• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include <string.h>
6 #include <time.h>
7 #include <algorithm>
8 #include <numeric>
9 #include <vector>
10 
11 #include "base/basictypes.h"
12 #include "base/logging.h"
13 #include "base/time/time.h"
14 #include "skia/ext/convolver.h"
15 #include "testing/gtest/include/gtest/gtest.h"
16 #include "third_party/skia/include/core/SkBitmap.h"
17 #include "third_party/skia/include/core/SkColorPriv.h"
18 #include "third_party/skia/include/core/SkRect.h"
19 #include "third_party/skia/include/core/SkTypes.h"
20 
21 namespace skia {
22 
23 namespace {
24 
25 // Fills the given filter with impulse functions for the range 0->num_entries.
FillImpulseFilter(int num_entries,ConvolutionFilter1D * filter)26 void FillImpulseFilter(int num_entries, ConvolutionFilter1D* filter) {
27   float one = 1.0f;
28   for (int i = 0; i < num_entries; i++)
29     filter->AddFilter(i, &one, 1);
30 }
31 
32 // Filters the given input with the impulse function, and verifies that it
33 // does not change.
TestImpulseConvolution(const unsigned char * data,int width,int height)34 void TestImpulseConvolution(const unsigned char* data, int width, int height) {
35   int byte_count = width * height * 4;
36 
37   ConvolutionFilter1D filter_x;
38   FillImpulseFilter(width, &filter_x);
39 
40   ConvolutionFilter1D filter_y;
41   FillImpulseFilter(height, &filter_y);
42 
43   std::vector<unsigned char> output;
44   output.resize(byte_count);
45   BGRAConvolve2D(data, width * 4, true, filter_x, filter_y,
46                  filter_x.num_values() * 4, &output[0], false);
47 
48   // Output should exactly match input.
49   EXPECT_EQ(0, memcmp(data, &output[0], byte_count));
50 }
51 
52 // Fills the destination filter with a box filter averaging every two pixels
53 // to produce the output.
FillBoxFilter(int size,ConvolutionFilter1D * filter)54 void FillBoxFilter(int size, ConvolutionFilter1D* filter) {
55   const float box[2] = { 0.5, 0.5 };
56   for (int i = 0; i < size; i++)
57     filter->AddFilter(i * 2, box, 2);
58 }
59 
60 }  // namespace
61 
62 // Tests that each pixel, when set and run through the impulse filter, does
63 // not change.
TEST(Convolver,Impulse)64 TEST(Convolver, Impulse) {
65   // We pick an "odd" size that is not likely to fit on any boundaries so that
66   // we can see if all the widths and paddings are handled properly.
67   int width = 15;
68   int height = 31;
69   int byte_count = width * height * 4;
70   std::vector<unsigned char> input;
71   input.resize(byte_count);
72 
73   unsigned char* input_ptr = &input[0];
74   for (int y = 0; y < height; y++) {
75     for (int x = 0; x < width; x++) {
76       for (int channel = 0; channel < 3; channel++) {
77         memset(input_ptr, 0, byte_count);
78         input_ptr[(y * width + x) * 4 + channel] = 0xff;
79         // Always set the alpha channel or it will attempt to "fix" it for us.
80         input_ptr[(y * width + x) * 4 + 3] = 0xff;
81         TestImpulseConvolution(input_ptr, width, height);
82       }
83     }
84   }
85 }
86 
87 // Tests that using a box filter to halve an image results in every square of 4
88 // pixels in the original get averaged to a pixel in the output.
TEST(Convolver,Halve)89 TEST(Convolver, Halve) {
90   static const int kSize = 16;
91 
92   int src_width = kSize;
93   int src_height = kSize;
94   int src_row_stride = src_width * 4;
95   int src_byte_count = src_row_stride * src_height;
96   std::vector<unsigned char> input;
97   input.resize(src_byte_count);
98 
99   int dest_width = src_width / 2;
100   int dest_height = src_height / 2;
101   int dest_byte_count = dest_width * dest_height * 4;
102   std::vector<unsigned char> output;
103   output.resize(dest_byte_count);
104 
105   // First fill the array with a bunch of random data.
106   srand(static_cast<unsigned>(time(NULL)));
107   for (int i = 0; i < src_byte_count; i++)
108     input[i] = rand() * 255 / RAND_MAX;
109 
110   // Compute the filters.
111   ConvolutionFilter1D filter_x, filter_y;
112   FillBoxFilter(dest_width, &filter_x);
113   FillBoxFilter(dest_height, &filter_y);
114 
115   // Do the convolution.
116   BGRAConvolve2D(&input[0], src_width, true, filter_x, filter_y,
117                  filter_x.num_values() * 4, &output[0], false);
118 
119   // Compute the expected results and check, allowing for a small difference
120   // to account for rounding errors.
121   for (int y = 0; y < dest_height; y++) {
122     for (int x = 0; x < dest_width; x++) {
123       for (int channel = 0; channel < 4; channel++) {
124         int src_offset = (y * 2 * src_row_stride + x * 2 * 4) + channel;
125         int value = input[src_offset] +  // Top left source pixel.
126                     input[src_offset + 4] +  // Top right source pixel.
127                     input[src_offset + src_row_stride] +  // Lower left.
128                     input[src_offset + src_row_stride + 4];  // Lower right.
129         value /= 4;  // Average.
130         int difference = value - output[(y * dest_width + x) * 4 + channel];
131         EXPECT_TRUE(difference >= -1 || difference <= 1);
132       }
133     }
134   }
135 }
136 
137 // Tests the optimization in Convolver1D::AddFilter that avoids storing
138 // leading/trailing zeroes.
TEST(Convolver,AddFilter)139 TEST(Convolver, AddFilter) {
140   skia::ConvolutionFilter1D filter;
141 
142   const skia::ConvolutionFilter1D::Fixed* values = NULL;
143   int filter_offset = 0;
144   int filter_length = 0;
145 
146   // An all-zero filter is handled correctly, all factors ignored
147   static const float factors1[] = { 0.0f, 0.0f, 0.0f };
148   filter.AddFilter(11, factors1, arraysize(factors1));
149   ASSERT_EQ(0, filter.max_filter());
150   ASSERT_EQ(1, filter.num_values());
151 
152   values = filter.FilterForValue(0, &filter_offset, &filter_length);
153   ASSERT_TRUE(values == NULL);   // No values => NULL.
154   ASSERT_EQ(11, filter_offset);  // Same as input offset.
155   ASSERT_EQ(0, filter_length);   // But no factors since all are zeroes.
156 
157   // Zeroes on the left are ignored
158   static const float factors2[] = { 0.0f, 1.0f, 1.0f, 1.0f, 1.0f };
159   filter.AddFilter(22, factors2, arraysize(factors2));
160   ASSERT_EQ(4, filter.max_filter());
161   ASSERT_EQ(2, filter.num_values());
162 
163   values = filter.FilterForValue(1, &filter_offset, &filter_length);
164   ASSERT_TRUE(values != NULL);
165   ASSERT_EQ(23, filter_offset);  // 22 plus 1 leading zero
166   ASSERT_EQ(4, filter_length);   // 5 - 1 leading zero
167 
168   // Zeroes on the right are ignored
169   static const float factors3[] = { 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f };
170   filter.AddFilter(33, factors3, arraysize(factors3));
171   ASSERT_EQ(5, filter.max_filter());
172   ASSERT_EQ(3, filter.num_values());
173 
174   values = filter.FilterForValue(2, &filter_offset, &filter_length);
175   ASSERT_TRUE(values != NULL);
176   ASSERT_EQ(33, filter_offset);  // 33, same as input due to no leading zero
177   ASSERT_EQ(5, filter_length);   // 7 - 2 trailing zeroes
178 
179   // Zeroes in leading & trailing positions
180   static const float factors4[] = { 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f };
181   filter.AddFilter(44, factors4, arraysize(factors4));
182   ASSERT_EQ(5, filter.max_filter());  // No change from existing value.
183   ASSERT_EQ(4, filter.num_values());
184 
185   values = filter.FilterForValue(3, &filter_offset, &filter_length);
186   ASSERT_TRUE(values != NULL);
187   ASSERT_EQ(46, filter_offset);  // 44 plus 2 leading zeroes
188   ASSERT_EQ(3, filter_length);   // 7 - (2 leading + 2 trailing) zeroes
189 
190   // Zeroes surrounded by non-zero values are ignored
191   static const float factors5[] = { 0.0f, 0.0f,
192                                     1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f,
193                                     0.0f };
194   filter.AddFilter(55, factors5, arraysize(factors5));
195   ASSERT_EQ(6, filter.max_filter());
196   ASSERT_EQ(5, filter.num_values());
197 
198   values = filter.FilterForValue(4, &filter_offset, &filter_length);
199   ASSERT_TRUE(values != NULL);
200   ASSERT_EQ(57, filter_offset);  // 55 plus 2 leading zeroes
201   ASSERT_EQ(6, filter_length);   // 9 - (2 leading + 1 trailing) zeroes
202 
203   // All-zero filters after the first one also work
204   static const float factors6[] = { 0.0f };
205   filter.AddFilter(66, factors6, arraysize(factors6));
206   ASSERT_EQ(6, filter.max_filter());
207   ASSERT_EQ(6, filter.num_values());
208 
209   values = filter.FilterForValue(5, &filter_offset, &filter_length);
210   ASSERT_TRUE(values == NULL);   // filter_length == 0 => values is NULL
211   ASSERT_EQ(66, filter_offset);  // value passed in
212   ASSERT_EQ(0, filter_length);
213 }
214 
VerifySIMD(unsigned int source_width,unsigned int source_height,unsigned int dest_width,unsigned int dest_height)215 void VerifySIMD(unsigned int source_width,
216                 unsigned int source_height,
217                 unsigned int dest_width,
218                 unsigned int dest_height) {
219   float filter[] = { 0.05f, -0.15f, 0.6f, 0.6f, -0.15f, 0.05f };
220   // Preparing convolve coefficients.
221   ConvolutionFilter1D x_filter, y_filter;
222   for (unsigned int p = 0; p < dest_width; ++p) {
223     unsigned int offset = source_width * p / dest_width;
224     EXPECT_LT(offset, source_width);
225     x_filter.AddFilter(offset, filter,
226                        std::min<int>(arraysize(filter),
227                                      source_width - offset));
228   }
229   x_filter.PaddingForSIMD();
230   for (unsigned int p = 0; p < dest_height; ++p) {
231     unsigned int offset = source_height * p / dest_height;
232     y_filter.AddFilter(offset, filter,
233                        std::min<int>(arraysize(filter),
234                                      source_height - offset));
235   }
236   y_filter.PaddingForSIMD();
237 
238   // Allocate input and output skia bitmap.
239   SkBitmap source, result_c, result_sse;
240   source.allocN32Pixels(source_width, source_height);
241   result_c.allocN32Pixels(dest_width, dest_height);
242   result_sse.allocN32Pixels(dest_width, dest_height);
243 
244   // Randomize source bitmap for testing.
245   unsigned char* src_ptr = static_cast<unsigned char*>(source.getPixels());
246   for (int y = 0; y < source.height(); y++) {
247     for (unsigned int x = 0; x < source.rowBytes(); x++)
248       src_ptr[x] = rand() % 255;
249     src_ptr += source.rowBytes();
250   }
251 
252   // Test both cases with different has_alpha.
253   for (int alpha = 0; alpha < 2; alpha++) {
254     // Convolve using C code.
255     base::TimeTicks resize_start;
256     base::TimeDelta delta_c, delta_sse;
257     unsigned char* r1 = static_cast<unsigned char*>(result_c.getPixels());
258     unsigned char* r2 = static_cast<unsigned char*>(result_sse.getPixels());
259 
260     resize_start = base::TimeTicks::Now();
261     BGRAConvolve2D(static_cast<const uint8*>(source.getPixels()),
262                    static_cast<int>(source.rowBytes()),
263                    (alpha != 0), x_filter, y_filter,
264                    static_cast<int>(result_c.rowBytes()), r1, false);
265     delta_c = base::TimeTicks::Now() - resize_start;
266 
267     resize_start = base::TimeTicks::Now();
268     // Convolve using SSE2 code
269     BGRAConvolve2D(static_cast<const uint8*>(source.getPixels()),
270                    static_cast<int>(source.rowBytes()),
271                    (alpha != 0), x_filter, y_filter,
272                    static_cast<int>(result_sse.rowBytes()), r2, true);
273     delta_sse = base::TimeTicks::Now() - resize_start;
274 
275     // Unfortunately I could not enable the performance check now.
276     // Most bots use debug version, and there are great difference between
277     // the code generation for intrinsic, etc. In release version speed
278     // difference was 150%-200% depend on alpha channel presence;
279     // while in debug version speed difference was 96%-120%.
280     // TODO(jiesun): optimize further until we could enable this for
281     // debug version too.
282     // EXPECT_LE(delta_sse, delta_c);
283 
284     int64 c_us = delta_c.InMicroseconds();
285     int64 sse_us = delta_sse.InMicroseconds();
286     VLOG(1) << "from:" << source_width << "x" << source_height
287             << " to:" << dest_width << "x" << dest_height
288             << (alpha ? " with alpha" : " w/o alpha");
289     VLOG(1) << "c:" << c_us << " sse:" << sse_us;
290     VLOG(1) << "ratio:" << static_cast<float>(c_us) / sse_us;
291 
292     // Comparing result.
293     for (unsigned int i = 0; i < dest_height; i++) {
294       EXPECT_FALSE(memcmp(r1, r2, dest_width * 4)); // RGBA always
295       r1 += result_c.rowBytes();
296       r2 += result_sse.rowBytes();
297     }
298   }
299 }
300 
TEST(Convolver,VerifySIMDEdgeCases)301 TEST(Convolver, VerifySIMDEdgeCases) {
302   srand(static_cast<unsigned int>(time(0)));
303   // Loop over all possible (small) image sizes
304   for (unsigned int width = 1; width < 20; width++) {
305     for (unsigned int height = 1; height < 20; height++) {
306       VerifySIMD(width, height, 8, 8);
307       VerifySIMD(8, 8, width, height);
308     }
309   }
310 }
311 
312 // Verify that lage upscales/downscales produce the same result
313 // with and without SIMD.
TEST(Convolver,VerifySIMDPrecision)314 TEST(Convolver, VerifySIMDPrecision) {
315   int source_sizes[][2] = { {1920, 1080}, {1377, 523}, {325, 241} };
316   int dest_sizes[][2] = { {1280, 1024}, {177, 123} };
317 
318   srand(static_cast<unsigned int>(time(0)));
319 
320   // Loop over some specific source and destination dimensions.
321   for (unsigned int i = 0; i < arraysize(source_sizes); ++i) {
322     unsigned int source_width = source_sizes[i][0];
323     unsigned int source_height = source_sizes[i][1];
324     for (unsigned int j = 0; j < arraysize(dest_sizes); ++j) {
325       unsigned int dest_width = dest_sizes[j][0];
326       unsigned int dest_height = dest_sizes[j][1];
327       VerifySIMD(source_width, source_height, dest_width, dest_height);
328     }
329   }
330 }
331 
TEST(Convolver,SeparableSingleConvolution)332 TEST(Convolver, SeparableSingleConvolution) {
333   static const int kImgWidth = 1024;
334   static const int kImgHeight = 1024;
335   static const int kChannelCount = 3;
336   static const int kStrideSlack = 22;
337   ConvolutionFilter1D filter;
338   const float box[5] = { 0.2f, 0.2f, 0.2f, 0.2f, 0.2f };
339   filter.AddFilter(0, box, 5);
340 
341   // Allocate a source image and set to 0.
342   const int src_row_stride = kImgWidth * kChannelCount + kStrideSlack;
343   int src_byte_count = src_row_stride * kImgHeight;
344   std::vector<unsigned char> input;
345   const int signal_x = kImgWidth / 2;
346   const int signal_y = kImgHeight / 2;
347   input.resize(src_byte_count, 0);
348   // The image has a single impulse pixel in channel 1, smack in the middle.
349   const int non_zero_pixel_index =
350       signal_y * src_row_stride + signal_x * kChannelCount + 1;
351   input[non_zero_pixel_index] = 255;
352 
353   // Destination will be a single channel image with stide matching width.
354   const int dest_row_stride = kImgWidth;
355   const int dest_byte_count = dest_row_stride * kImgHeight;
356   std::vector<unsigned char> output;
357   output.resize(dest_byte_count);
358 
359   // Apply convolution in X.
360   SingleChannelConvolveX1D(&input[0], src_row_stride, 1, kChannelCount,
361                            filter, SkISize::Make(kImgWidth, kImgHeight),
362                            &output[0], dest_row_stride, 0, 1, false);
363   for (int x = signal_x - 2; x <= signal_x + 2; ++x)
364     EXPECT_GT(output[signal_y * dest_row_stride + x], 0);
365 
366   EXPECT_EQ(output[signal_y * dest_row_stride + signal_x - 3], 0);
367   EXPECT_EQ(output[signal_y * dest_row_stride + signal_x + 3], 0);
368 
369   // Apply convolution in Y.
370   SingleChannelConvolveY1D(&input[0], src_row_stride, 1, kChannelCount,
371                            filter, SkISize::Make(kImgWidth, kImgHeight),
372                            &output[0], dest_row_stride, 0, 1, false);
373   for (int y = signal_y - 2; y <= signal_y + 2; ++y)
374     EXPECT_GT(output[y * dest_row_stride + signal_x], 0);
375 
376   EXPECT_EQ(output[(signal_y - 3) * dest_row_stride + signal_x], 0);
377   EXPECT_EQ(output[(signal_y + 3) * dest_row_stride + signal_x], 0);
378 
379   EXPECT_EQ(output[signal_y * dest_row_stride + signal_x - 1], 0);
380   EXPECT_EQ(output[signal_y * dest_row_stride + signal_x + 1], 0);
381 
382   // The main point of calling this is to invoke the routine on input without
383   // padding.
384   std::vector<unsigned char> output2;
385   output2.resize(dest_byte_count);
386   SingleChannelConvolveX1D(&output[0], dest_row_stride, 0, 1,
387                            filter, SkISize::Make(kImgWidth, kImgHeight),
388                            &output2[0], dest_row_stride, 0, 1, false);
389   // This should be a result of 2D convolution.
390   for (int x = signal_x - 2; x <= signal_x + 2; ++x) {
391     for (int y = signal_y - 2; y <= signal_y + 2; ++y)
392       EXPECT_GT(output2[y * dest_row_stride + x], 0);
393   }
394   EXPECT_EQ(output2[0], 0);
395   EXPECT_EQ(output2[dest_row_stride - 1], 0);
396   EXPECT_EQ(output2[dest_byte_count - 1], 0);
397 }
398 
TEST(Convolver,SeparableSingleConvolutionEdges)399 TEST(Convolver, SeparableSingleConvolutionEdges) {
400   // The purpose of this test is to check if the implementation treats correctly
401   // edges of the image.
402   static const int kImgWidth = 600;
403   static const int kImgHeight = 800;
404   static const int kChannelCount = 3;
405   static const int kStrideSlack = 22;
406   static const int kChannel = 1;
407   ConvolutionFilter1D filter;
408   const float box[5] = { 0.2f, 0.2f, 0.2f, 0.2f, 0.2f };
409   filter.AddFilter(0, box, 5);
410 
411   // Allocate a source image and set to 0.
412   int src_row_stride = kImgWidth * kChannelCount + kStrideSlack;
413   int src_byte_count = src_row_stride * kImgHeight;
414   std::vector<unsigned char> input(src_byte_count);
415 
416   // Draw a frame around the image.
417   for (int i = 0; i < src_byte_count; ++i) {
418     int row = i / src_row_stride;
419     int col = i % src_row_stride / kChannelCount;
420     int channel = i % src_row_stride % kChannelCount;
421     if (channel != kChannel || col > kImgWidth) {
422       input[i] = 255;
423     } else if (row == 0 || col == 0 ||
424                col == kImgWidth - 1 || row == kImgHeight - 1) {
425       input[i] = 100;
426     } else if (row == 1 || col == 1 ||
427                col == kImgWidth - 2 || row == kImgHeight - 2) {
428       input[i] = 200;
429     } else {
430       input[i] = 0;
431     }
432   }
433 
434   // Destination will be a single channel image with stide matching width.
435   int dest_row_stride = kImgWidth;
436   int dest_byte_count = dest_row_stride * kImgHeight;
437   std::vector<unsigned char> output;
438   output.resize(dest_byte_count);
439 
440   // Apply convolution in X.
441   SingleChannelConvolveX1D(&input[0], src_row_stride, 1, kChannelCount,
442                            filter, SkISize::Make(kImgWidth, kImgHeight),
443                            &output[0], dest_row_stride, 0, 1, false);
444 
445   // Sadly, comparison is not as simple as retaining all values.
446   int invalid_values = 0;
447   const unsigned char first_value = output[0];
448   EXPECT_NEAR(first_value, 100, 1);
449   for (int i = 0; i < dest_row_stride; ++i) {
450     if (output[i] != first_value)
451       ++invalid_values;
452   }
453   EXPECT_EQ(0, invalid_values);
454 
455   int test_row = 22;
456   EXPECT_NEAR(output[test_row * dest_row_stride], 100, 1);
457   EXPECT_NEAR(output[test_row * dest_row_stride + 1], 80, 1);
458   EXPECT_NEAR(output[test_row * dest_row_stride + 2], 60, 1);
459   EXPECT_NEAR(output[test_row * dest_row_stride + 3], 40, 1);
460   EXPECT_NEAR(output[(test_row + 1) * dest_row_stride - 1], 100, 1);
461   EXPECT_NEAR(output[(test_row + 1) * dest_row_stride - 2], 80, 1);
462   EXPECT_NEAR(output[(test_row + 1) * dest_row_stride - 3], 60, 1);
463   EXPECT_NEAR(output[(test_row + 1) * dest_row_stride - 4], 40, 1);
464 
465   SingleChannelConvolveY1D(&input[0], src_row_stride, 1, kChannelCount,
466                            filter, SkISize::Make(kImgWidth, kImgHeight),
467                            &output[0], dest_row_stride, 0, 1, false);
468 
469   int test_column = 42;
470   EXPECT_NEAR(output[test_column], 100, 1);
471   EXPECT_NEAR(output[test_column + dest_row_stride], 80, 1);
472   EXPECT_NEAR(output[test_column + dest_row_stride * 2], 60, 1);
473   EXPECT_NEAR(output[test_column + dest_row_stride * 3], 40, 1);
474 
475   EXPECT_NEAR(output[test_column + dest_row_stride * (kImgHeight - 1)], 100, 1);
476   EXPECT_NEAR(output[test_column + dest_row_stride * (kImgHeight - 2)], 80, 1);
477   EXPECT_NEAR(output[test_column + dest_row_stride * (kImgHeight - 3)], 60, 1);
478   EXPECT_NEAR(output[test_column + dest_row_stride * (kImgHeight - 4)], 40, 1);
479 }
480 
TEST(Convolver,SetUpGaussianConvolutionFilter)481 TEST(Convolver, SetUpGaussianConvolutionFilter) {
482   ConvolutionFilter1D smoothing_filter;
483   ConvolutionFilter1D gradient_filter;
484   SetUpGaussianConvolutionKernel(&smoothing_filter, 4.5f, false);
485   SetUpGaussianConvolutionKernel(&gradient_filter, 3.0f, true);
486 
487   int specified_filter_length;
488   int filter_offset;
489   int filter_length;
490 
491   const ConvolutionFilter1D::Fixed* smoothing_kernel =
492       smoothing_filter.GetSingleFilter(
493           &specified_filter_length, &filter_offset, &filter_length);
494   EXPECT_TRUE(smoothing_kernel);
495   std::vector<float> fp_smoothing_kernel(filter_length);
496   std::transform(smoothing_kernel,
497                  smoothing_kernel + filter_length,
498                  fp_smoothing_kernel.begin(),
499                  ConvolutionFilter1D::FixedToFloat);
500   // Should sum-up to 1 (nearly), and all values whould be in ]0, 1[.
501   EXPECT_NEAR(std::accumulate(
502       fp_smoothing_kernel.begin(), fp_smoothing_kernel.end(), 0.0f),
503               1.0f, 0.01f);
504   EXPECT_GT(*std::min_element(fp_smoothing_kernel.begin(),
505                               fp_smoothing_kernel.end()), 0.0f);
506   EXPECT_LT(*std::max_element(fp_smoothing_kernel.begin(),
507                               fp_smoothing_kernel.end()), 1.0f);
508 
509   const ConvolutionFilter1D::Fixed* gradient_kernel =
510       gradient_filter.GetSingleFilter(
511           &specified_filter_length, &filter_offset, &filter_length);
512   EXPECT_TRUE(gradient_kernel);
513   std::vector<float> fp_gradient_kernel(filter_length);
514   std::transform(gradient_kernel,
515                  gradient_kernel + filter_length,
516                  fp_gradient_kernel.begin(),
517                  ConvolutionFilter1D::FixedToFloat);
518   // Should sum-up to 0, and all values whould be in ]-1.5, 1.5[.
519   EXPECT_NEAR(std::accumulate(
520       fp_gradient_kernel.begin(), fp_gradient_kernel.end(), 0.0f),
521               0.0f, 0.01f);
522   EXPECT_GT(*std::min_element(fp_gradient_kernel.begin(),
523                               fp_gradient_kernel.end()), -1.5f);
524   EXPECT_LT(*std::min_element(fp_gradient_kernel.begin(),
525                               fp_gradient_kernel.end()), 0.0f);
526   EXPECT_LT(*std::max_element(fp_gradient_kernel.begin(),
527                               fp_gradient_kernel.end()), 1.5f);
528   EXPECT_GT(*std::max_element(fp_gradient_kernel.begin(),
529                               fp_gradient_kernel.end()), 0.0f);
530 }
531 
532 }  // namespace skia
533