• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 /*
12  * This file contains the splitting filter functions.
13  *
14  */
15 
16 #include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
17 
18 #include <assert.h>
19 
20 // Maximum number of samples in a low/high-band frame.
21 enum
22 {
23     kMaxBandFrameLength = 240  // 10 ms at 48 kHz.
24 };
25 
26 // QMF filter coefficients in Q16.
27 static const uint16_t WebRtcSpl_kAllPassFilter1[3] = {6418, 36982, 57261};
28 static const uint16_t WebRtcSpl_kAllPassFilter2[3] = {21333, 49062, 63010};
29 
30 ///////////////////////////////////////////////////////////////////////////////////////////////
31 // WebRtcSpl_AllPassQMF(...)
32 //
33 // Allpass filter used by the analysis and synthesis parts of the QMF filter.
34 //
35 // Input:
36 //    - in_data             : Input data sequence (Q10)
37 //    - data_length         : Length of data sequence (>2)
38 //    - filter_coefficients : Filter coefficients (length 3, Q16)
39 //
40 // Input & Output:
41 //    - filter_state        : Filter state (length 6, Q10).
42 //
43 // Output:
44 //    - out_data            : Output data sequence (Q10), length equal to
45 //                            |data_length|
46 //
47 
WebRtcSpl_AllPassQMF(int32_t * in_data,int16_t data_length,int32_t * out_data,const uint16_t * filter_coefficients,int32_t * filter_state)48 void WebRtcSpl_AllPassQMF(int32_t* in_data, int16_t data_length,
49                           int32_t* out_data, const uint16_t* filter_coefficients,
50                           int32_t* filter_state)
51 {
52     // The procedure is to filter the input with three first order all pass filters
53     // (cascade operations).
54     //
55     //         a_3 + q^-1    a_2 + q^-1    a_1 + q^-1
56     // y[n] =  -----------   -----------   -----------   x[n]
57     //         1 + a_3q^-1   1 + a_2q^-1   1 + a_1q^-1
58     //
59     // The input vector |filter_coefficients| includes these three filter coefficients.
60     // The filter state contains the in_data state, in_data[-1], followed by
61     // the out_data state, out_data[-1]. This is repeated for each cascade.
62     // The first cascade filter will filter the |in_data| and store the output in
63     // |out_data|. The second will the take the |out_data| as input and make an
64     // intermediate storage in |in_data|, to save memory. The third, and final, cascade
65     // filter operation takes the |in_data| (which is the output from the previous cascade
66     // filter) and store the output in |out_data|.
67     // Note that the input vector values are changed during the process.
68     int16_t k;
69     int32_t diff;
70     // First all-pass cascade; filter from in_data to out_data.
71 
72     // Let y_i[n] indicate the output of cascade filter i (with filter coefficient a_i) at
73     // vector position n. Then the final output will be y[n] = y_3[n]
74 
75     // First loop, use the states stored in memory.
76     // "diff" should be safe from wrap around since max values are 2^25
77     diff = WEBRTC_SPL_SUB_SAT_W32(in_data[0], filter_state[1]); // = (x[0] - y_1[-1])
78     // y_1[0] =  x[-1] + a_1 * (x[0] - y_1[-1])
79     out_data[0] = WEBRTC_SPL_SCALEDIFF32(filter_coefficients[0], diff, filter_state[0]);
80 
81     // For the remaining loops, use previous values.
82     for (k = 1; k < data_length; k++)
83     {
84         diff = WEBRTC_SPL_SUB_SAT_W32(in_data[k], out_data[k - 1]); // = (x[n] - y_1[n-1])
85         // y_1[n] =  x[n-1] + a_1 * (x[n] - y_1[n-1])
86         out_data[k] = WEBRTC_SPL_SCALEDIFF32(filter_coefficients[0], diff, in_data[k - 1]);
87     }
88 
89     // Update states.
90     filter_state[0] = in_data[data_length - 1]; // x[N-1], becomes x[-1] next time
91     filter_state[1] = out_data[data_length - 1]; // y_1[N-1], becomes y_1[-1] next time
92 
93     // Second all-pass cascade; filter from out_data to in_data.
94     diff = WEBRTC_SPL_SUB_SAT_W32(out_data[0], filter_state[3]); // = (y_1[0] - y_2[-1])
95     // y_2[0] =  y_1[-1] + a_2 * (y_1[0] - y_2[-1])
96     in_data[0] = WEBRTC_SPL_SCALEDIFF32(filter_coefficients[1], diff, filter_state[2]);
97     for (k = 1; k < data_length; k++)
98     {
99         diff = WEBRTC_SPL_SUB_SAT_W32(out_data[k], in_data[k - 1]); // =(y_1[n] - y_2[n-1])
100         // y_2[0] =  y_1[-1] + a_2 * (y_1[0] - y_2[-1])
101         in_data[k] = WEBRTC_SPL_SCALEDIFF32(filter_coefficients[1], diff, out_data[k-1]);
102     }
103 
104     filter_state[2] = out_data[data_length - 1]; // y_1[N-1], becomes y_1[-1] next time
105     filter_state[3] = in_data[data_length - 1]; // y_2[N-1], becomes y_2[-1] next time
106 
107     // Third all-pass cascade; filter from in_data to out_data.
108     diff = WEBRTC_SPL_SUB_SAT_W32(in_data[0], filter_state[5]); // = (y_2[0] - y[-1])
109     // y[0] =  y_2[-1] + a_3 * (y_2[0] - y[-1])
110     out_data[0] = WEBRTC_SPL_SCALEDIFF32(filter_coefficients[2], diff, filter_state[4]);
111     for (k = 1; k < data_length; k++)
112     {
113         diff = WEBRTC_SPL_SUB_SAT_W32(in_data[k], out_data[k - 1]); // = (y_2[n] - y[n-1])
114         // y[n] =  y_2[n-1] + a_3 * (y_2[n] - y[n-1])
115         out_data[k] = WEBRTC_SPL_SCALEDIFF32(filter_coefficients[2], diff, in_data[k-1]);
116     }
117     filter_state[4] = in_data[data_length - 1]; // y_2[N-1], becomes y_2[-1] next time
118     filter_state[5] = out_data[data_length - 1]; // y[N-1], becomes y[-1] next time
119 }
120 
WebRtcSpl_AnalysisQMF(const int16_t * in_data,int in_data_length,int16_t * low_band,int16_t * high_band,int32_t * filter_state1,int32_t * filter_state2)121 void WebRtcSpl_AnalysisQMF(const int16_t* in_data, int in_data_length,
122                            int16_t* low_band, int16_t* high_band,
123                            int32_t* filter_state1, int32_t* filter_state2)
124 {
125     int16_t i;
126     int16_t k;
127     int32_t tmp;
128     int32_t half_in1[kMaxBandFrameLength];
129     int32_t half_in2[kMaxBandFrameLength];
130     int32_t filter1[kMaxBandFrameLength];
131     int32_t filter2[kMaxBandFrameLength];
132     const int band_length = in_data_length / 2;
133     assert(in_data_length % 2 == 0);
134     assert(band_length <= kMaxBandFrameLength);
135 
136     // Split even and odd samples. Also shift them to Q10.
137     for (i = 0, k = 0; i < band_length; i++, k += 2)
138     {
139         half_in2[i] = WEBRTC_SPL_LSHIFT_W32((int32_t)in_data[k], 10);
140         half_in1[i] = WEBRTC_SPL_LSHIFT_W32((int32_t)in_data[k + 1], 10);
141     }
142 
143     // All pass filter even and odd samples, independently.
144     WebRtcSpl_AllPassQMF(half_in1, band_length, filter1,
145                          WebRtcSpl_kAllPassFilter1, filter_state1);
146     WebRtcSpl_AllPassQMF(half_in2, band_length, filter2,
147                          WebRtcSpl_kAllPassFilter2, filter_state2);
148 
149     // Take the sum and difference of filtered version of odd and even
150     // branches to get upper & lower band.
151     for (i = 0; i < band_length; i++)
152     {
153         tmp = filter1[i] + filter2[i] + 1024;
154         tmp = WEBRTC_SPL_RSHIFT_W32(tmp, 11);
155         low_band[i] = WebRtcSpl_SatW32ToW16(tmp);
156 
157         tmp = filter1[i] - filter2[i] + 1024;
158         tmp = WEBRTC_SPL_RSHIFT_W32(tmp, 11);
159         high_band[i] = WebRtcSpl_SatW32ToW16(tmp);
160     }
161 }
162 
WebRtcSpl_SynthesisQMF(const int16_t * low_band,const int16_t * high_band,int band_length,int16_t * out_data,int32_t * filter_state1,int32_t * filter_state2)163 void WebRtcSpl_SynthesisQMF(const int16_t* low_band, const int16_t* high_band,
164                             int band_length, int16_t* out_data,
165                             int32_t* filter_state1, int32_t* filter_state2)
166 {
167     int32_t tmp;
168     int32_t half_in1[kMaxBandFrameLength];
169     int32_t half_in2[kMaxBandFrameLength];
170     int32_t filter1[kMaxBandFrameLength];
171     int32_t filter2[kMaxBandFrameLength];
172     int16_t i;
173     int16_t k;
174     assert(band_length <= kMaxBandFrameLength);
175 
176     // Obtain the sum and difference channels out of upper and lower-band channels.
177     // Also shift to Q10 domain.
178     for (i = 0; i < band_length; i++)
179     {
180         tmp = (int32_t)low_band[i] + (int32_t)high_band[i];
181         half_in1[i] = WEBRTC_SPL_LSHIFT_W32(tmp, 10);
182         tmp = (int32_t)low_band[i] - (int32_t)high_band[i];
183         half_in2[i] = WEBRTC_SPL_LSHIFT_W32(tmp, 10);
184     }
185 
186     // all-pass filter the sum and difference channels
187     WebRtcSpl_AllPassQMF(half_in1, band_length, filter1,
188                          WebRtcSpl_kAllPassFilter2, filter_state1);
189     WebRtcSpl_AllPassQMF(half_in2, band_length, filter2,
190                          WebRtcSpl_kAllPassFilter1, filter_state2);
191 
192     // The filtered signals are even and odd samples of the output. Combine
193     // them. The signals are Q10 should shift them back to Q0 and take care of
194     // saturation.
195     for (i = 0, k = 0; i < band_length; i++)
196     {
197         tmp = WEBRTC_SPL_RSHIFT_W32(filter2[i] + 512, 10);
198         out_data[k++] = WebRtcSpl_SatW32ToW16(tmp);
199 
200         tmp = WEBRTC_SPL_RSHIFT_W32(filter1[i] + 512, 10);
201         out_data[k++] = WebRtcSpl_SatW32ToW16(tmp);
202     }
203 
204 }
205