• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the ScheduleDAGInstrs class, which implements re-scheduling
11 // of MachineInstrs.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/Analysis/AliasAnalysis.h"
20 #include "llvm/Analysis/ValueTracking.h"
21 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
22 #include "llvm/CodeGen/MachineFunctionPass.h"
23 #include "llvm/CodeGen/MachineInstrBuilder.h"
24 #include "llvm/CodeGen/MachineMemOperand.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/CodeGen/PseudoSourceValue.h"
27 #include "llvm/CodeGen/RegisterPressure.h"
28 #include "llvm/CodeGen/ScheduleDFS.h"
29 #include "llvm/IR/Operator.h"
30 #include "llvm/MC/MCInstrItineraries.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/Format.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include "llvm/Target/TargetInstrInfo.h"
36 #include "llvm/Target/TargetMachine.h"
37 #include "llvm/Target/TargetRegisterInfo.h"
38 #include "llvm/Target/TargetSubtargetInfo.h"
39 #include <queue>
40 
41 using namespace llvm;
42 
43 #define DEBUG_TYPE "misched"
44 
45 static cl::opt<bool> EnableAASchedMI("enable-aa-sched-mi", cl::Hidden,
46     cl::ZeroOrMore, cl::init(false),
47     cl::desc("Enable use of AA during MI GAD construction"));
48 
49 static cl::opt<bool> UseTBAA("use-tbaa-in-sched-mi", cl::Hidden,
50     cl::init(true), cl::desc("Enable use of TBAA during MI GAD construction"));
51 
ScheduleDAGInstrs(MachineFunction & mf,const MachineLoopInfo & mli,const MachineDominatorTree & mdt,bool IsPostRAFlag,bool RemoveKillFlags,LiveIntervals * lis)52 ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
53                                      const MachineLoopInfo &mli,
54                                      const MachineDominatorTree &mdt,
55                                      bool IsPostRAFlag,
56                                      bool RemoveKillFlags,
57                                      LiveIntervals *lis)
58   : ScheduleDAG(mf), MLI(mli), MDT(mdt), MFI(mf.getFrameInfo()), LIS(lis),
59     IsPostRA(IsPostRAFlag), RemoveKillFlags(RemoveKillFlags),
60     CanHandleTerminators(false), FirstDbgValue(nullptr) {
61   assert((IsPostRA || LIS) && "PreRA scheduling requires LiveIntervals");
62   DbgValues.clear();
63   assert(!(IsPostRA && MRI.getNumVirtRegs()) &&
64          "Virtual registers must be removed prior to PostRA scheduling");
65 
66   const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
67   SchedModel.init(*ST.getSchedModel(), &ST, TII);
68 }
69 
70 /// getUnderlyingObjectFromInt - This is the function that does the work of
71 /// looking through basic ptrtoint+arithmetic+inttoptr sequences.
getUnderlyingObjectFromInt(const Value * V)72 static const Value *getUnderlyingObjectFromInt(const Value *V) {
73   do {
74     if (const Operator *U = dyn_cast<Operator>(V)) {
75       // If we find a ptrtoint, we can transfer control back to the
76       // regular getUnderlyingObjectFromInt.
77       if (U->getOpcode() == Instruction::PtrToInt)
78         return U->getOperand(0);
79       // If we find an add of a constant, a multiplied value, or a phi, it's
80       // likely that the other operand will lead us to the base
81       // object. We don't have to worry about the case where the
82       // object address is somehow being computed by the multiply,
83       // because our callers only care when the result is an
84       // identifiable object.
85       if (U->getOpcode() != Instruction::Add ||
86           (!isa<ConstantInt>(U->getOperand(1)) &&
87            Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
88            !isa<PHINode>(U->getOperand(1))))
89         return V;
90       V = U->getOperand(0);
91     } else {
92       return V;
93     }
94     assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
95   } while (1);
96 }
97 
98 /// getUnderlyingObjects - This is a wrapper around GetUnderlyingObjects
99 /// and adds support for basic ptrtoint+arithmetic+inttoptr sequences.
getUnderlyingObjects(const Value * V,SmallVectorImpl<Value * > & Objects)100 static void getUnderlyingObjects(const Value *V,
101                                  SmallVectorImpl<Value *> &Objects) {
102   SmallPtrSet<const Value *, 16> Visited;
103   SmallVector<const Value *, 4> Working(1, V);
104   do {
105     V = Working.pop_back_val();
106 
107     SmallVector<Value *, 4> Objs;
108     GetUnderlyingObjects(const_cast<Value *>(V), Objs);
109 
110     for (SmallVectorImpl<Value *>::iterator I = Objs.begin(), IE = Objs.end();
111          I != IE; ++I) {
112       V = *I;
113       if (!Visited.insert(V))
114         continue;
115       if (Operator::getOpcode(V) == Instruction::IntToPtr) {
116         const Value *O =
117           getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
118         if (O->getType()->isPointerTy()) {
119           Working.push_back(O);
120           continue;
121         }
122       }
123       Objects.push_back(const_cast<Value *>(V));
124     }
125   } while (!Working.empty());
126 }
127 
128 typedef PointerUnion<const Value *, const PseudoSourceValue *> ValueType;
129 typedef SmallVector<PointerIntPair<ValueType, 1, bool>, 4>
130 UnderlyingObjectsVector;
131 
132 /// getUnderlyingObjectsForInstr - If this machine instr has memory reference
133 /// information and it can be tracked to a normal reference to a known
134 /// object, return the Value for that object.
getUnderlyingObjectsForInstr(const MachineInstr * MI,const MachineFrameInfo * MFI,UnderlyingObjectsVector & Objects)135 static void getUnderlyingObjectsForInstr(const MachineInstr *MI,
136                                          const MachineFrameInfo *MFI,
137                                          UnderlyingObjectsVector &Objects) {
138   if (!MI->hasOneMemOperand() ||
139       (!(*MI->memoperands_begin())->getValue() &&
140        !(*MI->memoperands_begin())->getPseudoValue()) ||
141       (*MI->memoperands_begin())->isVolatile())
142     return;
143 
144   if (const PseudoSourceValue *PSV =
145       (*MI->memoperands_begin())->getPseudoValue()) {
146     // For now, ignore PseudoSourceValues which may alias LLVM IR values
147     // because the code that uses this function has no way to cope with
148     // such aliases.
149     if (!PSV->isAliased(MFI)) {
150       bool MayAlias = PSV->mayAlias(MFI);
151       Objects.push_back(UnderlyingObjectsVector::value_type(PSV, MayAlias));
152     }
153     return;
154   }
155 
156   const Value *V = (*MI->memoperands_begin())->getValue();
157   if (!V)
158     return;
159 
160   SmallVector<Value *, 4> Objs;
161   getUnderlyingObjects(V, Objs);
162 
163   for (SmallVectorImpl<Value *>::iterator I = Objs.begin(), IE = Objs.end();
164          I != IE; ++I) {
165     V = *I;
166 
167     if (!isIdentifiedObject(V)) {
168       Objects.clear();
169       return;
170     }
171 
172     Objects.push_back(UnderlyingObjectsVector::value_type(V, true));
173   }
174 }
175 
startBlock(MachineBasicBlock * bb)176 void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) {
177   BB = bb;
178 }
179 
finishBlock()180 void ScheduleDAGInstrs::finishBlock() {
181   // Subclasses should no longer refer to the old block.
182   BB = nullptr;
183 }
184 
185 /// Initialize the DAG and common scheduler state for the current scheduling
186 /// region. This does not actually create the DAG, only clears it. The
187 /// scheduling driver may call BuildSchedGraph multiple times per scheduling
188 /// region.
enterRegion(MachineBasicBlock * bb,MachineBasicBlock::iterator begin,MachineBasicBlock::iterator end,unsigned regioninstrs)189 void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb,
190                                     MachineBasicBlock::iterator begin,
191                                     MachineBasicBlock::iterator end,
192                                     unsigned regioninstrs) {
193   assert(bb == BB && "startBlock should set BB");
194   RegionBegin = begin;
195   RegionEnd = end;
196   NumRegionInstrs = regioninstrs;
197 }
198 
199 /// Close the current scheduling region. Don't clear any state in case the
200 /// driver wants to refer to the previous scheduling region.
exitRegion()201 void ScheduleDAGInstrs::exitRegion() {
202   // Nothing to do.
203 }
204 
205 /// addSchedBarrierDeps - Add dependencies from instructions in the current
206 /// list of instructions being scheduled to scheduling barrier by adding
207 /// the exit SU to the register defs and use list. This is because we want to
208 /// make sure instructions which define registers that are either used by
209 /// the terminator or are live-out are properly scheduled. This is
210 /// especially important when the definition latency of the return value(s)
211 /// are too high to be hidden by the branch or when the liveout registers
212 /// used by instructions in the fallthrough block.
addSchedBarrierDeps()213 void ScheduleDAGInstrs::addSchedBarrierDeps() {
214   MachineInstr *ExitMI = RegionEnd != BB->end() ? &*RegionEnd : nullptr;
215   ExitSU.setInstr(ExitMI);
216   bool AllDepKnown = ExitMI &&
217     (ExitMI->isCall() || ExitMI->isBarrier());
218   if (ExitMI && AllDepKnown) {
219     // If it's a call or a barrier, add dependencies on the defs and uses of
220     // instruction.
221     for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) {
222       const MachineOperand &MO = ExitMI->getOperand(i);
223       if (!MO.isReg() || MO.isDef()) continue;
224       unsigned Reg = MO.getReg();
225       if (Reg == 0) continue;
226 
227       if (TRI->isPhysicalRegister(Reg))
228         Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg));
229       else {
230         assert(!IsPostRA && "Virtual register encountered after regalloc.");
231         if (MO.readsReg()) // ignore undef operands
232           addVRegUseDeps(&ExitSU, i);
233       }
234     }
235   } else {
236     // For others, e.g. fallthrough, conditional branch, assume the exit
237     // uses all the registers that are livein to the successor blocks.
238     assert(Uses.empty() && "Uses in set before adding deps?");
239     for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
240            SE = BB->succ_end(); SI != SE; ++SI)
241       for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
242              E = (*SI)->livein_end(); I != E; ++I) {
243         unsigned Reg = *I;
244         if (!Uses.contains(Reg))
245           Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg));
246       }
247   }
248 }
249 
250 /// MO is an operand of SU's instruction that defines a physical register. Add
251 /// data dependencies from SU to any uses of the physical register.
addPhysRegDataDeps(SUnit * SU,unsigned OperIdx)252 void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) {
253   const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx);
254   assert(MO.isDef() && "expect physreg def");
255 
256   // Ask the target if address-backscheduling is desirable, and if so how much.
257   const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
258 
259   for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
260        Alias.isValid(); ++Alias) {
261     if (!Uses.contains(*Alias))
262       continue;
263     for (Reg2SUnitsMap::iterator I = Uses.find(*Alias); I != Uses.end(); ++I) {
264       SUnit *UseSU = I->SU;
265       if (UseSU == SU)
266         continue;
267 
268       // Adjust the dependence latency using operand def/use information,
269       // then allow the target to perform its own adjustments.
270       int UseOp = I->OpIdx;
271       MachineInstr *RegUse = nullptr;
272       SDep Dep;
273       if (UseOp < 0)
274         Dep = SDep(SU, SDep::Artificial);
275       else {
276         // Set the hasPhysRegDefs only for physreg defs that have a use within
277         // the scheduling region.
278         SU->hasPhysRegDefs = true;
279         Dep = SDep(SU, SDep::Data, *Alias);
280         RegUse = UseSU->getInstr();
281       }
282       Dep.setLatency(
283         SchedModel.computeOperandLatency(SU->getInstr(), OperIdx, RegUse,
284                                          UseOp));
285 
286       ST.adjustSchedDependency(SU, UseSU, Dep);
287       UseSU->addPred(Dep);
288     }
289   }
290 }
291 
292 /// addPhysRegDeps - Add register dependencies (data, anti, and output) from
293 /// this SUnit to following instructions in the same scheduling region that
294 /// depend the physical register referenced at OperIdx.
addPhysRegDeps(SUnit * SU,unsigned OperIdx)295 void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) {
296   MachineInstr *MI = SU->getInstr();
297   MachineOperand &MO = MI->getOperand(OperIdx);
298 
299   // Optionally add output and anti dependencies. For anti
300   // dependencies we use a latency of 0 because for a multi-issue
301   // target we want to allow the defining instruction to issue
302   // in the same cycle as the using instruction.
303   // TODO: Using a latency of 1 here for output dependencies assumes
304   //       there's no cost for reusing registers.
305   SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
306   for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
307        Alias.isValid(); ++Alias) {
308     if (!Defs.contains(*Alias))
309       continue;
310     for (Reg2SUnitsMap::iterator I = Defs.find(*Alias); I != Defs.end(); ++I) {
311       SUnit *DefSU = I->SU;
312       if (DefSU == &ExitSU)
313         continue;
314       if (DefSU != SU &&
315           (Kind != SDep::Output || !MO.isDead() ||
316            !DefSU->getInstr()->registerDefIsDead(*Alias))) {
317         if (Kind == SDep::Anti)
318           DefSU->addPred(SDep(SU, Kind, /*Reg=*/*Alias));
319         else {
320           SDep Dep(SU, Kind, /*Reg=*/*Alias);
321           Dep.setLatency(
322             SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()));
323           DefSU->addPred(Dep);
324         }
325       }
326     }
327   }
328 
329   if (!MO.isDef()) {
330     SU->hasPhysRegUses = true;
331     // Either insert a new Reg2SUnits entry with an empty SUnits list, or
332     // retrieve the existing SUnits list for this register's uses.
333     // Push this SUnit on the use list.
334     Uses.insert(PhysRegSUOper(SU, OperIdx, MO.getReg()));
335     if (RemoveKillFlags)
336       MO.setIsKill(false);
337   }
338   else {
339     addPhysRegDataDeps(SU, OperIdx);
340     unsigned Reg = MO.getReg();
341 
342     // clear this register's use list
343     if (Uses.contains(Reg))
344       Uses.eraseAll(Reg);
345 
346     if (!MO.isDead()) {
347       Defs.eraseAll(Reg);
348     } else if (SU->isCall) {
349       // Calls will not be reordered because of chain dependencies (see
350       // below). Since call operands are dead, calls may continue to be added
351       // to the DefList making dependence checking quadratic in the size of
352       // the block. Instead, we leave only one call at the back of the
353       // DefList.
354       Reg2SUnitsMap::RangePair P = Defs.equal_range(Reg);
355       Reg2SUnitsMap::iterator B = P.first;
356       Reg2SUnitsMap::iterator I = P.second;
357       for (bool isBegin = I == B; !isBegin; /* empty */) {
358         isBegin = (--I) == B;
359         if (!I->SU->isCall)
360           break;
361         I = Defs.erase(I);
362       }
363     }
364 
365     // Defs are pushed in the order they are visited and never reordered.
366     Defs.insert(PhysRegSUOper(SU, OperIdx, Reg));
367   }
368 }
369 
370 /// addVRegDefDeps - Add register output and data dependencies from this SUnit
371 /// to instructions that occur later in the same scheduling region if they read
372 /// from or write to the virtual register defined at OperIdx.
373 ///
374 /// TODO: Hoist loop induction variable increments. This has to be
375 /// reevaluated. Generally, IV scheduling should be done before coalescing.
addVRegDefDeps(SUnit * SU,unsigned OperIdx)376 void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) {
377   const MachineInstr *MI = SU->getInstr();
378   unsigned Reg = MI->getOperand(OperIdx).getReg();
379 
380   // Singly defined vregs do not have output/anti dependencies.
381   // The current operand is a def, so we have at least one.
382   // Check here if there are any others...
383   if (MRI.hasOneDef(Reg))
384     return;
385 
386   // Add output dependence to the next nearest def of this vreg.
387   //
388   // Unless this definition is dead, the output dependence should be
389   // transitively redundant with antidependencies from this definition's
390   // uses. We're conservative for now until we have a way to guarantee the uses
391   // are not eliminated sometime during scheduling. The output dependence edge
392   // is also useful if output latency exceeds def-use latency.
393   VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg);
394   if (DefI == VRegDefs.end())
395     VRegDefs.insert(VReg2SUnit(Reg, SU));
396   else {
397     SUnit *DefSU = DefI->SU;
398     if (DefSU != SU && DefSU != &ExitSU) {
399       SDep Dep(SU, SDep::Output, Reg);
400       Dep.setLatency(
401         SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()));
402       DefSU->addPred(Dep);
403     }
404     DefI->SU = SU;
405   }
406 }
407 
408 /// addVRegUseDeps - Add a register data dependency if the instruction that
409 /// defines the virtual register used at OperIdx is mapped to an SUnit. Add a
410 /// register antidependency from this SUnit to instructions that occur later in
411 /// the same scheduling region if they write the virtual register.
412 ///
413 /// TODO: Handle ExitSU "uses" properly.
addVRegUseDeps(SUnit * SU,unsigned OperIdx)414 void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) {
415   MachineInstr *MI = SU->getInstr();
416   unsigned Reg = MI->getOperand(OperIdx).getReg();
417 
418   // Record this local VReg use.
419   VReg2UseMap::iterator UI = VRegUses.find(Reg);
420   for (; UI != VRegUses.end(); ++UI) {
421     if (UI->SU == SU)
422       break;
423   }
424   if (UI == VRegUses.end())
425     VRegUses.insert(VReg2SUnit(Reg, SU));
426 
427   // Lookup this operand's reaching definition.
428   assert(LIS && "vreg dependencies requires LiveIntervals");
429   LiveQueryResult LRQ
430     = LIS->getInterval(Reg).Query(LIS->getInstructionIndex(MI));
431   VNInfo *VNI = LRQ.valueIn();
432 
433   // VNI will be valid because MachineOperand::readsReg() is checked by caller.
434   assert(VNI && "No value to read by operand");
435   MachineInstr *Def = LIS->getInstructionFromIndex(VNI->def);
436   // Phis and other noninstructions (after coalescing) have a NULL Def.
437   if (Def) {
438     SUnit *DefSU = getSUnit(Def);
439     if (DefSU) {
440       // The reaching Def lives within this scheduling region.
441       // Create a data dependence.
442       SDep dep(DefSU, SDep::Data, Reg);
443       // Adjust the dependence latency using operand def/use information, then
444       // allow the target to perform its own adjustments.
445       int DefOp = Def->findRegisterDefOperandIdx(Reg);
446       dep.setLatency(SchedModel.computeOperandLatency(Def, DefOp, MI, OperIdx));
447 
448       const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
449       ST.adjustSchedDependency(DefSU, SU, const_cast<SDep &>(dep));
450       SU->addPred(dep);
451     }
452   }
453 
454   // Add antidependence to the following def of the vreg it uses.
455   VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg);
456   if (DefI != VRegDefs.end() && DefI->SU != SU)
457     DefI->SU->addPred(SDep(SU, SDep::Anti, Reg));
458 }
459 
460 /// Return true if MI is an instruction we are unable to reason about
461 /// (like a call or something with unmodeled side effects).
isGlobalMemoryObject(AliasAnalysis * AA,MachineInstr * MI)462 static inline bool isGlobalMemoryObject(AliasAnalysis *AA, MachineInstr *MI) {
463   if (MI->isCall() || MI->hasUnmodeledSideEffects() ||
464       (MI->hasOrderedMemoryRef() &&
465        (!MI->mayLoad() || !MI->isInvariantLoad(AA))))
466     return true;
467   return false;
468 }
469 
470 // This MI might have either incomplete info, or known to be unsafe
471 // to deal with (i.e. volatile object).
isUnsafeMemoryObject(MachineInstr * MI,const MachineFrameInfo * MFI)472 static inline bool isUnsafeMemoryObject(MachineInstr *MI,
473                                         const MachineFrameInfo *MFI) {
474   if (!MI || MI->memoperands_empty())
475     return true;
476   // We purposefully do no check for hasOneMemOperand() here
477   // in hope to trigger an assert downstream in order to
478   // finish implementation.
479   if ((*MI->memoperands_begin())->isVolatile() ||
480        MI->hasUnmodeledSideEffects())
481     return true;
482 
483   if ((*MI->memoperands_begin())->getPseudoValue()) {
484     // Similarly to getUnderlyingObjectForInstr:
485     // For now, ignore PseudoSourceValues which may alias LLVM IR values
486     // because the code that uses this function has no way to cope with
487     // such aliases.
488     return true;
489   }
490 
491   const Value *V = (*MI->memoperands_begin())->getValue();
492   if (!V)
493     return true;
494 
495   SmallVector<Value *, 4> Objs;
496   getUnderlyingObjects(V, Objs);
497   for (SmallVectorImpl<Value *>::iterator I = Objs.begin(),
498          IE = Objs.end(); I != IE; ++I) {
499     // Does this pointer refer to a distinct and identifiable object?
500     if (!isIdentifiedObject(*I))
501       return true;
502   }
503 
504   return false;
505 }
506 
507 /// This returns true if the two MIs need a chain edge betwee them.
508 /// If these are not even memory operations, we still may need
509 /// chain deps between them. The question really is - could
510 /// these two MIs be reordered during scheduling from memory dependency
511 /// point of view.
MIsNeedChainEdge(AliasAnalysis * AA,const MachineFrameInfo * MFI,MachineInstr * MIa,MachineInstr * MIb)512 static bool MIsNeedChainEdge(AliasAnalysis *AA, const MachineFrameInfo *MFI,
513                              MachineInstr *MIa,
514                              MachineInstr *MIb) {
515   // Cover a trivial case - no edge is need to itself.
516   if (MIa == MIb)
517     return false;
518 
519   // FIXME: Need to handle multiple memory operands to support all targets.
520   if (!MIa->hasOneMemOperand() || !MIb->hasOneMemOperand())
521     return true;
522 
523   if (isUnsafeMemoryObject(MIa, MFI) || isUnsafeMemoryObject(MIb, MFI))
524     return true;
525 
526   // If we are dealing with two "normal" loads, we do not need an edge
527   // between them - they could be reordered.
528   if (!MIa->mayStore() && !MIb->mayStore())
529     return false;
530 
531   // To this point analysis is generic. From here on we do need AA.
532   if (!AA)
533     return true;
534 
535   MachineMemOperand *MMOa = *MIa->memoperands_begin();
536   MachineMemOperand *MMOb = *MIb->memoperands_begin();
537 
538   if (!MMOa->getValue() || !MMOb->getValue())
539     return true;
540 
541   // The following interface to AA is fashioned after DAGCombiner::isAlias
542   // and operates with MachineMemOperand offset with some important
543   // assumptions:
544   //   - LLVM fundamentally assumes flat address spaces.
545   //   - MachineOperand offset can *only* result from legalization and
546   //     cannot affect queries other than the trivial case of overlap
547   //     checking.
548   //   - These offsets never wrap and never step outside
549   //     of allocated objects.
550   //   - There should never be any negative offsets here.
551   //
552   // FIXME: Modify API to hide this math from "user"
553   // FIXME: Even before we go to AA we can reason locally about some
554   // memory objects. It can save compile time, and possibly catch some
555   // corner cases not currently covered.
556 
557   assert ((MMOa->getOffset() >= 0) && "Negative MachineMemOperand offset");
558   assert ((MMOb->getOffset() >= 0) && "Negative MachineMemOperand offset");
559 
560   int64_t MinOffset = std::min(MMOa->getOffset(), MMOb->getOffset());
561   int64_t Overlapa = MMOa->getSize() + MMOa->getOffset() - MinOffset;
562   int64_t Overlapb = MMOb->getSize() + MMOb->getOffset() - MinOffset;
563 
564   AliasAnalysis::AliasResult AAResult = AA->alias(
565       AliasAnalysis::Location(MMOa->getValue(), Overlapa,
566                               UseTBAA ? MMOa->getTBAAInfo() : nullptr),
567       AliasAnalysis::Location(MMOb->getValue(), Overlapb,
568                               UseTBAA ? MMOb->getTBAAInfo() : nullptr));
569 
570   return (AAResult != AliasAnalysis::NoAlias);
571 }
572 
573 /// This recursive function iterates over chain deps of SUb looking for
574 /// "latest" node that needs a chain edge to SUa.
575 static unsigned
iterateChainSucc(AliasAnalysis * AA,const MachineFrameInfo * MFI,SUnit * SUa,SUnit * SUb,SUnit * ExitSU,unsigned * Depth,SmallPtrSet<const SUnit *,16> & Visited)576 iterateChainSucc(AliasAnalysis *AA, const MachineFrameInfo *MFI,
577                  SUnit *SUa, SUnit *SUb, SUnit *ExitSU, unsigned *Depth,
578                  SmallPtrSet<const SUnit*, 16> &Visited) {
579   if (!SUa || !SUb || SUb == ExitSU)
580     return *Depth;
581 
582   // Remember visited nodes.
583   if (!Visited.insert(SUb))
584       return *Depth;
585   // If there is _some_ dependency already in place, do not
586   // descend any further.
587   // TODO: Need to make sure that if that dependency got eliminated or ignored
588   // for any reason in the future, we would not violate DAG topology.
589   // Currently it does not happen, but makes an implicit assumption about
590   // future implementation.
591   //
592   // Independently, if we encounter node that is some sort of global
593   // object (like a call) we already have full set of dependencies to it
594   // and we can stop descending.
595   if (SUa->isSucc(SUb) ||
596       isGlobalMemoryObject(AA, SUb->getInstr()))
597     return *Depth;
598 
599   // If we do need an edge, or we have exceeded depth budget,
600   // add that edge to the predecessors chain of SUb,
601   // and stop descending.
602   if (*Depth > 200 ||
603       MIsNeedChainEdge(AA, MFI, SUa->getInstr(), SUb->getInstr())) {
604     SUb->addPred(SDep(SUa, SDep::MayAliasMem));
605     return *Depth;
606   }
607   // Track current depth.
608   (*Depth)++;
609   // Iterate over chain dependencies only.
610   for (SUnit::const_succ_iterator I = SUb->Succs.begin(), E = SUb->Succs.end();
611        I != E; ++I)
612     if (I->isCtrl())
613       iterateChainSucc (AA, MFI, SUa, I->getSUnit(), ExitSU, Depth, Visited);
614   return *Depth;
615 }
616 
617 /// This function assumes that "downward" from SU there exist
618 /// tail/leaf of already constructed DAG. It iterates downward and
619 /// checks whether SU can be aliasing any node dominated
620 /// by it.
adjustChainDeps(AliasAnalysis * AA,const MachineFrameInfo * MFI,SUnit * SU,SUnit * ExitSU,std::set<SUnit * > & CheckList,unsigned LatencyToLoad)621 static void adjustChainDeps(AliasAnalysis *AA, const MachineFrameInfo *MFI,
622                             SUnit *SU, SUnit *ExitSU, std::set<SUnit *> &CheckList,
623                             unsigned LatencyToLoad) {
624   if (!SU)
625     return;
626 
627   SmallPtrSet<const SUnit*, 16> Visited;
628   unsigned Depth = 0;
629 
630   for (std::set<SUnit *>::iterator I = CheckList.begin(), IE = CheckList.end();
631        I != IE; ++I) {
632     if (SU == *I)
633       continue;
634     if (MIsNeedChainEdge(AA, MFI, SU->getInstr(), (*I)->getInstr())) {
635       SDep Dep(SU, SDep::MayAliasMem);
636       Dep.setLatency(((*I)->getInstr()->mayLoad()) ? LatencyToLoad : 0);
637       (*I)->addPred(Dep);
638     }
639     // Now go through all the chain successors and iterate from them.
640     // Keep track of visited nodes.
641     for (SUnit::const_succ_iterator J = (*I)->Succs.begin(),
642          JE = (*I)->Succs.end(); J != JE; ++J)
643       if (J->isCtrl())
644         iterateChainSucc (AA, MFI, SU, J->getSUnit(),
645                           ExitSU, &Depth, Visited);
646   }
647 }
648 
649 /// Check whether two objects need a chain edge, if so, add it
650 /// otherwise remember the rejected SU.
651 static inline
addChainDependency(AliasAnalysis * AA,const MachineFrameInfo * MFI,SUnit * SUa,SUnit * SUb,std::set<SUnit * > & RejectList,unsigned TrueMemOrderLatency=0,bool isNormalMemory=false)652 void addChainDependency (AliasAnalysis *AA, const MachineFrameInfo *MFI,
653                          SUnit *SUa, SUnit *SUb,
654                          std::set<SUnit *> &RejectList,
655                          unsigned TrueMemOrderLatency = 0,
656                          bool isNormalMemory = false) {
657   // If this is a false dependency,
658   // do not add the edge, but rememeber the rejected node.
659   if (!AA || MIsNeedChainEdge(AA, MFI, SUa->getInstr(), SUb->getInstr())) {
660     SDep Dep(SUa, isNormalMemory ? SDep::MayAliasMem : SDep::Barrier);
661     Dep.setLatency(TrueMemOrderLatency);
662     SUb->addPred(Dep);
663   }
664   else {
665     // Duplicate entries should be ignored.
666     RejectList.insert(SUb);
667     DEBUG(dbgs() << "\tReject chain dep between SU("
668           << SUa->NodeNum << ") and SU("
669           << SUb->NodeNum << ")\n");
670   }
671 }
672 
673 /// Create an SUnit for each real instruction, numbered in top-down toplological
674 /// order. The instruction order A < B, implies that no edge exists from B to A.
675 ///
676 /// Map each real instruction to its SUnit.
677 ///
678 /// After initSUnits, the SUnits vector cannot be resized and the scheduler may
679 /// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs
680 /// instead of pointers.
681 ///
682 /// MachineScheduler relies on initSUnits numbering the nodes by their order in
683 /// the original instruction list.
initSUnits()684 void ScheduleDAGInstrs::initSUnits() {
685   // We'll be allocating one SUnit for each real instruction in the region,
686   // which is contained within a basic block.
687   SUnits.reserve(NumRegionInstrs);
688 
689   for (MachineBasicBlock::iterator I = RegionBegin; I != RegionEnd; ++I) {
690     MachineInstr *MI = I;
691     if (MI->isDebugValue())
692       continue;
693 
694     SUnit *SU = newSUnit(MI);
695     MISUnitMap[MI] = SU;
696 
697     SU->isCall = MI->isCall();
698     SU->isCommutable = MI->isCommutable();
699 
700     // Assign the Latency field of SU using target-provided information.
701     SU->Latency = SchedModel.computeInstrLatency(SU->getInstr());
702 
703     // If this SUnit uses a reserved or unbuffered resource, mark it as such.
704     //
705     // Reserved resources block an instruction from issuing and stall the
706     // entire pipeline. These are identified by BufferSize=0.
707     //
708     // Unbuffered resources prevent execution of subsequent instructions that
709     // require the same resources. This is used for in-order execution pipelines
710     // within an out-of-order core. These are identified by BufferSize=1.
711     if (SchedModel.hasInstrSchedModel()) {
712       const MCSchedClassDesc *SC = getSchedClass(SU);
713       for (TargetSchedModel::ProcResIter
714              PI = SchedModel.getWriteProcResBegin(SC),
715              PE = SchedModel.getWriteProcResEnd(SC); PI != PE; ++PI) {
716         switch (SchedModel.getProcResource(PI->ProcResourceIdx)->BufferSize) {
717         case 0:
718           SU->hasReservedResource = true;
719           break;
720         case 1:
721           SU->isUnbuffered = true;
722           break;
723         default:
724           break;
725         }
726       }
727     }
728   }
729 }
730 
731 /// If RegPressure is non-null, compute register pressure as a side effect. The
732 /// DAG builder is an efficient place to do it because it already visits
733 /// operands.
buildSchedGraph(AliasAnalysis * AA,RegPressureTracker * RPTracker,PressureDiffs * PDiffs)734 void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA,
735                                         RegPressureTracker *RPTracker,
736                                         PressureDiffs *PDiffs) {
737   const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
738   bool UseAA = EnableAASchedMI.getNumOccurrences() > 0 ? EnableAASchedMI
739                                                        : ST.useAA();
740   AliasAnalysis *AAForDep = UseAA ? AA : nullptr;
741 
742   MISUnitMap.clear();
743   ScheduleDAG::clearDAG();
744 
745   // Create an SUnit for each real instruction.
746   initSUnits();
747 
748   if (PDiffs)
749     PDiffs->init(SUnits.size());
750 
751   // We build scheduling units by walking a block's instruction list from bottom
752   // to top.
753 
754   // Remember where a generic side-effecting instruction is as we procede.
755   SUnit *BarrierChain = nullptr, *AliasChain = nullptr;
756 
757   // Memory references to specific known memory locations are tracked
758   // so that they can be given more precise dependencies. We track
759   // separately the known memory locations that may alias and those
760   // that are known not to alias
761   MapVector<ValueType, std::vector<SUnit *> > AliasMemDefs, NonAliasMemDefs;
762   MapVector<ValueType, std::vector<SUnit *> > AliasMemUses, NonAliasMemUses;
763   std::set<SUnit*> RejectMemNodes;
764 
765   // Remove any stale debug info; sometimes BuildSchedGraph is called again
766   // without emitting the info from the previous call.
767   DbgValues.clear();
768   FirstDbgValue = nullptr;
769 
770   assert(Defs.empty() && Uses.empty() &&
771          "Only BuildGraph should update Defs/Uses");
772   Defs.setUniverse(TRI->getNumRegs());
773   Uses.setUniverse(TRI->getNumRegs());
774 
775   assert(VRegDefs.empty() && "Only BuildSchedGraph may access VRegDefs");
776   VRegUses.clear();
777   VRegDefs.setUniverse(MRI.getNumVirtRegs());
778   VRegUses.setUniverse(MRI.getNumVirtRegs());
779 
780   // Model data dependencies between instructions being scheduled and the
781   // ExitSU.
782   addSchedBarrierDeps();
783 
784   // Walk the list of instructions, from bottom moving up.
785   MachineInstr *DbgMI = nullptr;
786   for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin;
787        MII != MIE; --MII) {
788     MachineInstr *MI = std::prev(MII);
789     if (MI && DbgMI) {
790       DbgValues.push_back(std::make_pair(DbgMI, MI));
791       DbgMI = nullptr;
792     }
793 
794     if (MI->isDebugValue()) {
795       DbgMI = MI;
796       continue;
797     }
798     SUnit *SU = MISUnitMap[MI];
799     assert(SU && "No SUnit mapped to this MI");
800 
801     if (RPTracker) {
802       PressureDiff *PDiff = PDiffs ? &(*PDiffs)[SU->NodeNum] : nullptr;
803       RPTracker->recede(/*LiveUses=*/nullptr, PDiff);
804       assert(RPTracker->getPos() == std::prev(MII) &&
805              "RPTracker can't find MI");
806     }
807 
808     assert(
809         (CanHandleTerminators || (!MI->isTerminator() && !MI->isPosition())) &&
810         "Cannot schedule terminators or labels!");
811 
812     // Add register-based dependencies (data, anti, and output).
813     bool HasVRegDef = false;
814     for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) {
815       const MachineOperand &MO = MI->getOperand(j);
816       if (!MO.isReg()) continue;
817       unsigned Reg = MO.getReg();
818       if (Reg == 0) continue;
819 
820       if (TRI->isPhysicalRegister(Reg))
821         addPhysRegDeps(SU, j);
822       else {
823         assert(!IsPostRA && "Virtual register encountered!");
824         if (MO.isDef()) {
825           HasVRegDef = true;
826           addVRegDefDeps(SU, j);
827         }
828         else if (MO.readsReg()) // ignore undef operands
829           addVRegUseDeps(SU, j);
830       }
831     }
832     // If we haven't seen any uses in this scheduling region, create a
833     // dependence edge to ExitSU to model the live-out latency. This is required
834     // for vreg defs with no in-region use, and prefetches with no vreg def.
835     //
836     // FIXME: NumDataSuccs would be more precise than NumSuccs here. This
837     // check currently relies on being called before adding chain deps.
838     if (SU->NumSuccs == 0 && SU->Latency > 1
839         && (HasVRegDef || MI->mayLoad())) {
840       SDep Dep(SU, SDep::Artificial);
841       Dep.setLatency(SU->Latency - 1);
842       ExitSU.addPred(Dep);
843     }
844 
845     // Add chain dependencies.
846     // Chain dependencies used to enforce memory order should have
847     // latency of 0 (except for true dependency of Store followed by
848     // aliased Load... we estimate that with a single cycle of latency
849     // assuming the hardware will bypass)
850     // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable
851     // after stack slots are lowered to actual addresses.
852     // TODO: Use an AliasAnalysis and do real alias-analysis queries, and
853     // produce more precise dependence information.
854     unsigned TrueMemOrderLatency = MI->mayStore() ? 1 : 0;
855     if (isGlobalMemoryObject(AA, MI)) {
856       // Be conservative with these and add dependencies on all memory
857       // references, even those that are known to not alias.
858       for (MapVector<ValueType, std::vector<SUnit *> >::iterator I =
859              NonAliasMemDefs.begin(), E = NonAliasMemDefs.end(); I != E; ++I) {
860         for (unsigned i = 0, e = I->second.size(); i != e; ++i) {
861           I->second[i]->addPred(SDep(SU, SDep::Barrier));
862         }
863       }
864       for (MapVector<ValueType, std::vector<SUnit *> >::iterator I =
865              NonAliasMemUses.begin(), E = NonAliasMemUses.end(); I != E; ++I) {
866         for (unsigned i = 0, e = I->second.size(); i != e; ++i) {
867           SDep Dep(SU, SDep::Barrier);
868           Dep.setLatency(TrueMemOrderLatency);
869           I->second[i]->addPred(Dep);
870         }
871       }
872       // Add SU to the barrier chain.
873       if (BarrierChain)
874         BarrierChain->addPred(SDep(SU, SDep::Barrier));
875       BarrierChain = SU;
876       // This is a barrier event that acts as a pivotal node in the DAG,
877       // so it is safe to clear list of exposed nodes.
878       adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes,
879                       TrueMemOrderLatency);
880       RejectMemNodes.clear();
881       NonAliasMemDefs.clear();
882       NonAliasMemUses.clear();
883 
884       // fall-through
885     new_alias_chain:
886       // Chain all possibly aliasing memory references though SU.
887       if (AliasChain) {
888         unsigned ChainLatency = 0;
889         if (AliasChain->getInstr()->mayLoad())
890           ChainLatency = TrueMemOrderLatency;
891         addChainDependency(AAForDep, MFI, SU, AliasChain, RejectMemNodes,
892                            ChainLatency);
893       }
894       AliasChain = SU;
895       for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
896         addChainDependency(AAForDep, MFI, SU, PendingLoads[k], RejectMemNodes,
897                            TrueMemOrderLatency);
898       for (MapVector<ValueType, std::vector<SUnit *> >::iterator I =
899            AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I) {
900         for (unsigned i = 0, e = I->second.size(); i != e; ++i)
901           addChainDependency(AAForDep, MFI, SU, I->second[i], RejectMemNodes);
902       }
903       for (MapVector<ValueType, std::vector<SUnit *> >::iterator I =
904            AliasMemUses.begin(), E = AliasMemUses.end(); I != E; ++I) {
905         for (unsigned i = 0, e = I->second.size(); i != e; ++i)
906           addChainDependency(AAForDep, MFI, SU, I->second[i], RejectMemNodes,
907                              TrueMemOrderLatency);
908       }
909       adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes,
910                       TrueMemOrderLatency);
911       PendingLoads.clear();
912       AliasMemDefs.clear();
913       AliasMemUses.clear();
914     } else if (MI->mayStore()) {
915       UnderlyingObjectsVector Objs;
916       getUnderlyingObjectsForInstr(MI, MFI, Objs);
917 
918       if (Objs.empty()) {
919         // Treat all other stores conservatively.
920         goto new_alias_chain;
921       }
922 
923       bool MayAlias = false;
924       for (UnderlyingObjectsVector::iterator K = Objs.begin(), KE = Objs.end();
925            K != KE; ++K) {
926         ValueType V = K->getPointer();
927         bool ThisMayAlias = K->getInt();
928         if (ThisMayAlias)
929           MayAlias = true;
930 
931         // A store to a specific PseudoSourceValue. Add precise dependencies.
932         // Record the def in MemDefs, first adding a dep if there is
933         // an existing def.
934         MapVector<ValueType, std::vector<SUnit *> >::iterator I =
935           ((ThisMayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
936         MapVector<ValueType, std::vector<SUnit *> >::iterator IE =
937           ((ThisMayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
938         if (I != IE) {
939           for (unsigned i = 0, e = I->second.size(); i != e; ++i)
940             addChainDependency(AAForDep, MFI, SU, I->second[i], RejectMemNodes,
941                                0, true);
942 
943           // If we're not using AA, then we only need one store per object.
944           if (!AAForDep)
945             I->second.clear();
946           I->second.push_back(SU);
947         } else {
948           if (ThisMayAlias) {
949             if (!AAForDep)
950               AliasMemDefs[V].clear();
951             AliasMemDefs[V].push_back(SU);
952           } else {
953             if (!AAForDep)
954               NonAliasMemDefs[V].clear();
955             NonAliasMemDefs[V].push_back(SU);
956           }
957         }
958         // Handle the uses in MemUses, if there are any.
959         MapVector<ValueType, std::vector<SUnit *> >::iterator J =
960           ((ThisMayAlias) ? AliasMemUses.find(V) : NonAliasMemUses.find(V));
961         MapVector<ValueType, std::vector<SUnit *> >::iterator JE =
962           ((ThisMayAlias) ? AliasMemUses.end() : NonAliasMemUses.end());
963         if (J != JE) {
964           for (unsigned i = 0, e = J->second.size(); i != e; ++i)
965             addChainDependency(AAForDep, MFI, SU, J->second[i], RejectMemNodes,
966                                TrueMemOrderLatency, true);
967           J->second.clear();
968         }
969       }
970       if (MayAlias) {
971         // Add dependencies from all the PendingLoads, i.e. loads
972         // with no underlying object.
973         for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
974           addChainDependency(AAForDep, MFI, SU, PendingLoads[k], RejectMemNodes,
975                              TrueMemOrderLatency);
976         // Add dependence on alias chain, if needed.
977         if (AliasChain)
978           addChainDependency(AAForDep, MFI, SU, AliasChain, RejectMemNodes);
979         // But we also should check dependent instructions for the
980         // SU in question.
981         adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes,
982                         TrueMemOrderLatency);
983       }
984       // Add dependence on barrier chain, if needed.
985       // There is no point to check aliasing on barrier event. Even if
986       // SU and barrier _could_ be reordered, they should not. In addition,
987       // we have lost all RejectMemNodes below barrier.
988       if (BarrierChain)
989         BarrierChain->addPred(SDep(SU, SDep::Barrier));
990     } else if (MI->mayLoad()) {
991       bool MayAlias = true;
992       if (MI->isInvariantLoad(AA)) {
993         // Invariant load, no chain dependencies needed!
994       } else {
995         UnderlyingObjectsVector Objs;
996         getUnderlyingObjectsForInstr(MI, MFI, Objs);
997 
998         if (Objs.empty()) {
999           // A load with no underlying object. Depend on all
1000           // potentially aliasing stores.
1001           for (MapVector<ValueType, std::vector<SUnit *> >::iterator I =
1002                  AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I)
1003             for (unsigned i = 0, e = I->second.size(); i != e; ++i)
1004               addChainDependency(AAForDep, MFI, SU, I->second[i],
1005                                  RejectMemNodes);
1006 
1007           PendingLoads.push_back(SU);
1008           MayAlias = true;
1009         } else {
1010           MayAlias = false;
1011         }
1012 
1013         for (UnderlyingObjectsVector::iterator
1014              J = Objs.begin(), JE = Objs.end(); J != JE; ++J) {
1015           ValueType V = J->getPointer();
1016           bool ThisMayAlias = J->getInt();
1017 
1018           if (ThisMayAlias)
1019             MayAlias = true;
1020 
1021           // A load from a specific PseudoSourceValue. Add precise dependencies.
1022           MapVector<ValueType, std::vector<SUnit *> >::iterator I =
1023             ((ThisMayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
1024           MapVector<ValueType, std::vector<SUnit *> >::iterator IE =
1025             ((ThisMayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
1026           if (I != IE)
1027             for (unsigned i = 0, e = I->second.size(); i != e; ++i)
1028               addChainDependency(AAForDep, MFI, SU, I->second[i],
1029                                  RejectMemNodes, 0, true);
1030           if (ThisMayAlias)
1031             AliasMemUses[V].push_back(SU);
1032           else
1033             NonAliasMemUses[V].push_back(SU);
1034         }
1035         if (MayAlias)
1036           adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes, /*Latency=*/0);
1037         // Add dependencies on alias and barrier chains, if needed.
1038         if (MayAlias && AliasChain)
1039           addChainDependency(AAForDep, MFI, SU, AliasChain, RejectMemNodes);
1040         if (BarrierChain)
1041           BarrierChain->addPred(SDep(SU, SDep::Barrier));
1042       }
1043     }
1044   }
1045   if (DbgMI)
1046     FirstDbgValue = DbgMI;
1047 
1048   Defs.clear();
1049   Uses.clear();
1050   VRegDefs.clear();
1051   PendingLoads.clear();
1052 }
1053 
1054 /// \brief Initialize register live-range state for updating kills.
startBlockForKills(MachineBasicBlock * BB)1055 void ScheduleDAGInstrs::startBlockForKills(MachineBasicBlock *BB) {
1056   // Start with no live registers.
1057   LiveRegs.reset();
1058 
1059   // Examine the live-in regs of all successors.
1060   for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
1061        SE = BB->succ_end(); SI != SE; ++SI) {
1062     for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
1063          E = (*SI)->livein_end(); I != E; ++I) {
1064       unsigned Reg = *I;
1065       // Repeat, for reg and all subregs.
1066       for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
1067            SubRegs.isValid(); ++SubRegs)
1068         LiveRegs.set(*SubRegs);
1069     }
1070   }
1071 }
1072 
toggleKillFlag(MachineInstr * MI,MachineOperand & MO)1073 bool ScheduleDAGInstrs::toggleKillFlag(MachineInstr *MI, MachineOperand &MO) {
1074   // Setting kill flag...
1075   if (!MO.isKill()) {
1076     MO.setIsKill(true);
1077     return false;
1078   }
1079 
1080   // If MO itself is live, clear the kill flag...
1081   if (LiveRegs.test(MO.getReg())) {
1082     MO.setIsKill(false);
1083     return false;
1084   }
1085 
1086   // If any subreg of MO is live, then create an imp-def for that
1087   // subreg and keep MO marked as killed.
1088   MO.setIsKill(false);
1089   bool AllDead = true;
1090   const unsigned SuperReg = MO.getReg();
1091   MachineInstrBuilder MIB(MF, MI);
1092   for (MCSubRegIterator SubRegs(SuperReg, TRI); SubRegs.isValid(); ++SubRegs) {
1093     if (LiveRegs.test(*SubRegs)) {
1094       MIB.addReg(*SubRegs, RegState::ImplicitDefine);
1095       AllDead = false;
1096     }
1097   }
1098 
1099   if(AllDead)
1100     MO.setIsKill(true);
1101   return false;
1102 }
1103 
1104 // FIXME: Reuse the LivePhysRegs utility for this.
fixupKills(MachineBasicBlock * MBB)1105 void ScheduleDAGInstrs::fixupKills(MachineBasicBlock *MBB) {
1106   DEBUG(dbgs() << "Fixup kills for BB#" << MBB->getNumber() << '\n');
1107 
1108   LiveRegs.resize(TRI->getNumRegs());
1109   BitVector killedRegs(TRI->getNumRegs());
1110 
1111   startBlockForKills(MBB);
1112 
1113   // Examine block from end to start...
1114   unsigned Count = MBB->size();
1115   for (MachineBasicBlock::iterator I = MBB->end(), E = MBB->begin();
1116        I != E; --Count) {
1117     MachineInstr *MI = --I;
1118     if (MI->isDebugValue())
1119       continue;
1120 
1121     // Update liveness.  Registers that are defed but not used in this
1122     // instruction are now dead. Mark register and all subregs as they
1123     // are completely defined.
1124     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1125       MachineOperand &MO = MI->getOperand(i);
1126       if (MO.isRegMask())
1127         LiveRegs.clearBitsNotInMask(MO.getRegMask());
1128       if (!MO.isReg()) continue;
1129       unsigned Reg = MO.getReg();
1130       if (Reg == 0) continue;
1131       if (!MO.isDef()) continue;
1132       // Ignore two-addr defs.
1133       if (MI->isRegTiedToUseOperand(i)) continue;
1134 
1135       // Repeat for reg and all subregs.
1136       for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
1137            SubRegs.isValid(); ++SubRegs)
1138         LiveRegs.reset(*SubRegs);
1139     }
1140 
1141     // Examine all used registers and set/clear kill flag. When a
1142     // register is used multiple times we only set the kill flag on
1143     // the first use. Don't set kill flags on undef operands.
1144     killedRegs.reset();
1145     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1146       MachineOperand &MO = MI->getOperand(i);
1147       if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue;
1148       unsigned Reg = MO.getReg();
1149       if ((Reg == 0) || MRI.isReserved(Reg)) continue;
1150 
1151       bool kill = false;
1152       if (!killedRegs.test(Reg)) {
1153         kill = true;
1154         // A register is not killed if any subregs are live...
1155         for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
1156           if (LiveRegs.test(*SubRegs)) {
1157             kill = false;
1158             break;
1159           }
1160         }
1161 
1162         // If subreg is not live, then register is killed if it became
1163         // live in this instruction
1164         if (kill)
1165           kill = !LiveRegs.test(Reg);
1166       }
1167 
1168       if (MO.isKill() != kill) {
1169         DEBUG(dbgs() << "Fixing " << MO << " in ");
1170         // Warning: toggleKillFlag may invalidate MO.
1171         toggleKillFlag(MI, MO);
1172         DEBUG(MI->dump());
1173       }
1174 
1175       killedRegs.set(Reg);
1176     }
1177 
1178     // Mark any used register (that is not using undef) and subregs as
1179     // now live...
1180     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1181       MachineOperand &MO = MI->getOperand(i);
1182       if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue;
1183       unsigned Reg = MO.getReg();
1184       if ((Reg == 0) || MRI.isReserved(Reg)) continue;
1185 
1186       for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
1187            SubRegs.isValid(); ++SubRegs)
1188         LiveRegs.set(*SubRegs);
1189     }
1190   }
1191 }
1192 
dumpNode(const SUnit * SU) const1193 void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const {
1194 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1195   SU->getInstr()->dump();
1196 #endif
1197 }
1198 
getGraphNodeLabel(const SUnit * SU) const1199 std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
1200   std::string s;
1201   raw_string_ostream oss(s);
1202   if (SU == &EntrySU)
1203     oss << "<entry>";
1204   else if (SU == &ExitSU)
1205     oss << "<exit>";
1206   else
1207     SU->getInstr()->print(oss, &TM, /*SkipOpers=*/true);
1208   return oss.str();
1209 }
1210 
1211 /// Return the basic block label. It is not necessarilly unique because a block
1212 /// contains multiple scheduling regions. But it is fine for visualization.
getDAGName() const1213 std::string ScheduleDAGInstrs::getDAGName() const {
1214   return "dag." + BB->getFullName();
1215 }
1216 
1217 //===----------------------------------------------------------------------===//
1218 // SchedDFSResult Implementation
1219 //===----------------------------------------------------------------------===//
1220 
1221 namespace llvm {
1222 /// \brief Internal state used to compute SchedDFSResult.
1223 class SchedDFSImpl {
1224   SchedDFSResult &R;
1225 
1226   /// Join DAG nodes into equivalence classes by their subtree.
1227   IntEqClasses SubtreeClasses;
1228   /// List PredSU, SuccSU pairs that represent data edges between subtrees.
1229   std::vector<std::pair<const SUnit*, const SUnit*> > ConnectionPairs;
1230 
1231   struct RootData {
1232     unsigned NodeID;
1233     unsigned ParentNodeID;  // Parent node (member of the parent subtree).
1234     unsigned SubInstrCount; // Instr count in this tree only, not children.
1235 
RootDatallvm::SchedDFSImpl::RootData1236     RootData(unsigned id): NodeID(id),
1237                            ParentNodeID(SchedDFSResult::InvalidSubtreeID),
1238                            SubInstrCount(0) {}
1239 
getSparseSetIndexllvm::SchedDFSImpl::RootData1240     unsigned getSparseSetIndex() const { return NodeID; }
1241   };
1242 
1243   SparseSet<RootData> RootSet;
1244 
1245 public:
SchedDFSImpl(SchedDFSResult & r)1246   SchedDFSImpl(SchedDFSResult &r): R(r), SubtreeClasses(R.DFSNodeData.size()) {
1247     RootSet.setUniverse(R.DFSNodeData.size());
1248   }
1249 
1250   /// Return true if this node been visited by the DFS traversal.
1251   ///
1252   /// During visitPostorderNode the Node's SubtreeID is assigned to the Node
1253   /// ID. Later, SubtreeID is updated but remains valid.
isVisited(const SUnit * SU) const1254   bool isVisited(const SUnit *SU) const {
1255     return R.DFSNodeData[SU->NodeNum].SubtreeID
1256       != SchedDFSResult::InvalidSubtreeID;
1257   }
1258 
1259   /// Initialize this node's instruction count. We don't need to flag the node
1260   /// visited until visitPostorder because the DAG cannot have cycles.
visitPreorder(const SUnit * SU)1261   void visitPreorder(const SUnit *SU) {
1262     R.DFSNodeData[SU->NodeNum].InstrCount =
1263       SU->getInstr()->isTransient() ? 0 : 1;
1264   }
1265 
1266   /// Called once for each node after all predecessors are visited. Revisit this
1267   /// node's predecessors and potentially join them now that we know the ILP of
1268   /// the other predecessors.
visitPostorderNode(const SUnit * SU)1269   void visitPostorderNode(const SUnit *SU) {
1270     // Mark this node as the root of a subtree. It may be joined with its
1271     // successors later.
1272     R.DFSNodeData[SU->NodeNum].SubtreeID = SU->NodeNum;
1273     RootData RData(SU->NodeNum);
1274     RData.SubInstrCount = SU->getInstr()->isTransient() ? 0 : 1;
1275 
1276     // If any predecessors are still in their own subtree, they either cannot be
1277     // joined or are large enough to remain separate. If this parent node's
1278     // total instruction count is not greater than a child subtree by at least
1279     // the subtree limit, then try to join it now since splitting subtrees is
1280     // only useful if multiple high-pressure paths are possible.
1281     unsigned InstrCount = R.DFSNodeData[SU->NodeNum].InstrCount;
1282     for (SUnit::const_pred_iterator
1283            PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) {
1284       if (PI->getKind() != SDep::Data)
1285         continue;
1286       unsigned PredNum = PI->getSUnit()->NodeNum;
1287       if ((InstrCount - R.DFSNodeData[PredNum].InstrCount) < R.SubtreeLimit)
1288         joinPredSubtree(*PI, SU, /*CheckLimit=*/false);
1289 
1290       // Either link or merge the TreeData entry from the child to the parent.
1291       if (R.DFSNodeData[PredNum].SubtreeID == PredNum) {
1292         // If the predecessor's parent is invalid, this is a tree edge and the
1293         // current node is the parent.
1294         if (RootSet[PredNum].ParentNodeID == SchedDFSResult::InvalidSubtreeID)
1295           RootSet[PredNum].ParentNodeID = SU->NodeNum;
1296       }
1297       else if (RootSet.count(PredNum)) {
1298         // The predecessor is not a root, but is still in the root set. This
1299         // must be the new parent that it was just joined to. Note that
1300         // RootSet[PredNum].ParentNodeID may either be invalid or may still be
1301         // set to the original parent.
1302         RData.SubInstrCount += RootSet[PredNum].SubInstrCount;
1303         RootSet.erase(PredNum);
1304       }
1305     }
1306     RootSet[SU->NodeNum] = RData;
1307   }
1308 
1309   /// Called once for each tree edge after calling visitPostOrderNode on the
1310   /// predecessor. Increment the parent node's instruction count and
1311   /// preemptively join this subtree to its parent's if it is small enough.
visitPostorderEdge(const SDep & PredDep,const SUnit * Succ)1312   void visitPostorderEdge(const SDep &PredDep, const SUnit *Succ) {
1313     R.DFSNodeData[Succ->NodeNum].InstrCount
1314       += R.DFSNodeData[PredDep.getSUnit()->NodeNum].InstrCount;
1315     joinPredSubtree(PredDep, Succ);
1316   }
1317 
1318   /// Add a connection for cross edges.
visitCrossEdge(const SDep & PredDep,const SUnit * Succ)1319   void visitCrossEdge(const SDep &PredDep, const SUnit *Succ) {
1320     ConnectionPairs.push_back(std::make_pair(PredDep.getSUnit(), Succ));
1321   }
1322 
1323   /// Set each node's subtree ID to the representative ID and record connections
1324   /// between trees.
finalize()1325   void finalize() {
1326     SubtreeClasses.compress();
1327     R.DFSTreeData.resize(SubtreeClasses.getNumClasses());
1328     assert(SubtreeClasses.getNumClasses() == RootSet.size()
1329            && "number of roots should match trees");
1330     for (SparseSet<RootData>::const_iterator
1331            RI = RootSet.begin(), RE = RootSet.end(); RI != RE; ++RI) {
1332       unsigned TreeID = SubtreeClasses[RI->NodeID];
1333       if (RI->ParentNodeID != SchedDFSResult::InvalidSubtreeID)
1334         R.DFSTreeData[TreeID].ParentTreeID = SubtreeClasses[RI->ParentNodeID];
1335       R.DFSTreeData[TreeID].SubInstrCount = RI->SubInstrCount;
1336       // Note that SubInstrCount may be greater than InstrCount if we joined
1337       // subtrees across a cross edge. InstrCount will be attributed to the
1338       // original parent, while SubInstrCount will be attributed to the joined
1339       // parent.
1340     }
1341     R.SubtreeConnections.resize(SubtreeClasses.getNumClasses());
1342     R.SubtreeConnectLevels.resize(SubtreeClasses.getNumClasses());
1343     DEBUG(dbgs() << R.getNumSubtrees() << " subtrees:\n");
1344     for (unsigned Idx = 0, End = R.DFSNodeData.size(); Idx != End; ++Idx) {
1345       R.DFSNodeData[Idx].SubtreeID = SubtreeClasses[Idx];
1346       DEBUG(dbgs() << "  SU(" << Idx << ") in tree "
1347             << R.DFSNodeData[Idx].SubtreeID << '\n');
1348     }
1349     for (std::vector<std::pair<const SUnit*, const SUnit*> >::const_iterator
1350            I = ConnectionPairs.begin(), E = ConnectionPairs.end();
1351          I != E; ++I) {
1352       unsigned PredTree = SubtreeClasses[I->first->NodeNum];
1353       unsigned SuccTree = SubtreeClasses[I->second->NodeNum];
1354       if (PredTree == SuccTree)
1355         continue;
1356       unsigned Depth = I->first->getDepth();
1357       addConnection(PredTree, SuccTree, Depth);
1358       addConnection(SuccTree, PredTree, Depth);
1359     }
1360   }
1361 
1362 protected:
1363   /// Join the predecessor subtree with the successor that is its DFS
1364   /// parent. Apply some heuristics before joining.
joinPredSubtree(const SDep & PredDep,const SUnit * Succ,bool CheckLimit=true)1365   bool joinPredSubtree(const SDep &PredDep, const SUnit *Succ,
1366                        bool CheckLimit = true) {
1367     assert(PredDep.getKind() == SDep::Data && "Subtrees are for data edges");
1368 
1369     // Check if the predecessor is already joined.
1370     const SUnit *PredSU = PredDep.getSUnit();
1371     unsigned PredNum = PredSU->NodeNum;
1372     if (R.DFSNodeData[PredNum].SubtreeID != PredNum)
1373       return false;
1374 
1375     // Four is the magic number of successors before a node is considered a
1376     // pinch point.
1377     unsigned NumDataSucs = 0;
1378     for (SUnit::const_succ_iterator SI = PredSU->Succs.begin(),
1379            SE = PredSU->Succs.end(); SI != SE; ++SI) {
1380       if (SI->getKind() == SDep::Data) {
1381         if (++NumDataSucs >= 4)
1382           return false;
1383       }
1384     }
1385     if (CheckLimit && R.DFSNodeData[PredNum].InstrCount > R.SubtreeLimit)
1386       return false;
1387     R.DFSNodeData[PredNum].SubtreeID = Succ->NodeNum;
1388     SubtreeClasses.join(Succ->NodeNum, PredNum);
1389     return true;
1390   }
1391 
1392   /// Called by finalize() to record a connection between trees.
addConnection(unsigned FromTree,unsigned ToTree,unsigned Depth)1393   void addConnection(unsigned FromTree, unsigned ToTree, unsigned Depth) {
1394     if (!Depth)
1395       return;
1396 
1397     do {
1398       SmallVectorImpl<SchedDFSResult::Connection> &Connections =
1399         R.SubtreeConnections[FromTree];
1400       for (SmallVectorImpl<SchedDFSResult::Connection>::iterator
1401              I = Connections.begin(), E = Connections.end(); I != E; ++I) {
1402         if (I->TreeID == ToTree) {
1403           I->Level = std::max(I->Level, Depth);
1404           return;
1405         }
1406       }
1407       Connections.push_back(SchedDFSResult::Connection(ToTree, Depth));
1408       FromTree = R.DFSTreeData[FromTree].ParentTreeID;
1409     } while (FromTree != SchedDFSResult::InvalidSubtreeID);
1410   }
1411 };
1412 } // namespace llvm
1413 
1414 namespace {
1415 /// \brief Manage the stack used by a reverse depth-first search over the DAG.
1416 class SchedDAGReverseDFS {
1417   std::vector<std::pair<const SUnit*, SUnit::const_pred_iterator> > DFSStack;
1418 public:
isComplete() const1419   bool isComplete() const { return DFSStack.empty(); }
1420 
follow(const SUnit * SU)1421   void follow(const SUnit *SU) {
1422     DFSStack.push_back(std::make_pair(SU, SU->Preds.begin()));
1423   }
advance()1424   void advance() { ++DFSStack.back().second; }
1425 
backtrack()1426   const SDep *backtrack() {
1427     DFSStack.pop_back();
1428     return DFSStack.empty() ? nullptr : std::prev(DFSStack.back().second);
1429   }
1430 
getCurr() const1431   const SUnit *getCurr() const { return DFSStack.back().first; }
1432 
getPred() const1433   SUnit::const_pred_iterator getPred() const { return DFSStack.back().second; }
1434 
getPredEnd() const1435   SUnit::const_pred_iterator getPredEnd() const {
1436     return getCurr()->Preds.end();
1437   }
1438 };
1439 } // anonymous
1440 
hasDataSucc(const SUnit * SU)1441 static bool hasDataSucc(const SUnit *SU) {
1442   for (SUnit::const_succ_iterator
1443          SI = SU->Succs.begin(), SE = SU->Succs.end(); SI != SE; ++SI) {
1444     if (SI->getKind() == SDep::Data && !SI->getSUnit()->isBoundaryNode())
1445       return true;
1446   }
1447   return false;
1448 }
1449 
1450 /// Compute an ILP metric for all nodes in the subDAG reachable via depth-first
1451 /// search from this root.
compute(ArrayRef<SUnit> SUnits)1452 void SchedDFSResult::compute(ArrayRef<SUnit> SUnits) {
1453   if (!IsBottomUp)
1454     llvm_unreachable("Top-down ILP metric is unimplemnted");
1455 
1456   SchedDFSImpl Impl(*this);
1457   for (ArrayRef<SUnit>::const_iterator
1458          SI = SUnits.begin(), SE = SUnits.end(); SI != SE; ++SI) {
1459     const SUnit *SU = &*SI;
1460     if (Impl.isVisited(SU) || hasDataSucc(SU))
1461       continue;
1462 
1463     SchedDAGReverseDFS DFS;
1464     Impl.visitPreorder(SU);
1465     DFS.follow(SU);
1466     for (;;) {
1467       // Traverse the leftmost path as far as possible.
1468       while (DFS.getPred() != DFS.getPredEnd()) {
1469         const SDep &PredDep = *DFS.getPred();
1470         DFS.advance();
1471         // Ignore non-data edges.
1472         if (PredDep.getKind() != SDep::Data
1473             || PredDep.getSUnit()->isBoundaryNode()) {
1474           continue;
1475         }
1476         // An already visited edge is a cross edge, assuming an acyclic DAG.
1477         if (Impl.isVisited(PredDep.getSUnit())) {
1478           Impl.visitCrossEdge(PredDep, DFS.getCurr());
1479           continue;
1480         }
1481         Impl.visitPreorder(PredDep.getSUnit());
1482         DFS.follow(PredDep.getSUnit());
1483       }
1484       // Visit the top of the stack in postorder and backtrack.
1485       const SUnit *Child = DFS.getCurr();
1486       const SDep *PredDep = DFS.backtrack();
1487       Impl.visitPostorderNode(Child);
1488       if (PredDep)
1489         Impl.visitPostorderEdge(*PredDep, DFS.getCurr());
1490       if (DFS.isComplete())
1491         break;
1492     }
1493   }
1494   Impl.finalize();
1495 }
1496 
1497 /// The root of the given SubtreeID was just scheduled. For all subtrees
1498 /// connected to this tree, record the depth of the connection so that the
1499 /// nearest connected subtrees can be prioritized.
scheduleTree(unsigned SubtreeID)1500 void SchedDFSResult::scheduleTree(unsigned SubtreeID) {
1501   for (SmallVectorImpl<Connection>::const_iterator
1502          I = SubtreeConnections[SubtreeID].begin(),
1503          E = SubtreeConnections[SubtreeID].end(); I != E; ++I) {
1504     SubtreeConnectLevels[I->TreeID] =
1505       std::max(SubtreeConnectLevels[I->TreeID], I->Level);
1506     DEBUG(dbgs() << "  Tree: " << I->TreeID
1507           << " @" << SubtreeConnectLevels[I->TreeID] << '\n');
1508   }
1509 }
1510 
1511 LLVM_DUMP_METHOD
print(raw_ostream & OS) const1512 void ILPValue::print(raw_ostream &OS) const {
1513   OS << InstrCount << " / " << Length << " = ";
1514   if (!Length)
1515     OS << "BADILP";
1516   else
1517     OS << format("%g", ((double)InstrCount / Length));
1518 }
1519 
1520 LLVM_DUMP_METHOD
dump() const1521 void ILPValue::dump() const {
1522   dbgs() << *this << '\n';
1523 }
1524 
1525 namespace llvm {
1526 
1527 LLVM_DUMP_METHOD
operator <<(raw_ostream & OS,const ILPValue & Val)1528 raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val) {
1529   Val.print(OS);
1530   return OS;
1531 }
1532 
1533 } // namespace llvm
1534