• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*M///////////////////////////////////////////////////////////////////////////////////////
2 //
3 //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4 //
5 //  By downloading, copying, installing or using the software you agree to this license.
6 //  If you do not agree to this license, do not download, install,
7 //  copy or use the software.
8 //
9 //
10 //                        Intel License Agreement
11 //                For Open Source Computer Vision Library
12 //
13 // Copyright (C) 2000, Intel Corporation, all rights reserved.
14 // Third party copyrights are property of their respective owners.
15 //
16 // Redistribution and use in source and binary forms, with or without modification,
17 // are permitted provided that the following conditions are met:
18 //
19 //   * Redistribution's of source code must retain the above copyright notice,
20 //     this list of conditions and the following disclaimer.
21 //
22 //   * Redistribution's in binary form must reproduce the above copyright notice,
23 //     this list of conditions and the following disclaimer in the documentation
24 //     and/or other materials provided with the distribution.
25 //
26 //   * The name of Intel Corporation may not be used to endorse or promote products
27 //     derived from this software without specific prior written permission.
28 //
29 // This software is provided by the copyright holders and contributors "as is" and
30 // any express or implied warranties, including, but not limited to, the implied
31 // warranties of merchantability and fitness for a particular purpose are disclaimed.
32 // In no event shall the Intel Corporation or contributors be liable for any direct,
33 // indirect, incidental, special, exemplary, or consequential damages
34 // (including, but not limited to, procurement of substitute goods or services;
35 // loss of use, data, or profits; or business interruption) however caused
36 // and on any theory of liability, whether in contract, strict liability,
37 // or tort (including negligence or otherwise) arising in any way out of
38 // the use of this software, even if advised of the possibility of such damage.
39 //
40 //M*/
41 
42 #include "_cv.h"
43 
44 
45 /****************************************************************************************\
46                                     Base Image Filter
47 \****************************************************************************************/
48 
default_x_filter_func(const uchar *,uchar *,void *)49 static void default_x_filter_func( const uchar*, uchar*, void* )
50 {
51 }
52 
default_y_filter_func(uchar **,uchar *,int,int,void *)53 static void default_y_filter_func( uchar**, uchar*, int, int, void* )
54 {
55 }
56 
CvBaseImageFilter()57 CvBaseImageFilter::CvBaseImageFilter()
58 {
59     min_depth = CV_8U;
60     buffer = 0;
61     rows = 0;
62     max_width = 0;
63     x_func = default_x_filter_func;
64     y_func = default_y_filter_func;
65 }
66 
67 
CvBaseImageFilter(int _max_width,int _src_type,int _dst_type,bool _is_separable,CvSize _ksize,CvPoint _anchor,int _border_mode,CvScalar _border_value)68 CvBaseImageFilter::CvBaseImageFilter( int _max_width, int _src_type, int _dst_type,
69                                       bool _is_separable, CvSize _ksize, CvPoint _anchor,
70                                       int _border_mode, CvScalar _border_value )
71 {
72     min_depth = CV_8U;
73     buffer = 0;
74     rows = 0;
75     max_width = 0;
76     x_func = default_x_filter_func;
77     y_func = default_y_filter_func;
78 
79     init( _max_width, _src_type, _dst_type, _is_separable,
80           _ksize, _anchor, _border_mode, _border_value );
81 }
82 
83 
clear()84 void CvBaseImageFilter::clear()
85 {
86     cvFree( &buffer );
87     rows = 0;
88 }
89 
90 
~CvBaseImageFilter()91 CvBaseImageFilter::~CvBaseImageFilter()
92 {
93     clear();
94 }
95 
96 
get_work_params()97 void CvBaseImageFilter::get_work_params()
98 {
99     int min_rows = max_ky*2 + 3, rows = MAX(min_rows,10), row_sz;
100     int width = max_width, trow_sz = 0;
101 
102     if( is_separable )
103     {
104         int max_depth = MAX(CV_MAT_DEPTH(src_type), CV_MAT_DEPTH(dst_type));
105         int max_cn = MAX(CV_MAT_CN(src_type), CV_MAT_CN(dst_type));
106         max_depth = MAX( max_depth, min_depth );
107         work_type = CV_MAKETYPE( max_depth, max_cn );
108         trow_sz = cvAlign( (max_width + ksize.width - 1)*CV_ELEM_SIZE(src_type), ALIGN );
109     }
110     else
111     {
112         work_type = src_type;
113         width += ksize.width - 1;
114     }
115     row_sz = cvAlign( width*CV_ELEM_SIZE(work_type), ALIGN );
116     buf_size = rows*row_sz;
117     buf_size = MIN( buf_size, 1 << 16 );
118     buf_size = MAX( buf_size, min_rows*row_sz );
119     max_rows = (buf_size/row_sz)*3 + max_ky*2 + 8;
120     buf_size += trow_sz;
121 }
122 
123 
init(int _max_width,int _src_type,int _dst_type,bool _is_separable,CvSize _ksize,CvPoint _anchor,int _border_mode,CvScalar _border_value)124 void CvBaseImageFilter::init( int _max_width, int _src_type, int _dst_type,
125                               bool _is_separable, CvSize _ksize, CvPoint _anchor,
126                               int _border_mode, CvScalar _border_value )
127 {
128     CV_FUNCNAME( "CvBaseImageFilter::init" );
129 
130     __BEGIN__;
131 
132     int total_buf_sz, src_pix_sz, row_tab_sz, bsz;
133     uchar* ptr;
134 
135     if( !(buffer && _max_width <= max_width && _src_type == src_type &&
136         _dst_type == dst_type && _is_separable == is_separable &&
137         _ksize.width == ksize.width && _ksize.height == ksize.height &&
138         _anchor.x == anchor.x && _anchor.y == anchor.y) )
139         clear();
140 
141     is_separable = _is_separable != 0;
142     max_width = _max_width; //MAX(_max_width,_ksize.width);
143     src_type = CV_MAT_TYPE(_src_type);
144     dst_type = CV_MAT_TYPE(_dst_type);
145     ksize = _ksize;
146     anchor = _anchor;
147 
148     if( anchor.x == -1 )
149         anchor.x = ksize.width / 2;
150     if( anchor.y == -1 )
151         anchor.y = ksize.height / 2;
152 
153     max_ky = MAX( anchor.y, ksize.height - anchor.y - 1 );
154     border_mode = _border_mode;
155     border_value = _border_value;
156 
157     if( ksize.width <= 0 || ksize.height <= 0 ||
158         (unsigned)anchor.x >= (unsigned)ksize.width ||
159         (unsigned)anchor.y >= (unsigned)ksize.height )
160         CV_ERROR( CV_StsOutOfRange, "invalid kernel size and/or anchor position" );
161 
162     if( border_mode != IPL_BORDER_CONSTANT && border_mode != IPL_BORDER_REPLICATE &&
163         border_mode != IPL_BORDER_REFLECT && border_mode != IPL_BORDER_REFLECT_101 )
164         CV_ERROR( CV_StsBadArg, "Invalid/unsupported border mode" );
165 
166     get_work_params();
167 
168     prev_width = 0;
169     prev_x_range = cvSlice(0,0);
170 
171     buf_size = cvAlign( buf_size, ALIGN );
172 
173     src_pix_sz = CV_ELEM_SIZE(src_type);
174     border_tab_sz1 = anchor.x*src_pix_sz;
175     border_tab_sz = (ksize.width-1)*src_pix_sz;
176     bsz = cvAlign( border_tab_sz*sizeof(int), ALIGN );
177 
178     assert( max_rows > max_ky*2 );
179     row_tab_sz = cvAlign( max_rows*sizeof(uchar*), ALIGN );
180     total_buf_sz = buf_size + row_tab_sz + bsz;
181 
182     CV_CALL( ptr = buffer = (uchar*)cvAlloc( total_buf_sz ));
183 
184     rows = (uchar**)ptr;
185     ptr += row_tab_sz;
186     border_tab = (int*)ptr;
187     ptr += bsz;
188 
189     buf_start = ptr;
190     const_row = 0;
191 
192     if( border_mode == IPL_BORDER_CONSTANT )
193         cvScalarToRawData( &border_value, border_tab, src_type, 0 );
194 
195     __END__;
196 }
197 
198 
start_process(CvSlice x_range,int width)199 void CvBaseImageFilter::start_process( CvSlice x_range, int width )
200 {
201     int mode = border_mode;
202     int pix_sz = CV_ELEM_SIZE(src_type), work_pix_sz = CV_ELEM_SIZE(work_type);
203     int bsz = buf_size, bw = x_range.end_index - x_range.start_index, bw1 = bw + ksize.width - 1;
204     int tr_step = cvAlign(bw1*pix_sz, ALIGN );
205     int i, j, k, ofs;
206 
207     if( x_range.start_index == prev_x_range.start_index &&
208         x_range.end_index == prev_x_range.end_index &&
209         width == prev_width )
210         return;
211 
212     prev_x_range = x_range;
213     prev_width = width;
214 
215     if( !is_separable )
216         bw = bw1;
217     else
218         bsz -= tr_step;
219 
220     buf_step = cvAlign(bw*work_pix_sz, ALIGN);
221 
222     if( mode == IPL_BORDER_CONSTANT )
223         bsz -= buf_step;
224     buf_max_count = bsz/buf_step;
225     buf_max_count = MIN( buf_max_count, max_rows - max_ky*2 );
226     buf_end = buf_start + buf_max_count*buf_step;
227 
228     if( mode == IPL_BORDER_CONSTANT )
229     {
230         int i, tab_len = ksize.width*pix_sz;
231         uchar* bt = (uchar*)border_tab;
232         uchar* trow = buf_end;
233         const_row = buf_end + (is_separable ? 1 : 0)*tr_step;
234 
235         for( i = pix_sz; i < tab_len; i++ )
236             bt[i] = bt[i - pix_sz];
237         for( i = 0; i < pix_sz; i++ )
238             trow[i] = bt[i];
239         for( i = pix_sz; i < tr_step; i++ )
240             trow[i] = trow[i - pix_sz];
241         if( is_separable )
242             x_func( trow, const_row, this );
243         return;
244     }
245 
246     if( x_range.end_index - x_range.start_index <= 1 )
247         mode = IPL_BORDER_REPLICATE;
248 
249     width = (width - 1)*pix_sz;
250     ofs = (anchor.x-x_range.start_index)*pix_sz;
251 
252     for( k = 0; k < 2; k++ )
253     {
254         int idx, delta;
255         int i1, i2, di;
256 
257         if( k == 0 )
258         {
259             idx = (x_range.start_index - 1)*pix_sz;
260             delta = di = -pix_sz;
261             i1 = border_tab_sz1 - pix_sz;
262             i2 = -pix_sz;
263         }
264         else
265         {
266             idx = x_range.end_index*pix_sz;
267             delta = di = pix_sz;
268             i1 = border_tab_sz1;
269             i2 = border_tab_sz;
270         }
271 
272         if( (unsigned)idx > (unsigned)width )
273         {
274             int shift = mode == IPL_BORDER_REFLECT_101 ? pix_sz : 0;
275             idx = k == 0 ? shift : width - shift;
276             delta = -delta;
277         }
278 
279         for( i = i1; i != i2; i += di )
280         {
281             for( j = 0; j < pix_sz; j++ )
282                 border_tab[i + j] = idx + ofs + j;
283             if( mode != IPL_BORDER_REPLICATE )
284             {
285                 if( (delta > 0 && idx == width) ||
286                     (delta < 0 && idx == 0) )
287                 {
288                     if( mode == IPL_BORDER_REFLECT_101 )
289                         idx -= delta*2;
290                     delta = -delta;
291                 }
292                 else
293                     idx += delta;
294             }
295         }
296     }
297 }
298 
299 
make_y_border(int row_count,int top_rows,int bottom_rows)300 void CvBaseImageFilter::make_y_border( int row_count, int top_rows, int bottom_rows )
301 {
302     int i;
303 
304     if( border_mode == IPL_BORDER_CONSTANT ||
305         border_mode == IPL_BORDER_REPLICATE )
306     {
307         uchar* row1 = border_mode == IPL_BORDER_CONSTANT ? const_row : rows[max_ky];
308 
309         for( i = 0; i < top_rows && rows[i] == 0; i++ )
310             rows[i] = row1;
311 
312         row1 = border_mode == IPL_BORDER_CONSTANT ? const_row : rows[row_count-1];
313         for( i = 0; i < bottom_rows; i++ )
314             rows[i + row_count] = row1;
315     }
316     else
317     {
318         int j, dj = 1, shift = border_mode == IPL_BORDER_REFLECT_101;
319 
320         for( i = top_rows-1, j = top_rows+shift; i >= 0; i-- )
321         {
322             if( rows[i] == 0 )
323                 rows[i] = rows[j];
324             j += dj;
325             if( dj > 0 && j >= row_count )
326             {
327                 if( !bottom_rows )
328                     break;
329                 j -= 1 + shift;
330                 dj = -dj;
331             }
332         }
333 
334         for( i = 0, j = row_count-1-shift; i < bottom_rows; i++, j-- )
335             rows[i + row_count] = rows[j];
336     }
337 }
338 
339 
fill_cyclic_buffer(const uchar * src,int src_step,int y0,int y1,int y2)340 int CvBaseImageFilter::fill_cyclic_buffer( const uchar* src, int src_step,
341                                            int y0, int y1, int y2 )
342 {
343     int i, y = y0, bsz1 = border_tab_sz1, bsz = border_tab_sz;
344     int pix_size = CV_ELEM_SIZE(src_type);
345     int width = prev_x_range.end_index - prev_x_range.start_index, width_n = width*pix_size;
346     bool can_use_src_as_trow = false; //is_separable && width >= ksize.width;
347 
348     // fill the cyclic buffer
349     for( ; buf_count < buf_max_count && y < y2; buf_count++, y++, src += src_step )
350     {
351         uchar* trow = is_separable ? buf_end : buf_tail;
352         uchar* bptr = can_use_src_as_trow && y1 < y && y+1 < y2 ? (uchar*)(src - bsz1) : trow;
353 
354         if( bptr != trow )
355         {
356             for( i = 0; i < bsz1; i++ )
357                 trow[i] = bptr[i];
358             for( ; i < bsz; i++ )
359                 trow[i] = bptr[i + width_n];
360         }
361         else if( !(((size_t)(bptr + bsz1)|(size_t)src|width_n) & (sizeof(int)-1)) )
362             for( i = 0; i < width_n; i += sizeof(int) )
363                 *(int*)(bptr + i + bsz1) = *(int*)(src + i);
364         else
365             for( i = 0; i < width_n; i++ )
366                 bptr[i + bsz1] = src[i];
367 
368         if( border_mode != IPL_BORDER_CONSTANT )
369         {
370             for( i = 0; i < bsz1; i++ )
371             {
372                 int j = border_tab[i];
373                 bptr[i] = bptr[j];
374             }
375             for( ; i < bsz; i++ )
376             {
377                 int j = border_tab[i];
378                 bptr[i + width_n] = bptr[j];
379             }
380         }
381         else
382         {
383             const uchar *bt = (uchar*)border_tab;
384             for( i = 0; i < bsz1; i++ )
385                 bptr[i] = bt[i];
386 
387             for( ; i < bsz; i++ )
388                 bptr[i + width_n] = bt[i];
389         }
390 
391         if( is_separable )
392         {
393             x_func( bptr, buf_tail, this );
394             if( bptr != trow )
395             {
396                 for( i = 0; i < bsz1; i++ )
397                     bptr[i] = trow[i];
398                 for( ; i < bsz; i++ )
399                     bptr[i + width_n] = trow[i];
400             }
401         }
402 
403         buf_tail += buf_step;
404         if( buf_tail >= buf_end )
405             buf_tail = buf_start;
406     }
407 
408     return y - y0;
409 }
410 
process(const CvMat * src,CvMat * dst,CvRect src_roi,CvPoint dst_origin,int flags)411 int CvBaseImageFilter::process( const CvMat* src, CvMat* dst,
412                                 CvRect src_roi, CvPoint dst_origin, int flags )
413 {
414     int rows_processed = 0;
415 
416     /*
417         check_parameters
418         initialize_horizontal_border_reloc_tab_if_not_initialized_yet
419 
420         for_each_source_row: src starts from src_roi.y, buf starts with the first available row
421             1) if separable,
422                    1a.1) copy source row to temporary buffer, form a border using border reloc tab.
423                    1a.2) apply row-wise filter (symmetric, asymmetric or generic)
424                else
425                    1b.1) copy source row to the buffer, form a border
426             2) if the buffer is full, or it is the last source row:
427                  2.1) if stage != middle, form the pointers to other "virtual" rows.
428                  if separable
429                     2a.2) apply column-wise filter, store the results.
430                  else
431                     2b.2) form a sparse (offset,weight) tab
432                     2b.3) apply generic non-separable filter, store the results
433             3) update row pointers etc.
434     */
435 
436     CV_FUNCNAME( "CvBaseImageFilter::process" );
437 
438     __BEGIN__;
439 
440     int i, width, _src_y1, _src_y2;
441     int src_x, src_y, src_y1, src_y2, dst_y;
442     int pix_size = CV_ELEM_SIZE(src_type);
443     uchar *sptr = 0, *dptr;
444     int phase = flags & (CV_START|CV_END|CV_MIDDLE);
445     bool isolated_roi = (flags & CV_ISOLATED_ROI) != 0;
446 
447     if( !CV_IS_MAT(src) )
448         CV_ERROR( CV_StsBadArg, "" );
449 
450     if( CV_MAT_TYPE(src->type) != src_type )
451         CV_ERROR( CV_StsUnmatchedFormats, "" );
452 
453     width = src->cols;
454 
455     if( src_roi.width == -1 && src_roi.x == 0 )
456         src_roi.width = width;
457 
458     if( src_roi.height == -1 && src_roi.y == 0 )
459     {
460         src_roi.y = 0;
461         src_roi.height = src->rows;
462     }
463 
464     if( src_roi.width > max_width ||
465         src_roi.x < 0 || src_roi.width < 0 ||
466         src_roi.y < 0 || src_roi.height < 0 ||
467         src_roi.x + src_roi.width > width ||
468         src_roi.y + src_roi.height > src->rows )
469         CV_ERROR( CV_StsOutOfRange, "Too large source image or its ROI" );
470 
471     src_x = src_roi.x;
472     _src_y1 = 0;
473     _src_y2 = src->rows;
474 
475     if( isolated_roi )
476     {
477         src_roi.x = 0;
478         width = src_roi.width;
479         _src_y1 = src_roi.y;
480         _src_y2 = src_roi.y + src_roi.height;
481     }
482 
483     if( !CV_IS_MAT(dst) )
484         CV_ERROR( CV_StsBadArg, "" );
485 
486     if( CV_MAT_TYPE(dst->type) != dst_type )
487         CV_ERROR( CV_StsUnmatchedFormats, "" );
488 
489     if( dst_origin.x < 0 || dst_origin.y < 0 )
490         CV_ERROR( CV_StsOutOfRange, "Incorrect destination ROI origin" );
491 
492     if( phase == CV_WHOLE )
493         phase = CV_START | CV_END;
494     phase &= CV_START | CV_END | CV_MIDDLE;
495 
496     // initialize horizontal border relocation tab if it is not initialized yet
497     if( phase & CV_START )
498         start_process( cvSlice(src_roi.x, src_roi.x + src_roi.width), width );
499     else if( prev_width != width || prev_x_range.start_index != src_roi.x ||
500         prev_x_range.end_index != src_roi.x + src_roi.width )
501         CV_ERROR( CV_StsBadArg,
502             "In a middle or at the end the horizontal placement of the stripe can not be changed" );
503 
504     dst_y = dst_origin.y;
505     src_y1 = src_roi.y;
506     src_y2 = src_roi.y + src_roi.height;
507 
508     if( phase & CV_START )
509     {
510         for( i = 0; i <= max_ky*2; i++ )
511             rows[i] = 0;
512 
513         src_y1 -= max_ky;
514         top_rows = bottom_rows = 0;
515 
516         if( src_y1 < _src_y1 )
517         {
518             top_rows = _src_y1 - src_y1;
519             src_y1 = _src_y1;
520         }
521 
522         buf_head = buf_tail = buf_start;
523         buf_count = 0;
524     }
525 
526     if( phase & CV_END )
527     {
528         src_y2 += max_ky;
529 
530         if( src_y2 > _src_y2 )
531         {
532             bottom_rows = src_y2 - _src_y2;
533             src_y2 = _src_y2;
534         }
535     }
536 
537     dptr = dst->data.ptr + dst_origin.y*dst->step + dst_origin.x*CV_ELEM_SIZE(dst_type);
538     sptr = src->data.ptr + src_y1*src->step + src_x*pix_size;
539 
540     for( src_y = src_y1; src_y < src_y2; )
541     {
542         uchar* bptr;
543         int row_count, delta;
544 
545         delta = fill_cyclic_buffer( sptr, src->step, src_y, src_y1, src_y2 );
546 
547         src_y += delta;
548         sptr += src->step*delta;
549 
550         // initialize the cyclic buffer row pointers
551         bptr = buf_head;
552         for( i = 0; i < buf_count; i++ )
553         {
554             rows[i+top_rows] = bptr;
555             bptr += buf_step;
556             if( bptr >= buf_end )
557                 bptr = buf_start;
558         }
559 
560         row_count = top_rows + buf_count;
561 
562         if( !rows[0] || ((phase & CV_END) && src_y == src_y2) )
563         {
564             int br = (phase & CV_END) && src_y == src_y2 ? bottom_rows : 0;
565             make_y_border( row_count, top_rows, br );
566             row_count += br;
567         }
568 
569         if( rows[0] && row_count > max_ky*2 )
570         {
571             int count = row_count - max_ky*2;
572             if( dst_y + count > dst->rows )
573                 CV_ERROR( CV_StsOutOfRange, "The destination image can not fit the result" );
574 
575             assert( count >= 0 );
576             y_func( rows + max_ky - anchor.y, dptr, dst->step, count, this );
577             row_count -= count;
578             dst_y += count;
579             dptr += dst->step*count;
580             for( bptr = row_count > 0 ?rows[count] : 0; buf_head != bptr && buf_count > 0; buf_count-- )
581             {
582                 buf_head += buf_step;
583                 if( buf_head >= buf_end )
584                     buf_head = buf_start;
585             }
586             rows_processed += count;
587             top_rows = MAX(top_rows - count, 0);
588         }
589     }
590 
591     __END__;
592 
593     return rows_processed;
594 }
595 
596 
597 /****************************************************************************************\
598                                     Separable Linear Filter
599 \****************************************************************************************/
600 
601 static void icvFilterRowSymm_8u32s( const uchar* src, int* dst, void* params );
602 static void icvFilterColSymm_32s8u( const int** src, uchar* dst, int dst_step,
603                                     int count, void* params );
604 static void icvFilterColSymm_32s16s( const int** src, short* dst, int dst_step,
605                                      int count, void* params );
606 static void icvFilterRowSymm_8u32f( const uchar* src, float* dst, void* params );
607 static void icvFilterRow_8u32f( const uchar* src, float* dst, void* params );
608 static void icvFilterRowSymm_16s32f( const short* src, float* dst, void* params );
609 static void icvFilterRow_16s32f( const short* src, float* dst, void* params );
610 static void icvFilterRowSymm_16u32f( const ushort* src, float* dst, void* params );
611 static void icvFilterRow_16u32f( const ushort* src, float* dst, void* params );
612 static void icvFilterRowSymm_32f( const float* src, float* dst, void* params );
613 static void icvFilterRow_32f( const float* src, float* dst, void* params );
614 
615 static void icvFilterColSymm_32f8u( const float** src, uchar* dst, int dst_step,
616                                     int count, void* params );
617 static void icvFilterCol_32f8u( const float** src, uchar* dst, int dst_step,
618                                 int count, void* params );
619 static void icvFilterColSymm_32f16s( const float** src, short* dst, int dst_step,
620                                      int count, void* params );
621 static void icvFilterCol_32f16s( const float** src, short* dst, int dst_step,
622                                  int count, void* params );
623 static void icvFilterColSymm_32f16u( const float** src, ushort* dst, int dst_step,
624                                      int count, void* params );
625 static void icvFilterCol_32f16u( const float** src, ushort* dst, int dst_step,
626                                  int count, void* params );
627 static void icvFilterColSymm_32f( const float** src, float* dst, int dst_step,
628                                   int count, void* params );
629 static void icvFilterCol_32f( const float** src, float* dst, int dst_step,
630                               int count, void* params );
631 
CvSepFilter()632 CvSepFilter::CvSepFilter()
633 {
634     min_depth = CV_32F;
635     kx = ky = 0;
636     kx_flags = ky_flags = 0;
637 }
638 
639 
CvSepFilter(int _max_width,int _src_type,int _dst_type,const CvMat * _kx,const CvMat * _ky,CvPoint _anchor,int _border_mode,CvScalar _border_value)640 CvSepFilter::CvSepFilter( int _max_width, int _src_type, int _dst_type,
641                           const CvMat* _kx, const CvMat* _ky,
642                           CvPoint _anchor, int _border_mode,
643                           CvScalar _border_value )
644 {
645     min_depth = CV_32F;
646     kx = ky = 0;
647     init( _max_width, _src_type, _dst_type, _kx, _ky, _anchor, _border_mode, _border_value );
648 }
649 
650 
clear()651 void CvSepFilter::clear()
652 {
653     cvReleaseMat( &kx );
654     cvReleaseMat( &ky );
655     CvBaseImageFilter::clear();
656 }
657 
658 
~CvSepFilter()659 CvSepFilter::~CvSepFilter()
660 {
661     clear();
662 }
663 
664 
665 #undef FILTER_BITS
666 #define FILTER_BITS 8
667 
init(int _max_width,int _src_type,int _dst_type,const CvMat * _kx,const CvMat * _ky,CvPoint _anchor,int _border_mode,CvScalar _border_value)668 void CvSepFilter::init( int _max_width, int _src_type, int _dst_type,
669                         const CvMat* _kx, const CvMat* _ky,
670                         CvPoint _anchor, int _border_mode,
671                         CvScalar _border_value )
672 {
673     CV_FUNCNAME( "CvSepFilter::init" );
674 
675     __BEGIN__;
676 
677     CvSize _ksize;
678     int filter_type;
679     int i, xsz, ysz;
680     int convert_filters = 0;
681     double xsum = 0, ysum = 0;
682     const float eps = FLT_EPSILON*100.f;
683 
684     if( !CV_IS_MAT(_kx) || !CV_IS_MAT(_ky) ||
685         (_kx->cols != 1 && _kx->rows != 1) ||
686         (_ky->cols != 1 && _ky->rows != 1) ||
687         CV_MAT_CN(_kx->type) != 1 || CV_MAT_CN(_ky->type) != 1 ||
688         !CV_ARE_TYPES_EQ(_kx,_ky) )
689         CV_ERROR( CV_StsBadArg,
690         "Both kernels must be valid 1d single-channel vectors of the same types" );
691 
692     if( CV_MAT_CN(_src_type) != CV_MAT_CN(_dst_type) )
693         CV_ERROR( CV_StsUnmatchedFormats, "Input and output must have the same number of channels" );
694 
695     filter_type = MAX( CV_32F, CV_MAT_DEPTH(_kx->type) );
696 
697     _ksize.width = _kx->rows + _kx->cols - 1;
698     _ksize.height = _ky->rows + _ky->cols - 1;
699 
700     CV_CALL( CvBaseImageFilter::init( _max_width, _src_type, _dst_type, 1, _ksize,
701                                       _anchor, _border_mode, _border_value ));
702 
703     if( !(kx && CV_ARE_SIZES_EQ(kx,_kx)) )
704     {
705         cvReleaseMat( &kx );
706         CV_CALL( kx = cvCreateMat( _kx->rows, _kx->cols, filter_type ));
707     }
708 
709     if( !(ky && CV_ARE_SIZES_EQ(ky,_ky)) )
710     {
711         cvReleaseMat( &ky );
712         CV_CALL( ky = cvCreateMat( _ky->rows, _ky->cols, filter_type ));
713     }
714 
715     CV_CALL( cvConvert( _kx, kx ));
716     CV_CALL( cvConvert( _ky, ky ));
717 
718     xsz = kx->rows + kx->cols - 1;
719     ysz = ky->rows + ky->cols - 1;
720     kx_flags = ky_flags = ASYMMETRICAL + SYMMETRICAL + POSITIVE + SUM_TO_1 + INTEGER;
721 
722     if( !(xsz & 1) )
723         kx_flags &= ~(ASYMMETRICAL + SYMMETRICAL);
724     if( !(ysz & 1) )
725         ky_flags &= ~(ASYMMETRICAL + SYMMETRICAL);
726 
727     for( i = 0; i < xsz; i++ )
728     {
729         float v = kx->data.fl[i];
730         xsum += v;
731         if( v < 0 )
732             kx_flags &= ~POSITIVE;
733         if( fabs(v - cvRound(v)) > eps )
734             kx_flags &= ~INTEGER;
735         if( fabs(v - kx->data.fl[xsz - i - 1]) > eps )
736             kx_flags &= ~SYMMETRICAL;
737         if( fabs(v + kx->data.fl[xsz - i - 1]) > eps )
738             kx_flags &= ~ASYMMETRICAL;
739     }
740 
741     if( fabs(xsum - 1.) > eps )
742         kx_flags &= ~SUM_TO_1;
743 
744     for( i = 0; i < ysz; i++ )
745     {
746         float v = ky->data.fl[i];
747         ysum += v;
748         if( v < 0 )
749             ky_flags &= ~POSITIVE;
750         if( fabs(v - cvRound(v)) > eps )
751             ky_flags &= ~INTEGER;
752         if( fabs(v - ky->data.fl[ysz - i - 1]) > eps )
753             ky_flags &= ~SYMMETRICAL;
754         if( fabs(v + ky->data.fl[ysz - i - 1]) > eps )
755             ky_flags &= ~ASYMMETRICAL;
756     }
757 
758     if( fabs(ysum - 1.) > eps )
759         ky_flags &= ~SUM_TO_1;
760 
761     x_func = 0;
762     y_func = 0;
763 
764     if( CV_MAT_DEPTH(src_type) == CV_8U )
765     {
766         if( CV_MAT_DEPTH(dst_type) == CV_8U &&
767             ((kx_flags&ky_flags) & (SYMMETRICAL + POSITIVE + SUM_TO_1)) == SYMMETRICAL + POSITIVE + SUM_TO_1 )
768         {
769             x_func = (CvRowFilterFunc)icvFilterRowSymm_8u32s;
770             y_func = (CvColumnFilterFunc)icvFilterColSymm_32s8u;
771             kx_flags &= ~INTEGER;
772             ky_flags &= ~INTEGER;
773             convert_filters = 1;
774         }
775         else if( CV_MAT_DEPTH(dst_type) == CV_16S &&
776             (kx_flags & (SYMMETRICAL + ASYMMETRICAL)) && (kx_flags & INTEGER) &&
777             (ky_flags & (SYMMETRICAL + ASYMMETRICAL)) && (ky_flags & INTEGER) )
778         {
779             x_func = (CvRowFilterFunc)icvFilterRowSymm_8u32s;
780             y_func = (CvColumnFilterFunc)icvFilterColSymm_32s16s;
781             convert_filters = 1;
782         }
783         else
784         {
785             if( CV_MAT_DEPTH(dst_type) > CV_32F )
786                 CV_ERROR( CV_StsUnsupportedFormat, "8u->64f separable filtering is not supported" );
787 
788             if( kx_flags & (SYMMETRICAL + ASYMMETRICAL) )
789                 x_func = (CvRowFilterFunc)icvFilterRowSymm_8u32f;
790             else
791                 x_func = (CvRowFilterFunc)icvFilterRow_8u32f;
792         }
793     }
794     else if( CV_MAT_DEPTH(src_type) == CV_16U )
795     {
796         if( CV_MAT_DEPTH(dst_type) > CV_32F )
797             CV_ERROR( CV_StsUnsupportedFormat, "16u->64f separable filtering is not supported" );
798 
799         if( kx_flags & (SYMMETRICAL + ASYMMETRICAL) )
800             x_func = (CvRowFilterFunc)icvFilterRowSymm_16u32f;
801         else
802             x_func = (CvRowFilterFunc)icvFilterRow_16u32f;
803     }
804     else if( CV_MAT_DEPTH(src_type) == CV_16S )
805     {
806         if( CV_MAT_DEPTH(dst_type) > CV_32F )
807             CV_ERROR( CV_StsUnsupportedFormat, "16s->64f separable filtering is not supported" );
808 
809         if( kx_flags & (SYMMETRICAL + ASYMMETRICAL) )
810             x_func = (CvRowFilterFunc)icvFilterRowSymm_16s32f;
811         else
812             x_func = (CvRowFilterFunc)icvFilterRow_16s32f;
813     }
814     else if( CV_MAT_DEPTH(src_type) == CV_32F )
815     {
816         if( CV_MAT_DEPTH(dst_type) != CV_32F )
817             CV_ERROR( CV_StsUnsupportedFormat, "When the input has 32f data type, the output must also have 32f type" );
818 
819         if( kx_flags & (SYMMETRICAL + ASYMMETRICAL) )
820             x_func = (CvRowFilterFunc)icvFilterRowSymm_32f;
821         else
822             x_func = (CvRowFilterFunc)icvFilterRow_32f;
823     }
824     else
825         CV_ERROR( CV_StsUnsupportedFormat, "Unknown or unsupported input data type" );
826 
827     if( !y_func )
828     {
829         if( CV_MAT_DEPTH(dst_type) == CV_8U )
830         {
831             if( ky_flags & (SYMMETRICAL + ASYMMETRICAL) )
832                 y_func = (CvColumnFilterFunc)icvFilterColSymm_32f8u;
833             else
834                 y_func = (CvColumnFilterFunc)icvFilterCol_32f8u;
835         }
836         else if( CV_MAT_DEPTH(dst_type) == CV_16U )
837         {
838             if( ky_flags & (SYMMETRICAL + ASYMMETRICAL) )
839                 y_func = (CvColumnFilterFunc)icvFilterColSymm_32f16u;
840             else
841                 y_func = (CvColumnFilterFunc)icvFilterCol_32f16u;
842         }
843         else if( CV_MAT_DEPTH(dst_type) == CV_16S )
844         {
845             if( ky_flags & (SYMMETRICAL + ASYMMETRICAL) )
846                 y_func = (CvColumnFilterFunc)icvFilterColSymm_32f16s;
847             else
848                 y_func = (CvColumnFilterFunc)icvFilterCol_32f16s;
849         }
850         else if( CV_MAT_DEPTH(dst_type) == CV_32F )
851         {
852             if( ky_flags & (SYMMETRICAL + ASYMMETRICAL) )
853                 y_func = (CvColumnFilterFunc)icvFilterColSymm_32f;
854             else
855                 y_func = (CvColumnFilterFunc)icvFilterCol_32f;
856         }
857         else
858             CV_ERROR( CV_StsUnsupportedFormat, "Unknown or unsupported input data type" );
859     }
860 
861     if( convert_filters )
862     {
863         int scale = kx_flags & ky_flags & INTEGER ? 1 : (1 << FILTER_BITS);
864         int sum;
865 
866         for( i = sum = 0; i < xsz; i++ )
867         {
868             int t = cvRound(kx->data.fl[i]*scale);
869             kx->data.i[i] = t;
870             sum += t;
871         }
872         if( scale > 1 )
873             kx->data.i[xsz/2] += scale - sum;
874 
875         for( i = sum = 0; i < ysz; i++ )
876         {
877             int t = cvRound(ky->data.fl[i]*scale);
878             ky->data.i[i] = t;
879             sum += t;
880         }
881         if( scale > 1 )
882             ky->data.i[ysz/2] += scale - sum;
883         kx->type = (kx->type & ~CV_MAT_DEPTH_MASK) | CV_32S;
884         ky->type = (ky->type & ~CV_MAT_DEPTH_MASK) | CV_32S;
885     }
886 
887     __END__;
888 }
889 
890 
init(int _max_width,int _src_type,int _dst_type,bool _is_separable,CvSize _ksize,CvPoint _anchor,int _border_mode,CvScalar _border_value)891 void CvSepFilter::init( int _max_width, int _src_type, int _dst_type,
892                         bool _is_separable, CvSize _ksize,
893                         CvPoint _anchor, int _border_mode,
894                         CvScalar _border_value )
895 {
896     CvBaseImageFilter::init( _max_width, _src_type, _dst_type, _is_separable,
897                              _ksize, _anchor, _border_mode, _border_value );
898 }
899 
900 
901 static void
icvFilterRowSymm_8u32s(const uchar * src,int * dst,void * params)902 icvFilterRowSymm_8u32s( const uchar* src, int* dst, void* params )
903 {
904     const CvSepFilter* state = (const CvSepFilter*)params;
905     const CvMat* _kx = state->get_x_kernel();
906     const int* kx = _kx->data.i;
907     int ksize = _kx->cols + _kx->rows - 1;
908     int i = 0, j, k, width = state->get_width();
909     int cn = CV_MAT_CN(state->get_src_type());
910     int ksize2 = ksize/2, ksize2n = ksize2*cn;
911     int is_symm = state->get_x_kernel_flags() & CvSepFilter::SYMMETRICAL;
912     const uchar* s = src + ksize2n;
913 
914     kx += ksize2;
915     width *= cn;
916 
917     if( is_symm )
918     {
919         if( ksize == 1 && kx[0] == 1 )
920         {
921             for( i = 0; i <= width - 2; i += 2 )
922             {
923                 int s0 = s[i], s1 = s[i+1];
924                 dst[i] = s0; dst[i+1] = s1;
925             }
926             s += i;
927         }
928         else if( ksize == 3 )
929         {
930             if( kx[0] == 2 && kx[1] == 1 )
931                 for( ; i <= width - 2; i += 2, s += 2 )
932                 {
933                     int s0 = s[-cn] + s[0]*2 + s[cn], s1 = s[1-cn] + s[1]*2 + s[1+cn];
934                     dst[i] = s0; dst[i+1] = s1;
935                 }
936             else if( kx[0] == 10 && kx[1] == 3 )
937                 for( ; i <= width - 2; i += 2, s += 2 )
938                 {
939                     int s0 = s[0]*10 + (s[-cn] + s[cn])*3, s1 = s[1]*10 + (s[1-cn] + s[1+cn])*3;
940                     dst[i] = s0; dst[i+1] = s1;
941                 }
942             else if( kx[0] == 2*64 && kx[1] == 1*64 )
943                 for( ; i <= width - 2; i += 2, s += 2 )
944                 {
945                     int s0 = (s[0]*2 + s[-cn] + s[cn]) << 6;
946                     int s1 = (s[1]*2 + s[1-cn] + s[1+cn]) << 6;
947                     dst[i] = s0; dst[i+1] = s1;
948                 }
949             else
950             {
951                 int k0 = kx[0], k1 = kx[1];
952                 for( ; i <= width - 2; i += 2, s += 2 )
953                 {
954                     int s0 = s[0]*k0 + (s[-cn] + s[cn])*k1, s1 = s[1]*k0 + (s[1-cn] + s[1+cn])*k1;
955                     dst[i] = s0; dst[i+1] = s1;
956                 }
957             }
958         }
959         else if( ksize == 5 )
960         {
961             int k0 = kx[0], k1 = kx[1], k2 = kx[2];
962             if( k0 == 6*16 && k1 == 4*16 && k2 == 1*16 )
963                 for( ; i <= width - 2; i += 2, s += 2 )
964                 {
965                     int s0 = (s[0]*6 + (s[-cn] + s[cn])*4 + (s[-cn*2] + s[cn*2])*1) << 4;
966                     int s1 = (s[1]*6 + (s[1-cn] + s[1+cn])*4 + (s[1-cn*2] + s[1+cn*2])*1) << 4;
967                     dst[i] = s0; dst[i+1] = s1;
968                 }
969             else
970                 for( ; i <= width - 2; i += 2, s += 2 )
971                 {
972                     int s0 = s[0]*k0 + (s[-cn] + s[cn])*k1 + (s[-cn*2] + s[cn*2])*k2;
973                     int s1 = s[1]*k0 + (s[1-cn] + s[1+cn])*k1 + (s[1-cn*2] + s[1+cn*2])*k2;
974                     dst[i] = s0; dst[i+1] = s1;
975                 }
976         }
977         else
978             for( ; i <= width - 4; i += 4, s += 4 )
979             {
980                 int f = kx[0];
981                 int s0 = f*s[0], s1 = f*s[1], s2 = f*s[2], s3 = f*s[3];
982                 for( k = 1, j = cn; k <= ksize2; k++, j += cn )
983                 {
984                     f = kx[k];
985                     s0 += f*(s[j] + s[-j]); s1 += f*(s[j+1] + s[-j+1]);
986                     s2 += f*(s[j+2] + s[-j+2]); s3 += f*(s[j+3] + s[-j+3]);
987                 }
988 
989                 dst[i] = s0; dst[i+1] = s1;
990                 dst[i+2] = s2; dst[i+3] = s3;
991             }
992 
993         for( ; i < width; i++, s++ )
994         {
995             int s0 = kx[0]*s[0];
996             for( k = 1, j = cn; k <= ksize2; k++, j += cn )
997                 s0 += kx[k]*(s[j] + s[-j]);
998             dst[i] = s0;
999         }
1000     }
1001     else
1002     {
1003         if( ksize == 3 && kx[0] == 0 && kx[1] == 1 )
1004             for( ; i <= width - 2; i += 2, s += 2 )
1005             {
1006                 int s0 = s[cn] - s[-cn], s1 = s[1+cn] - s[1-cn];
1007                 dst[i] = s0; dst[i+1] = s1;
1008             }
1009         else
1010             for( ; i <= width - 4; i += 4, s += 4 )
1011             {
1012                 int s0 = 0, s1 = 0, s2 = 0, s3 = 0;
1013                 for( k = 1, j = cn; k <= ksize2; k++, j += cn )
1014                 {
1015                     int f = kx[k];
1016                     s0 += f*(s[j] - s[-j]); s1 += f*(s[j+1] - s[-j+1]);
1017                     s2 += f*(s[j+2] - s[-j+2]); s3 += f*(s[j+3] - s[-j+3]);
1018                 }
1019 
1020                 dst[i] = s0; dst[i+1] = s1;
1021                 dst[i+2] = s2; dst[i+3] = s3;
1022             }
1023 
1024         for( ; i < width; i++, s++ )
1025         {
1026             int s0 = kx[0]*s[0];
1027             for( k = 1, j = cn; k <= ksize2; k++, j += cn )
1028                 s0 += kx[k]*(s[j] - s[-j]);
1029             dst[i] = s0;
1030         }
1031     }
1032 }
1033 
1034 
1035 #define ICV_FILTER_ROW( flavor, srctype, dsttype, load_macro )      \
1036 static void                                                         \
1037 icvFilterRow_##flavor(const srctype* src, dsttype* dst, void*params)\
1038 {                                                                   \
1039     const CvSepFilter* state = (const CvSepFilter*)params;          \
1040     const CvMat* _kx = state->get_x_kernel();                       \
1041     const dsttype* kx = (const dsttype*)(_kx->data.ptr);            \
1042     int ksize = _kx->cols + _kx->rows - 1;                          \
1043     int i = 0, k, width = state->get_width();                       \
1044     int cn = CV_MAT_CN(state->get_src_type());                      \
1045     const srctype* s;                                               \
1046                                                                     \
1047     width *= cn;                                                    \
1048                                                                     \
1049     for( ; i <= width - 4; i += 4 )                                 \
1050     {                                                               \
1051         double f = kx[0];                                           \
1052         double s0=f*load_macro(src[i]), s1=f*load_macro(src[i+1]),  \
1053                 s2=f*load_macro(src[i+2]), s3=f*load_macro(src[i+3]);\
1054         for( k = 1, s = src + i + cn; k < ksize; k++, s += cn )     \
1055         {                                                           \
1056             f = kx[k];                                              \
1057             s0 += f*load_macro(s[0]);                               \
1058             s1 += f*load_macro(s[1]);                               \
1059             s2 += f*load_macro(s[2]);                               \
1060             s3 += f*load_macro(s[3]);                               \
1061         }                                                           \
1062         dst[i] = (dsttype)s0; dst[i+1] = (dsttype)s1;               \
1063         dst[i+2] = (dsttype)s2; dst[i+3] = (dsttype)s3;             \
1064     }                                                               \
1065                                                                     \
1066     for( ; i < width; i++ )                                         \
1067     {                                                               \
1068         double s0 = (double)kx[0]*load_macro(src[i]);               \
1069         for( k = 1, s = src + i + cn; k < ksize; k++, s += cn )     \
1070             s0 += (double)kx[k]*load_macro(s[0]);                   \
1071         dst[i] = (dsttype)s0;                                       \
1072     }                                                               \
1073 }
1074 
1075 
1076 ICV_FILTER_ROW( 8u32f, uchar, float, CV_8TO32F )
1077 ICV_FILTER_ROW( 16s32f, short, float, CV_NOP )
1078 ICV_FILTER_ROW( 16u32f, ushort, float, CV_NOP )
1079 ICV_FILTER_ROW( 32f, float, float, CV_NOP )
1080 
1081 
1082 #define ICV_FILTER_ROW_SYMM( flavor, srctype, dsttype, load_macro ) \
1083 static void                                                         \
1084 icvFilterRowSymm_##flavor( const srctype* src,                      \
1085                            dsttype* dst, void* params )             \
1086 {                                                                   \
1087     const CvSepFilter* state = (const CvSepFilter*)params;          \
1088     const CvMat* _kx = state->get_x_kernel();                       \
1089     const dsttype* kx = (const dsttype*)(_kx->data.ptr);            \
1090     int ksize = _kx->cols + _kx->rows - 1;                          \
1091     int i = 0, j, k, width = state->get_width();                    \
1092     int cn = CV_MAT_CN(state->get_src_type());                      \
1093     int is_symm=state->get_x_kernel_flags()&CvSepFilter::SYMMETRICAL;\
1094     int ksize2 = ksize/2, ksize2n = ksize2*cn;                      \
1095     const srctype* s = src + ksize2n;                               \
1096                                                                     \
1097     kx += ksize2;                                                   \
1098     width *= cn;                                                    \
1099                                                                     \
1100     if( is_symm )                                                   \
1101     {                                                               \
1102         for( ; i <= width - 4; i += 4, s += 4 )                     \
1103         {                                                           \
1104             double f = kx[0];                                       \
1105             double s0=f*load_macro(s[0]), s1=f*load_macro(s[1]),    \
1106                    s2=f*load_macro(s[2]), s3=f*load_macro(s[3]);    \
1107             for( k = 1, j = cn; k <= ksize2; k++, j += cn )         \
1108             {                                                       \
1109                 f = kx[k];                                          \
1110                 s0 += f*load_macro(s[j] + s[-j]);                   \
1111                 s1 += f*load_macro(s[j+1] + s[-j+1]);               \
1112                 s2 += f*load_macro(s[j+2] + s[-j+2]);               \
1113                 s3 += f*load_macro(s[j+3] + s[-j+3]);               \
1114             }                                                       \
1115                                                                     \
1116             dst[i] = (dsttype)s0; dst[i+1] = (dsttype)s1;           \
1117             dst[i+2] = (dsttype)s2; dst[i+3] = (dsttype)s3;         \
1118         }                                                           \
1119                                                                     \
1120         for( ; i < width; i++, s++ )                                \
1121         {                                                           \
1122             double s0 = (double)kx[0]*load_macro(s[0]);             \
1123             for( k = 1, j = cn; k <= ksize2; k++, j += cn )         \
1124                 s0 += (double)kx[k]*load_macro(s[j] + s[-j]);       \
1125             dst[i] = (dsttype)s0;                                   \
1126         }                                                           \
1127     }                                                               \
1128     else                                                            \
1129     {                                                               \
1130         for( ; i <= width - 4; i += 4, s += 4 )                     \
1131         {                                                           \
1132             double s0 = 0, s1 = 0, s2 = 0, s3 = 0;                  \
1133             for( k = 1, j = cn; k <= ksize2; k++, j += cn )         \
1134             {                                                       \
1135                 double f = kx[k];                                   \
1136                 s0 += f*load_macro(s[j] - s[-j]);                   \
1137                 s1 += f*load_macro(s[j+1] - s[-j+1]);               \
1138                 s2 += f*load_macro(s[j+2] - s[-j+2]);               \
1139                 s3 += f*load_macro(s[j+3] - s[-j+3]);               \
1140             }                                                       \
1141                                                                     \
1142             dst[i] = (dsttype)s0; dst[i+1] = (dsttype)s1;           \
1143             dst[i+2] = (dsttype)s2; dst[i+3] = (dsttype)s3;         \
1144         }                                                           \
1145                                                                     \
1146         for( ; i < width; i++, s++ )                                \
1147         {                                                           \
1148             double s0 = 0;                                          \
1149             for( k = 1, j = cn; k <= ksize2; k++, j += cn )         \
1150                 s0 += (double)kx[k]*load_macro(s[j] - s[-j]);       \
1151             dst[i] = (dsttype)s0;                                   \
1152         }                                                           \
1153     }                                                               \
1154 }
1155 
1156 
1157 ICV_FILTER_ROW_SYMM( 8u32f, uchar, float, CV_8TO32F )
1158 ICV_FILTER_ROW_SYMM( 16s32f, short, float, CV_NOP )
1159 ICV_FILTER_ROW_SYMM( 16u32f, ushort, float, CV_NOP )
1160 
1161 static void
icvFilterRowSymm_32f(const float * src,float * dst,void * params)1162 icvFilterRowSymm_32f( const float* src, float* dst, void* params )
1163 {
1164     const CvSepFilter* state = (const CvSepFilter*)params;
1165     const CvMat* _kx = state->get_x_kernel();
1166     const float* kx = _kx->data.fl;
1167     int ksize = _kx->cols + _kx->rows - 1;
1168     int i = 0, j, k, width = state->get_width();
1169     int cn = CV_MAT_CN(state->get_src_type());
1170     int ksize2 = ksize/2, ksize2n = ksize2*cn;
1171     int is_symm = state->get_x_kernel_flags() & CvSepFilter::SYMMETRICAL;
1172     const float* s = src + ksize2n;
1173 
1174     kx += ksize2;
1175     width *= cn;
1176 
1177     if( is_symm )
1178     {
1179         if( ksize == 3 && fabs(kx[0]-2.) <= FLT_EPSILON && fabs(kx[1]-1.) <= FLT_EPSILON )
1180             for( ; i <= width - 2; i += 2, s += 2 )
1181             {
1182                 float s0 = s[-cn] + s[0]*2 + s[cn], s1 = s[1-cn] + s[1]*2 + s[1+cn];
1183                 dst[i] = s0; dst[i+1] = s1;
1184             }
1185         else if( ksize == 3 && fabs(kx[0]-10.) <= FLT_EPSILON && fabs(kx[1]-3.) <= FLT_EPSILON )
1186             for( ; i <= width - 2; i += 2, s += 2 )
1187             {
1188                 float s0 = s[0]*10 + (s[-cn] + s[cn])*3, s1 = s[1]*10 + (s[1-cn] + s[1+cn])*3;
1189                 dst[i] = s0; dst[i+1] = s1;
1190             }
1191         else
1192             for( ; i <= width - 4; i += 4, s += 4 )
1193             {
1194                 double f = kx[0];
1195                 double s0 = f*s[0], s1 = f*s[1], s2 = f*s[2], s3 = f*s[3];
1196                 for( k = 1, j = cn; k <= ksize2; k++, j += cn )
1197                 {
1198                     f = kx[k];
1199                     s0 += f*(s[j] + s[-j]); s1 += f*(s[j+1] + s[-j+1]);
1200                     s2 += f*(s[j+2] + s[-j+2]); s3 += f*(s[j+3] + s[-j+3]);
1201                 }
1202 
1203                 dst[i] = (float)s0; dst[i+1] = (float)s1;
1204                 dst[i+2] = (float)s2; dst[i+3] = (float)s3;
1205             }
1206 
1207         for( ; i < width; i++, s++ )
1208         {
1209             double s0 = (double)kx[0]*s[0];
1210             for( k = 1, j = cn; k <= ksize2; k++, j += cn )
1211                 s0 += (double)kx[k]*(s[j] + s[-j]);
1212             dst[i] = (float)s0;
1213         }
1214     }
1215     else
1216     {
1217         if( ksize == 3 && fabs(kx[0]) <= FLT_EPSILON && fabs(kx[1]-1.) <= FLT_EPSILON )
1218             for( ; i <= width - 2; i += 2, s += 2 )
1219             {
1220                 float s0 = s[cn] - s[-cn], s1 = s[1+cn] - s[1-cn];
1221                 dst[i] = s0; dst[i+1] = s1;
1222             }
1223         else
1224             for( ; i <= width - 4; i += 4, s += 4 )
1225             {
1226                 double s0 = 0, s1 = 0, s2 = 0, s3 = 0;
1227                 for( k = 1, j = cn; k <= ksize2; k++, j += cn )
1228                 {
1229                     double f = kx[k];
1230                     s0 += f*(s[j] - s[-j]); s1 += f*(s[j+1] - s[-j+1]);
1231                     s2 += f*(s[j+2] - s[-j+2]); s3 += f*(s[j+3] - s[-j+3]);
1232                 }
1233 
1234                 dst[i] = (float)s0; dst[i+1] = (float)s1;
1235                 dst[i+2] = (float)s2; dst[i+3] = (float)s3;
1236             }
1237 
1238         for( ; i < width; i++, s++ )
1239         {
1240             double s0 = (double)kx[0]*s[0];
1241             for( k = 1, j = cn; k <= ksize2; k++, j += cn )
1242                 s0 += (double)kx[k]*(s[j] - s[-j]);
1243             dst[i] = (float)s0;
1244         }
1245     }
1246 }
1247 
1248 
1249 static void
icvFilterColSymm_32s8u(const int ** src,uchar * dst,int dst_step,int count,void * params)1250 icvFilterColSymm_32s8u( const int** src, uchar* dst, int dst_step, int count, void* params )
1251 {
1252     const CvSepFilter* state = (const CvSepFilter*)params;
1253     const CvMat* _ky = state->get_y_kernel();
1254     const int* ky = _ky->data.i;
1255     int ksize = _ky->cols + _ky->rows - 1, ksize2 = ksize/2;
1256     int i, k, width = state->get_width();
1257     int cn = CV_MAT_CN(state->get_src_type());
1258 
1259     width *= cn;
1260     src += ksize2;
1261     ky += ksize2;
1262 
1263     for( ; count--; dst += dst_step, src++ )
1264     {
1265         if( ksize == 3 )
1266         {
1267             const int* sptr0 = src[-1], *sptr1 = src[0], *sptr2 = src[1];
1268             int k0 = ky[0], k1 = ky[1];
1269             for( i = 0; i <= width - 2; i += 2 )
1270             {
1271                 int s0 = sptr1[i]*k0 + (sptr0[i] + sptr2[i])*k1;
1272                 int s1 = sptr1[i+1]*k0 + (sptr0[i+1] + sptr2[i+1])*k1;
1273                 s0 = CV_DESCALE(s0, FILTER_BITS*2);
1274                 s1 = CV_DESCALE(s1, FILTER_BITS*2);
1275                 dst[i] = (uchar)s0; dst[i+1] = (uchar)s1;
1276             }
1277         }
1278         else if( ksize == 5 )
1279         {
1280             const int* sptr0 = src[-2], *sptr1 = src[-1],
1281                 *sptr2 = src[0], *sptr3 = src[1], *sptr4 = src[2];
1282             int k0 = ky[0], k1 = ky[1], k2 = ky[2];
1283             for( i = 0; i <= width - 2; i += 2 )
1284             {
1285                 int s0 = sptr2[i]*k0 + (sptr1[i] + sptr3[i])*k1 + (sptr0[i] + sptr4[i])*k2;
1286                 int s1 = sptr2[i+1]*k0 + (sptr1[i+1] + sptr3[i+1])*k1 + (sptr0[i+1] + sptr4[i+1])*k2;
1287                 s0 = CV_DESCALE(s0, FILTER_BITS*2);
1288                 s1 = CV_DESCALE(s1, FILTER_BITS*2);
1289                 dst[i] = (uchar)s0; dst[i+1] = (uchar)s1;
1290             }
1291         }
1292         else
1293             for( i = 0; i <= width - 4; i += 4 )
1294             {
1295                 int f = ky[0];
1296                 const int* sptr = src[0] + i, *sptr2;
1297                 int s0 = f*sptr[0], s1 = f*sptr[1], s2 = f*sptr[2], s3 = f*sptr[3];
1298                 for( k = 1; k <= ksize2; k++ )
1299                 {
1300                     sptr = src[k] + i;
1301                     sptr2 = src[-k] + i;
1302                     f = ky[k];
1303                     s0 += f*(sptr[0] + sptr2[0]);
1304                     s1 += f*(sptr[1] + sptr2[1]);
1305                     s2 += f*(sptr[2] + sptr2[2]);
1306                     s3 += f*(sptr[3] + sptr2[3]);
1307                 }
1308 
1309                 s0 = CV_DESCALE(s0, FILTER_BITS*2);
1310                 s1 = CV_DESCALE(s1, FILTER_BITS*2);
1311                 dst[i] = (uchar)s0; dst[i+1] = (uchar)s1;
1312                 s2 = CV_DESCALE(s2, FILTER_BITS*2);
1313                 s3 = CV_DESCALE(s3, FILTER_BITS*2);
1314                 dst[i+2] = (uchar)s2; dst[i+3] = (uchar)s3;
1315             }
1316 
1317         for( ; i < width; i++ )
1318         {
1319             int s0 = ky[0]*src[0][i];
1320             for( k = 1; k <= ksize2; k++ )
1321                 s0 += ky[k]*(src[k][i] + src[-k][i]);
1322 
1323             s0 = CV_DESCALE(s0, FILTER_BITS*2);
1324             dst[i] = (uchar)s0;
1325         }
1326     }
1327 }
1328 
1329 
1330 static void
icvFilterColSymm_32s16s(const int ** src,short * dst,int dst_step,int count,void * params)1331 icvFilterColSymm_32s16s( const int** src, short* dst,
1332                          int dst_step, int count, void* params )
1333 {
1334     const CvSepFilter* state = (const CvSepFilter*)params;
1335     const CvMat* _ky = state->get_y_kernel();
1336     const int* ky = (const int*)_ky->data.ptr;
1337     int ksize = _ky->cols + _ky->rows - 1, ksize2 = ksize/2;
1338     int i = 0, k, width = state->get_width();
1339     int cn = CV_MAT_CN(state->get_src_type());
1340     int is_symm = state->get_y_kernel_flags() & CvSepFilter::SYMMETRICAL;
1341     int is_1_2_1 = is_symm && ksize == 3 && ky[1] == 2 && ky[2] == 1;
1342     int is_3_10_3 = is_symm && ksize == 3 && ky[1] == 10 && ky[2] == 3;
1343     int is_m1_0_1 = !is_symm && ksize == 3 && ky[1] == 0 &&
1344         ky[2]*ky[2] == 1 ? (ky[2] > 0 ? 1 : -1) : 0;
1345 
1346     width *= cn;
1347     src += ksize2;
1348     ky += ksize2;
1349     dst_step /= sizeof(dst[0]);
1350 
1351     if( is_symm )
1352     {
1353         for( ; count--; dst += dst_step, src++ )
1354         {
1355             if( is_1_2_1 )
1356             {
1357                 const int *src0 = src[-1], *src1 = src[0], *src2 = src[1];
1358 
1359                 for( i = 0; i <= width - 2; i += 2 )
1360                 {
1361                     int s0 = src0[i] + src1[i]*2 + src2[i],
1362                         s1 = src0[i+1] + src1[i+1]*2 + src2[i+1];
1363 
1364                     dst[i] = (short)s0; dst[i+1] = (short)s1;
1365                 }
1366             }
1367             else if( is_3_10_3 )
1368             {
1369                 const int *src0 = src[-1], *src1 = src[0], *src2 = src[1];
1370 
1371                 for( i = 0; i <= width - 2; i += 2 )
1372                 {
1373                     int s0 = src1[i]*10 + (src0[i] + src2[i])*3,
1374                         s1 = src1[i+1]*10 + (src0[i+1] + src2[i+1])*3;
1375 
1376                     dst[i] = (short)s0; dst[i+1] = (short)s1;
1377                 }
1378             }
1379             else
1380                 for( i = 0; i <= width - 4; i += 4 )
1381                 {
1382                     int f = ky[0];
1383                     const int* sptr = src[0] + i, *sptr2;
1384                     int s0 = f*sptr[0], s1 = f*sptr[1],
1385                         s2 = f*sptr[2], s3 = f*sptr[3];
1386                     for( k = 1; k <= ksize2; k++ )
1387                     {
1388                         sptr = src[k] + i; sptr2 = src[-k] + i; f = ky[k];
1389                         s0 += f*(sptr[0] + sptr2[0]); s1 += f*(sptr[1] + sptr2[1]);
1390                         s2 += f*(sptr[2] + sptr2[2]); s3 += f*(sptr[3] + sptr2[3]);
1391                     }
1392 
1393                     dst[i] = CV_CAST_16S(s0); dst[i+1] = CV_CAST_16S(s1);
1394                     dst[i+2] = CV_CAST_16S(s2); dst[i+3] = CV_CAST_16S(s3);
1395                 }
1396 
1397             for( ; i < width; i++ )
1398             {
1399                 int s0 = ky[0]*src[0][i];
1400                 for( k = 1; k <= ksize2; k++ )
1401                     s0 += ky[k]*(src[k][i] + src[-k][i]);
1402                 dst[i] = CV_CAST_16S(s0);
1403             }
1404         }
1405     }
1406     else
1407     {
1408         for( ; count--; dst += dst_step, src++ )
1409         {
1410             if( is_m1_0_1 )
1411             {
1412                 const int *src0 = src[-is_m1_0_1], *src2 = src[is_m1_0_1];
1413 
1414                 for( i = 0; i <= width - 2; i += 2 )
1415                 {
1416                     int s0 = src2[i] - src0[i], s1 = src2[i+1] - src0[i+1];
1417                     dst[i] = (short)s0; dst[i+1] = (short)s1;
1418                 }
1419             }
1420             else
1421                 for( i = 0; i <= width - 4; i += 4 )
1422                 {
1423                     int f = ky[0];
1424                     const int* sptr = src[0] + i, *sptr2;
1425                     int s0 = 0, s1 = 0, s2 = 0, s3 = 0;
1426                     for( k = 1; k <= ksize2; k++ )
1427                     {
1428                         sptr = src[k] + i; sptr2 = src[-k] + i; f = ky[k];
1429                         s0 += f*(sptr[0] - sptr2[0]); s1 += f*(sptr[1] - sptr2[1]);
1430                         s2 += f*(sptr[2] - sptr2[2]); s3 += f*(sptr[3] - sptr2[3]);
1431                     }
1432 
1433                     dst[i] = CV_CAST_16S(s0); dst[i+1] = CV_CAST_16S(s1);
1434                     dst[i+2] = CV_CAST_16S(s2); dst[i+3] = CV_CAST_16S(s3);
1435                 }
1436 
1437             for( ; i < width; i++ )
1438             {
1439                 int s0 = ky[0]*src[0][i];
1440                 for( k = 1; k <= ksize2; k++ )
1441                     s0 += ky[k]*(src[k][i] - src[-k][i]);
1442                 dst[i] = CV_CAST_16S(s0);
1443             }
1444         }
1445     }
1446 }
1447 
1448 
1449 #define ICV_FILTER_COL( flavor, srctype, dsttype, worktype,     \
1450                         cast_macro1, cast_macro2 )              \
1451 static void                                                     \
1452 icvFilterCol_##flavor( const srctype** src, dsttype* dst,       \
1453                        int dst_step, int count, void* params )  \
1454 {                                                               \
1455     const CvSepFilter* state = (const CvSepFilter*)params;      \
1456     const CvMat* _ky = state->get_y_kernel();                   \
1457     const srctype* ky = (const srctype*)_ky->data.ptr;          \
1458     int ksize = _ky->cols + _ky->rows - 1;                      \
1459     int i, k, width = state->get_width();                       \
1460     int cn = CV_MAT_CN(state->get_src_type());                  \
1461                                                                 \
1462     width *= cn;                                                \
1463     dst_step /= sizeof(dst[0]);                                 \
1464                                                                 \
1465     for( ; count--; dst += dst_step, src++ )                    \
1466     {                                                           \
1467         for( i = 0; i <= width - 4; i += 4 )                    \
1468         {                                                       \
1469             double f = ky[0];                                   \
1470             const srctype* sptr = src[0] + i;                   \
1471             double s0 = f*sptr[0], s1 = f*sptr[1],              \
1472                    s2 = f*sptr[2], s3 = f*sptr[3];              \
1473             worktype t0, t1;                                    \
1474             for( k = 1; k < ksize; k++ )                        \
1475             {                                                   \
1476                 sptr = src[k] + i; f = ky[k];                   \
1477                 s0 += f*sptr[0]; s1 += f*sptr[1];               \
1478                 s2 += f*sptr[2]; s3 += f*sptr[3];               \
1479             }                                                   \
1480                                                                 \
1481             t0 = cast_macro1(s0); t1 = cast_macro1(s1);         \
1482             dst[i]=cast_macro2(t0); dst[i+1]=cast_macro2(t1);   \
1483             t0 = cast_macro1(s2); t1 = cast_macro1(s3);         \
1484             dst[i+2]=cast_macro2(t0); dst[i+3]=cast_macro2(t1); \
1485         }                                                       \
1486                                                                 \
1487         for( ; i < width; i++ )                                 \
1488         {                                                       \
1489             double s0 = (double)ky[0]*src[0][i];                \
1490             worktype t0;                                        \
1491             for( k = 1; k < ksize; k++ )                        \
1492                 s0 += (double)ky[k]*src[k][i];                  \
1493             t0 = cast_macro1(s0);                               \
1494             dst[i] = cast_macro2(t0);                           \
1495         }                                                       \
1496     }                                                           \
1497 }
1498 
1499 
1500 ICV_FILTER_COL( 32f8u, float, uchar, int, cvRound, CV_CAST_8U )
1501 ICV_FILTER_COL( 32f16s, float, short, int, cvRound, CV_CAST_16S )
1502 ICV_FILTER_COL( 32f16u, float, ushort, int, cvRound, CV_CAST_16U )
1503 
1504 #define ICV_FILTER_COL_SYMM( flavor, srctype, dsttype, worktype,    \
1505                              cast_macro1, cast_macro2 )             \
1506 static void                                                         \
1507 icvFilterColSymm_##flavor( const srctype** src, dsttype* dst,       \
1508                            int dst_step, int count, void* params )  \
1509 {                                                                   \
1510     const CvSepFilter* state = (const CvSepFilter*)params;          \
1511     const CvMat* _ky = state->get_y_kernel();                       \
1512     const srctype* ky = (const srctype*)_ky->data.ptr;              \
1513     int ksize = _ky->cols + _ky->rows - 1, ksize2 = ksize/2;        \
1514     int i, k, width = state->get_width();                           \
1515     int cn = CV_MAT_CN(state->get_src_type());                      \
1516     int is_symm = state->get_y_kernel_flags() & CvSepFilter::SYMMETRICAL;\
1517                                                                     \
1518     width *= cn;                                                    \
1519     src += ksize2;                                                  \
1520     ky += ksize2;                                                   \
1521     dst_step /= sizeof(dst[0]);                                     \
1522                                                                     \
1523     if( is_symm )                                                   \
1524     {                                                               \
1525         for( ; count--; dst += dst_step, src++ )                    \
1526         {                                                           \
1527             for( i = 0; i <= width - 4; i += 4 )                    \
1528             {                                                       \
1529                 double f = ky[0];                                   \
1530                 const srctype* sptr = src[0] + i, *sptr2;           \
1531                 double s0 = f*sptr[0], s1 = f*sptr[1],              \
1532                        s2 = f*sptr[2], s3 = f*sptr[3];              \
1533                 worktype t0, t1;                                    \
1534                 for( k = 1; k <= ksize2; k++ )                      \
1535                 {                                                   \
1536                     sptr = src[k] + i;                              \
1537                     sptr2 = src[-k] + i;                            \
1538                     f = ky[k];                                      \
1539                     s0 += f*(sptr[0] + sptr2[0]);                   \
1540                     s1 += f*(sptr[1] + sptr2[1]);                   \
1541                     s2 += f*(sptr[2] + sptr2[2]);                   \
1542                     s3 += f*(sptr[3] + sptr2[3]);                   \
1543                 }                                                   \
1544                                                                     \
1545                 t0 = cast_macro1(s0); t1 = cast_macro1(s1);         \
1546                 dst[i]=cast_macro2(t0); dst[i+1]=cast_macro2(t1);   \
1547                 t0 = cast_macro1(s2); t1 = cast_macro1(s3);         \
1548                 dst[i+2]=cast_macro2(t0); dst[i+3]=cast_macro2(t1); \
1549             }                                                       \
1550                                                                     \
1551             for( ; i < width; i++ )                                 \
1552             {                                                       \
1553                 double s0 = (double)ky[0]*src[0][i];                \
1554                 worktype t0;                                        \
1555                 for( k = 1; k <= ksize2; k++ )                      \
1556                     s0 += (double)ky[k]*(src[k][i] + src[-k][i]);   \
1557                 t0 = cast_macro1(s0);                               \
1558                 dst[i] = cast_macro2(t0);                           \
1559             }                                                       \
1560         }                                                           \
1561     }                                                               \
1562     else                                                            \
1563     {                                                               \
1564         for( ; count--; dst += dst_step, src++ )                    \
1565         {                                                           \
1566             for( i = 0; i <= width - 4; i += 4 )                    \
1567             {                                                       \
1568                 double f = ky[0];                                   \
1569                 const srctype* sptr = src[0] + i, *sptr2;           \
1570                 double s0 = 0, s1 = 0, s2 = 0, s3 = 0;              \
1571                 worktype t0, t1;                                    \
1572                 for( k = 1; k <= ksize2; k++ )                      \
1573                 {                                                   \
1574                     sptr = src[k] + i;                              \
1575                     sptr2 = src[-k] + i;                            \
1576                     f = ky[k];                                      \
1577                     s0 += f*(sptr[0] - sptr2[0]);                   \
1578                     s1 += f*(sptr[1] - sptr2[1]);                   \
1579                     s2 += f*(sptr[2] - sptr2[2]);                   \
1580                     s3 += f*(sptr[3] - sptr2[3]);                   \
1581                 }                                                   \
1582                                                                     \
1583                 t0 = cast_macro1(s0); t1 = cast_macro1(s1);         \
1584                 dst[i]=cast_macro2(t0); dst[i+1]=cast_macro2(t1);   \
1585                 t0 = cast_macro1(s2); t1 = cast_macro1(s3);         \
1586                 dst[i+2]=cast_macro2(t0); dst[i+3]=cast_macro2(t1); \
1587             }                                                       \
1588                                                                     \
1589             for( ; i < width; i++ )                                 \
1590             {                                                       \
1591                 double s0 = (double)ky[0]*src[0][i];                \
1592                 worktype t0;                                        \
1593                 for( k = 1; k <= ksize2; k++ )                      \
1594                     s0 += (double)ky[k]*(src[k][i] - src[-k][i]);   \
1595                 t0 = cast_macro1(s0);                               \
1596                 dst[i] = cast_macro2(t0);                           \
1597             }                                                       \
1598         }                                                           \
1599     }                                                               \
1600 }
1601 
1602 
1603 ICV_FILTER_COL_SYMM( 32f8u, float, uchar, int, cvRound, CV_CAST_8U )
1604 ICV_FILTER_COL_SYMM( 32f16s, float, short, int, cvRound, CV_CAST_16S )
1605 ICV_FILTER_COL_SYMM( 32f16u, float, ushort, int, cvRound, CV_CAST_16U )
1606 
1607 
1608 static void
icvFilterCol_32f(const float ** src,float * dst,int dst_step,int count,void * params)1609 icvFilterCol_32f( const float** src, float* dst,
1610                   int dst_step, int count, void* params )
1611 {
1612     const CvSepFilter* state = (const CvSepFilter*)params;
1613     const CvMat* _ky = state->get_y_kernel();
1614     const float* ky = (const float*)_ky->data.ptr;
1615     int ksize = _ky->cols + _ky->rows - 1;
1616     int i, k, width = state->get_width();
1617     int cn = CV_MAT_CN(state->get_src_type());
1618 
1619     width *= cn;
1620     dst_step /= sizeof(dst[0]);
1621 
1622     for( ; count--; dst += dst_step, src++ )
1623     {
1624         for( i = 0; i <= width - 4; i += 4 )
1625         {
1626             double f = ky[0];
1627             const float* sptr = src[0] + i;
1628             double s0 = f*sptr[0], s1 = f*sptr[1],
1629                    s2 = f*sptr[2], s3 = f*sptr[3];
1630             for( k = 1; k < ksize; k++ )
1631             {
1632                 sptr = src[k] + i; f = ky[k];
1633                 s0 += f*sptr[0]; s1 += f*sptr[1];
1634                 s2 += f*sptr[2]; s3 += f*sptr[3];
1635             }
1636 
1637             dst[i] = (float)s0; dst[i+1] = (float)s1;
1638             dst[i+2] = (float)s2; dst[i+3] = (float)s3;
1639         }
1640 
1641         for( ; i < width; i++ )
1642         {
1643             double s0 = (double)ky[0]*src[0][i];
1644             for( k = 1; k < ksize; k++ )
1645                 s0 += (double)ky[k]*src[k][i];
1646             dst[i] = (float)s0;
1647         }
1648     }
1649 }
1650 
1651 
1652 static void
icvFilterColSymm_32f(const float ** src,float * dst,int dst_step,int count,void * params)1653 icvFilterColSymm_32f( const float** src, float* dst,
1654                       int dst_step, int count, void* params )
1655 {
1656     const CvSepFilter* state = (const CvSepFilter*)params;
1657     const CvMat* _ky = state->get_y_kernel();
1658     const float* ky = (const float*)_ky->data.ptr;
1659     int ksize = _ky->cols + _ky->rows - 1, ksize2 = ksize/2;
1660     int i = 0, k, width = state->get_width();
1661     int cn = CV_MAT_CN(state->get_src_type());
1662     int is_symm = state->get_y_kernel_flags() & CvSepFilter::SYMMETRICAL;
1663     int is_1_2_1 = is_symm && ksize == 3 &&
1664         fabs(ky[1] - 2.) <= FLT_EPSILON && fabs(ky[2] - 1.) <= FLT_EPSILON;
1665     int is_3_10_3 = is_symm && ksize == 3 &&
1666             fabs(ky[1] - 10.) <= FLT_EPSILON && fabs(ky[2] - 3.) <= FLT_EPSILON;
1667     int is_m1_0_1 = !is_symm && ksize == 3 &&
1668             fabs(ky[1]) <= FLT_EPSILON && fabs(ky[2]*ky[2] - 1.) <= FLT_EPSILON ?
1669             (ky[2] > 0 ? 1 : -1) : 0;
1670 
1671     width *= cn;
1672     src += ksize2;
1673     ky += ksize2;
1674     dst_step /= sizeof(dst[0]);
1675 
1676     if( is_symm )
1677     {
1678         for( ; count--; dst += dst_step, src++ )
1679         {
1680             if( is_1_2_1 )
1681             {
1682                 const float *src0 = src[-1], *src1 = src[0], *src2 = src[1];
1683 
1684                 for( i = 0; i <= width - 4; i += 4 )
1685                 {
1686                     float s0 = src0[i] + src1[i]*2 + src2[i],
1687                           s1 = src0[i+1] + src1[i+1]*2 + src2[i+1],
1688                           s2 = src0[i+2] + src1[i+2]*2 + src2[i+2],
1689                           s3 = src0[i+3] + src1[i+3]*2 + src2[i+3];
1690 
1691                     dst[i] = s0; dst[i+1] = s1;
1692                     dst[i+2] = s2; dst[i+3] = s3;
1693                 }
1694             }
1695             else if( is_3_10_3 )
1696             {
1697                 const float *src0 = src[-1], *src1 = src[0], *src2 = src[1];
1698 
1699                 for( i = 0; i <= width - 4; i += 4 )
1700                 {
1701                     float s0 = src1[i]*10 + (src0[i] + src2[i])*3,
1702                           s1 = src1[i+1]*10 + (src0[i+1] + src2[i+1])*3,
1703                           s2 = src1[i+2]*10 + (src0[i+2] + src2[i+2])*3,
1704                           s3 = src1[i+3]*10 + (src0[i+3] + src2[i+3])*3;
1705 
1706                     dst[i] = s0; dst[i+1] = s1;
1707                     dst[i+2] = s2; dst[i+3] = s3;
1708                 }
1709             }
1710             else
1711                 for( i = 0; i <= width - 4; i += 4 )
1712                 {
1713                     double f = ky[0];
1714                     const float* sptr = src[0] + i, *sptr2;
1715                     double s0 = f*sptr[0], s1 = f*sptr[1],
1716                            s2 = f*sptr[2], s3 = f*sptr[3];
1717                     for( k = 1; k <= ksize2; k++ )
1718                     {
1719                         sptr = src[k] + i; sptr2 = src[-k] + i; f = ky[k];
1720                         s0 += f*(sptr[0] + sptr2[0]); s1 += f*(sptr[1] + sptr2[1]);
1721                         s2 += f*(sptr[2] + sptr2[2]); s3 += f*(sptr[3] + sptr2[3]);
1722                     }
1723 
1724                     dst[i] = (float)s0; dst[i+1] = (float)s1;
1725                     dst[i+2] = (float)s2; dst[i+3] = (float)s3;
1726                 }
1727 
1728             for( ; i < width; i++ )
1729             {
1730                 double s0 = (double)ky[0]*src[0][i];
1731                 for( k = 1; k <= ksize2; k++ )
1732                     s0 += (double)ky[k]*(src[k][i] + src[-k][i]);
1733                 dst[i] = (float)s0;
1734             }
1735         }
1736     }
1737     else
1738     {
1739         for( ; count--; dst += dst_step, src++ )
1740         {
1741             if( is_m1_0_1 )
1742             {
1743                 const float *src0 = src[-is_m1_0_1], *src2 = src[is_m1_0_1];
1744 
1745                 for( i = 0; i <= width - 4; i += 4 )
1746                 {
1747                     float s0 = src2[i] - src0[i], s1 = src2[i+1] - src0[i+1],
1748                           s2 = src2[i+2] - src0[i+2], s3 = src2[i+3] - src0[i+3];
1749                     dst[i] = s0; dst[i+1] = s1;
1750                     dst[i+2] = s2; dst[i+3] = s3;
1751                 }
1752             }
1753             else
1754                 for( i = 0; i <= width - 4; i += 4 )
1755                 {
1756                     double f = ky[0];
1757                     const float* sptr = src[0] + i, *sptr2;
1758                     double s0 = 0, s1 = 0, s2 = 0, s3 = 0;
1759                     for( k = 1; k <= ksize2; k++ )
1760                     {
1761                         sptr = src[k] + i; sptr2 = src[-k] + i; f = ky[k];
1762                         s0 += f*(sptr[0] - sptr2[0]); s1 += f*(sptr[1] - sptr2[1]);
1763                         s2 += f*(sptr[2] - sptr2[2]); s3 += f*(sptr[3] - sptr2[3]);
1764                     }
1765 
1766                     dst[i] = (float)s0; dst[i+1] = (float)s1;
1767                     dst[i+2] = (float)s2; dst[i+3] = (float)s3;
1768                 }
1769 
1770             for( ; i < width; i++ )
1771             {
1772                 double s0 = (double)ky[0]*src[0][i];
1773                 for( k = 1; k <= ksize2; k++ )
1774                     s0 += (double)ky[k]*(src[k][i] - src[-k][i]);
1775                 dst[i] = (float)s0;
1776             }
1777         }
1778     }
1779 }
1780 
1781 
1782 #define SMALL_GAUSSIAN_SIZE  7
1783 
init_gaussian_kernel(CvMat * kernel,double sigma)1784 void CvSepFilter::init_gaussian_kernel( CvMat* kernel, double sigma )
1785 {
1786     static const float small_gaussian_tab[][SMALL_GAUSSIAN_SIZE/2+1] =
1787     {
1788         {1.f},
1789         {0.5f, 0.25f},
1790         {0.375f, 0.25f, 0.0625f},
1791         {0.28125f, 0.21875f, 0.109375f, 0.03125f}
1792     };
1793 
1794     CV_FUNCNAME( "CvSepFilter::init_gaussian_kernel" );
1795 
1796     __BEGIN__;
1797 
1798     int type, i, n, step;
1799     const float* fixed_kernel = 0;
1800     double sigmaX, scale2X, sum;
1801     float* cf;
1802     double* cd;
1803 
1804     if( !CV_IS_MAT(kernel) )
1805         CV_ERROR( CV_StsBadArg, "kernel is not a valid matrix" );
1806 
1807     type = CV_MAT_TYPE(kernel->type);
1808 
1809     if( (kernel->cols != 1 && kernel->rows != 1) ||
1810         (kernel->cols + kernel->rows - 1) % 2 == 0 ||
1811         (type != CV_32FC1 && type != CV_64FC1) )
1812         CV_ERROR( CV_StsBadSize, "kernel should be 1D floating-point vector of odd (2*k+1) size" );
1813 
1814     n = kernel->cols + kernel->rows - 1;
1815 
1816     if( n <= SMALL_GAUSSIAN_SIZE && sigma <= 0 )
1817         fixed_kernel = small_gaussian_tab[n>>1];
1818 
1819     sigmaX = sigma > 0 ? sigma : (n/2 - 1)*0.3 + 0.8;
1820     scale2X = -0.5/(sigmaX*sigmaX);
1821     step = kernel->rows == 1 ? 1 : kernel->step/CV_ELEM_SIZE1(type);
1822     cf = kernel->data.fl;
1823     cd = kernel->data.db;
1824 
1825     sum = fixed_kernel ? -fixed_kernel[0] : -1.;
1826 
1827     for( i = 0; i <= n/2; i++ )
1828     {
1829         double t = fixed_kernel ? (double)fixed_kernel[i] : exp(scale2X*i*i);
1830         if( type == CV_32FC1 )
1831         {
1832             cf[(n/2+i)*step] = (float)t;
1833             sum += cf[(n/2+i)*step]*2;
1834         }
1835         else
1836         {
1837             cd[(n/2+i)*step] = t;
1838             sum += cd[(n/2+i)*step]*2;
1839         }
1840     }
1841 
1842     sum = 1./sum;
1843     for( i = 0; i <= n/2; i++ )
1844     {
1845         if( type == CV_32FC1 )
1846             cf[(n/2+i)*step] = cf[(n/2-i)*step] = (float)(cf[(n/2+i)*step]*sum);
1847         else
1848             cd[(n/2+i)*step] = cd[(n/2-i)*step] = cd[(n/2+i)*step]*sum;
1849     }
1850 
1851     __END__;
1852 }
1853 
1854 
init_sobel_kernel(CvMat * _kx,CvMat * _ky,int dx,int dy,int flags)1855 void CvSepFilter::init_sobel_kernel( CvMat* _kx, CvMat* _ky, int dx, int dy, int flags )
1856 {
1857     CV_FUNCNAME( "CvSepFilter::init_sobel_kernel" );
1858 
1859     __BEGIN__;
1860 
1861     int i, j, k, msz;
1862     int* kerI;
1863     bool normalize = (flags & NORMALIZE_KERNEL) != 0;
1864     bool flip = (flags & FLIP_KERNEL) != 0;
1865 
1866     if( !CV_IS_MAT(_kx) || !CV_IS_MAT(_ky) )
1867         CV_ERROR( CV_StsBadArg, "One of the kernel matrices is not valid" );
1868 
1869     msz = MAX( _kx->cols + _kx->rows, _ky->cols + _ky->rows );
1870     if( msz > 32 )
1871         CV_ERROR( CV_StsOutOfRange, "Too large kernel size" );
1872 
1873     kerI = (int*)cvStackAlloc( msz*sizeof(kerI[0]) );
1874 
1875     if( dx < 0 || dy < 0 || dx+dy <= 0 )
1876         CV_ERROR( CV_StsOutOfRange,
1877             "Both derivative orders (dx and dy) must be non-negative "
1878             "and at least one of them must be positive." );
1879 
1880     for( k = 0; k < 2; k++ )
1881     {
1882         CvMat* kernel = k == 0 ? _kx : _ky;
1883         int order = k == 0 ? dx : dy;
1884         int n = kernel->cols + kernel->rows - 1, step;
1885         int type = CV_MAT_TYPE(kernel->type);
1886         double scale = !normalize ? 1. : 1./(1 << (n-order-1));
1887         int iscale = 1;
1888 
1889         if( (kernel->cols != 1 && kernel->rows != 1) ||
1890             (kernel->cols + kernel->rows - 1) % 2 == 0 ||
1891             (type != CV_32FC1 && type != CV_64FC1 && type != CV_32SC1) )
1892             CV_ERROR( CV_StsOutOfRange,
1893             "Both kernels must be 1D floating-point or integer vectors of odd (2*k+1) size." );
1894 
1895         if( normalize && n > 1 && type == CV_32SC1 )
1896             CV_ERROR( CV_StsBadArg, "Integer kernel can not be normalized" );
1897 
1898         if( n <= order )
1899             CV_ERROR( CV_StsOutOfRange,
1900             "Derivative order must be smaller than the corresponding kernel size" );
1901 
1902         if( n == 1 )
1903             kerI[0] = 1;
1904         else if( n == 3 )
1905         {
1906             if( order == 0 )
1907                 kerI[0] = 1, kerI[1] = 2, kerI[2] = 1;
1908             else if( order == 1 )
1909                 kerI[0] = -1, kerI[1] = 0, kerI[2] = 1;
1910             else
1911                 kerI[0] = 1, kerI[1] = -2, kerI[2] = 1;
1912         }
1913         else
1914         {
1915             int oldval, newval;
1916             kerI[0] = 1;
1917             for( i = 0; i < n; i++ )
1918                 kerI[i+1] = 0;
1919 
1920             for( i = 0; i < n - order - 1; i++ )
1921             {
1922                 oldval = kerI[0];
1923                 for( j = 1; j <= n; j++ )
1924                 {
1925                     newval = kerI[j]+kerI[j-1];
1926                     kerI[j-1] = oldval;
1927                     oldval = newval;
1928                 }
1929             }
1930 
1931             for( i = 0; i < order; i++ )
1932             {
1933                 oldval = -kerI[0];
1934                 for( j = 1; j <= n; j++ )
1935                 {
1936                     newval = kerI[j-1] - kerI[j];
1937                     kerI[j-1] = oldval;
1938                     oldval = newval;
1939                 }
1940             }
1941         }
1942 
1943         step = kernel->rows == 1 ? 1 : kernel->step/CV_ELEM_SIZE1(type);
1944         if( flip && (order & 1) && k )
1945             iscale = -iscale, scale = -scale;
1946 
1947         for( i = 0; i < n; i++ )
1948         {
1949             if( type == CV_32SC1 )
1950                 kernel->data.i[i*step] = kerI[i]*iscale;
1951             else if( type == CV_32FC1 )
1952                 kernel->data.fl[i*step] = (float)(kerI[i]*scale);
1953             else
1954                 kernel->data.db[i*step] = kerI[i]*scale;
1955         }
1956     }
1957 
1958     __END__;
1959 }
1960 
1961 
init_scharr_kernel(CvMat * _kx,CvMat * _ky,int dx,int dy,int flags)1962 void CvSepFilter::init_scharr_kernel( CvMat* _kx, CvMat* _ky, int dx, int dy, int flags )
1963 {
1964     CV_FUNCNAME( "CvSepFilter::init_scharr_kernel" );
1965 
1966     __BEGIN__;
1967 
1968     int i, k;
1969     int kerI[3];
1970     bool normalize = (flags & NORMALIZE_KERNEL) != 0;
1971     bool flip = (flags & FLIP_KERNEL) != 0;
1972 
1973     if( !CV_IS_MAT(_kx) || !CV_IS_MAT(_ky) )
1974         CV_ERROR( CV_StsBadArg, "One of the kernel matrices is not valid" );
1975 
1976     if( ((dx|dy)&~1) || dx+dy != 1 )
1977         CV_ERROR( CV_StsOutOfRange,
1978             "Scharr kernel can only be used for 1st order derivatives" );
1979 
1980     for( k = 0; k < 2; k++ )
1981     {
1982         CvMat* kernel = k == 0 ? _kx : _ky;
1983         int order = k == 0 ? dx : dy;
1984         int n = kernel->cols + kernel->rows - 1, step;
1985         int type = CV_MAT_TYPE(kernel->type);
1986         double scale = !normalize ? 1. : order == 0 ? 1./16 : 1./2;
1987         int iscale = 1;
1988 
1989         if( (kernel->cols != 1 && kernel->rows != 1) ||
1990             kernel->cols + kernel->rows - 1 != 3 ||
1991             (type != CV_32FC1 && type != CV_64FC1 && type != CV_32SC1) )
1992             CV_ERROR( CV_StsOutOfRange,
1993             "Both kernels must be 1D floating-point or integer vectors containing 3 elements each." );
1994 
1995         if( normalize && type == CV_32SC1 )
1996             CV_ERROR( CV_StsBadArg, "Integer kernel can not be normalized" );
1997 
1998         if( order == 0 )
1999             kerI[0] = 3, kerI[1] = 10, kerI[2] = 3;
2000         else
2001             kerI[0] = -1, kerI[1] = 0, kerI[2] = 1;
2002 
2003         step = kernel->rows == 1 ? 1 : kernel->step/CV_ELEM_SIZE1(type);
2004         if( flip && (order & 1) && k )
2005             iscale = -iscale, scale = -scale;
2006 
2007         for( i = 0; i < n; i++ )
2008         {
2009             if( type == CV_32SC1 )
2010                 kernel->data.i[i*step] = kerI[i]*iscale;
2011             else if( type == CV_32FC1 )
2012                 kernel->data.fl[i*step] = (float)(kerI[i]*scale);
2013             else
2014                 kernel->data.db[i*step] = kerI[i]*scale;
2015         }
2016     }
2017 
2018     __END__;
2019 }
2020 
2021 
init_deriv(int _max_width,int _src_type,int _dst_type,int dx,int dy,int aperture_size,int flags)2022 void CvSepFilter::init_deriv( int _max_width, int _src_type, int _dst_type,
2023                               int dx, int dy, int aperture_size, int flags )
2024 {
2025     CV_FUNCNAME( "CvSepFilter::init_deriv" );
2026 
2027     __BEGIN__;
2028 
2029     int kx_size = aperture_size == CV_SCHARR ? 3 : aperture_size, ky_size = kx_size;
2030     float kx_data[CV_MAX_SOBEL_KSIZE], ky_data[CV_MAX_SOBEL_KSIZE];
2031     CvMat _kx, _ky;
2032 
2033     if( kx_size <= 0 || ky_size > CV_MAX_SOBEL_KSIZE )
2034         CV_ERROR( CV_StsOutOfRange, "Incorrect aperture_size" );
2035 
2036     if( kx_size == 1 && dx )
2037         kx_size = 3;
2038     if( ky_size == 1 && dy )
2039         ky_size = 3;
2040 
2041     _kx = cvMat( 1, kx_size, CV_32FC1, kx_data );
2042     _ky = cvMat( 1, ky_size, CV_32FC1, ky_data );
2043 
2044     if( aperture_size == CV_SCHARR )
2045     {
2046         CV_CALL( init_scharr_kernel( &_kx, &_ky, dx, dy, flags ));
2047     }
2048     else
2049     {
2050         CV_CALL( init_sobel_kernel( &_kx, &_ky, dx, dy, flags ));
2051     }
2052 
2053     CV_CALL( init( _max_width, _src_type, _dst_type, &_kx, &_ky ));
2054 
2055     __END__;
2056 }
2057 
2058 
init_gaussian(int _max_width,int _src_type,int _dst_type,int gaussian_size,double sigma)2059 void CvSepFilter::init_gaussian( int _max_width, int _src_type, int _dst_type,
2060                                  int gaussian_size, double sigma )
2061 {
2062     float* kdata = 0;
2063 
2064     CV_FUNCNAME( "CvSepFilter::init_gaussian" );
2065 
2066     __BEGIN__;
2067 
2068     CvMat _kernel;
2069 
2070     if( gaussian_size <= 0 || gaussian_size > 1024 )
2071         CV_ERROR( CV_StsBadSize, "Incorrect size of gaussian kernel" );
2072 
2073     kdata = (float*)cvStackAlloc(gaussian_size*sizeof(kdata[0]));
2074     _kernel = cvMat( 1, gaussian_size, CV_32F, kdata );
2075 
2076     CV_CALL( init_gaussian_kernel( &_kernel, sigma ));
2077     CV_CALL( init( _max_width, _src_type, _dst_type, &_kernel, &_kernel ));
2078 
2079     __END__;
2080 }
2081 
2082 
2083 /****************************************************************************************\
2084                               Non-separable Linear Filter
2085 \****************************************************************************************/
2086 
2087 static void icvLinearFilter_8u( const uchar** src, uchar* dst, int dst_step,
2088                                 int count, void* params );
2089 static void icvLinearFilter_16s( const short** src, short* dst, int dst_step,
2090                                  int count, void* params );
2091 static void icvLinearFilter_16u( const ushort** src, ushort* dst, int dst_step,
2092                                  int count, void* params );
2093 static void icvLinearFilter_32f( const float** src, float* dst, int dst_step,
2094                                  int count, void* params );
2095 
CvLinearFilter()2096 CvLinearFilter::CvLinearFilter()
2097 {
2098     kernel = 0;
2099     k_sparse = 0;
2100 }
2101 
CvLinearFilter(int _max_width,int _src_type,int _dst_type,const CvMat * _kernel,CvPoint _anchor,int _border_mode,CvScalar _border_value)2102 CvLinearFilter::CvLinearFilter( int _max_width, int _src_type, int _dst_type,
2103                                 const CvMat* _kernel, CvPoint _anchor,
2104                                 int _border_mode, CvScalar _border_value )
2105 {
2106     kernel = 0;
2107     k_sparse = 0;
2108     init( _max_width, _src_type, _dst_type, _kernel,
2109           _anchor, _border_mode, _border_value );
2110 }
2111 
2112 
clear()2113 void CvLinearFilter::clear()
2114 {
2115     cvReleaseMat( &kernel );
2116     cvFree( &k_sparse );
2117     CvBaseImageFilter::clear();
2118 }
2119 
2120 
~CvLinearFilter()2121 CvLinearFilter::~CvLinearFilter()
2122 {
2123     clear();
2124 }
2125 
2126 
init(int _max_width,int _src_type,int _dst_type,const CvMat * _kernel,CvPoint _anchor,int _border_mode,CvScalar _border_value)2127 void CvLinearFilter::init( int _max_width, int _src_type, int _dst_type,
2128                            const CvMat* _kernel, CvPoint _anchor,
2129                            int _border_mode, CvScalar _border_value )
2130 {
2131     CV_FUNCNAME( "CvLinearFilter::init" );
2132 
2133     __BEGIN__;
2134 
2135     int depth = CV_MAT_DEPTH(_src_type);
2136     int cn = CV_MAT_CN(_src_type);
2137     CvPoint* nz_loc;
2138     float* coeffs;
2139     int i, j, k = 0;
2140 
2141     if( !CV_IS_MAT(_kernel) )
2142         CV_ERROR( CV_StsBadArg, "kernel is not valid matrix" );
2143 
2144     _src_type = CV_MAT_TYPE(_src_type);
2145     _dst_type = CV_MAT_TYPE(_dst_type);
2146 
2147     if( _src_type != _dst_type )
2148         CV_ERROR( CV_StsUnmatchedFormats,
2149         "The source and destination image types must be the same" );
2150 
2151     CV_CALL( CvBaseImageFilter::init( _max_width, _src_type, _dst_type,
2152         false, cvGetMatSize(_kernel), _anchor, _border_mode, _border_value ));
2153 
2154     if( !(kernel && k_sparse && ksize.width == kernel->cols && ksize.height == kernel->rows ))
2155     {
2156         cvReleaseMat( &kernel );
2157         cvFree( &k_sparse );
2158         CV_CALL( kernel = cvCreateMat( ksize.height, ksize.width, CV_32FC1 ));
2159         CV_CALL( k_sparse = (uchar*)cvAlloc(
2160             ksize.width*ksize.height*(2*sizeof(int) + sizeof(uchar*) + sizeof(float))));
2161     }
2162 
2163     CV_CALL( cvConvert( _kernel, kernel ));
2164 
2165     nz_loc = (CvPoint*)k_sparse;
2166     for( i = 0; i < ksize.height; i++ )
2167     {
2168         for( j = 0; j < ksize.width; j++ )
2169             if( fabs(((float*)(kernel->data.ptr + i*kernel->step))[j])>FLT_EPSILON )
2170                 nz_loc[k++] = cvPoint(j,i);
2171     }
2172     if( k == 0 )
2173         nz_loc[k++] = anchor;
2174     k_sparse_count = k;
2175     coeffs = (float*)((uchar**)(nz_loc + k_sparse_count) + k_sparse_count);
2176 
2177     for( k = 0; k < k_sparse_count; k++ )
2178     {
2179         coeffs[k] = CV_MAT_ELEM( *kernel, float, nz_loc[k].y, nz_loc[k].x );
2180         nz_loc[k].x *= cn;
2181     }
2182 
2183     x_func = 0;
2184     if( depth == CV_8U )
2185         y_func = (CvColumnFilterFunc)icvLinearFilter_8u;
2186     else if( depth == CV_16S )
2187         y_func = (CvColumnFilterFunc)icvLinearFilter_16s;
2188     else if( depth == CV_16U )
2189         y_func = (CvColumnFilterFunc)icvLinearFilter_16u;
2190     else if( depth == CV_32F )
2191         y_func = (CvColumnFilterFunc)icvLinearFilter_32f;
2192     else
2193         CV_ERROR( CV_StsUnsupportedFormat, "Unsupported image type" );
2194 
2195     __END__;
2196 }
2197 
2198 
init(int _max_width,int _src_type,int _dst_type,bool _is_separable,CvSize _ksize,CvPoint _anchor,int _border_mode,CvScalar _border_value)2199 void CvLinearFilter::init( int _max_width, int _src_type, int _dst_type,
2200                            bool _is_separable, CvSize _ksize,
2201                            CvPoint _anchor, int _border_mode,
2202                            CvScalar _border_value )
2203 {
2204     CvBaseImageFilter::init( _max_width, _src_type, _dst_type, _is_separable,
2205                              _ksize, _anchor, _border_mode, _border_value );
2206 }
2207 
2208 
2209 #define ICV_FILTER( flavor, arrtype, worktype, load_macro,          \
2210                     cast_macro1, cast_macro2 )                      \
2211 static void                                                         \
2212 icvLinearFilter_##flavor( const arrtype** src, arrtype* dst,        \
2213                     int dst_step, int count, void* params )         \
2214 {                                                                   \
2215     CvLinearFilter* state = (CvLinearFilter*)params;                \
2216     int width = state->get_width();                                 \
2217     int cn = CV_MAT_CN(state->get_src_type());                      \
2218     int i, k;                                                       \
2219     CvPoint* k_sparse = (CvPoint*)state->get_kernel_sparse_buf();   \
2220     int k_count = state->get_kernel_sparse_count();                 \
2221     const arrtype** k_ptr = (const arrtype**)(k_sparse + k_count);  \
2222     const arrtype** k_end = k_ptr + k_count;                        \
2223     const float* k_coeffs = (const float*)(k_ptr + k_count);        \
2224                                                                     \
2225     width *= cn;                                                    \
2226     dst_step /= sizeof(dst[0]);                                     \
2227                                                                     \
2228     for( ; count > 0; count--, dst += dst_step, src++ )             \
2229     {                                                               \
2230         for( k = 0; k < k_count; k++ )                              \
2231             k_ptr[k] = src[k_sparse[k].y] + k_sparse[k].x;          \
2232                                                                     \
2233         for( i = 0; i <= width - 4; i += 4 )                        \
2234         {                                                           \
2235             const arrtype** kp = k_ptr;                             \
2236             const float* kc = k_coeffs;                             \
2237             double s0 = 0, s1 = 0, s2 = 0, s3 = 0;                  \
2238             worktype t0, t1;                                        \
2239                                                                     \
2240             while( kp != k_end )                                    \
2241             {                                                       \
2242                 const arrtype* sptr = (*kp++) + i;                  \
2243                 float f = *kc++;                                    \
2244                 s0 += f*load_macro(sptr[0]);                        \
2245                 s1 += f*load_macro(sptr[1]);                        \
2246                 s2 += f*load_macro(sptr[2]);                        \
2247                 s3 += f*load_macro(sptr[3]);                        \
2248             }                                                       \
2249                                                                     \
2250             t0 = cast_macro1(s0); t1 = cast_macro1(s1);             \
2251             dst[i] = cast_macro2(t0);                               \
2252             dst[i+1] = cast_macro2(t1);                             \
2253             t0 = cast_macro1(s2); t1 = cast_macro1(s3);             \
2254             dst[i+2] = cast_macro2(t0);                             \
2255             dst[i+3] = cast_macro2(t1);                             \
2256         }                                                           \
2257                                                                     \
2258         for( ; i < width; i++ )                                     \
2259         {                                                           \
2260             const arrtype** kp = k_ptr;                             \
2261             const float* kc = k_coeffs;                             \
2262             double s0 = 0;                                          \
2263             worktype t0;                                            \
2264                                                                     \
2265             while( kp != k_end )                                    \
2266             {                                                       \
2267                 const arrtype* sptr = *kp++;                        \
2268                 float f = *kc++;                                    \
2269                 s0 += f*load_macro(sptr[i]);                        \
2270             }                                                       \
2271                                                                     \
2272             t0 = cast_macro1(s0);                                   \
2273             dst[i] = cast_macro2(t0);                               \
2274         }                                                           \
2275     }                                                               \
2276 }
2277 
2278 
2279 ICV_FILTER( 8u, uchar, int, CV_8TO32F, cvRound, CV_CAST_8U )
2280 ICV_FILTER( 16u, ushort, int, CV_NOP, cvRound, CV_CAST_16U )
2281 ICV_FILTER( 16s, short, int, CV_NOP, cvRound, CV_CAST_16S )
2282 ICV_FILTER( 32f, float, float, CV_NOP, CV_CAST_32F, CV_NOP )
2283 
2284 
2285 /////////////////////// common functions for working with IPP filters ////////////////////
2286 
icvIPPFilterInit(const CvMat * src,int stripe_size,CvSize ksize)2287 CvMat* icvIPPFilterInit( const CvMat* src, int stripe_size, CvSize ksize )
2288 {
2289     CvSize temp_size;
2290     int pix_size = CV_ELEM_SIZE(src->type);
2291     temp_size.width = cvAlign(src->cols + ksize.width - 1,8/CV_ELEM_SIZE(src->type & CV_MAT_DEPTH_MASK));
2292     //temp_size.width = src->cols + ksize.width - 1;
2293     temp_size.height = (stripe_size*2 + temp_size.width*pix_size) / (temp_size.width*pix_size*2);
2294     temp_size.height = MAX( temp_size.height, ksize.height );
2295     temp_size.height = MIN( temp_size.height, src->rows + ksize.height - 1 );
2296 
2297     return cvCreateMat( temp_size.height, temp_size.width, src->type );
2298 }
2299 
2300 
icvIPPFilterNextStripe(const CvMat * src,CvMat * temp,int y,CvSize ksize,CvPoint anchor)2301 int icvIPPFilterNextStripe( const CvMat* src, CvMat* temp, int y,
2302                             CvSize ksize, CvPoint anchor )
2303 {
2304     int pix_size = CV_ELEM_SIZE(src->type);
2305     int src_step = src->step ? src->step : CV_STUB_STEP;
2306     int temp_step = temp->step ? temp->step : CV_STUB_STEP;
2307     int i, dy, src_y1 = 0, src_y2;
2308     int temp_rows;
2309     uchar* temp_ptr = temp->data.ptr;
2310     CvSize stripe_size, temp_size;
2311 
2312     dy = MIN( temp->rows - ksize.height + 1, src->rows - y );
2313     if( y > 0 )
2314     {
2315         int temp_ready = ksize.height - 1;
2316 
2317         for( i = 0; i < temp_ready; i++ )
2318             memcpy( temp_ptr + temp_step*i, temp_ptr +
2319                     temp_step*(temp->rows - temp_ready + i), temp_step );
2320 
2321         temp_ptr += temp_ready*temp_step;
2322         temp_rows = dy;
2323         src_y1 = y + temp_ready - anchor.y;
2324         src_y2 = src_y1 + dy;
2325         if( src_y1 >= src->rows )
2326         {
2327             src_y1 = src->rows - 1;
2328             src_y2 = src->rows;
2329         }
2330     }
2331     else
2332     {
2333         temp_rows = dy + ksize.height - 1;
2334         src_y2 = temp_rows - anchor.y;
2335     }
2336 
2337     src_y2 = MIN( src_y2, src->rows );
2338 
2339     stripe_size = cvSize(src->cols, src_y2 - src_y1);
2340     temp_size = cvSize(temp->cols, temp_rows);
2341     icvCopyReplicateBorder_8u( src->data.ptr + src_y1*src_step, src_step,
2342                       stripe_size, temp_ptr, temp_step, temp_size,
2343                       (y == 0 ? anchor.y : 0), anchor.x, pix_size );
2344     return dy;
2345 }
2346 
2347 
2348 /////////////////////////////// IPP separable filter functions ///////////////////////////
2349 
2350 icvFilterRow_8u_C1R_t icvFilterRow_8u_C1R_p = 0;
2351 icvFilterRow_8u_C3R_t icvFilterRow_8u_C3R_p = 0;
2352 icvFilterRow_8u_C4R_t icvFilterRow_8u_C4R_p = 0;
2353 icvFilterRow_16s_C1R_t icvFilterRow_16s_C1R_p = 0;
2354 icvFilterRow_16s_C3R_t icvFilterRow_16s_C3R_p = 0;
2355 icvFilterRow_16s_C4R_t icvFilterRow_16s_C4R_p = 0;
2356 icvFilterRow_32f_C1R_t icvFilterRow_32f_C1R_p = 0;
2357 icvFilterRow_32f_C3R_t icvFilterRow_32f_C3R_p = 0;
2358 icvFilterRow_32f_C4R_t icvFilterRow_32f_C4R_p = 0;
2359 
2360 icvFilterColumn_8u_C1R_t icvFilterColumn_8u_C1R_p = 0;
2361 icvFilterColumn_8u_C3R_t icvFilterColumn_8u_C3R_p = 0;
2362 icvFilterColumn_8u_C4R_t icvFilterColumn_8u_C4R_p = 0;
2363 icvFilterColumn_16s_C1R_t icvFilterColumn_16s_C1R_p = 0;
2364 icvFilterColumn_16s_C3R_t icvFilterColumn_16s_C3R_p = 0;
2365 icvFilterColumn_16s_C4R_t icvFilterColumn_16s_C4R_p = 0;
2366 icvFilterColumn_32f_C1R_t icvFilterColumn_32f_C1R_p = 0;
2367 icvFilterColumn_32f_C3R_t icvFilterColumn_32f_C3R_p = 0;
2368 icvFilterColumn_32f_C4R_t icvFilterColumn_32f_C4R_p = 0;
2369 
2370 //////////////////////////////////////////////////////////////////////////////////////////
2371 
2372 typedef CvStatus (CV_STDCALL * CvIPPSepFilterFunc)
2373     ( const void* src, int srcstep, void* dst, int dststep,
2374       CvSize size, const float* kernel, int ksize, int anchor );
2375 
icvIPPSepFilter(const CvMat * src,CvMat * dst,const CvMat * kernelX,const CvMat * kernelY,CvPoint anchor)2376 int icvIPPSepFilter( const CvMat* src, CvMat* dst, const CvMat* kernelX,
2377                      const CvMat* kernelY, CvPoint anchor )
2378 {
2379     int result = 0;
2380 
2381     CvMat* top_bottom = 0;
2382     CvMat* vout_hin = 0;
2383     CvMat* dst_buf = 0;
2384 
2385     CV_FUNCNAME( "icvIPPSepFilter" );
2386 
2387     __BEGIN__;
2388 
2389     CvSize ksize;
2390     CvPoint el_anchor;
2391     CvSize size;
2392     int type, depth, pix_size;
2393     int i, x, y, dy = 0, prev_dy = 0, max_dy;
2394     CvMat vout;
2395     CvIPPSepFilterFunc x_func = 0, y_func = 0;
2396     int src_step, top_bottom_step;
2397     float *kx, *ky;
2398     int align, stripe_size;
2399 
2400     if( !icvFilterRow_8u_C1R_p )
2401         EXIT;
2402 
2403     if( !CV_ARE_TYPES_EQ( src, dst ) || !CV_ARE_SIZES_EQ( src, dst ) ||
2404         !CV_IS_MAT_CONT(kernelX->type & kernelY->type) ||
2405         CV_MAT_TYPE(kernelX->type) != CV_32FC1 ||
2406         CV_MAT_TYPE(kernelY->type) != CV_32FC1 ||
2407         (kernelX->cols != 1 && kernelX->rows != 1) ||
2408         (kernelY->cols != 1 && kernelY->rows != 1) ||
2409         (unsigned)anchor.x >= (unsigned)(kernelX->cols + kernelX->rows - 1) ||
2410         (unsigned)anchor.y >= (unsigned)(kernelY->cols + kernelY->rows - 1) )
2411         CV_ERROR( CV_StsError, "Internal Error: incorrect parameters" );
2412 
2413     ksize.width = kernelX->cols + kernelX->rows - 1;
2414     ksize.height = kernelY->cols + kernelY->rows - 1;
2415 
2416     /*if( ksize.width <= 5 && ksize.height <= 5 )
2417     {
2418         float* ker = (float*)cvStackAlloc( ksize.width*ksize.height*sizeof(ker[0]));
2419         CvMat kernel = cvMat( ksize.height, ksize.width, CV_32F, ker );
2420         for( y = 0, i = 0; y < ksize.height; y++ )
2421             for( x = 0; x < ksize.width; x++, i++ )
2422                 ker[i] = kernelY->data.fl[y]*kernelX->data.fl[x];
2423 
2424         CV_CALL( cvFilter2D( src, dst, &kernel, anchor ));
2425         EXIT;
2426     }*/
2427 
2428     type = CV_MAT_TYPE(src->type);
2429     depth = CV_MAT_DEPTH(type);
2430     pix_size = CV_ELEM_SIZE(type);
2431 
2432     if( type == CV_8UC1 )
2433         x_func = icvFilterRow_8u_C1R_p, y_func = icvFilterColumn_8u_C1R_p;
2434     else if( type == CV_8UC3 )
2435         x_func = icvFilterRow_8u_C3R_p, y_func = icvFilterColumn_8u_C3R_p;
2436     else if( type == CV_8UC4 )
2437         x_func = icvFilterRow_8u_C4R_p, y_func = icvFilterColumn_8u_C4R_p;
2438     else if( type == CV_16SC1 )
2439         x_func = icvFilterRow_16s_C1R_p, y_func = icvFilterColumn_16s_C1R_p;
2440     else if( type == CV_16SC3 )
2441         x_func = icvFilterRow_16s_C3R_p, y_func = icvFilterColumn_16s_C3R_p;
2442     else if( type == CV_16SC4 )
2443         x_func = icvFilterRow_16s_C4R_p, y_func = icvFilterColumn_16s_C4R_p;
2444     else if( type == CV_32FC1 )
2445         x_func = icvFilterRow_32f_C1R_p, y_func = icvFilterColumn_32f_C1R_p;
2446     else if( type == CV_32FC3 )
2447         x_func = icvFilterRow_32f_C3R_p, y_func = icvFilterColumn_32f_C3R_p;
2448     else if( type == CV_32FC4 )
2449         x_func = icvFilterRow_32f_C4R_p, y_func = icvFilterColumn_32f_C4R_p;
2450     else
2451         EXIT;
2452 
2453     size = cvGetMatSize(src);
2454     stripe_size = src->data.ptr == dst->data.ptr ? 1 << 15 : 1 << 16;
2455     max_dy = MAX( ksize.height - 1, stripe_size/(size.width + ksize.width - 1));
2456     max_dy = MIN( max_dy, size.height + ksize.height - 1 );
2457 
2458     align = 8/CV_ELEM_SIZE(depth);
2459 
2460     CV_CALL( top_bottom = cvCreateMat( ksize.height*2, cvAlign(size.width,align), type ));
2461 
2462     CV_CALL( vout_hin = cvCreateMat( max_dy + ksize.height,
2463         cvAlign(size.width + ksize.width - 1, align), type ));
2464 
2465     if( src->data.ptr == dst->data.ptr && size.height )
2466         CV_CALL( dst_buf = cvCreateMat( max_dy + ksize.height,
2467             cvAlign(size.width, align), type ));
2468 
2469     kx = (float*)cvStackAlloc( ksize.width*sizeof(kx[0]) );
2470     ky = (float*)cvStackAlloc( ksize.height*sizeof(ky[0]) );
2471 
2472     // mirror the kernels
2473     for( i = 0; i < ksize.width; i++ )
2474         kx[i] = kernelX->data.fl[ksize.width - i - 1];
2475 
2476     for( i = 0; i < ksize.height; i++ )
2477         ky[i] = kernelY->data.fl[ksize.height - i - 1];
2478 
2479     el_anchor = cvPoint( ksize.width - anchor.x - 1, ksize.height - anchor.y - 1 );
2480 
2481     cvGetCols( vout_hin, &vout, anchor.x, anchor.x + size.width );
2482 
2483     src_step = src->step ? src->step : CV_STUB_STEP;
2484     top_bottom_step = top_bottom->step ? top_bottom->step : CV_STUB_STEP;
2485     vout.step = vout.step ? vout.step : CV_STUB_STEP;
2486 
2487     for( y = 0; y < size.height; y += dy )
2488     {
2489         const CvMat *vin = src, *hout = dst;
2490         int src_y = y, dst_y = y;
2491         dy = MIN( max_dy, size.height - (ksize.height - anchor.y - 1) - y );
2492 
2493         if( y < anchor.y || dy < anchor.y )
2494         {
2495             int ay = anchor.y;
2496             CvSize src_stripe_size = size;
2497 
2498             if( y < anchor.y )
2499             {
2500                 src_y = 0;
2501                 dy = MIN( anchor.y, size.height );
2502                 src_stripe_size.height = MIN( dy + ksize.height - anchor.y - 1, size.height );
2503             }
2504             else
2505             {
2506                 src_y = MAX( y - anchor.y, 0 );
2507                 dy = size.height - y;
2508                 src_stripe_size.height = MIN( dy + anchor.y, size.height );
2509                 ay = MAX( anchor.y - y, 0 );
2510             }
2511 
2512             icvCopyReplicateBorder_8u( src->data.ptr + src_y*src_step, src_step,
2513                 src_stripe_size, top_bottom->data.ptr, top_bottom_step,
2514                 cvSize(size.width, dy + ksize.height - 1), ay, 0, pix_size );
2515             vin = top_bottom;
2516             src_y = anchor.y;
2517         }
2518 
2519         // do vertical convolution
2520         IPPI_CALL( y_func( vin->data.ptr + src_y*vin->step, vin->step ? vin->step : CV_STUB_STEP,
2521                            vout.data.ptr, vout.step, cvSize(size.width, dy),
2522                            ky, ksize.height, el_anchor.y ));
2523 
2524         // now it's time to copy the previously processed stripe to the input/output image
2525         if( src->data.ptr == dst->data.ptr )
2526         {
2527             for( i = 0; i < prev_dy; i++ )
2528                 memcpy( dst->data.ptr + (y - prev_dy + i)*dst->step,
2529                         dst_buf->data.ptr + i*dst_buf->step, size.width*pix_size );
2530             if( y + dy < size.height )
2531             {
2532                 hout = dst_buf;
2533                 dst_y = 0;
2534             }
2535         }
2536 
2537         // create a border for every line by replicating the left-most/right-most elements
2538         for( i = 0; i < dy; i++ )
2539         {
2540             uchar* ptr = vout.data.ptr + i*vout.step;
2541             for( x = -1; x >= -anchor.x*pix_size; x-- )
2542                 ptr[x] = ptr[x + pix_size];
2543             for( x = size.width*pix_size; x < (size.width+ksize.width-anchor.x-1)*pix_size; x++ )
2544                 ptr[x] = ptr[x - pix_size];
2545         }
2546 
2547         // do horizontal convolution
2548         IPPI_CALL( x_func( vout.data.ptr, vout.step, hout->data.ptr + dst_y*hout->step,
2549                            hout->step ? hout->step : CV_STUB_STEP,
2550                            cvSize(size.width, dy), kx, ksize.width, el_anchor.x ));
2551         prev_dy = dy;
2552     }
2553 
2554     result = 1;
2555 
2556     __END__;
2557 
2558     cvReleaseMat( &vout_hin );
2559     cvReleaseMat( &dst_buf );
2560     cvReleaseMat( &top_bottom );
2561 
2562     return result;
2563 }
2564 
2565 //////////////////////////////////////////////////////////////////////////////////////////
2566 
2567 //////////////////////////////// IPP generic filter functions ////////////////////////////
2568 
2569 icvFilter_8u_C1R_t icvFilter_8u_C1R_p = 0;
2570 icvFilter_8u_C3R_t icvFilter_8u_C3R_p = 0;
2571 icvFilter_8u_C4R_t icvFilter_8u_C4R_p = 0;
2572 icvFilter_16s_C1R_t icvFilter_16s_C1R_p = 0;
2573 icvFilter_16s_C3R_t icvFilter_16s_C3R_p = 0;
2574 icvFilter_16s_C4R_t icvFilter_16s_C4R_p = 0;
2575 icvFilter_32f_C1R_t icvFilter_32f_C1R_p = 0;
2576 icvFilter_32f_C3R_t icvFilter_32f_C3R_p = 0;
2577 icvFilter_32f_C4R_t icvFilter_32f_C4R_p = 0;
2578 
2579 
2580 typedef CvStatus (CV_STDCALL * CvFilterIPPFunc)
2581 ( const void* src, int srcstep, void* dst, int dststep, CvSize size,
2582   const float* kernel, CvSize ksize, CvPoint anchor );
2583 
2584 CV_IMPL void
cvFilter2D(const CvArr * _src,CvArr * _dst,const CvMat * kernel,CvPoint anchor)2585 cvFilter2D( const CvArr* _src, CvArr* _dst, const CvMat* kernel, CvPoint anchor )
2586 {
2587     const int dft_filter_size = 100;
2588 
2589     CvLinearFilter filter;
2590     CvMat* ipp_kernel = 0;
2591 
2592     // below that approximate size OpenCV is faster
2593     const int ipp_lower_limit = 20;
2594     CvMat* temp = 0;
2595 
2596     CV_FUNCNAME( "cvFilter2D" );
2597 
2598     __BEGIN__;
2599 
2600     int coi1 = 0, coi2 = 0;
2601     CvMat srcstub, *src = (CvMat*)_src;
2602     CvMat dststub, *dst = (CvMat*)_dst;
2603     int type;
2604 
2605     CV_CALL( src = cvGetMat( src, &srcstub, &coi1 ));
2606     CV_CALL( dst = cvGetMat( dst, &dststub, &coi2 ));
2607 
2608     if( coi1 != 0 || coi2 != 0 )
2609         CV_ERROR( CV_BadCOI, "" );
2610 
2611     type = CV_MAT_TYPE( src->type );
2612 
2613     if( !CV_ARE_SIZES_EQ( src, dst ))
2614         CV_ERROR( CV_StsUnmatchedSizes, "" );
2615 
2616     if( !CV_ARE_TYPES_EQ( src, dst ))
2617         CV_ERROR( CV_StsUnmatchedFormats, "" );
2618 
2619     if( anchor.x == -1 && anchor.y == -1 )
2620         anchor = cvPoint(kernel->cols/2,kernel->rows/2);
2621 
2622     if( kernel->cols*kernel->rows >= dft_filter_size &&
2623         kernel->cols <= src->cols && kernel->rows <= src->rows )
2624     {
2625         if( src->data.ptr == dst->data.ptr )
2626         {
2627             temp = cvCloneMat( src );
2628             src = temp;
2629         }
2630         icvCrossCorr( src, kernel, dst, anchor );
2631         EXIT;
2632     }
2633 
2634     if( icvFilter_8u_C1R_p && (src->rows >= ipp_lower_limit || src->cols >= ipp_lower_limit) )
2635     {
2636         CvFilterIPPFunc ipp_func =
2637                 type == CV_8UC1 ? (CvFilterIPPFunc)icvFilter_8u_C1R_p :
2638                 type == CV_8UC3 ? (CvFilterIPPFunc)icvFilter_8u_C3R_p :
2639                 type == CV_8UC4 ? (CvFilterIPPFunc)icvFilter_8u_C4R_p :
2640                 type == CV_16SC1 ? (CvFilterIPPFunc)icvFilter_16s_C1R_p :
2641                 type == CV_16SC3 ? (CvFilterIPPFunc)icvFilter_16s_C3R_p :
2642                 type == CV_16SC4 ? (CvFilterIPPFunc)icvFilter_16s_C4R_p :
2643                 type == CV_32FC1 ? (CvFilterIPPFunc)icvFilter_32f_C1R_p :
2644                 type == CV_32FC3 ? (CvFilterIPPFunc)icvFilter_32f_C3R_p :
2645                 type == CV_32FC4 ? (CvFilterIPPFunc)icvFilter_32f_C4R_p : 0;
2646 
2647         if( ipp_func )
2648         {
2649             CvSize el_size = { kernel->cols, kernel->rows };
2650             CvPoint el_anchor;
2651             int stripe_size = 1 << 16; // the optimal value may depend on CPU cache,
2652                                        // overhead of current IPP code etc.
2653             const uchar* shifted_ptr;
2654             int i, j, y, dy = 0;
2655             int temp_step, dst_step = dst->step ? dst->step : CV_STUB_STEP;
2656 
2657             if( (unsigned)anchor.x >= (unsigned)kernel->cols ||
2658                 (unsigned)anchor.y >= (unsigned)kernel->rows )
2659                 CV_ERROR( CV_StsOutOfRange, "anchor point is out of kernel" );
2660 
2661             el_anchor = cvPoint( el_size.width - anchor.x - 1, el_size.height - anchor.y - 1 );
2662 
2663             CV_CALL( ipp_kernel = cvCreateMat( kernel->rows, kernel->cols, CV_32FC1 ));
2664             CV_CALL( cvConvert( kernel, ipp_kernel ));
2665 
2666             // mirror the kernel around the center
2667             for( i = 0; i < (el_size.height+1)/2; i++ )
2668             {
2669                 float* top_row = ipp_kernel->data.fl + el_size.width*i;
2670                 float* bottom_row = ipp_kernel->data.fl + el_size.width*(el_size.height - i - 1);
2671 
2672                 for( j = 0; j < (el_size.width+1)/2; j++ )
2673                 {
2674                     float a = top_row[j], b = top_row[el_size.width - j - 1];
2675                     float c = bottom_row[j], d = bottom_row[el_size.width - j - 1];
2676                     top_row[j] = d;
2677                     top_row[el_size.width - j - 1] = c;
2678                     bottom_row[j] = b;
2679                     bottom_row[el_size.width - j - 1] = a;
2680                 }
2681             }
2682 
2683             CV_CALL( temp = icvIPPFilterInit( src, stripe_size, el_size ));
2684 
2685             shifted_ptr = temp->data.ptr +
2686                 anchor.y*temp->step + anchor.x*CV_ELEM_SIZE(type);
2687             temp_step = temp->step ? temp->step : CV_STUB_STEP;
2688 
2689             for( y = 0; y < src->rows; y += dy )
2690             {
2691                 dy = icvIPPFilterNextStripe( src, temp, y, el_size, anchor );
2692                 IPPI_CALL( ipp_func( shifted_ptr, temp_step,
2693                     dst->data.ptr + y*dst_step, dst_step, cvSize(src->cols, dy),
2694                     ipp_kernel->data.fl, el_size, el_anchor ));
2695             }
2696             EXIT;
2697         }
2698     }
2699 
2700     CV_CALL( filter.init( src->cols, type, type, kernel, anchor ));
2701     CV_CALL( filter.process( src, dst ));
2702 
2703     __END__;
2704 
2705     cvReleaseMat( &temp );
2706     cvReleaseMat( &ipp_kernel );
2707 }
2708 
2709 
2710 /* End of file. */
2711