *> Elements,
12986                                         EnumDecl *Enum,
12987                                         QualType EnumType) {
12988   if (S.Diags.isIgnored(diag::warn_duplicate_enum_values, Enum->getLocation()))
12989     return;
12990   // Avoid anonymous enums
12991   if (!Enum->getIdentifier())
12992     return;
12993 
12994   // Only check for small enums.
12995   if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64)
12996     return;
12997 
12998   typedef SmallVector<EnumConstantDecl *, 3> ECDVector;
12999   typedef SmallVector<ECDVector *, 3> DuplicatesVector;
13000 
13001   typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector;
13002   typedef llvm::DenseMap<DupKey, DeclOrVector, DenseMapInfoDupKey>
13003           ValueToVectorMap;
13004 
13005   DuplicatesVector DupVector;
13006   ValueToVectorMap EnumMap;
13007 
13008   // Populate the EnumMap with all values represented by enum constants without
13009   // an initialier.
13010   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
13011     EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
13012 
13013     // Null EnumConstantDecl means a previous diagnostic has been emitted for
13014     // this constant.  Skip this enum since it may be ill-formed.
13015     if (!ECD) {
13016       return;
13017     }
13018 
13019     if (ECD->getInitExpr())
13020       continue;
13021 
13022     DupKey Key = GetDupKey(ECD->getInitVal());
13023     DeclOrVector &Entry = EnumMap[Key];
13024 
13025     // First time encountering this value.
13026     if (Entry.isNull())
13027       Entry = ECD;
13028   }
13029 
13030   // Create vectors for any values that has duplicates.
13031   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
13032     EnumConstantDecl *ECD = cast<EnumConstantDecl>(Elements[i]);
13033     if (!ValidDuplicateEnum(ECD, Enum))
13034       continue;
13035 
13036     DupKey Key = GetDupKey(ECD->getInitVal());
13037 
13038     DeclOrVector& Entry = EnumMap[Key];
13039     if (Entry.isNull())
13040       continue;
13041 
13042     if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) {
13043       // Ensure constants are different.
13044       if (D == ECD)
13045         continue;
13046 
13047       // Create new vector and push values onto it.
13048       ECDVector *Vec = new ECDVector();
13049       Vec->push_back(D);
13050       Vec->push_back(ECD);
13051 
13052       // Update entry to point to the duplicates vector.
13053       Entry = Vec;
13054 
13055       // Store the vector somewhere we can consult later for quick emission of
13056       // diagnostics.
13057       DupVector.push_back(Vec);
13058       continue;
13059     }
13060 
13061     ECDVector *Vec = Entry.get<ECDVector*>();
13062     // Make sure constants are not added more than once.
13063     if (*Vec->begin() == ECD)
13064       continue;
13065 
13066     Vec->push_back(ECD);
13067   }
13068 
13069   // Emit diagnostics.
13070   for (DuplicatesVector::iterator DupVectorIter = DupVector.begin(),
13071                                   DupVectorEnd = DupVector.end();
13072        DupVectorIter != DupVectorEnd; ++DupVectorIter) {
13073     ECDVector *Vec = *DupVectorIter;
13074     assert(Vec->size() > 1 && "ECDVector should have at least 2 elements.");
13075 
13076     // Emit warning for one enum constant.
13077     ECDVector::iterator I = Vec->begin();
13078     S.Diag((*I)->getLocation(), diag::warn_duplicate_enum_values)
13079       << (*I)->getName() << (*I)->getInitVal().toString(10)
13080       << (*I)->getSourceRange();
13081     ++I;
13082 
13083     // Emit one note for each of the remaining enum constants with
13084     // the same value.
13085     for (ECDVector::iterator E = Vec->end(); I != E; ++I)
13086       S.Diag((*I)->getLocation(), diag::note_duplicate_element)
13087         << (*I)->getName() << (*I)->getInitVal().toString(10)
13088         << (*I)->getSourceRange();
13089     delete Vec;
13090   }
13091 }
13092 
ActOnEnumBody(SourceLocation EnumLoc,SourceLocation LBraceLoc,SourceLocation RBraceLoc,Decl * EnumDeclX,ArrayRef<Decl * > Elements,Scope * S,AttributeList * Attr)13093 void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
13094                          SourceLocation RBraceLoc, Decl *EnumDeclX,
13095                          ArrayRef<Decl *> Elements,
13096                          Scope *S, AttributeList *Attr) {
13097   EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
13098   QualType EnumType = Context.getTypeDeclType(Enum);
13099 
13100   if (Attr)
13101     ProcessDeclAttributeList(S, Enum, Attr);
13102 
13103   if (Enum->isDependentType()) {
13104     for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
13105       EnumConstantDecl *ECD =
13106         cast_or_null<EnumConstantDecl>(Elements[i]);
13107       if (!ECD) continue;
13108 
13109       ECD->setType(EnumType);
13110     }
13111 
13112     Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
13113     return;
13114   }
13115 
13116   // TODO: If the result value doesn't fit in an int, it must be a long or long
13117   // long value.  ISO C does not support this, but GCC does as an extension,
13118   // emit a warning.
13119   unsigned IntWidth = Context.getTargetInfo().getIntWidth();
13120   unsigned CharWidth = Context.getTargetInfo().getCharWidth();
13121   unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
13122 
13123   // Verify that all the values are okay, compute the size of the values, and
13124   // reverse the list.
13125   unsigned NumNegativeBits = 0;
13126   unsigned NumPositiveBits = 0;
13127 
13128   // Keep track of whether all elements have type int.
13129   bool AllElementsInt = true;
13130 
13131   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
13132     EnumConstantDecl *ECD =
13133       cast_or_null<EnumConstantDecl>(Elements[i]);
13134     if (!ECD) continue;  // Already issued a diagnostic.
13135 
13136     const llvm::APSInt &InitVal = ECD->getInitVal();
13137 
13138     // Keep track of the size of positive and negative values.
13139     if (InitVal.isUnsigned() || InitVal.isNonNegative())
13140       NumPositiveBits = std::max(NumPositiveBits,
13141                                  (unsigned)InitVal.getActiveBits());
13142     else
13143       NumNegativeBits = std::max(NumNegativeBits,
13144                                  (unsigned)InitVal.getMinSignedBits());
13145 
13146     // Keep track of whether every enum element has type int (very commmon).
13147     if (AllElementsInt)
13148       AllElementsInt = ECD->getType() == Context.IntTy;
13149   }
13150 
13151   // Figure out the type that should be used for this enum.
13152   QualType BestType;
13153   unsigned BestWidth;
13154 
13155   // C++0x N3000 [conv.prom]p3:
13156   //   An rvalue of an unscoped enumeration type whose underlying
13157   //   type is not fixed can be converted to an rvalue of the first
13158   //   of the following types that can represent all the values of
13159   //   the enumeration: int, unsigned int, long int, unsigned long
13160   //   int, long long int, or unsigned long long int.
13161   // C99 6.4.4.3p2:
13162   //   An identifier declared as an enumeration constant has type int.
13163   // The C99 rule is modified by a gcc extension
13164   QualType BestPromotionType;
13165 
13166   bool Packed = Enum->hasAttr<PackedAttr>();
13167   // -fshort-enums is the equivalent to specifying the packed attribute on all
13168   // enum definitions.
13169   if (LangOpts.ShortEnums)
13170     Packed = true;
13171 
13172   if (Enum->isFixed()) {
13173     BestType = Enum->getIntegerType();
13174     if (BestType->isPromotableIntegerType())
13175       BestPromotionType = Context.getPromotedIntegerType(BestType);
13176     else
13177       BestPromotionType = BestType;
13178     // We don't need to set BestWidth, because BestType is going to be the type
13179     // of the enumerators, but we do anyway because otherwise some compilers
13180     // warn that it might be used uninitialized.
13181     BestWidth = CharWidth;
13182   }
13183   else if (NumNegativeBits) {
13184     // If there is a negative value, figure out the smallest integer type (of
13185     // int/long/longlong) that fits.
13186     // If it's packed, check also if it fits a char or a short.
13187     if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
13188       BestType = Context.SignedCharTy;
13189       BestWidth = CharWidth;
13190     } else if (Packed && NumNegativeBits <= ShortWidth &&
13191                NumPositiveBits < ShortWidth) {
13192       BestType = Context.ShortTy;
13193       BestWidth = ShortWidth;
13194     } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
13195       BestType = Context.IntTy;
13196       BestWidth = IntWidth;
13197     } else {
13198       BestWidth = Context.getTargetInfo().getLongWidth();
13199 
13200       if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
13201         BestType = Context.LongTy;
13202       } else {
13203         BestWidth = Context.getTargetInfo().getLongLongWidth();
13204 
13205         if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
13206           Diag(Enum->getLocation(), diag::ext_enum_too_large);
13207         BestType = Context.LongLongTy;
13208       }
13209     }
13210     BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
13211   } else {
13212     // If there is no negative value, figure out the smallest type that fits
13213     // all of the enumerator values.
13214     // If it's packed, check also if it fits a char or a short.
13215     if (Packed && NumPositiveBits <= CharWidth) {
13216       BestType = Context.UnsignedCharTy;
13217       BestPromotionType = Context.IntTy;
13218       BestWidth = CharWidth;
13219     } else if (Packed && NumPositiveBits <= ShortWidth) {
13220       BestType = Context.UnsignedShortTy;
13221       BestPromotionType = Context.IntTy;
13222       BestWidth = ShortWidth;
13223     } else if (NumPositiveBits <= IntWidth) {
13224       BestType = Context.UnsignedIntTy;
13225       BestWidth = IntWidth;
13226       BestPromotionType
13227         = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
13228                            ? Context.UnsignedIntTy : Context.IntTy;
13229     } else if (NumPositiveBits <=
13230                (BestWidth = Context.getTargetInfo().getLongWidth())) {
13231       BestType = Context.UnsignedLongTy;
13232       BestPromotionType
13233         = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
13234                            ? Context.UnsignedLongTy : Context.LongTy;
13235     } else {
13236       BestWidth = Context.getTargetInfo().getLongLongWidth();
13237       assert(NumPositiveBits <= BestWidth &&
13238              "How could an initializer get larger than ULL?");
13239       BestType = Context.UnsignedLongLongTy;
13240       BestPromotionType
13241         = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
13242                            ? Context.UnsignedLongLongTy : Context.LongLongTy;
13243     }
13244   }
13245 
13246   // Loop over all of the enumerator constants, changing their types to match
13247   // the type of the enum if needed.
13248   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
13249     EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
13250     if (!ECD) continue;  // Already issued a diagnostic.
13251 
13252     // Standard C says the enumerators have int type, but we allow, as an
13253     // extension, the enumerators to be larger than int size.  If each
13254     // enumerator value fits in an int, type it as an int, otherwise type it the
13255     // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
13256     // that X has type 'int', not 'unsigned'.
13257 
13258     // Determine whether the value fits into an int.
13259     llvm::APSInt InitVal = ECD->getInitVal();
13260 
13261     // If it fits into an integer type, force it.  Otherwise force it to match
13262     // the enum decl type.
13263     QualType NewTy;
13264     unsigned NewWidth;
13265     bool NewSign;
13266     if (!getLangOpts().CPlusPlus &&
13267         !Enum->isFixed() &&
13268         isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
13269       NewTy = Context.IntTy;
13270       NewWidth = IntWidth;
13271       NewSign = true;
13272     } else if (ECD->getType() == BestType) {
13273       // Already the right type!
13274       if (getLangOpts().CPlusPlus)
13275         // C++ [dcl.enum]p4: Following the closing brace of an
13276         // enum-specifier, each enumerator has the type of its
13277         // enumeration.
13278         ECD->setType(EnumType);
13279       continue;
13280     } else {
13281       NewTy = BestType;
13282       NewWidth = BestWidth;
13283       NewSign = BestType->isSignedIntegerOrEnumerationType();
13284     }
13285 
13286     // Adjust the APSInt value.
13287     InitVal = InitVal.extOrTrunc(NewWidth);
13288     InitVal.setIsSigned(NewSign);
13289     ECD->setInitVal(InitVal);
13290 
13291     // Adjust the Expr initializer and type.
13292     if (ECD->getInitExpr() &&
13293         !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
13294       ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
13295                                                 CK_IntegralCast,
13296                                                 ECD->getInitExpr(),
13297                                                 /*base paths*/ nullptr,
13298                                                 VK_RValue));
13299     if (getLangOpts().CPlusPlus)
13300       // C++ [dcl.enum]p4: Following the closing brace of an
13301       // enum-specifier, each enumerator has the type of its
13302       // enumeration.
13303       ECD->setType(EnumType);
13304     else
13305       ECD->setType(NewTy);
13306   }
13307 
13308   Enum->completeDefinition(BestType, BestPromotionType,
13309                            NumPositiveBits, NumNegativeBits);
13310 
13311   CheckForDuplicateEnumValues(*this, Elements, Enum, EnumType);
13312 
13313   // Now that the enum type is defined, ensure it's not been underaligned.
13314   if (Enum->hasAttrs())
13315     CheckAlignasUnderalignment(Enum);
13316 }
13317 
ActOnFileScopeAsmDecl(Expr * expr,SourceLocation StartLoc,SourceLocation EndLoc)13318 Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
13319                                   SourceLocation StartLoc,
13320                                   SourceLocation EndLoc) {
13321   StringLiteral *AsmString = cast<StringLiteral>(expr);
13322 
13323   FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
13324                                                    AsmString, StartLoc,
13325                                                    EndLoc);
13326   CurContext->addDecl(New);
13327   return New;
13328 }
13329 
checkModuleImportContext(Sema & S,Module * M,SourceLocation ImportLoc,DeclContext * DC)13330 static void checkModuleImportContext(Sema &S, Module *M,
13331                                      SourceLocation ImportLoc,
13332                                      DeclContext *DC) {
13333   if (auto *LSD = dyn_cast<LinkageSpecDecl>(DC)) {
13334     switch (LSD->getLanguage()) {
13335     case LinkageSpecDecl::lang_c:
13336       if (!M->IsExternC) {
13337         S.Diag(ImportLoc, diag::err_module_import_in_extern_c)
13338           << M->getFullModuleName();
13339         S.Diag(LSD->getLocStart(), diag::note_module_import_in_extern_c);
13340         return;
13341       }
13342       break;
13343     case LinkageSpecDecl::lang_cxx:
13344       break;
13345     }
13346     DC = LSD->getParent();
13347   }
13348 
13349   while (isa<LinkageSpecDecl>(DC))
13350     DC = DC->getParent();
13351   if (!isa<TranslationUnitDecl>(DC)) {
13352     S.Diag(ImportLoc, diag::err_module_import_not_at_top_level)
13353       << M->getFullModuleName() << DC;
13354     S.Diag(cast<Decl>(DC)->getLocStart(),
13355            diag::note_module_import_not_at_top_level)
13356       << DC;
13357   }
13358 }
13359 
ActOnModuleImport(SourceLocation AtLoc,SourceLocation ImportLoc,ModuleIdPath Path)13360 DeclResult Sema::ActOnModuleImport(SourceLocation AtLoc,
13361                                    SourceLocation ImportLoc,
13362                                    ModuleIdPath Path) {
13363   Module *Mod =
13364       getModuleLoader().loadModule(ImportLoc, Path, Module::AllVisible,
13365                                    /*IsIncludeDirective=*/false);
13366   if (!Mod)
13367     return true;
13368 
13369   checkModuleImportContext(*this, Mod, ImportLoc, CurContext);
13370 
13371   // FIXME: we should support importing a submodule within a different submodule
13372   // of the same top-level module. Until we do, make it an error rather than
13373   // silently ignoring the import.
13374   if (Mod->getTopLevelModuleName() == getLangOpts().CurrentModule)
13375     Diag(ImportLoc, diag::err_module_self_import)
13376         << Mod->getFullModuleName() << getLangOpts().CurrentModule;
13377 
13378   SmallVector<SourceLocation, 2> IdentifierLocs;
13379   Module *ModCheck = Mod;
13380   for (unsigned I = 0, N = Path.size(); I != N; ++I) {
13381     // If we've run out of module parents, just drop the remaining identifiers.
13382     // We need the length to be consistent.
13383     if (!ModCheck)
13384       break;
13385     ModCheck = ModCheck->Parent;
13386 
13387     IdentifierLocs.push_back(Path[I].second);
13388   }
13389 
13390   ImportDecl *Import = ImportDecl::Create(Context,
13391                                           Context.getTranslationUnitDecl(),
13392                                           AtLoc.isValid()? AtLoc : ImportLoc,
13393                                           Mod, IdentifierLocs);
13394   Context.getTranslationUnitDecl()->addDecl(Import);
13395   return Import;
13396 }
13397 
ActOnModuleInclude(SourceLocation DirectiveLoc,Module * Mod)13398 void Sema::ActOnModuleInclude(SourceLocation DirectiveLoc, Module *Mod) {
13399   checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext);
13400 
13401   // FIXME: Should we synthesize an ImportDecl here?
13402   getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, DirectiveLoc,
13403                                       /*Complain=*/true);
13404 }
13405 
createImplicitModuleImportForErrorRecovery(SourceLocation Loc,Module * Mod)13406 void Sema::createImplicitModuleImportForErrorRecovery(SourceLocation Loc,
13407                                                       Module *Mod) {
13408   // Bail if we're not allowed to implicitly import a module here.
13409   if (isSFINAEContext() || !getLangOpts().ModulesErrorRecovery)
13410     return;
13411 
13412   // Create the implicit import declaration.
13413   TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl();
13414   ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU,
13415                                                    Loc, Mod, Loc);
13416   TU->addDecl(ImportD);
13417   Consumer.HandleImplicitImportDecl(ImportD);
13418 
13419   // Make the module visible.
13420   getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, Loc,
13421                                       /*Complain=*/false);
13422 }
13423 
ActOnPragmaRedefineExtname(IdentifierInfo * Name,IdentifierInfo * AliasName,SourceLocation PragmaLoc,SourceLocation NameLoc,SourceLocation AliasNameLoc)13424 void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
13425                                       IdentifierInfo* AliasName,
13426                                       SourceLocation PragmaLoc,
13427                                       SourceLocation NameLoc,
13428                                       SourceLocation AliasNameLoc) {
13429   Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
13430                                     LookupOrdinaryName);
13431   AsmLabelAttr *Attr = ::new (Context) AsmLabelAttr(AliasNameLoc, Context,
13432                                                     AliasName->getName(), 0);
13433 
13434   if (PrevDecl)
13435     PrevDecl->addAttr(Attr);
13436   else
13437     (void)ExtnameUndeclaredIdentifiers.insert(
13438       std::pair<IdentifierInfo*,AsmLabelAttr*>(Name, Attr));
13439 }
13440 
ActOnPragmaWeakID(IdentifierInfo * Name,SourceLocation PragmaLoc,SourceLocation NameLoc)13441 void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
13442                              SourceLocation PragmaLoc,
13443                              SourceLocation NameLoc) {
13444   Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
13445 
13446   if (PrevDecl) {
13447     PrevDecl->addAttr(WeakAttr::CreateImplicit(Context, PragmaLoc));
13448   } else {
13449     (void)WeakUndeclaredIdentifiers.insert(
13450       std::pair<IdentifierInfo*,WeakInfo>
13451         (Name, WeakInfo((IdentifierInfo*)nullptr, NameLoc)));
13452   }
13453 }
13454 
ActOnPragmaWeakAlias(IdentifierInfo * Name,IdentifierInfo * AliasName,SourceLocation PragmaLoc,SourceLocation NameLoc,SourceLocation AliasNameLoc)13455 void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
13456                                 IdentifierInfo* AliasName,
13457                                 SourceLocation PragmaLoc,
13458                                 SourceLocation NameLoc,
13459                                 SourceLocation AliasNameLoc) {
13460   Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
13461                                     LookupOrdinaryName);
13462   WeakInfo W = WeakInfo(Name, NameLoc);
13463 
13464   if (PrevDecl) {
13465     if (!PrevDecl->hasAttr<AliasAttr>())
13466       if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
13467         DeclApplyPragmaWeak(TUScope, ND, W);
13468   } else {
13469     (void)WeakUndeclaredIdentifiers.insert(
13470       std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
13471   }
13472 }
13473 
getObjCDeclContext() const13474 Decl *Sema::getObjCDeclContext() const {
13475   return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
13476 }
13477 
getCurContextAvailability() const13478 AvailabilityResult Sema::getCurContextAvailability() const {
13479   const Decl *D = cast<Decl>(getCurObjCLexicalContext());
13480   // If we are within an Objective-C method, we should consult
13481   // both the availability of the method as well as the
13482   // enclosing class.  If the class is (say) deprecated,
13483   // the entire method is considered deprecated from the
13484   // purpose of checking if the current context is deprecated.
13485   if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
13486     AvailabilityResult R = MD->getAvailability();
13487     if (R != AR_Available)
13488       return R;
13489     D = MD->getClassInterface();
13490   }
13491   // If we are within an Objective-c @implementation, it
13492   // gets the same availability context as the @interface.
13493   else if (const ObjCImplementationDecl *ID =
13494             dyn_cast<ObjCImplementationDecl>(D)) {
13495     D = ID->getClassInterface();
13496   }
13497   return D->getAvailability();
13498 }
13499