• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- BitstreamReader.h - Low-level bitstream reader interface -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This header defines the BitstreamReader class.  This class can be used to
11 // read an arbitrary bitstream, regardless of its contents.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_BITCODE_BITSTREAMREADER_H
16 #define LLVM_BITCODE_BITSTREAMREADER_H
17 
18 #include "llvm/Bitcode/BitCodes.h"
19 #include "llvm/Support/Endian.h"
20 #include "llvm/Support/StreamableMemoryObject.h"
21 #include <climits>
22 #include <string>
23 #include <vector>
24 
25 namespace llvm {
26 
27   class Deserializer;
28 
29 /// BitstreamReader - This class is used to read from an LLVM bitcode stream,
30 /// maintaining information that is global to decoding the entire file.  While
31 /// a file is being read, multiple cursors can be independently advanced or
32 /// skipped around within the file.  These are represented by the
33 /// BitstreamCursor class.
34 class BitstreamReader {
35 public:
36   /// BlockInfo - This contains information emitted to BLOCKINFO_BLOCK blocks.
37   /// These describe abbreviations that all blocks of the specified ID inherit.
38   struct BlockInfo {
39     unsigned BlockID;
40     std::vector<BitCodeAbbrev*> Abbrevs;
41     std::string Name;
42 
43     std::vector<std::pair<unsigned, std::string> > RecordNames;
44   };
45 private:
46   std::unique_ptr<StreamableMemoryObject> BitcodeBytes;
47 
48   std::vector<BlockInfo> BlockInfoRecords;
49 
50   /// IgnoreBlockInfoNames - This is set to true if we don't care about the
51   /// block/record name information in the BlockInfo block. Only llvm-bcanalyzer
52   /// uses this.
53   bool IgnoreBlockInfoNames;
54 
55   BitstreamReader(const BitstreamReader&) LLVM_DELETED_FUNCTION;
56   void operator=(const BitstreamReader&) LLVM_DELETED_FUNCTION;
57 public:
BitstreamReader()58   BitstreamReader() : IgnoreBlockInfoNames(true) {
59   }
60 
BitstreamReader(const unsigned char * Start,const unsigned char * End)61   BitstreamReader(const unsigned char *Start, const unsigned char *End) {
62     IgnoreBlockInfoNames = true;
63     init(Start, End);
64   }
65 
BitstreamReader(StreamableMemoryObject * bytes)66   BitstreamReader(StreamableMemoryObject *bytes) {
67     BitcodeBytes.reset(bytes);
68   }
69 
init(const unsigned char * Start,const unsigned char * End)70   void init(const unsigned char *Start, const unsigned char *End) {
71     assert(((End-Start) & 3) == 0 &&"Bitcode stream not a multiple of 4 bytes");
72     BitcodeBytes.reset(getNonStreamedMemoryObject(Start, End));
73   }
74 
getBitcodeBytes()75   StreamableMemoryObject &getBitcodeBytes() { return *BitcodeBytes; }
76 
~BitstreamReader()77   ~BitstreamReader() {
78     // Free the BlockInfoRecords.
79     while (!BlockInfoRecords.empty()) {
80       BlockInfo &Info = BlockInfoRecords.back();
81       // Free blockinfo abbrev info.
82       for (unsigned i = 0, e = static_cast<unsigned>(Info.Abbrevs.size());
83            i != e; ++i)
84         Info.Abbrevs[i]->dropRef();
85       BlockInfoRecords.pop_back();
86     }
87   }
88 
89   /// CollectBlockInfoNames - This is called by clients that want block/record
90   /// name information.
CollectBlockInfoNames()91   void CollectBlockInfoNames() { IgnoreBlockInfoNames = false; }
isIgnoringBlockInfoNames()92   bool isIgnoringBlockInfoNames() { return IgnoreBlockInfoNames; }
93 
94   //===--------------------------------------------------------------------===//
95   // Block Manipulation
96   //===--------------------------------------------------------------------===//
97 
98   /// hasBlockInfoRecords - Return true if we've already read and processed the
99   /// block info block for this Bitstream.  We only process it for the first
100   /// cursor that walks over it.
hasBlockInfoRecords()101   bool hasBlockInfoRecords() const { return !BlockInfoRecords.empty(); }
102 
103   /// getBlockInfo - If there is block info for the specified ID, return it,
104   /// otherwise return null.
getBlockInfo(unsigned BlockID)105   const BlockInfo *getBlockInfo(unsigned BlockID) const {
106     // Common case, the most recent entry matches BlockID.
107     if (!BlockInfoRecords.empty() && BlockInfoRecords.back().BlockID == BlockID)
108       return &BlockInfoRecords.back();
109 
110     for (unsigned i = 0, e = static_cast<unsigned>(BlockInfoRecords.size());
111          i != e; ++i)
112       if (BlockInfoRecords[i].BlockID == BlockID)
113         return &BlockInfoRecords[i];
114     return nullptr;
115   }
116 
getOrCreateBlockInfo(unsigned BlockID)117   BlockInfo &getOrCreateBlockInfo(unsigned BlockID) {
118     if (const BlockInfo *BI = getBlockInfo(BlockID))
119       return *const_cast<BlockInfo*>(BI);
120 
121     // Otherwise, add a new record.
122     BlockInfoRecords.push_back(BlockInfo());
123     BlockInfoRecords.back().BlockID = BlockID;
124     return BlockInfoRecords.back();
125   }
126 };
127 
128 
129 /// BitstreamEntry - When advancing through a bitstream cursor, each advance can
130 /// discover a few different kinds of entries:
131 ///   Error    - Malformed bitcode was found.
132 ///   EndBlock - We've reached the end of the current block, (or the end of the
133 ///              file, which is treated like a series of EndBlock records.
134 ///   SubBlock - This is the start of a new subblock of a specific ID.
135 ///   Record   - This is a record with a specific AbbrevID.
136 ///
137 struct BitstreamEntry {
138   enum {
139     Error,
140     EndBlock,
141     SubBlock,
142     Record
143   } Kind;
144 
145   unsigned ID;
146 
getErrorBitstreamEntry147   static BitstreamEntry getError() {
148     BitstreamEntry E; E.Kind = Error; return E;
149   }
getEndBlockBitstreamEntry150   static BitstreamEntry getEndBlock() {
151     BitstreamEntry E; E.Kind = EndBlock; return E;
152   }
getSubBlockBitstreamEntry153   static BitstreamEntry getSubBlock(unsigned ID) {
154     BitstreamEntry E; E.Kind = SubBlock; E.ID = ID; return E;
155   }
getRecordBitstreamEntry156   static BitstreamEntry getRecord(unsigned AbbrevID) {
157     BitstreamEntry E; E.Kind = Record; E.ID = AbbrevID; return E;
158   }
159 };
160 
161 /// BitstreamCursor - This represents a position within a bitcode file.  There
162 /// may be multiple independent cursors reading within one bitstream, each
163 /// maintaining their own local state.
164 ///
165 /// Unlike iterators, BitstreamCursors are heavy-weight objects that should not
166 /// be passed by value.
167 class BitstreamCursor {
168   friend class Deserializer;
169   BitstreamReader *BitStream;
170   size_t NextChar;
171 
172 
173   /// CurWord/word_t - This is the current data we have pulled from the stream
174   /// but have not returned to the client.  This is specifically and
175   /// intentionally defined to follow the word size of the host machine for
176   /// efficiency.  We use word_t in places that are aware of this to make it
177   /// perfectly explicit what is going on.
178   typedef uint32_t word_t;
179   word_t CurWord;
180 
181   /// BitsInCurWord - This is the number of bits in CurWord that are valid. This
182   /// is always from [0...31/63] inclusive (depending on word size).
183   unsigned BitsInCurWord;
184 
185   // CurCodeSize - This is the declared size of code values used for the current
186   // block, in bits.
187   unsigned CurCodeSize;
188 
189   /// CurAbbrevs - Abbrevs installed at in this block.
190   std::vector<BitCodeAbbrev*> CurAbbrevs;
191 
192   struct Block {
193     unsigned PrevCodeSize;
194     std::vector<BitCodeAbbrev*> PrevAbbrevs;
BlockBlock195     explicit Block(unsigned PCS) : PrevCodeSize(PCS) {}
196   };
197 
198   /// BlockScope - This tracks the codesize of parent blocks.
199   SmallVector<Block, 8> BlockScope;
200 
201 
202 public:
BitstreamCursor()203   BitstreamCursor() : BitStream(nullptr), NextChar(0) {}
BitstreamCursor(const BitstreamCursor & RHS)204   BitstreamCursor(const BitstreamCursor &RHS)
205       : BitStream(nullptr), NextChar(0) {
206     operator=(RHS);
207   }
208 
BitstreamCursor(BitstreamReader & R)209   explicit BitstreamCursor(BitstreamReader &R) : BitStream(&R) {
210     NextChar = 0;
211     CurWord = 0;
212     BitsInCurWord = 0;
213     CurCodeSize = 2;
214   }
215 
init(BitstreamReader & R)216   void init(BitstreamReader &R) {
217     freeState();
218 
219     BitStream = &R;
220     NextChar = 0;
221     CurWord = 0;
222     BitsInCurWord = 0;
223     CurCodeSize = 2;
224   }
225 
~BitstreamCursor()226   ~BitstreamCursor() {
227     freeState();
228   }
229 
230   void operator=(const BitstreamCursor &RHS);
231 
232   void freeState();
233 
isEndPos(size_t pos)234   bool isEndPos(size_t pos) {
235     return BitStream->getBitcodeBytes().isObjectEnd(static_cast<uint64_t>(pos));
236   }
237 
canSkipToPos(size_t pos)238   bool canSkipToPos(size_t pos) const {
239     // pos can be skipped to if it is a valid address or one byte past the end.
240     return pos == 0 || BitStream->getBitcodeBytes().isValidAddress(
241         static_cast<uint64_t>(pos - 1));
242   }
243 
getWord(size_t pos)244   uint32_t getWord(size_t pos) {
245     uint8_t buf[4] = { 0xFF, 0xFF, 0xFF, 0xFF };
246     BitStream->getBitcodeBytes().readBytes(pos, sizeof(buf), buf);
247     return *reinterpret_cast<support::ulittle32_t *>(buf);
248   }
249 
AtEndOfStream()250   bool AtEndOfStream() {
251     return BitsInCurWord == 0 && isEndPos(NextChar);
252   }
253 
254   /// getAbbrevIDWidth - Return the number of bits used to encode an abbrev #.
getAbbrevIDWidth()255   unsigned getAbbrevIDWidth() const { return CurCodeSize; }
256 
257   /// GetCurrentBitNo - Return the bit # of the bit we are reading.
GetCurrentBitNo()258   uint64_t GetCurrentBitNo() const {
259     return NextChar*CHAR_BIT - BitsInCurWord;
260   }
261 
getBitStreamReader()262   BitstreamReader *getBitStreamReader() {
263     return BitStream;
264   }
getBitStreamReader()265   const BitstreamReader *getBitStreamReader() const {
266     return BitStream;
267   }
268 
269   /// Flags that modify the behavior of advance().
270   enum {
271     /// AF_DontPopBlockAtEnd - If this flag is used, the advance() method does
272     /// not automatically pop the block scope when the end of a block is
273     /// reached.
274     AF_DontPopBlockAtEnd = 1,
275 
276     /// AF_DontAutoprocessAbbrevs - If this flag is used, abbrev entries are
277     /// returned just like normal records.
278     AF_DontAutoprocessAbbrevs = 2
279   };
280 
281   /// advance - Advance the current bitstream, returning the next entry in the
282   /// stream.
283   BitstreamEntry advance(unsigned Flags = 0) {
284     while (1) {
285       unsigned Code = ReadCode();
286       if (Code == bitc::END_BLOCK) {
287         // Pop the end of the block unless Flags tells us not to.
288         if (!(Flags & AF_DontPopBlockAtEnd) && ReadBlockEnd())
289           return BitstreamEntry::getError();
290         return BitstreamEntry::getEndBlock();
291       }
292 
293       if (Code == bitc::ENTER_SUBBLOCK)
294         return BitstreamEntry::getSubBlock(ReadSubBlockID());
295 
296       if (Code == bitc::DEFINE_ABBREV &&
297           !(Flags & AF_DontAutoprocessAbbrevs)) {
298         // We read and accumulate abbrev's, the client can't do anything with
299         // them anyway.
300         ReadAbbrevRecord();
301         continue;
302       }
303 
304       return BitstreamEntry::getRecord(Code);
305     }
306   }
307 
308   /// advanceSkippingSubblocks - This is a convenience function for clients that
309   /// don't expect any subblocks.  This just skips over them automatically.
310   BitstreamEntry advanceSkippingSubblocks(unsigned Flags = 0) {
311     while (1) {
312       // If we found a normal entry, return it.
313       BitstreamEntry Entry = advance(Flags);
314       if (Entry.Kind != BitstreamEntry::SubBlock)
315         return Entry;
316 
317       // If we found a sub-block, just skip over it and check the next entry.
318       if (SkipBlock())
319         return BitstreamEntry::getError();
320     }
321   }
322 
323   /// JumpToBit - Reset the stream to the specified bit number.
JumpToBit(uint64_t BitNo)324   void JumpToBit(uint64_t BitNo) {
325     uintptr_t ByteNo = uintptr_t(BitNo/8) & ~(sizeof(word_t)-1);
326     unsigned WordBitNo = unsigned(BitNo & (sizeof(word_t)*8-1));
327     assert(canSkipToPos(ByteNo) && "Invalid location");
328 
329     // Move the cursor to the right word.
330     NextChar = ByteNo;
331     BitsInCurWord = 0;
332     CurWord = 0;
333 
334     // Skip over any bits that are already consumed.
335     if (WordBitNo) {
336       if (sizeof(word_t) > 4)
337         Read64(WordBitNo);
338       else
339         Read(WordBitNo);
340     }
341   }
342 
343 
Read(unsigned NumBits)344   uint32_t Read(unsigned NumBits) {
345     assert(NumBits && NumBits <= 32 &&
346            "Cannot return zero or more than 32 bits!");
347 
348     // If the field is fully contained by CurWord, return it quickly.
349     if (BitsInCurWord >= NumBits) {
350       uint32_t R = uint32_t(CurWord) & (~0U >> (32-NumBits));
351       CurWord >>= NumBits;
352       BitsInCurWord -= NumBits;
353       return R;
354     }
355 
356     // If we run out of data, stop at the end of the stream.
357     if (isEndPos(NextChar)) {
358       CurWord = 0;
359       BitsInCurWord = 0;
360       return 0;
361     }
362 
363     uint32_t R = uint32_t(CurWord);
364 
365     // Read the next word from the stream.
366     uint8_t Array[sizeof(word_t)] = {0};
367 
368     BitStream->getBitcodeBytes().readBytes(NextChar, sizeof(Array), Array);
369 
370     // Handle big-endian byte-swapping if necessary.
371     support::detail::packed_endian_specific_integral
372       <word_t, support::little, support::unaligned> EndianValue;
373     memcpy(&EndianValue, Array, sizeof(Array));
374 
375     CurWord = EndianValue;
376 
377     NextChar += sizeof(word_t);
378 
379     // Extract NumBits-BitsInCurWord from what we just read.
380     unsigned BitsLeft = NumBits-BitsInCurWord;
381 
382     // Be careful here, BitsLeft is in the range [1..32]/[1..64] inclusive.
383     R |= uint32_t((CurWord & (word_t(~0ULL) >> (sizeof(word_t)*8-BitsLeft)))
384                     << BitsInCurWord);
385 
386     // BitsLeft bits have just been used up from CurWord.  BitsLeft is in the
387     // range [1..32]/[1..64] so be careful how we shift.
388     if (BitsLeft != sizeof(word_t)*8)
389       CurWord >>= BitsLeft;
390     else
391       CurWord = 0;
392     BitsInCurWord = sizeof(word_t)*8-BitsLeft;
393     return R;
394   }
395 
Read64(unsigned NumBits)396   uint64_t Read64(unsigned NumBits) {
397     if (NumBits <= 32) return Read(NumBits);
398 
399     uint64_t V = Read(32);
400     return V | (uint64_t)Read(NumBits-32) << 32;
401   }
402 
ReadVBR(unsigned NumBits)403   uint32_t ReadVBR(unsigned NumBits) {
404     uint32_t Piece = Read(NumBits);
405     if ((Piece & (1U << (NumBits-1))) == 0)
406       return Piece;
407 
408     uint32_t Result = 0;
409     unsigned NextBit = 0;
410     while (1) {
411       Result |= (Piece & ((1U << (NumBits-1))-1)) << NextBit;
412 
413       if ((Piece & (1U << (NumBits-1))) == 0)
414         return Result;
415 
416       NextBit += NumBits-1;
417       Piece = Read(NumBits);
418     }
419   }
420 
421   // ReadVBR64 - Read a VBR that may have a value up to 64-bits in size.  The
422   // chunk size of the VBR must still be <= 32 bits though.
ReadVBR64(unsigned NumBits)423   uint64_t ReadVBR64(unsigned NumBits) {
424     uint32_t Piece = Read(NumBits);
425     if ((Piece & (1U << (NumBits-1))) == 0)
426       return uint64_t(Piece);
427 
428     uint64_t Result = 0;
429     unsigned NextBit = 0;
430     while (1) {
431       Result |= uint64_t(Piece & ((1U << (NumBits-1))-1)) << NextBit;
432 
433       if ((Piece & (1U << (NumBits-1))) == 0)
434         return Result;
435 
436       NextBit += NumBits-1;
437       Piece = Read(NumBits);
438     }
439   }
440 
441 private:
SkipToFourByteBoundary()442   void SkipToFourByteBoundary() {
443     // If word_t is 64-bits and if we've read less than 32 bits, just dump
444     // the bits we have up to the next 32-bit boundary.
445     if (sizeof(word_t) > 4 &&
446         BitsInCurWord >= 32) {
447       CurWord >>= BitsInCurWord-32;
448       BitsInCurWord = 32;
449       return;
450     }
451 
452     BitsInCurWord = 0;
453     CurWord = 0;
454   }
455 public:
456 
ReadCode()457   unsigned ReadCode() {
458     return Read(CurCodeSize);
459   }
460 
461 
462   // Block header:
463   //    [ENTER_SUBBLOCK, blockid, newcodelen, <align4bytes>, blocklen]
464 
465   /// ReadSubBlockID - Having read the ENTER_SUBBLOCK code, read the BlockID for
466   /// the block.
ReadSubBlockID()467   unsigned ReadSubBlockID() {
468     return ReadVBR(bitc::BlockIDWidth);
469   }
470 
471   /// SkipBlock - Having read the ENTER_SUBBLOCK abbrevid and a BlockID, skip
472   /// over the body of this block.  If the block record is malformed, return
473   /// true.
SkipBlock()474   bool SkipBlock() {
475     // Read and ignore the codelen value.  Since we are skipping this block, we
476     // don't care what code widths are used inside of it.
477     ReadVBR(bitc::CodeLenWidth);
478     SkipToFourByteBoundary();
479     unsigned NumFourBytes = Read(bitc::BlockSizeWidth);
480 
481     // Check that the block wasn't partially defined, and that the offset isn't
482     // bogus.
483     size_t SkipTo = GetCurrentBitNo() + NumFourBytes*4*8;
484     if (AtEndOfStream() || !canSkipToPos(SkipTo/8))
485       return true;
486 
487     JumpToBit(SkipTo);
488     return false;
489   }
490 
491   /// EnterSubBlock - Having read the ENTER_SUBBLOCK abbrevid, enter
492   /// the block, and return true if the block has an error.
493   bool EnterSubBlock(unsigned BlockID, unsigned *NumWordsP = nullptr);
494 
ReadBlockEnd()495   bool ReadBlockEnd() {
496     if (BlockScope.empty()) return true;
497 
498     // Block tail:
499     //    [END_BLOCK, <align4bytes>]
500     SkipToFourByteBoundary();
501 
502     popBlockScope();
503     return false;
504   }
505 
506 private:
507 
popBlockScope()508   void popBlockScope() {
509     CurCodeSize = BlockScope.back().PrevCodeSize;
510 
511     // Delete abbrevs from popped scope.
512     for (unsigned i = 0, e = static_cast<unsigned>(CurAbbrevs.size());
513          i != e; ++i)
514       CurAbbrevs[i]->dropRef();
515 
516     BlockScope.back().PrevAbbrevs.swap(CurAbbrevs);
517     BlockScope.pop_back();
518   }
519 
520   //===--------------------------------------------------------------------===//
521   // Record Processing
522   //===--------------------------------------------------------------------===//
523 
524 private:
525   void readAbbreviatedLiteral(const BitCodeAbbrevOp &Op,
526                               SmallVectorImpl<uint64_t> &Vals);
527   void readAbbreviatedField(const BitCodeAbbrevOp &Op,
528                             SmallVectorImpl<uint64_t> &Vals);
529   void skipAbbreviatedField(const BitCodeAbbrevOp &Op);
530 
531 public:
532 
533   /// getAbbrev - Return the abbreviation for the specified AbbrevId.
getAbbrev(unsigned AbbrevID)534   const BitCodeAbbrev *getAbbrev(unsigned AbbrevID) {
535     unsigned AbbrevNo = AbbrevID-bitc::FIRST_APPLICATION_ABBREV;
536     assert(AbbrevNo < CurAbbrevs.size() && "Invalid abbrev #!");
537     return CurAbbrevs[AbbrevNo];
538   }
539 
540   /// skipRecord - Read the current record and discard it.
541   void skipRecord(unsigned AbbrevID);
542 
543   unsigned readRecord(unsigned AbbrevID, SmallVectorImpl<uint64_t> &Vals,
544                       StringRef *Blob = nullptr);
545 
546   //===--------------------------------------------------------------------===//
547   // Abbrev Processing
548   //===--------------------------------------------------------------------===//
549   void ReadAbbrevRecord();
550 
551   bool ReadBlockInfoBlock();
552 };
553 
554 } // End llvm namespace
555 
556 #endif
557