• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //=== Target/TargetRegisterInfo.h - Target Register Information -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file describes an abstract interface used to get information about a
11 // target machines register file.  This information is used for a variety of
12 // purposed, especially register allocation.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #ifndef LLVM_TARGET_TARGETREGISTERINFO_H
17 #define LLVM_TARGET_TARGETREGISTERINFO_H
18 
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/CodeGen/MachineBasicBlock.h"
21 #include "llvm/CodeGen/ValueTypes.h"
22 #include "llvm/IR/CallingConv.h"
23 #include "llvm/MC/MCRegisterInfo.h"
24 #include <cassert>
25 #include <functional>
26 
27 namespace llvm {
28 
29 class BitVector;
30 class MachineFunction;
31 class RegScavenger;
32 template<class T> class SmallVectorImpl;
33 class VirtRegMap;
34 class raw_ostream;
35 
36 class TargetRegisterClass {
37 public:
38   typedef const MCPhysReg* iterator;
39   typedef const MCPhysReg* const_iterator;
40   typedef const MVT::SimpleValueType* vt_iterator;
41   typedef const TargetRegisterClass* const * sc_iterator;
42 
43   // Instance variables filled by tablegen, do not use!
44   const MCRegisterClass *MC;
45   const vt_iterator VTs;
46   const uint32_t *SubClassMask;
47   const uint16_t *SuperRegIndices;
48   const sc_iterator SuperClasses;
49   ArrayRef<MCPhysReg> (*OrderFunc)(const MachineFunction&);
50 
51   /// getID() - Return the register class ID number.
52   ///
getID()53   unsigned getID() const { return MC->getID(); }
54 
55   /// getName() - Return the register class name for debugging.
56   ///
getName()57   const char *getName() const { return MC->getName(); }
58 
59   /// begin/end - Return all of the registers in this class.
60   ///
begin()61   iterator       begin() const { return MC->begin(); }
end()62   iterator         end() const { return MC->end(); }
63 
64   /// getNumRegs - Return the number of registers in this class.
65   ///
getNumRegs()66   unsigned getNumRegs() const { return MC->getNumRegs(); }
67 
68   /// getRegister - Return the specified register in the class.
69   ///
getRegister(unsigned i)70   unsigned getRegister(unsigned i) const {
71     return MC->getRegister(i);
72   }
73 
74   /// contains - Return true if the specified register is included in this
75   /// register class.  This does not include virtual registers.
contains(unsigned Reg)76   bool contains(unsigned Reg) const {
77     return MC->contains(Reg);
78   }
79 
80   /// contains - Return true if both registers are in this class.
contains(unsigned Reg1,unsigned Reg2)81   bool contains(unsigned Reg1, unsigned Reg2) const {
82     return MC->contains(Reg1, Reg2);
83   }
84 
85   /// getSize - Return the size of the register in bytes, which is also the size
86   /// of a stack slot allocated to hold a spilled copy of this register.
getSize()87   unsigned getSize() const { return MC->getSize(); }
88 
89   /// getAlignment - Return the minimum required alignment for a register of
90   /// this class.
getAlignment()91   unsigned getAlignment() const { return MC->getAlignment(); }
92 
93   /// getCopyCost - Return the cost of copying a value between two registers in
94   /// this class. A negative number means the register class is very expensive
95   /// to copy e.g. status flag register classes.
getCopyCost()96   int getCopyCost() const { return MC->getCopyCost(); }
97 
98   /// isAllocatable - Return true if this register class may be used to create
99   /// virtual registers.
isAllocatable()100   bool isAllocatable() const { return MC->isAllocatable(); }
101 
102   /// hasType - return true if this TargetRegisterClass has the ValueType vt.
103   ///
hasType(EVT vt)104   bool hasType(EVT vt) const {
105     for(int i = 0; VTs[i] != MVT::Other; ++i)
106       if (EVT(VTs[i]) == vt)
107         return true;
108     return false;
109   }
110 
111   /// vt_begin / vt_end - Loop over all of the value types that can be
112   /// represented by values in this register class.
vt_begin()113   vt_iterator vt_begin() const {
114     return VTs;
115   }
116 
vt_end()117   vt_iterator vt_end() const {
118     vt_iterator I = VTs;
119     while (*I != MVT::Other) ++I;
120     return I;
121   }
122 
123   /// hasSubClass - return true if the specified TargetRegisterClass
124   /// is a proper sub-class of this TargetRegisterClass.
hasSubClass(const TargetRegisterClass * RC)125   bool hasSubClass(const TargetRegisterClass *RC) const {
126     return RC != this && hasSubClassEq(RC);
127   }
128 
129   /// hasSubClassEq - Returns true if RC is a sub-class of or equal to this
130   /// class.
hasSubClassEq(const TargetRegisterClass * RC)131   bool hasSubClassEq(const TargetRegisterClass *RC) const {
132     unsigned ID = RC->getID();
133     return (SubClassMask[ID / 32] >> (ID % 32)) & 1;
134   }
135 
136   /// hasSuperClass - return true if the specified TargetRegisterClass is a
137   /// proper super-class of this TargetRegisterClass.
hasSuperClass(const TargetRegisterClass * RC)138   bool hasSuperClass(const TargetRegisterClass *RC) const {
139     return RC->hasSubClass(this);
140   }
141 
142   /// hasSuperClassEq - Returns true if RC is a super-class of or equal to this
143   /// class.
hasSuperClassEq(const TargetRegisterClass * RC)144   bool hasSuperClassEq(const TargetRegisterClass *RC) const {
145     return RC->hasSubClassEq(this);
146   }
147 
148   /// getSubClassMask - Returns a bit vector of subclasses, including this one.
149   /// The vector is indexed by class IDs, see hasSubClassEq() above for how to
150   /// use it.
getSubClassMask()151   const uint32_t *getSubClassMask() const {
152     return SubClassMask;
153   }
154 
155   /// getSuperRegIndices - Returns a 0-terminated list of sub-register indices
156   /// that project some super-register class into this register class. The list
157   /// has an entry for each Idx such that:
158   ///
159   ///   There exists SuperRC where:
160   ///     For all Reg in SuperRC:
161   ///       this->contains(Reg:Idx)
162   ///
getSuperRegIndices()163   const uint16_t *getSuperRegIndices() const {
164     return SuperRegIndices;
165   }
166 
167   /// getSuperClasses - Returns a NULL terminated list of super-classes.  The
168   /// classes are ordered by ID which is also a topological ordering from large
169   /// to small classes.  The list does NOT include the current class.
getSuperClasses()170   sc_iterator getSuperClasses() const {
171     return SuperClasses;
172   }
173 
174   /// isASubClass - return true if this TargetRegisterClass is a subset
175   /// class of at least one other TargetRegisterClass.
isASubClass()176   bool isASubClass() const {
177     return SuperClasses[0] != nullptr;
178   }
179 
180   /// getRawAllocationOrder - Returns the preferred order for allocating
181   /// registers from this register class in MF. The raw order comes directly
182   /// from the .td file and may include reserved registers that are not
183   /// allocatable. Register allocators should also make sure to allocate
184   /// callee-saved registers only after all the volatiles are used. The
185   /// RegisterClassInfo class provides filtered allocation orders with
186   /// callee-saved registers moved to the end.
187   ///
188   /// The MachineFunction argument can be used to tune the allocatable
189   /// registers based on the characteristics of the function, subtarget, or
190   /// other criteria.
191   ///
192   /// By default, this method returns all registers in the class.
193   ///
getRawAllocationOrder(const MachineFunction & MF)194   ArrayRef<MCPhysReg> getRawAllocationOrder(const MachineFunction &MF) const {
195     return OrderFunc ? OrderFunc(MF) : makeArrayRef(begin(), getNumRegs());
196   }
197 };
198 
199 /// TargetRegisterInfoDesc - Extra information, not in MCRegisterDesc, about
200 /// registers. These are used by codegen, not by MC.
201 struct TargetRegisterInfoDesc {
202   unsigned CostPerUse;          // Extra cost of instructions using register.
203   bool inAllocatableClass;      // Register belongs to an allocatable regclass.
204 };
205 
206 /// Each TargetRegisterClass has a per register weight, and weight
207 /// limit which must be less than the limits of its pressure sets.
208 struct RegClassWeight {
209   unsigned RegWeight;
210   unsigned WeightLimit;
211 };
212 
213 /// TargetRegisterInfo base class - We assume that the target defines a static
214 /// array of TargetRegisterDesc objects that represent all of the machine
215 /// registers that the target has.  As such, we simply have to track a pointer
216 /// to this array so that we can turn register number into a register
217 /// descriptor.
218 ///
219 class TargetRegisterInfo : public MCRegisterInfo {
220 public:
221   typedef const TargetRegisterClass * const * regclass_iterator;
222 private:
223   const TargetRegisterInfoDesc *InfoDesc;     // Extra desc array for codegen
224   const char *const *SubRegIndexNames;        // Names of subreg indexes.
225   // Pointer to array of lane masks, one per sub-reg index.
226   const unsigned *SubRegIndexLaneMasks;
227 
228   regclass_iterator RegClassBegin, RegClassEnd;   // List of regclasses
229   unsigned CoveringLanes;
230 
231 protected:
232   TargetRegisterInfo(const TargetRegisterInfoDesc *ID,
233                      regclass_iterator RegClassBegin,
234                      regclass_iterator RegClassEnd,
235                      const char *const *SRINames,
236                      const unsigned *SRILaneMasks,
237                      unsigned CoveringLanes);
238   virtual ~TargetRegisterInfo();
239 public:
240 
241   // Register numbers can represent physical registers, virtual registers, and
242   // sometimes stack slots. The unsigned values are divided into these ranges:
243   //
244   //   0           Not a register, can be used as a sentinel.
245   //   [1;2^30)    Physical registers assigned by TableGen.
246   //   [2^30;2^31) Stack slots. (Rarely used.)
247   //   [2^31;2^32) Virtual registers assigned by MachineRegisterInfo.
248   //
249   // Further sentinels can be allocated from the small negative integers.
250   // DenseMapInfo<unsigned> uses -1u and -2u.
251 
252   /// isStackSlot - Sometimes it is useful the be able to store a non-negative
253   /// frame index in a variable that normally holds a register. isStackSlot()
254   /// returns true if Reg is in the range used for stack slots.
255   ///
256   /// Note that isVirtualRegister() and isPhysicalRegister() cannot handle stack
257   /// slots, so if a variable may contains a stack slot, always check
258   /// isStackSlot() first.
259   ///
isStackSlot(unsigned Reg)260   static bool isStackSlot(unsigned Reg) {
261     return int(Reg) >= (1 << 30);
262   }
263 
264   /// stackSlot2Index - Compute the frame index from a register value
265   /// representing a stack slot.
stackSlot2Index(unsigned Reg)266   static int stackSlot2Index(unsigned Reg) {
267     assert(isStackSlot(Reg) && "Not a stack slot");
268     return int(Reg - (1u << 30));
269   }
270 
271   /// index2StackSlot - Convert a non-negative frame index to a stack slot
272   /// register value.
index2StackSlot(int FI)273   static unsigned index2StackSlot(int FI) {
274     assert(FI >= 0 && "Cannot hold a negative frame index.");
275     return FI + (1u << 30);
276   }
277 
278   /// isPhysicalRegister - Return true if the specified register number is in
279   /// the physical register namespace.
isPhysicalRegister(unsigned Reg)280   static bool isPhysicalRegister(unsigned Reg) {
281     assert(!isStackSlot(Reg) && "Not a register! Check isStackSlot() first.");
282     return int(Reg) > 0;
283   }
284 
285   /// isVirtualRegister - Return true if the specified register number is in
286   /// the virtual register namespace.
isVirtualRegister(unsigned Reg)287   static bool isVirtualRegister(unsigned Reg) {
288     assert(!isStackSlot(Reg) && "Not a register! Check isStackSlot() first.");
289     return int(Reg) < 0;
290   }
291 
292   /// virtReg2Index - Convert a virtual register number to a 0-based index.
293   /// The first virtual register in a function will get the index 0.
virtReg2Index(unsigned Reg)294   static unsigned virtReg2Index(unsigned Reg) {
295     assert(isVirtualRegister(Reg) && "Not a virtual register");
296     return Reg & ~(1u << 31);
297   }
298 
299   /// index2VirtReg - Convert a 0-based index to a virtual register number.
300   /// This is the inverse operation of VirtReg2IndexFunctor below.
index2VirtReg(unsigned Index)301   static unsigned index2VirtReg(unsigned Index) {
302     return Index | (1u << 31);
303   }
304 
305   /// getMinimalPhysRegClass - Returns the Register Class of a physical
306   /// register of the given type, picking the most sub register class of
307   /// the right type that contains this physreg.
308   const TargetRegisterClass *
309     getMinimalPhysRegClass(unsigned Reg, EVT VT = MVT::Other) const;
310 
311   /// getAllocatableClass - Return the maximal subclass of the given register
312   /// class that is alloctable, or NULL.
313   const TargetRegisterClass *
314     getAllocatableClass(const TargetRegisterClass *RC) const;
315 
316   /// getAllocatableSet - Returns a bitset indexed by register number
317   /// indicating if a register is allocatable or not. If a register class is
318   /// specified, returns the subset for the class.
319   BitVector getAllocatableSet(const MachineFunction &MF,
320                               const TargetRegisterClass *RC = nullptr) const;
321 
322   /// getCostPerUse - Return the additional cost of using this register instead
323   /// of other registers in its class.
getCostPerUse(unsigned RegNo)324   unsigned getCostPerUse(unsigned RegNo) const {
325     return InfoDesc[RegNo].CostPerUse;
326   }
327 
328   /// isInAllocatableClass - Return true if the register is in the allocation
329   /// of any register class.
isInAllocatableClass(unsigned RegNo)330   bool isInAllocatableClass(unsigned RegNo) const {
331     return InfoDesc[RegNo].inAllocatableClass;
332   }
333 
334   /// getSubRegIndexName - Return the human-readable symbolic target-specific
335   /// name for the specified SubRegIndex.
getSubRegIndexName(unsigned SubIdx)336   const char *getSubRegIndexName(unsigned SubIdx) const {
337     assert(SubIdx && SubIdx < getNumSubRegIndices() &&
338            "This is not a subregister index");
339     return SubRegIndexNames[SubIdx-1];
340   }
341 
342   /// getSubRegIndexLaneMask - Return a bitmask representing the parts of a
343   /// register that are covered by SubIdx.
344   ///
345   /// Lane masks for sub-register indices are similar to register units for
346   /// physical registers. The individual bits in a lane mask can't be assigned
347   /// any specific meaning. They can be used to check if two sub-register
348   /// indices overlap.
349   ///
350   /// If the target has a register such that:
351   ///
352   ///   getSubReg(Reg, A) overlaps getSubReg(Reg, B)
353   ///
354   /// then:
355   ///
356   ///   getSubRegIndexLaneMask(A) & getSubRegIndexLaneMask(B) != 0
357   ///
358   /// The converse is not necessarily true. If two lane masks have a common
359   /// bit, the corresponding sub-registers may not overlap, but it can be
360   /// assumed that they usually will.
getSubRegIndexLaneMask(unsigned SubIdx)361   unsigned getSubRegIndexLaneMask(unsigned SubIdx) const {
362     // SubIdx == 0 is allowed, it has the lane mask ~0u.
363     assert(SubIdx < getNumSubRegIndices() && "This is not a subregister index");
364     return SubRegIndexLaneMasks[SubIdx];
365   }
366 
367   /// The lane masks returned by getSubRegIndexLaneMask() above can only be
368   /// used to determine if sub-registers overlap - they can't be used to
369   /// determine if a set of sub-registers completely cover another
370   /// sub-register.
371   ///
372   /// The X86 general purpose registers have two lanes corresponding to the
373   /// sub_8bit and sub_8bit_hi sub-registers. Both sub_32bit and sub_16bit have
374   /// lane masks '3', but the sub_16bit sub-register doesn't fully cover the
375   /// sub_32bit sub-register.
376   ///
377   /// On the other hand, the ARM NEON lanes fully cover their registers: The
378   /// dsub_0 sub-register is completely covered by the ssub_0 and ssub_1 lanes.
379   /// This is related to the CoveredBySubRegs property on register definitions.
380   ///
381   /// This function returns a bit mask of lanes that completely cover their
382   /// sub-registers. More precisely, given:
383   ///
384   ///   Covering = getCoveringLanes();
385   ///   MaskA = getSubRegIndexLaneMask(SubA);
386   ///   MaskB = getSubRegIndexLaneMask(SubB);
387   ///
388   /// If (MaskA & ~(MaskB & Covering)) == 0, then SubA is completely covered by
389   /// SubB.
getCoveringLanes()390   unsigned getCoveringLanes() const { return CoveringLanes; }
391 
392   /// regsOverlap - Returns true if the two registers are equal or alias each
393   /// other. The registers may be virtual register.
regsOverlap(unsigned regA,unsigned regB)394   bool regsOverlap(unsigned regA, unsigned regB) const {
395     if (regA == regB) return true;
396     if (isVirtualRegister(regA) || isVirtualRegister(regB))
397       return false;
398 
399     // Regunits are numerically ordered. Find a common unit.
400     MCRegUnitIterator RUA(regA, this);
401     MCRegUnitIterator RUB(regB, this);
402     do {
403       if (*RUA == *RUB) return true;
404       if (*RUA < *RUB) ++RUA;
405       else             ++RUB;
406     } while (RUA.isValid() && RUB.isValid());
407     return false;
408   }
409 
410   /// hasRegUnit - Returns true if Reg contains RegUnit.
hasRegUnit(unsigned Reg,unsigned RegUnit)411   bool hasRegUnit(unsigned Reg, unsigned RegUnit) const {
412     for (MCRegUnitIterator Units(Reg, this); Units.isValid(); ++Units)
413       if (*Units == RegUnit)
414         return true;
415     return false;
416   }
417 
418   /// getCalleeSavedRegs - Return a null-terminated list of all of the
419   /// callee saved registers on this target. The register should be in the
420   /// order of desired callee-save stack frame offset. The first register is
421   /// closest to the incoming stack pointer if stack grows down, and vice versa.
422   ///
423   virtual const MCPhysReg*
424   getCalleeSavedRegs(const MachineFunction *MF = nullptr) const = 0;
425 
426   /// getCallPreservedMask - Return a mask of call-preserved registers for the
427   /// given calling convention on the current sub-target.  The mask should
428   /// include all call-preserved aliases.  This is used by the register
429   /// allocator to determine which registers can be live across a call.
430   ///
431   /// The mask is an array containing (TRI::getNumRegs()+31)/32 entries.
432   /// A set bit indicates that all bits of the corresponding register are
433   /// preserved across the function call.  The bit mask is expected to be
434   /// sub-register complete, i.e. if A is preserved, so are all its
435   /// sub-registers.
436   ///
437   /// Bits are numbered from the LSB, so the bit for physical register Reg can
438   /// be found as (Mask[Reg / 32] >> Reg % 32) & 1.
439   ///
440   /// A NULL pointer means that no register mask will be used, and call
441   /// instructions should use implicit-def operands to indicate call clobbered
442   /// registers.
443   ///
getCallPreservedMask(CallingConv::ID)444   virtual const uint32_t *getCallPreservedMask(CallingConv::ID) const {
445     // The default mask clobbers everything.  All targets should override.
446     return nullptr;
447   }
448 
449   /// getReservedRegs - Returns a bitset indexed by physical register number
450   /// indicating if a register is a special register that has particular uses
451   /// and should be considered unavailable at all times, e.g. SP, RA. This is
452   /// used by register scavenger to determine what registers are free.
453   virtual BitVector getReservedRegs(const MachineFunction &MF) const = 0;
454 
455   /// getMatchingSuperReg - Return a super-register of the specified register
456   /// Reg so its sub-register of index SubIdx is Reg.
getMatchingSuperReg(unsigned Reg,unsigned SubIdx,const TargetRegisterClass * RC)457   unsigned getMatchingSuperReg(unsigned Reg, unsigned SubIdx,
458                                const TargetRegisterClass *RC) const {
459     return MCRegisterInfo::getMatchingSuperReg(Reg, SubIdx, RC->MC);
460   }
461 
462   /// getMatchingSuperRegClass - Return a subclass of the specified register
463   /// class A so that each register in it has a sub-register of the
464   /// specified sub-register index which is in the specified register class B.
465   ///
466   /// TableGen will synthesize missing A sub-classes.
467   virtual const TargetRegisterClass *
468   getMatchingSuperRegClass(const TargetRegisterClass *A,
469                            const TargetRegisterClass *B, unsigned Idx) const;
470 
471   /// getSubClassWithSubReg - Returns the largest legal sub-class of RC that
472   /// supports the sub-register index Idx.
473   /// If no such sub-class exists, return NULL.
474   /// If all registers in RC already have an Idx sub-register, return RC.
475   ///
476   /// TableGen generates a version of this function that is good enough in most
477   /// cases.  Targets can override if they have constraints that TableGen
478   /// doesn't understand.  For example, the x86 sub_8bit sub-register index is
479   /// supported by the full GR32 register class in 64-bit mode, but only by the
480   /// GR32_ABCD regiister class in 32-bit mode.
481   ///
482   /// TableGen will synthesize missing RC sub-classes.
483   virtual const TargetRegisterClass *
getSubClassWithSubReg(const TargetRegisterClass * RC,unsigned Idx)484   getSubClassWithSubReg(const TargetRegisterClass *RC, unsigned Idx) const {
485     assert(Idx == 0 && "Target has no sub-registers");
486     return RC;
487   }
488 
489   /// composeSubRegIndices - Return the subregister index you get from composing
490   /// two subregister indices.
491   ///
492   /// The special null sub-register index composes as the identity.
493   ///
494   /// If R:a:b is the same register as R:c, then composeSubRegIndices(a, b)
495   /// returns c. Note that composeSubRegIndices does not tell you about illegal
496   /// compositions. If R does not have a subreg a, or R:a does not have a subreg
497   /// b, composeSubRegIndices doesn't tell you.
498   ///
499   /// The ARM register Q0 has two D subregs dsub_0:D0 and dsub_1:D1. It also has
500   /// ssub_0:S0 - ssub_3:S3 subregs.
501   /// If you compose subreg indices dsub_1, ssub_0 you get ssub_2.
502   ///
composeSubRegIndices(unsigned a,unsigned b)503   unsigned composeSubRegIndices(unsigned a, unsigned b) const {
504     if (!a) return b;
505     if (!b) return a;
506     return composeSubRegIndicesImpl(a, b);
507   }
508 
509 protected:
510   /// Overridden by TableGen in targets that have sub-registers.
composeSubRegIndicesImpl(unsigned,unsigned)511   virtual unsigned composeSubRegIndicesImpl(unsigned, unsigned) const {
512     llvm_unreachable("Target has no sub-registers");
513   }
514 
515 public:
516   /// getCommonSuperRegClass - Find a common super-register class if it exists.
517   ///
518   /// Find a register class, SuperRC and two sub-register indices, PreA and
519   /// PreB, such that:
520   ///
521   ///   1. PreA + SubA == PreB + SubB  (using composeSubRegIndices()), and
522   ///
523   ///   2. For all Reg in SuperRC: Reg:PreA in RCA and Reg:PreB in RCB, and
524   ///
525   ///   3. SuperRC->getSize() >= max(RCA->getSize(), RCB->getSize()).
526   ///
527   /// SuperRC will be chosen such that no super-class of SuperRC satisfies the
528   /// requirements, and there is no register class with a smaller spill size
529   /// that satisfies the requirements.
530   ///
531   /// SubA and SubB must not be 0. Use getMatchingSuperRegClass() instead.
532   ///
533   /// Either of the PreA and PreB sub-register indices may be returned as 0. In
534   /// that case, the returned register class will be a sub-class of the
535   /// corresponding argument register class.
536   ///
537   /// The function returns NULL if no register class can be found.
538   ///
539   const TargetRegisterClass*
540   getCommonSuperRegClass(const TargetRegisterClass *RCA, unsigned SubA,
541                          const TargetRegisterClass *RCB, unsigned SubB,
542                          unsigned &PreA, unsigned &PreB) const;
543 
544   //===--------------------------------------------------------------------===//
545   // Register Class Information
546   //
547 
548   /// Register class iterators
549   ///
regclass_begin()550   regclass_iterator regclass_begin() const { return RegClassBegin; }
regclass_end()551   regclass_iterator regclass_end() const { return RegClassEnd; }
552 
getNumRegClasses()553   unsigned getNumRegClasses() const {
554     return (unsigned)(regclass_end()-regclass_begin());
555   }
556 
557   /// getRegClass - Returns the register class associated with the enumeration
558   /// value.  See class MCOperandInfo.
getRegClass(unsigned i)559   const TargetRegisterClass *getRegClass(unsigned i) const {
560     assert(i < getNumRegClasses() && "Register Class ID out of range");
561     return RegClassBegin[i];
562   }
563 
564   /// getCommonSubClass - find the largest common subclass of A and B. Return
565   /// NULL if there is no common subclass.
566   const TargetRegisterClass *
567   getCommonSubClass(const TargetRegisterClass *A,
568                     const TargetRegisterClass *B) const;
569 
570   /// getPointerRegClass - Returns a TargetRegisterClass used for pointer
571   /// values.  If a target supports multiple different pointer register classes,
572   /// kind specifies which one is indicated.
573   virtual const TargetRegisterClass *
574   getPointerRegClass(const MachineFunction &MF, unsigned Kind=0) const {
575     llvm_unreachable("Target didn't implement getPointerRegClass!");
576   }
577 
578   /// getCrossCopyRegClass - Returns a legal register class to copy a register
579   /// in the specified class to or from. If it is possible to copy the register
580   /// directly without using a cross register class copy, return the specified
581   /// RC. Returns NULL if it is not possible to copy between a two registers of
582   /// the specified class.
583   virtual const TargetRegisterClass *
getCrossCopyRegClass(const TargetRegisterClass * RC)584   getCrossCopyRegClass(const TargetRegisterClass *RC) const {
585     return RC;
586   }
587 
588   /// getLargestLegalSuperClass - Returns the largest super class of RC that is
589   /// legal to use in the current sub-target and has the same spill size.
590   /// The returned register class can be used to create virtual registers which
591   /// means that all its registers can be copied and spilled.
592   virtual const TargetRegisterClass*
getLargestLegalSuperClass(const TargetRegisterClass * RC)593   getLargestLegalSuperClass(const TargetRegisterClass *RC) const {
594     /// The default implementation is very conservative and doesn't allow the
595     /// register allocator to inflate register classes.
596     return RC;
597   }
598 
599   /// getRegPressureLimit - Return the register pressure "high water mark" for
600   /// the specific register class. The scheduler is in high register pressure
601   /// mode (for the specific register class) if it goes over the limit.
602   ///
603   /// Note: this is the old register pressure model that relies on a manually
604   /// specified representative register class per value type.
getRegPressureLimit(const TargetRegisterClass * RC,MachineFunction & MF)605   virtual unsigned getRegPressureLimit(const TargetRegisterClass *RC,
606                                        MachineFunction &MF) const {
607     return 0;
608   }
609 
610   /// Get the weight in units of pressure for this register class.
611   virtual const RegClassWeight &getRegClassWeight(
612     const TargetRegisterClass *RC) const = 0;
613 
614   /// Get the weight in units of pressure for this register unit.
615   virtual unsigned getRegUnitWeight(unsigned RegUnit) const = 0;
616 
617   /// Get the number of dimensions of register pressure.
618   virtual unsigned getNumRegPressureSets() const = 0;
619 
620   /// Get the name of this register unit pressure set.
621   virtual const char *getRegPressureSetName(unsigned Idx) const = 0;
622 
623   /// Get the register unit pressure limit for this dimension.
624   /// This limit must be adjusted dynamically for reserved registers.
625   virtual unsigned getRegPressureSetLimit(unsigned Idx) const = 0;
626 
627   /// Get the dimensions of register pressure impacted by this register class.
628   /// Returns a -1 terminated array of pressure set IDs.
629   virtual const int *getRegClassPressureSets(
630     const TargetRegisterClass *RC) const = 0;
631 
632   /// Get the dimensions of register pressure impacted by this register unit.
633   /// Returns a -1 terminated array of pressure set IDs.
634   virtual const int *getRegUnitPressureSets(unsigned RegUnit) const = 0;
635 
636   /// Get a list of 'hint' registers that the register allocator should try
637   /// first when allocating a physical register for the virtual register
638   /// VirtReg. These registers are effectively moved to the front of the
639   /// allocation order.
640   ///
641   /// The Order argument is the allocation order for VirtReg's register class
642   /// as returned from RegisterClassInfo::getOrder(). The hint registers must
643   /// come from Order, and they must not be reserved.
644   ///
645   /// The default implementation of this function can resolve
646   /// target-independent hints provided to MRI::setRegAllocationHint with
647   /// HintType == 0. Targets that override this function should defer to the
648   /// default implementation if they have no reason to change the allocation
649   /// order for VirtReg. There may be target-independent hints.
650   virtual void getRegAllocationHints(unsigned VirtReg,
651                                      ArrayRef<MCPhysReg> Order,
652                                      SmallVectorImpl<MCPhysReg> &Hints,
653                                      const MachineFunction &MF,
654                                      const VirtRegMap *VRM = nullptr) const;
655 
656   /// avoidWriteAfterWrite - Return true if the register allocator should avoid
657   /// writing a register from RC in two consecutive instructions.
658   /// This can avoid pipeline stalls on certain architectures.
659   /// It does cause increased register pressure, though.
avoidWriteAfterWrite(const TargetRegisterClass * RC)660   virtual bool avoidWriteAfterWrite(const TargetRegisterClass *RC) const {
661     return false;
662   }
663 
664   /// UpdateRegAllocHint - A callback to allow target a chance to update
665   /// register allocation hints when a register is "changed" (e.g. coalesced)
666   /// to another register. e.g. On ARM, some virtual registers should target
667   /// register pairs, if one of pair is coalesced to another register, the
668   /// allocation hint of the other half of the pair should be changed to point
669   /// to the new register.
UpdateRegAllocHint(unsigned Reg,unsigned NewReg,MachineFunction & MF)670   virtual void UpdateRegAllocHint(unsigned Reg, unsigned NewReg,
671                                   MachineFunction &MF) const {
672     // Do nothing.
673   }
674 
675   /// Allow the target to reverse allocation order of local live ranges. This
676   /// will generally allocate shorter local live ranges first. For targets with
677   /// many registers, this could reduce regalloc compile time by a large
678   /// factor. It is disabled by default for three reasons:
679   /// (1) Top-down allocation is simpler and easier to debug for targets that
680   /// don't benefit from reversing the order.
681   /// (2) Bottom-up allocation could result in poor evicition decisions on some
682   /// targets affecting the performance of compiled code.
683   /// (3) Bottom-up allocation is no longer guaranteed to optimally color.
reverseLocalAssignment()684   virtual bool reverseLocalAssignment() const { return false; }
685 
686   /// Allow the target to override register assignment heuristics based on the
687   /// live range size. If this returns false, then local live ranges are always
688   /// assigned in order regardless of their size. This is a temporary hook for
689   /// debugging downstream codegen failures exposed by regalloc.
mayOverrideLocalAssignment()690   virtual bool mayOverrideLocalAssignment() const { return true; }
691 
692   /// Allow the target to override the cost of using a callee-saved register for
693   /// the first time. Default value of 0 means we will use a callee-saved
694   /// register if it is available.
getCSRFirstUseCost()695   virtual unsigned getCSRFirstUseCost() const { return 0; }
696 
697   /// requiresRegisterScavenging - returns true if the target requires (and can
698   /// make use of) the register scavenger.
requiresRegisterScavenging(const MachineFunction & MF)699   virtual bool requiresRegisterScavenging(const MachineFunction &MF) const {
700     return false;
701   }
702 
703   /// useFPForScavengingIndex - returns true if the target wants to use
704   /// frame pointer based accesses to spill to the scavenger emergency spill
705   /// slot.
useFPForScavengingIndex(const MachineFunction & MF)706   virtual bool useFPForScavengingIndex(const MachineFunction &MF) const {
707     return true;
708   }
709 
710   /// requiresFrameIndexScavenging - returns true if the target requires post
711   /// PEI scavenging of registers for materializing frame index constants.
requiresFrameIndexScavenging(const MachineFunction & MF)712   virtual bool requiresFrameIndexScavenging(const MachineFunction &MF) const {
713     return false;
714   }
715 
716   /// requiresVirtualBaseRegisters - Returns true if the target wants the
717   /// LocalStackAllocation pass to be run and virtual base registers
718   /// used for more efficient stack access.
requiresVirtualBaseRegisters(const MachineFunction & MF)719   virtual bool requiresVirtualBaseRegisters(const MachineFunction &MF) const {
720     return false;
721   }
722 
723   /// hasReservedSpillSlot - Return true if target has reserved a spill slot in
724   /// the stack frame of the given function for the specified register. e.g. On
725   /// x86, if the frame register is required, the first fixed stack object is
726   /// reserved as its spill slot. This tells PEI not to create a new stack frame
727   /// object for the given register. It should be called only after
728   /// processFunctionBeforeCalleeSavedScan().
hasReservedSpillSlot(const MachineFunction & MF,unsigned Reg,int & FrameIdx)729   virtual bool hasReservedSpillSlot(const MachineFunction &MF, unsigned Reg,
730                                     int &FrameIdx) const {
731     return false;
732   }
733 
734   /// trackLivenessAfterRegAlloc - returns true if the live-ins should be tracked
735   /// after register allocation.
trackLivenessAfterRegAlloc(const MachineFunction & MF)736   virtual bool trackLivenessAfterRegAlloc(const MachineFunction &MF) const {
737     return false;
738   }
739 
740   /// needsStackRealignment - true if storage within the function requires the
741   /// stack pointer to be aligned more than the normal calling convention calls
742   /// for.
needsStackRealignment(const MachineFunction & MF)743   virtual bool needsStackRealignment(const MachineFunction &MF) const {
744     return false;
745   }
746 
747   /// getFrameIndexInstrOffset - Get the offset from the referenced frame
748   /// index in the instruction, if there is one.
getFrameIndexInstrOffset(const MachineInstr * MI,int Idx)749   virtual int64_t getFrameIndexInstrOffset(const MachineInstr *MI,
750                                            int Idx) const {
751     return 0;
752   }
753 
754   /// needsFrameBaseReg - Returns true if the instruction's frame index
755   /// reference would be better served by a base register other than FP
756   /// or SP. Used by LocalStackFrameAllocation to determine which frame index
757   /// references it should create new base registers for.
needsFrameBaseReg(MachineInstr * MI,int64_t Offset)758   virtual bool needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const {
759     return false;
760   }
761 
762   /// materializeFrameBaseRegister - Insert defining instruction(s) for
763   /// BaseReg to be a pointer to FrameIdx before insertion point I.
materializeFrameBaseRegister(MachineBasicBlock * MBB,unsigned BaseReg,int FrameIdx,int64_t Offset)764   virtual void materializeFrameBaseRegister(MachineBasicBlock *MBB,
765                                             unsigned BaseReg, int FrameIdx,
766                                             int64_t Offset) const {
767     llvm_unreachable("materializeFrameBaseRegister does not exist on this "
768                      "target");
769   }
770 
771   /// resolveFrameIndex - Resolve a frame index operand of an instruction
772   /// to reference the indicated base register plus offset instead.
resolveFrameIndex(MachineInstr & MI,unsigned BaseReg,int64_t Offset)773   virtual void resolveFrameIndex(MachineInstr &MI, unsigned BaseReg,
774                                  int64_t Offset) const {
775     llvm_unreachable("resolveFrameIndex does not exist on this target");
776   }
777 
778   /// isFrameOffsetLegal - Determine whether a given offset immediate is
779   /// encodable to resolve a frame index.
isFrameOffsetLegal(const MachineInstr * MI,int64_t Offset)780   virtual bool isFrameOffsetLegal(const MachineInstr *MI,
781                                   int64_t Offset) const {
782     llvm_unreachable("isFrameOffsetLegal does not exist on this target");
783   }
784 
785 
786   /// saveScavengerRegister - Spill the register so it can be used by the
787   /// register scavenger. Return true if the register was spilled, false
788   /// otherwise. If this function does not spill the register, the scavenger
789   /// will instead spill it to the emergency spill slot.
790   ///
saveScavengerRegister(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,MachineBasicBlock::iterator & UseMI,const TargetRegisterClass * RC,unsigned Reg)791   virtual bool saveScavengerRegister(MachineBasicBlock &MBB,
792                                      MachineBasicBlock::iterator I,
793                                      MachineBasicBlock::iterator &UseMI,
794                                      const TargetRegisterClass *RC,
795                                      unsigned Reg) const {
796     return false;
797   }
798 
799   /// eliminateFrameIndex - This method must be overriden to eliminate abstract
800   /// frame indices from instructions which may use them.  The instruction
801   /// referenced by the iterator contains an MO_FrameIndex operand which must be
802   /// eliminated by this method.  This method may modify or replace the
803   /// specified instruction, as long as it keeps the iterator pointing at the
804   /// finished product.  SPAdj is the SP adjustment due to call frame setup
805   /// instruction.  FIOperandNum is the FI operand number.
806   virtual void eliminateFrameIndex(MachineBasicBlock::iterator MI,
807                                    int SPAdj, unsigned FIOperandNum,
808                                    RegScavenger *RS = nullptr) const = 0;
809 
810   //===--------------------------------------------------------------------===//
811   /// Debug information queries.
812 
813   /// getFrameRegister - This method should return the register used as a base
814   /// for values allocated in the current stack frame.
815   virtual unsigned getFrameRegister(const MachineFunction &MF) const = 0;
816 };
817 
818 
819 //===----------------------------------------------------------------------===//
820 //                           SuperRegClassIterator
821 //===----------------------------------------------------------------------===//
822 //
823 // Iterate over the possible super-registers for a given register class. The
824 // iterator will visit a list of pairs (Idx, Mask) corresponding to the
825 // possible classes of super-registers.
826 //
827 // Each bit mask will have at least one set bit, and each set bit in Mask
828 // corresponds to a SuperRC such that:
829 //
830 //   For all Reg in SuperRC: Reg:Idx is in RC.
831 //
832 // The iterator can include (O, RC->getSubClassMask()) as the first entry which
833 // also satisfies the above requirement, assuming Reg:0 == Reg.
834 //
835 class SuperRegClassIterator {
836   const unsigned RCMaskWords;
837   unsigned SubReg;
838   const uint16_t *Idx;
839   const uint32_t *Mask;
840 
841 public:
842   /// Create a SuperRegClassIterator that visits all the super-register classes
843   /// of RC. When IncludeSelf is set, also include the (0, sub-classes) entry.
844   SuperRegClassIterator(const TargetRegisterClass *RC,
845                         const TargetRegisterInfo *TRI,
846                         bool IncludeSelf = false)
847     : RCMaskWords((TRI->getNumRegClasses() + 31) / 32),
848       SubReg(0),
849       Idx(RC->getSuperRegIndices()),
850       Mask(RC->getSubClassMask()) {
851     if (!IncludeSelf)
852       ++*this;
853   }
854 
855   /// Returns true if this iterator is still pointing at a valid entry.
isValid()856   bool isValid() const { return Idx; }
857 
858   /// Returns the current sub-register index.
getSubReg()859   unsigned getSubReg() const { return SubReg; }
860 
861   /// Returns the bit mask if register classes that getSubReg() projects into
862   /// RC.
getMask()863   const uint32_t *getMask() const { return Mask; }
864 
865   /// Advance iterator to the next entry.
866   void operator++() {
867     assert(isValid() && "Cannot move iterator past end.");
868     Mask += RCMaskWords;
869     SubReg = *Idx++;
870     if (!SubReg)
871       Idx = nullptr;
872   }
873 };
874 
875 // This is useful when building IndexedMaps keyed on virtual registers
876 struct VirtReg2IndexFunctor : public std::unary_function<unsigned, unsigned> {
operatorVirtReg2IndexFunctor877   unsigned operator()(unsigned Reg) const {
878     return TargetRegisterInfo::virtReg2Index(Reg);
879   }
880 };
881 
882 /// PrintReg - Helper class for printing registers on a raw_ostream.
883 /// Prints virtual and physical registers with or without a TRI instance.
884 ///
885 /// The format is:
886 ///   %noreg          - NoRegister
887 ///   %vreg5          - a virtual register.
888 ///   %vreg5:sub_8bit - a virtual register with sub-register index (with TRI).
889 ///   %EAX            - a physical register
890 ///   %physreg17      - a physical register when no TRI instance given.
891 ///
892 /// Usage: OS << PrintReg(Reg, TRI) << '\n';
893 ///
894 class PrintReg {
895   const TargetRegisterInfo *TRI;
896   unsigned Reg;
897   unsigned SubIdx;
898 public:
899   explicit PrintReg(unsigned reg, const TargetRegisterInfo *tri = nullptr,
900                     unsigned subidx = 0)
TRI(tri)901     : TRI(tri), Reg(reg), SubIdx(subidx) {}
902   void print(raw_ostream&) const;
903 };
904 
905 static inline raw_ostream &operator<<(raw_ostream &OS, const PrintReg &PR) {
906   PR.print(OS);
907   return OS;
908 }
909 
910 /// PrintRegUnit - Helper class for printing register units on a raw_ostream.
911 ///
912 /// Register units are named after their root registers:
913 ///
914 ///   AL      - Single root.
915 ///   FP0~ST7 - Dual roots.
916 ///
917 /// Usage: OS << PrintRegUnit(Unit, TRI) << '\n';
918 ///
919 class PrintRegUnit {
920 protected:
921   const TargetRegisterInfo *TRI;
922   unsigned Unit;
923 public:
PrintRegUnit(unsigned unit,const TargetRegisterInfo * tri)924   PrintRegUnit(unsigned unit, const TargetRegisterInfo *tri)
925     : TRI(tri), Unit(unit) {}
926   void print(raw_ostream&) const;
927 };
928 
929 static inline raw_ostream &operator<<(raw_ostream &OS, const PrintRegUnit &PR) {
930   PR.print(OS);
931   return OS;
932 }
933 
934 /// PrintVRegOrUnit - It is often convenient to track virtual registers and
935 /// physical register units in the same list.
936 class PrintVRegOrUnit : protected PrintRegUnit {
937 public:
PrintVRegOrUnit(unsigned VRegOrUnit,const TargetRegisterInfo * tri)938   PrintVRegOrUnit(unsigned VRegOrUnit, const TargetRegisterInfo *tri)
939     : PrintRegUnit(VRegOrUnit, tri) {}
940   void print(raw_ostream&) const;
941 };
942 
943 static inline raw_ostream &operator<<(raw_ostream &OS,
944                                       const PrintVRegOrUnit &PR) {
945   PR.print(OS);
946   return OS;
947 }
948 
949 } // End llvm namespace
950 
951 #endif
952