• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "net/quic/reliable_quic_stream.h"
6 
7 #include "base/logging.h"
8 #include "net/quic/iovector.h"
9 #include "net/quic/quic_flow_controller.h"
10 #include "net/quic/quic_session.h"
11 #include "net/quic/quic_write_blocked_list.h"
12 
13 using base::StringPiece;
14 using std::min;
15 
16 namespace net {
17 
18 #define ENDPOINT (is_server_ ? "Server: " : " Client: ")
19 
20 namespace {
21 
MakeIovec(StringPiece data)22 struct iovec MakeIovec(StringPiece data) {
23   struct iovec iov = {const_cast<char*>(data.data()),
24                       static_cast<size_t>(data.size())};
25   return iov;
26 }
27 
GetInitialStreamFlowControlWindowToSend(QuicSession * session)28 size_t GetInitialStreamFlowControlWindowToSend(QuicSession* session) {
29   QuicVersion version = session->connection()->version();
30   if (version <= QUIC_VERSION_19) {
31     return session->config()->GetInitialFlowControlWindowToSend();
32   }
33 
34   return session->config()->GetInitialStreamFlowControlWindowToSend();
35 }
36 
GetReceivedFlowControlWindow(QuicSession * session)37 size_t GetReceivedFlowControlWindow(QuicSession* session) {
38   QuicVersion version = session->connection()->version();
39   if (version <= QUIC_VERSION_19) {
40     if (session->config()->HasReceivedInitialFlowControlWindowBytes()) {
41       return session->config()->ReceivedInitialFlowControlWindowBytes();
42     }
43 
44     return kDefaultFlowControlSendWindow;
45   }
46 
47   // Version must be >= QUIC_VERSION_20, so we check for stream specific flow
48   // control window.
49   if (session->config()->HasReceivedInitialStreamFlowControlWindowBytes()) {
50     return session->config()->ReceivedInitialStreamFlowControlWindowBytes();
51   }
52 
53   return kDefaultFlowControlSendWindow;
54 }
55 
56 }  // namespace
57 
58 // Wrapper that aggregates OnAckNotifications for packets sent using
59 // WriteOrBufferData and delivers them to the original
60 // QuicAckNotifier::DelegateInterface after all bytes written using
61 // WriteOrBufferData are acked.  This level of indirection is
62 // necessary because the delegate interface provides no mechanism that
63 // WriteOrBufferData can use to inform it that the write required
64 // multiple WritevData calls or that only part of the data has been
65 // sent out by the time ACKs start arriving.
66 class ReliableQuicStream::ProxyAckNotifierDelegate
67     : public QuicAckNotifier::DelegateInterface {
68  public:
ProxyAckNotifierDelegate(DelegateInterface * delegate)69   explicit ProxyAckNotifierDelegate(DelegateInterface* delegate)
70       : delegate_(delegate),
71         pending_acks_(0),
72         wrote_last_data_(false),
73         num_original_packets_(0),
74         num_original_bytes_(0),
75         num_retransmitted_packets_(0),
76         num_retransmitted_bytes_(0) {
77   }
78 
OnAckNotification(int num_original_packets,int num_original_bytes,int num_retransmitted_packets,int num_retransmitted_bytes,QuicTime::Delta delta_largest_observed)79   virtual void OnAckNotification(int num_original_packets,
80                                  int num_original_bytes,
81                                  int num_retransmitted_packets,
82                                  int num_retransmitted_bytes,
83                                  QuicTime::Delta delta_largest_observed)
84       OVERRIDE {
85     DCHECK_LT(0, pending_acks_);
86     --pending_acks_;
87     num_original_packets_ += num_original_packets;
88     num_original_bytes_ += num_original_bytes;
89     num_retransmitted_packets_ += num_retransmitted_packets;
90     num_retransmitted_bytes_ += num_retransmitted_bytes;
91 
92     if (wrote_last_data_ && pending_acks_ == 0) {
93       delegate_->OnAckNotification(num_original_packets_,
94                                    num_original_bytes_,
95                                    num_retransmitted_packets_,
96                                    num_retransmitted_bytes_,
97                                    delta_largest_observed);
98     }
99   }
100 
WroteData(bool last_data)101   void WroteData(bool last_data) {
102     DCHECK(!wrote_last_data_);
103     ++pending_acks_;
104     wrote_last_data_ = last_data;
105   }
106 
107  protected:
108   // Delegates are ref counted.
~ProxyAckNotifierDelegate()109   virtual ~ProxyAckNotifierDelegate() OVERRIDE {
110   }
111 
112  private:
113   // Original delegate.  delegate_->OnAckNotification will be called when:
114   //   wrote_last_data_ == true and pending_acks_ == 0
115   scoped_refptr<DelegateInterface> delegate_;
116 
117   // Number of outstanding acks.
118   int pending_acks_;
119 
120   // True if no pending writes remain.
121   bool wrote_last_data_;
122 
123   // Accumulators.
124   int num_original_packets_;
125   int num_original_bytes_;
126   int num_retransmitted_packets_;
127   int num_retransmitted_bytes_;
128 
129   DISALLOW_COPY_AND_ASSIGN(ProxyAckNotifierDelegate);
130 };
131 
PendingData(string data_in,scoped_refptr<ProxyAckNotifierDelegate> delegate_in)132 ReliableQuicStream::PendingData::PendingData(
133     string data_in, scoped_refptr<ProxyAckNotifierDelegate> delegate_in)
134     : data(data_in), delegate(delegate_in) {
135 }
136 
~PendingData()137 ReliableQuicStream::PendingData::~PendingData() {
138 }
139 
ReliableQuicStream(QuicStreamId id,QuicSession * session)140 ReliableQuicStream::ReliableQuicStream(QuicStreamId id, QuicSession* session)
141     : sequencer_(this),
142       id_(id),
143       session_(session),
144       stream_bytes_read_(0),
145       stream_bytes_written_(0),
146       stream_error_(QUIC_STREAM_NO_ERROR),
147       connection_error_(QUIC_NO_ERROR),
148       read_side_closed_(false),
149       write_side_closed_(false),
150       fin_buffered_(false),
151       fin_sent_(false),
152       fin_received_(false),
153       rst_sent_(false),
154       rst_received_(false),
155       fec_policy_(FEC_PROTECT_OPTIONAL),
156       is_server_(session_->is_server()),
157       flow_controller_(
158           session_->connection(), id_, is_server_,
159           GetReceivedFlowControlWindow(session),
160           GetInitialStreamFlowControlWindowToSend(session),
161           GetInitialStreamFlowControlWindowToSend(session)),
162       connection_flow_controller_(session_->flow_controller()) {
163 }
164 
~ReliableQuicStream()165 ReliableQuicStream::~ReliableQuicStream() {
166 }
167 
OnStreamFrame(const QuicStreamFrame & frame)168 bool ReliableQuicStream::OnStreamFrame(const QuicStreamFrame& frame) {
169   if (read_side_closed_) {
170     DVLOG(1) << ENDPOINT << "Ignoring frame " << frame.stream_id;
171     // We don't want to be reading: blackhole the data.
172     return true;
173   }
174 
175   if (frame.stream_id != id_) {
176     LOG(ERROR) << "Error!";
177     return false;
178   }
179 
180   if (frame.fin) {
181     fin_received_ = true;
182   }
183 
184   // This count include duplicate data received.
185   size_t frame_payload_size = frame.data.TotalBufferSize();
186   stream_bytes_read_ += frame_payload_size;
187 
188   // Flow control is interested in tracking highest received offset.
189   if (MaybeIncreaseHighestReceivedOffset(frame.offset + frame_payload_size)) {
190     // As the highest received offset has changed, we should check to see if
191     // this is a violation of flow control.
192     if (flow_controller_.FlowControlViolation() ||
193         connection_flow_controller_->FlowControlViolation()) {
194       session_->connection()->SendConnectionClose(
195           QUIC_FLOW_CONTROL_RECEIVED_TOO_MUCH_DATA);
196       return false;
197     }
198   }
199 
200   return sequencer_.OnStreamFrame(frame);
201 }
202 
num_frames_received() const203 int ReliableQuicStream::num_frames_received() const {
204   return sequencer_.num_frames_received();
205 }
206 
num_duplicate_frames_received() const207 int ReliableQuicStream::num_duplicate_frames_received() const {
208   return sequencer_.num_duplicate_frames_received();
209 }
210 
OnStreamReset(const QuicRstStreamFrame & frame)211 void ReliableQuicStream::OnStreamReset(const QuicRstStreamFrame& frame) {
212   rst_received_ = true;
213   MaybeIncreaseHighestReceivedOffset(frame.byte_offset);
214 
215   stream_error_ = frame.error_code;
216   CloseWriteSide();
217   CloseReadSide();
218 }
219 
OnConnectionClosed(QuicErrorCode error,bool from_peer)220 void ReliableQuicStream::OnConnectionClosed(QuicErrorCode error,
221                                             bool from_peer) {
222   if (read_side_closed_ && write_side_closed_) {
223     return;
224   }
225   if (error != QUIC_NO_ERROR) {
226     stream_error_ = QUIC_STREAM_CONNECTION_ERROR;
227     connection_error_ = error;
228   }
229 
230   CloseWriteSide();
231   CloseReadSide();
232 }
233 
OnFinRead()234 void ReliableQuicStream::OnFinRead() {
235   DCHECK(sequencer_.IsClosed());
236   CloseReadSide();
237 }
238 
Reset(QuicRstStreamErrorCode error)239 void ReliableQuicStream::Reset(QuicRstStreamErrorCode error) {
240   DCHECK_NE(QUIC_STREAM_NO_ERROR, error);
241   stream_error_ = error;
242   // Sending a RstStream results in calling CloseStream.
243   session()->SendRstStream(id(), error, stream_bytes_written_);
244   rst_sent_ = true;
245 }
246 
CloseConnection(QuicErrorCode error)247 void ReliableQuicStream::CloseConnection(QuicErrorCode error) {
248   session()->connection()->SendConnectionClose(error);
249 }
250 
CloseConnectionWithDetails(QuicErrorCode error,const string & details)251 void ReliableQuicStream::CloseConnectionWithDetails(QuicErrorCode error,
252                                                     const string& details) {
253   session()->connection()->SendConnectionCloseWithDetails(error, details);
254 }
255 
version() const256 QuicVersion ReliableQuicStream::version() const {
257   return session()->connection()->version();
258 }
259 
WriteOrBufferData(StringPiece data,bool fin,QuicAckNotifier::DelegateInterface * ack_notifier_delegate)260 void ReliableQuicStream::WriteOrBufferData(
261     StringPiece data,
262     bool fin,
263     QuicAckNotifier::DelegateInterface* ack_notifier_delegate) {
264   if (data.empty() && !fin) {
265     LOG(DFATAL) << "data.empty() && !fin";
266     return;
267   }
268 
269   if (fin_buffered_) {
270     LOG(DFATAL) << "Fin already buffered";
271     return;
272   }
273 
274   scoped_refptr<ProxyAckNotifierDelegate> proxy_delegate;
275   if (ack_notifier_delegate != NULL) {
276     proxy_delegate = new ProxyAckNotifierDelegate(ack_notifier_delegate);
277   }
278 
279   QuicConsumedData consumed_data(0, false);
280   fin_buffered_ = fin;
281 
282   if (queued_data_.empty()) {
283     struct iovec iov(MakeIovec(data));
284     consumed_data = WritevData(&iov, 1, fin, proxy_delegate.get());
285     DCHECK_LE(consumed_data.bytes_consumed, data.length());
286   }
287 
288   bool write_completed;
289   // If there's unconsumed data or an unconsumed fin, queue it.
290   if (consumed_data.bytes_consumed < data.length() ||
291       (fin && !consumed_data.fin_consumed)) {
292     StringPiece remainder(data.substr(consumed_data.bytes_consumed));
293     queued_data_.push_back(PendingData(remainder.as_string(), proxy_delegate));
294     write_completed = false;
295   } else {
296     write_completed = true;
297   }
298 
299   if ((proxy_delegate.get() != NULL) &&
300       (consumed_data.bytes_consumed > 0 || consumed_data.fin_consumed)) {
301     proxy_delegate->WroteData(write_completed);
302   }
303 }
304 
OnCanWrite()305 void ReliableQuicStream::OnCanWrite() {
306   bool fin = false;
307   while (!queued_data_.empty()) {
308     PendingData* pending_data = &queued_data_.front();
309     ProxyAckNotifierDelegate* delegate = pending_data->delegate.get();
310     if (queued_data_.size() == 1 && fin_buffered_) {
311       fin = true;
312     }
313     struct iovec iov(MakeIovec(pending_data->data));
314     QuicConsumedData consumed_data = WritevData(&iov, 1, fin, delegate);
315     if (consumed_data.bytes_consumed == pending_data->data.size() &&
316         fin == consumed_data.fin_consumed) {
317       queued_data_.pop_front();
318       if (delegate != NULL) {
319         delegate->WroteData(true);
320       }
321     } else {
322       if (consumed_data.bytes_consumed > 0) {
323         pending_data->data.erase(0, consumed_data.bytes_consumed);
324         if (delegate != NULL) {
325           delegate->WroteData(false);
326         }
327       }
328       break;
329     }
330   }
331 }
332 
MaybeSendBlocked()333 void ReliableQuicStream::MaybeSendBlocked() {
334   flow_controller_.MaybeSendBlocked();
335   connection_flow_controller_->MaybeSendBlocked();
336   // If we are connection level flow control blocked, then add the stream
337   // to the write blocked list. It will be given a chance to write when a
338   // connection level WINDOW_UPDATE arrives.
339   if (connection_flow_controller_->IsBlocked() &&
340       !flow_controller_.IsBlocked()) {
341     session_->MarkWriteBlocked(id(), EffectivePriority());
342   }
343 }
344 
WritevData(const struct iovec * iov,int iov_count,bool fin,QuicAckNotifier::DelegateInterface * ack_notifier_delegate)345 QuicConsumedData ReliableQuicStream::WritevData(
346     const struct iovec* iov,
347     int iov_count,
348     bool fin,
349     QuicAckNotifier::DelegateInterface* ack_notifier_delegate) {
350   if (write_side_closed_) {
351     DLOG(ERROR) << ENDPOINT << "Attempt to write when the write side is closed";
352     return QuicConsumedData(0, false);
353   }
354 
355   // How much data we want to write.
356   size_t write_length = TotalIovecLength(iov, iov_count);
357 
358   // A FIN with zero data payload should not be flow control blocked.
359   bool fin_with_zero_data = (fin && write_length == 0);
360 
361   if (flow_controller_.IsEnabled()) {
362     // How much data we are allowed to write from flow control.
363     uint64 send_window = flow_controller_.SendWindowSize();
364     if (connection_flow_controller_->IsEnabled()) {
365       send_window =
366           min(send_window, connection_flow_controller_->SendWindowSize());
367     }
368 
369     if (send_window == 0 && !fin_with_zero_data) {
370       // Quick return if we can't send anything.
371       MaybeSendBlocked();
372       return QuicConsumedData(0, false);
373     }
374 
375     if (write_length > send_window) {
376       // Don't send the FIN if we aren't going to send all the data.
377       fin = false;
378 
379       // Writing more data would be a violation of flow control.
380       write_length = send_window;
381     }
382   }
383 
384   // Fill an IOVector with bytes from the iovec.
385   IOVector data;
386   data.AppendIovecAtMostBytes(iov, iov_count, write_length);
387 
388   QuicConsumedData consumed_data = session()->WritevData(
389       id(), data, stream_bytes_written_, fin, GetFecProtection(),
390       ack_notifier_delegate);
391   stream_bytes_written_ += consumed_data.bytes_consumed;
392 
393   AddBytesSent(consumed_data.bytes_consumed);
394 
395   if (consumed_data.bytes_consumed == write_length) {
396     if (!fin_with_zero_data) {
397       MaybeSendBlocked();
398     }
399     if (fin && consumed_data.fin_consumed) {
400       fin_sent_ = true;
401       CloseWriteSide();
402     } else if (fin && !consumed_data.fin_consumed) {
403       session_->MarkWriteBlocked(id(), EffectivePriority());
404     }
405   } else {
406     session_->MarkWriteBlocked(id(), EffectivePriority());
407   }
408   return consumed_data;
409 }
410 
GetFecProtection()411 FecProtection ReliableQuicStream::GetFecProtection() {
412   return fec_policy_ == FEC_PROTECT_ALWAYS ? MUST_FEC_PROTECT : MAY_FEC_PROTECT;
413 }
414 
CloseReadSide()415 void ReliableQuicStream::CloseReadSide() {
416   if (read_side_closed_) {
417     return;
418   }
419   DVLOG(1) << ENDPOINT << "Done reading from stream " << id();
420 
421   read_side_closed_ = true;
422   if (write_side_closed_) {
423     DVLOG(1) << ENDPOINT << "Closing stream: " << id();
424     session_->CloseStream(id());
425   }
426 }
427 
CloseWriteSide()428 void ReliableQuicStream::CloseWriteSide() {
429   if (write_side_closed_) {
430     return;
431   }
432   DVLOG(1) << ENDPOINT << "Done writing to stream " << id();
433 
434   write_side_closed_ = true;
435   if (read_side_closed_) {
436     DVLOG(1) << ENDPOINT << "Closing stream: " << id();
437     session_->CloseStream(id());
438   }
439 }
440 
HasBufferedData() const441 bool ReliableQuicStream::HasBufferedData() const {
442   return !queued_data_.empty();
443 }
444 
OnClose()445 void ReliableQuicStream::OnClose() {
446   CloseReadSide();
447   CloseWriteSide();
448 
449   if (!fin_sent_ && !rst_sent_) {
450     // For flow control accounting, we must tell the peer how many bytes we have
451     // written on this stream before termination. Done here if needed, using a
452     // RST frame.
453     DVLOG(1) << ENDPOINT << "Sending RST in OnClose: " << id();
454     session_->SendRstStream(id(), QUIC_RST_FLOW_CONTROL_ACCOUNTING,
455                             stream_bytes_written_);
456     rst_sent_ = true;
457   }
458 
459   // We are closing the stream and will not process any further incoming bytes.
460   // As there may be more bytes in flight and we need to ensure that both
461   // endpoints have the same connection level flow control state, mark all
462   // unreceived or buffered bytes as consumed.
463   uint64 bytes_to_consume = flow_controller_.highest_received_byte_offset() -
464       flow_controller_.bytes_consumed();
465   AddBytesConsumed(bytes_to_consume);
466 }
467 
OnWindowUpdateFrame(const QuicWindowUpdateFrame & frame)468 void ReliableQuicStream::OnWindowUpdateFrame(
469     const QuicWindowUpdateFrame& frame) {
470   if (!flow_controller_.IsEnabled()) {
471     DLOG(DFATAL) << "Flow control not enabled! " << version();
472     return;
473   }
474 
475   if (flow_controller_.UpdateSendWindowOffset(frame.byte_offset)) {
476     // We can write again!
477     // TODO(rjshade): This does not respect priorities (e.g. multiple
478     //                outstanding POSTs are unblocked on arrival of
479     //                SHLO with initial window).
480     // As long as the connection is not flow control blocked, we can write!
481     OnCanWrite();
482   }
483 }
484 
MaybeIncreaseHighestReceivedOffset(uint64 new_offset)485 bool ReliableQuicStream::MaybeIncreaseHighestReceivedOffset(uint64 new_offset) {
486   if (flow_controller_.IsEnabled()) {
487     uint64 increment =
488         new_offset - flow_controller_.highest_received_byte_offset();
489     if (flow_controller_.UpdateHighestReceivedOffset(new_offset)) {
490       // If |new_offset| increased the stream flow controller's highest received
491       // offset, then we need to increase the connection flow controller's value
492       // by the incremental difference.
493       connection_flow_controller_->UpdateHighestReceivedOffset(
494           connection_flow_controller_->highest_received_byte_offset() +
495           increment);
496       return true;
497     }
498   }
499   return false;
500 }
501 
AddBytesSent(uint64 bytes)502 void ReliableQuicStream::AddBytesSent(uint64 bytes) {
503   if (flow_controller_.IsEnabled()) {
504     flow_controller_.AddBytesSent(bytes);
505     connection_flow_controller_->AddBytesSent(bytes);
506   }
507 }
508 
AddBytesConsumed(uint64 bytes)509 void ReliableQuicStream::AddBytesConsumed(uint64 bytes) {
510   if (flow_controller_.IsEnabled()) {
511     // Only adjust stream level flow controller if we are still reading.
512     if (!read_side_closed_) {
513       flow_controller_.AddBytesConsumed(bytes);
514     }
515 
516     connection_flow_controller_->AddBytesConsumed(bytes);
517   }
518 }
519 
IsFlowControlBlocked()520 bool ReliableQuicStream::IsFlowControlBlocked() {
521   return flow_controller_.IsBlocked() ||
522          connection_flow_controller_->IsBlocked();
523 }
524 
525 }  // namespace net
526