1 //===--- DeclCXX.cpp - C++ Declaration AST Node Implementation ------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the C++ related Decl classes.
11 //
12 //===----------------------------------------------------------------------===//
13 #include "clang/AST/DeclCXX.h"
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/ASTLambda.h"
16 #include "clang/AST/ASTMutationListener.h"
17 #include "clang/AST/CXXInheritance.h"
18 #include "clang/AST/DeclTemplate.h"
19 #include "clang/AST/Expr.h"
20 #include "clang/AST/ExprCXX.h"
21 #include "clang/AST/TypeLoc.h"
22 #include "clang/Basic/IdentifierTable.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 using namespace clang;
26
27 //===----------------------------------------------------------------------===//
28 // Decl Allocation/Deallocation Method Implementations
29 //===----------------------------------------------------------------------===//
30
anchor()31 void AccessSpecDecl::anchor() { }
32
CreateDeserialized(ASTContext & C,unsigned ID)33 AccessSpecDecl *AccessSpecDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
34 return new (C, ID) AccessSpecDecl(EmptyShell());
35 }
36
getFromExternalSource(ASTContext & C) const37 void LazyASTUnresolvedSet::getFromExternalSource(ASTContext &C) const {
38 ExternalASTSource *Source = C.getExternalSource();
39 assert(Impl.Decls.isLazy() && "getFromExternalSource for non-lazy set");
40 assert(Source && "getFromExternalSource with no external source");
41
42 for (ASTUnresolvedSet::iterator I = Impl.begin(); I != Impl.end(); ++I)
43 I.setDecl(cast<NamedDecl>(Source->GetExternalDecl(
44 reinterpret_cast<uintptr_t>(I.getDecl()) >> 2)));
45 Impl.Decls.setLazy(false);
46 }
47
DefinitionData(CXXRecordDecl * D)48 CXXRecordDecl::DefinitionData::DefinitionData(CXXRecordDecl *D)
49 : UserDeclaredConstructor(false), UserDeclaredSpecialMembers(0),
50 Aggregate(true), PlainOldData(true), Empty(true), Polymorphic(false),
51 Abstract(false), IsStandardLayout(true), HasNoNonEmptyBases(true),
52 HasPrivateFields(false), HasProtectedFields(false), HasPublicFields(false),
53 HasMutableFields(false), HasVariantMembers(false), HasOnlyCMembers(true),
54 HasInClassInitializer(false), HasUninitializedReferenceMember(false),
55 NeedOverloadResolutionForMoveConstructor(false),
56 NeedOverloadResolutionForMoveAssignment(false),
57 NeedOverloadResolutionForDestructor(false),
58 DefaultedMoveConstructorIsDeleted(false),
59 DefaultedMoveAssignmentIsDeleted(false),
60 DefaultedDestructorIsDeleted(false),
61 HasTrivialSpecialMembers(SMF_All),
62 DeclaredNonTrivialSpecialMembers(0),
63 HasIrrelevantDestructor(true),
64 HasConstexprNonCopyMoveConstructor(false),
65 DefaultedDefaultConstructorIsConstexpr(true),
66 HasConstexprDefaultConstructor(false),
67 HasNonLiteralTypeFieldsOrBases(false), ComputedVisibleConversions(false),
68 UserProvidedDefaultConstructor(false), DeclaredSpecialMembers(0),
69 ImplicitCopyConstructorHasConstParam(true),
70 ImplicitCopyAssignmentHasConstParam(true),
71 HasDeclaredCopyConstructorWithConstParam(false),
72 HasDeclaredCopyAssignmentWithConstParam(false),
73 IsLambda(false), IsParsingBaseSpecifiers(false), NumBases(0), NumVBases(0),
74 Bases(), VBases(),
75 Definition(D), FirstFriend() {
76 }
77
getBasesSlowCase() const78 CXXBaseSpecifier *CXXRecordDecl::DefinitionData::getBasesSlowCase() const {
79 return Bases.get(Definition->getASTContext().getExternalSource());
80 }
81
getVBasesSlowCase() const82 CXXBaseSpecifier *CXXRecordDecl::DefinitionData::getVBasesSlowCase() const {
83 return VBases.get(Definition->getASTContext().getExternalSource());
84 }
85
CXXRecordDecl(Kind K,TagKind TK,const ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,CXXRecordDecl * PrevDecl)86 CXXRecordDecl::CXXRecordDecl(Kind K, TagKind TK, const ASTContext &C,
87 DeclContext *DC, SourceLocation StartLoc,
88 SourceLocation IdLoc, IdentifierInfo *Id,
89 CXXRecordDecl *PrevDecl)
90 : RecordDecl(K, TK, C, DC, StartLoc, IdLoc, Id, PrevDecl),
91 DefinitionData(PrevDecl ? PrevDecl->DefinitionData
92 : DefinitionDataPtr(this)),
93 TemplateOrInstantiation() {}
94
Create(const ASTContext & C,TagKind TK,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,CXXRecordDecl * PrevDecl,bool DelayTypeCreation)95 CXXRecordDecl *CXXRecordDecl::Create(const ASTContext &C, TagKind TK,
96 DeclContext *DC, SourceLocation StartLoc,
97 SourceLocation IdLoc, IdentifierInfo *Id,
98 CXXRecordDecl* PrevDecl,
99 bool DelayTypeCreation) {
100 CXXRecordDecl *R = new (C, DC) CXXRecordDecl(CXXRecord, TK, C, DC, StartLoc,
101 IdLoc, Id, PrevDecl);
102 R->MayHaveOutOfDateDef = C.getLangOpts().Modules;
103
104 // FIXME: DelayTypeCreation seems like such a hack
105 if (!DelayTypeCreation)
106 C.getTypeDeclType(R, PrevDecl);
107 return R;
108 }
109
110 CXXRecordDecl *
CreateLambda(const ASTContext & C,DeclContext * DC,TypeSourceInfo * Info,SourceLocation Loc,bool Dependent,bool IsGeneric,LambdaCaptureDefault CaptureDefault)111 CXXRecordDecl::CreateLambda(const ASTContext &C, DeclContext *DC,
112 TypeSourceInfo *Info, SourceLocation Loc,
113 bool Dependent, bool IsGeneric,
114 LambdaCaptureDefault CaptureDefault) {
115 CXXRecordDecl *R =
116 new (C, DC) CXXRecordDecl(CXXRecord, TTK_Class, C, DC, Loc, Loc,
117 nullptr, nullptr);
118 R->IsBeingDefined = true;
119 R->DefinitionData =
120 new (C) struct LambdaDefinitionData(R, Info, Dependent, IsGeneric,
121 CaptureDefault);
122 R->MayHaveOutOfDateDef = false;
123 R->setImplicit(true);
124 C.getTypeDeclType(R, /*PrevDecl=*/nullptr);
125 return R;
126 }
127
128 CXXRecordDecl *
CreateDeserialized(const ASTContext & C,unsigned ID)129 CXXRecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) {
130 CXXRecordDecl *R = new (C, ID) CXXRecordDecl(
131 CXXRecord, TTK_Struct, C, nullptr, SourceLocation(), SourceLocation(),
132 nullptr, nullptr);
133 R->MayHaveOutOfDateDef = false;
134 return R;
135 }
136
137 void
setBases(CXXBaseSpecifier const * const * Bases,unsigned NumBases)138 CXXRecordDecl::setBases(CXXBaseSpecifier const * const *Bases,
139 unsigned NumBases) {
140 ASTContext &C = getASTContext();
141
142 if (!data().Bases.isOffset() && data().NumBases > 0)
143 C.Deallocate(data().getBases());
144
145 if (NumBases) {
146 // C++ [dcl.init.aggr]p1:
147 // An aggregate is [...] a class with [...] no base classes [...].
148 data().Aggregate = false;
149
150 // C++ [class]p4:
151 // A POD-struct is an aggregate class...
152 data().PlainOldData = false;
153 }
154
155 // The set of seen virtual base types.
156 llvm::SmallPtrSet<CanQualType, 8> SeenVBaseTypes;
157
158 // The virtual bases of this class.
159 SmallVector<const CXXBaseSpecifier *, 8> VBases;
160
161 data().Bases = new(C) CXXBaseSpecifier [NumBases];
162 data().NumBases = NumBases;
163 for (unsigned i = 0; i < NumBases; ++i) {
164 data().getBases()[i] = *Bases[i];
165 // Keep track of inherited vbases for this base class.
166 const CXXBaseSpecifier *Base = Bases[i];
167 QualType BaseType = Base->getType();
168 // Skip dependent types; we can't do any checking on them now.
169 if (BaseType->isDependentType())
170 continue;
171 CXXRecordDecl *BaseClassDecl
172 = cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl());
173
174 // A class with a non-empty base class is not empty.
175 // FIXME: Standard ref?
176 if (!BaseClassDecl->isEmpty()) {
177 if (!data().Empty) {
178 // C++0x [class]p7:
179 // A standard-layout class is a class that:
180 // [...]
181 // -- either has no non-static data members in the most derived
182 // class and at most one base class with non-static data members,
183 // or has no base classes with non-static data members, and
184 // If this is the second non-empty base, then neither of these two
185 // clauses can be true.
186 data().IsStandardLayout = false;
187 }
188
189 data().Empty = false;
190 data().HasNoNonEmptyBases = false;
191 }
192
193 // C++ [class.virtual]p1:
194 // A class that declares or inherits a virtual function is called a
195 // polymorphic class.
196 if (BaseClassDecl->isPolymorphic())
197 data().Polymorphic = true;
198
199 // C++0x [class]p7:
200 // A standard-layout class is a class that: [...]
201 // -- has no non-standard-layout base classes
202 if (!BaseClassDecl->isStandardLayout())
203 data().IsStandardLayout = false;
204
205 // Record if this base is the first non-literal field or base.
206 if (!hasNonLiteralTypeFieldsOrBases() && !BaseType->isLiteralType(C))
207 data().HasNonLiteralTypeFieldsOrBases = true;
208
209 // Now go through all virtual bases of this base and add them.
210 for (const auto &VBase : BaseClassDecl->vbases()) {
211 // Add this base if it's not already in the list.
212 if (SeenVBaseTypes.insert(C.getCanonicalType(VBase.getType()))) {
213 VBases.push_back(&VBase);
214
215 // C++11 [class.copy]p8:
216 // The implicitly-declared copy constructor for a class X will have
217 // the form 'X::X(const X&)' if each [...] virtual base class B of X
218 // has a copy constructor whose first parameter is of type
219 // 'const B&' or 'const volatile B&' [...]
220 if (CXXRecordDecl *VBaseDecl = VBase.getType()->getAsCXXRecordDecl())
221 if (!VBaseDecl->hasCopyConstructorWithConstParam())
222 data().ImplicitCopyConstructorHasConstParam = false;
223 }
224 }
225
226 if (Base->isVirtual()) {
227 // Add this base if it's not already in the list.
228 if (SeenVBaseTypes.insert(C.getCanonicalType(BaseType)))
229 VBases.push_back(Base);
230
231 // C++0x [meta.unary.prop] is_empty:
232 // T is a class type, but not a union type, with ... no virtual base
233 // classes
234 data().Empty = false;
235
236 // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
237 // A [default constructor, copy/move constructor, or copy/move assignment
238 // operator for a class X] is trivial [...] if:
239 // -- class X has [...] no virtual base classes
240 data().HasTrivialSpecialMembers &= SMF_Destructor;
241
242 // C++0x [class]p7:
243 // A standard-layout class is a class that: [...]
244 // -- has [...] no virtual base classes
245 data().IsStandardLayout = false;
246
247 // C++11 [dcl.constexpr]p4:
248 // In the definition of a constexpr constructor [...]
249 // -- the class shall not have any virtual base classes
250 data().DefaultedDefaultConstructorIsConstexpr = false;
251 } else {
252 // C++ [class.ctor]p5:
253 // A default constructor is trivial [...] if:
254 // -- all the direct base classes of its class have trivial default
255 // constructors.
256 if (!BaseClassDecl->hasTrivialDefaultConstructor())
257 data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor;
258
259 // C++0x [class.copy]p13:
260 // A copy/move constructor for class X is trivial if [...]
261 // [...]
262 // -- the constructor selected to copy/move each direct base class
263 // subobject is trivial, and
264 if (!BaseClassDecl->hasTrivialCopyConstructor())
265 data().HasTrivialSpecialMembers &= ~SMF_CopyConstructor;
266 // If the base class doesn't have a simple move constructor, we'll eagerly
267 // declare it and perform overload resolution to determine which function
268 // it actually calls. If it does have a simple move constructor, this
269 // check is correct.
270 if (!BaseClassDecl->hasTrivialMoveConstructor())
271 data().HasTrivialSpecialMembers &= ~SMF_MoveConstructor;
272
273 // C++0x [class.copy]p27:
274 // A copy/move assignment operator for class X is trivial if [...]
275 // [...]
276 // -- the assignment operator selected to copy/move each direct base
277 // class subobject is trivial, and
278 if (!BaseClassDecl->hasTrivialCopyAssignment())
279 data().HasTrivialSpecialMembers &= ~SMF_CopyAssignment;
280 // If the base class doesn't have a simple move assignment, we'll eagerly
281 // declare it and perform overload resolution to determine which function
282 // it actually calls. If it does have a simple move assignment, this
283 // check is correct.
284 if (!BaseClassDecl->hasTrivialMoveAssignment())
285 data().HasTrivialSpecialMembers &= ~SMF_MoveAssignment;
286
287 // C++11 [class.ctor]p6:
288 // If that user-written default constructor would satisfy the
289 // requirements of a constexpr constructor, the implicitly-defined
290 // default constructor is constexpr.
291 if (!BaseClassDecl->hasConstexprDefaultConstructor())
292 data().DefaultedDefaultConstructorIsConstexpr = false;
293 }
294
295 // C++ [class.ctor]p3:
296 // A destructor is trivial if all the direct base classes of its class
297 // have trivial destructors.
298 if (!BaseClassDecl->hasTrivialDestructor())
299 data().HasTrivialSpecialMembers &= ~SMF_Destructor;
300
301 if (!BaseClassDecl->hasIrrelevantDestructor())
302 data().HasIrrelevantDestructor = false;
303
304 // C++11 [class.copy]p18:
305 // The implicitly-declared copy assignment oeprator for a class X will
306 // have the form 'X& X::operator=(const X&)' if each direct base class B
307 // of X has a copy assignment operator whose parameter is of type 'const
308 // B&', 'const volatile B&', or 'B' [...]
309 if (!BaseClassDecl->hasCopyAssignmentWithConstParam())
310 data().ImplicitCopyAssignmentHasConstParam = false;
311
312 // C++11 [class.copy]p8:
313 // The implicitly-declared copy constructor for a class X will have
314 // the form 'X::X(const X&)' if each direct [...] base class B of X
315 // has a copy constructor whose first parameter is of type
316 // 'const B&' or 'const volatile B&' [...]
317 if (!BaseClassDecl->hasCopyConstructorWithConstParam())
318 data().ImplicitCopyConstructorHasConstParam = false;
319
320 // A class has an Objective-C object member if... or any of its bases
321 // has an Objective-C object member.
322 if (BaseClassDecl->hasObjectMember())
323 setHasObjectMember(true);
324
325 if (BaseClassDecl->hasVolatileMember())
326 setHasVolatileMember(true);
327
328 // Keep track of the presence of mutable fields.
329 if (BaseClassDecl->hasMutableFields())
330 data().HasMutableFields = true;
331
332 if (BaseClassDecl->hasUninitializedReferenceMember())
333 data().HasUninitializedReferenceMember = true;
334
335 addedClassSubobject(BaseClassDecl);
336 }
337
338 if (VBases.empty()) {
339 data().IsParsingBaseSpecifiers = false;
340 return;
341 }
342
343 // Create base specifier for any direct or indirect virtual bases.
344 data().VBases = new (C) CXXBaseSpecifier[VBases.size()];
345 data().NumVBases = VBases.size();
346 for (int I = 0, E = VBases.size(); I != E; ++I) {
347 QualType Type = VBases[I]->getType();
348 if (!Type->isDependentType())
349 addedClassSubobject(Type->getAsCXXRecordDecl());
350 data().getVBases()[I] = *VBases[I];
351 }
352
353 data().IsParsingBaseSpecifiers = false;
354 }
355
addedClassSubobject(CXXRecordDecl * Subobj)356 void CXXRecordDecl::addedClassSubobject(CXXRecordDecl *Subobj) {
357 // C++11 [class.copy]p11:
358 // A defaulted copy/move constructor for a class X is defined as
359 // deleted if X has:
360 // -- a direct or virtual base class B that cannot be copied/moved [...]
361 // -- a non-static data member of class type M (or array thereof)
362 // that cannot be copied or moved [...]
363 if (!Subobj->hasSimpleMoveConstructor())
364 data().NeedOverloadResolutionForMoveConstructor = true;
365
366 // C++11 [class.copy]p23:
367 // A defaulted copy/move assignment operator for a class X is defined as
368 // deleted if X has:
369 // -- a direct or virtual base class B that cannot be copied/moved [...]
370 // -- a non-static data member of class type M (or array thereof)
371 // that cannot be copied or moved [...]
372 if (!Subobj->hasSimpleMoveAssignment())
373 data().NeedOverloadResolutionForMoveAssignment = true;
374
375 // C++11 [class.ctor]p5, C++11 [class.copy]p11, C++11 [class.dtor]p5:
376 // A defaulted [ctor or dtor] for a class X is defined as
377 // deleted if X has:
378 // -- any direct or virtual base class [...] has a type with a destructor
379 // that is deleted or inaccessible from the defaulted [ctor or dtor].
380 // -- any non-static data member has a type with a destructor
381 // that is deleted or inaccessible from the defaulted [ctor or dtor].
382 if (!Subobj->hasSimpleDestructor()) {
383 data().NeedOverloadResolutionForMoveConstructor = true;
384 data().NeedOverloadResolutionForDestructor = true;
385 }
386 }
387
388 /// Callback function for CXXRecordDecl::forallBases that acknowledges
389 /// that it saw a base class.
SawBase(const CXXRecordDecl *,void *)390 static bool SawBase(const CXXRecordDecl *, void *) {
391 return true;
392 }
393
hasAnyDependentBases() const394 bool CXXRecordDecl::hasAnyDependentBases() const {
395 if (!isDependentContext())
396 return false;
397
398 return !forallBases(SawBase, nullptr);
399 }
400
isTriviallyCopyable() const401 bool CXXRecordDecl::isTriviallyCopyable() const {
402 // C++0x [class]p5:
403 // A trivially copyable class is a class that:
404 // -- has no non-trivial copy constructors,
405 if (hasNonTrivialCopyConstructor()) return false;
406 // -- has no non-trivial move constructors,
407 if (hasNonTrivialMoveConstructor()) return false;
408 // -- has no non-trivial copy assignment operators,
409 if (hasNonTrivialCopyAssignment()) return false;
410 // -- has no non-trivial move assignment operators, and
411 if (hasNonTrivialMoveAssignment()) return false;
412 // -- has a trivial destructor.
413 if (!hasTrivialDestructor()) return false;
414
415 return true;
416 }
417
markedVirtualFunctionPure()418 void CXXRecordDecl::markedVirtualFunctionPure() {
419 // C++ [class.abstract]p2:
420 // A class is abstract if it has at least one pure virtual function.
421 data().Abstract = true;
422 }
423
addedMember(Decl * D)424 void CXXRecordDecl::addedMember(Decl *D) {
425 if (!D->isImplicit() &&
426 !isa<FieldDecl>(D) &&
427 !isa<IndirectFieldDecl>(D) &&
428 (!isa<TagDecl>(D) || cast<TagDecl>(D)->getTagKind() == TTK_Class ||
429 cast<TagDecl>(D)->getTagKind() == TTK_Interface))
430 data().HasOnlyCMembers = false;
431
432 // Ignore friends and invalid declarations.
433 if (D->getFriendObjectKind() || D->isInvalidDecl())
434 return;
435
436 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D);
437 if (FunTmpl)
438 D = FunTmpl->getTemplatedDecl();
439
440 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
441 if (Method->isVirtual()) {
442 // C++ [dcl.init.aggr]p1:
443 // An aggregate is an array or a class with [...] no virtual functions.
444 data().Aggregate = false;
445
446 // C++ [class]p4:
447 // A POD-struct is an aggregate class...
448 data().PlainOldData = false;
449
450 // Virtual functions make the class non-empty.
451 // FIXME: Standard ref?
452 data().Empty = false;
453
454 // C++ [class.virtual]p1:
455 // A class that declares or inherits a virtual function is called a
456 // polymorphic class.
457 data().Polymorphic = true;
458
459 // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
460 // A [default constructor, copy/move constructor, or copy/move
461 // assignment operator for a class X] is trivial [...] if:
462 // -- class X has no virtual functions [...]
463 data().HasTrivialSpecialMembers &= SMF_Destructor;
464
465 // C++0x [class]p7:
466 // A standard-layout class is a class that: [...]
467 // -- has no virtual functions
468 data().IsStandardLayout = false;
469 }
470 }
471
472 // Notify the listener if an implicit member was added after the definition
473 // was completed.
474 if (!isBeingDefined() && D->isImplicit())
475 if (ASTMutationListener *L = getASTMutationListener())
476 L->AddedCXXImplicitMember(data().Definition, D);
477
478 // The kind of special member this declaration is, if any.
479 unsigned SMKind = 0;
480
481 // Handle constructors.
482 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
483 if (!Constructor->isImplicit()) {
484 // Note that we have a user-declared constructor.
485 data().UserDeclaredConstructor = true;
486
487 // C++ [class]p4:
488 // A POD-struct is an aggregate class [...]
489 // Since the POD bit is meant to be C++03 POD-ness, clear it even if the
490 // type is technically an aggregate in C++0x since it wouldn't be in 03.
491 data().PlainOldData = false;
492 }
493
494 // Technically, "user-provided" is only defined for special member
495 // functions, but the intent of the standard is clearly that it should apply
496 // to all functions.
497 bool UserProvided = Constructor->isUserProvided();
498
499 if (Constructor->isDefaultConstructor()) {
500 SMKind |= SMF_DefaultConstructor;
501
502 if (UserProvided)
503 data().UserProvidedDefaultConstructor = true;
504 if (Constructor->isConstexpr())
505 data().HasConstexprDefaultConstructor = true;
506 }
507
508 if (!FunTmpl) {
509 unsigned Quals;
510 if (Constructor->isCopyConstructor(Quals)) {
511 SMKind |= SMF_CopyConstructor;
512
513 if (Quals & Qualifiers::Const)
514 data().HasDeclaredCopyConstructorWithConstParam = true;
515 } else if (Constructor->isMoveConstructor())
516 SMKind |= SMF_MoveConstructor;
517 }
518
519 // Record if we see any constexpr constructors which are neither copy
520 // nor move constructors.
521 if (Constructor->isConstexpr() && !Constructor->isCopyOrMoveConstructor())
522 data().HasConstexprNonCopyMoveConstructor = true;
523
524 // C++ [dcl.init.aggr]p1:
525 // An aggregate is an array or a class with no user-declared
526 // constructors [...].
527 // C++11 [dcl.init.aggr]p1:
528 // An aggregate is an array or a class with no user-provided
529 // constructors [...].
530 if (getASTContext().getLangOpts().CPlusPlus11
531 ? UserProvided : !Constructor->isImplicit())
532 data().Aggregate = false;
533 }
534
535 // Handle destructors.
536 if (CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) {
537 SMKind |= SMF_Destructor;
538
539 if (DD->isUserProvided())
540 data().HasIrrelevantDestructor = false;
541 // If the destructor is explicitly defaulted and not trivial or not public
542 // or if the destructor is deleted, we clear HasIrrelevantDestructor in
543 // finishedDefaultedOrDeletedMember.
544
545 // C++11 [class.dtor]p5:
546 // A destructor is trivial if [...] the destructor is not virtual.
547 if (DD->isVirtual())
548 data().HasTrivialSpecialMembers &= ~SMF_Destructor;
549 }
550
551 // Handle member functions.
552 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
553 if (Method->isCopyAssignmentOperator()) {
554 SMKind |= SMF_CopyAssignment;
555
556 const ReferenceType *ParamTy =
557 Method->getParamDecl(0)->getType()->getAs<ReferenceType>();
558 if (!ParamTy || ParamTy->getPointeeType().isConstQualified())
559 data().HasDeclaredCopyAssignmentWithConstParam = true;
560 }
561
562 if (Method->isMoveAssignmentOperator())
563 SMKind |= SMF_MoveAssignment;
564
565 // Keep the list of conversion functions up-to-date.
566 if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(D)) {
567 // FIXME: We use the 'unsafe' accessor for the access specifier here,
568 // because Sema may not have set it yet. That's really just a misdesign
569 // in Sema. However, LLDB *will* have set the access specifier correctly,
570 // and adds declarations after the class is technically completed,
571 // so completeDefinition()'s overriding of the access specifiers doesn't
572 // work.
573 AccessSpecifier AS = Conversion->getAccessUnsafe();
574
575 if (Conversion->getPrimaryTemplate()) {
576 // We don't record specializations.
577 } else {
578 ASTContext &Ctx = getASTContext();
579 ASTUnresolvedSet &Conversions = data().Conversions.get(Ctx);
580 NamedDecl *Primary =
581 FunTmpl ? cast<NamedDecl>(FunTmpl) : cast<NamedDecl>(Conversion);
582 if (Primary->getPreviousDecl())
583 Conversions.replace(cast<NamedDecl>(Primary->getPreviousDecl()),
584 Primary, AS);
585 else
586 Conversions.addDecl(Ctx, Primary, AS);
587 }
588 }
589
590 if (SMKind) {
591 // If this is the first declaration of a special member, we no longer have
592 // an implicit trivial special member.
593 data().HasTrivialSpecialMembers &=
594 data().DeclaredSpecialMembers | ~SMKind;
595
596 if (!Method->isImplicit() && !Method->isUserProvided()) {
597 // This method is user-declared but not user-provided. We can't work out
598 // whether it's trivial yet (not until we get to the end of the class).
599 // We'll handle this method in finishedDefaultedOrDeletedMember.
600 } else if (Method->isTrivial())
601 data().HasTrivialSpecialMembers |= SMKind;
602 else
603 data().DeclaredNonTrivialSpecialMembers |= SMKind;
604
605 // Note when we have declared a declared special member, and suppress the
606 // implicit declaration of this special member.
607 data().DeclaredSpecialMembers |= SMKind;
608
609 if (!Method->isImplicit()) {
610 data().UserDeclaredSpecialMembers |= SMKind;
611
612 // C++03 [class]p4:
613 // A POD-struct is an aggregate class that has [...] no user-defined
614 // copy assignment operator and no user-defined destructor.
615 //
616 // Since the POD bit is meant to be C++03 POD-ness, and in C++03,
617 // aggregates could not have any constructors, clear it even for an
618 // explicitly defaulted or deleted constructor.
619 // type is technically an aggregate in C++0x since it wouldn't be in 03.
620 //
621 // Also, a user-declared move assignment operator makes a class non-POD.
622 // This is an extension in C++03.
623 data().PlainOldData = false;
624 }
625 }
626
627 return;
628 }
629
630 // Handle non-static data members.
631 if (FieldDecl *Field = dyn_cast<FieldDecl>(D)) {
632 // C++ [class.bit]p2:
633 // A declaration for a bit-field that omits the identifier declares an
634 // unnamed bit-field. Unnamed bit-fields are not members and cannot be
635 // initialized.
636 if (Field->isUnnamedBitfield())
637 return;
638
639 // C++ [dcl.init.aggr]p1:
640 // An aggregate is an array or a class (clause 9) with [...] no
641 // private or protected non-static data members (clause 11).
642 //
643 // A POD must be an aggregate.
644 if (D->getAccess() == AS_private || D->getAccess() == AS_protected) {
645 data().Aggregate = false;
646 data().PlainOldData = false;
647 }
648
649 // C++0x [class]p7:
650 // A standard-layout class is a class that:
651 // [...]
652 // -- has the same access control for all non-static data members,
653 switch (D->getAccess()) {
654 case AS_private: data().HasPrivateFields = true; break;
655 case AS_protected: data().HasProtectedFields = true; break;
656 case AS_public: data().HasPublicFields = true; break;
657 case AS_none: llvm_unreachable("Invalid access specifier");
658 };
659 if ((data().HasPrivateFields + data().HasProtectedFields +
660 data().HasPublicFields) > 1)
661 data().IsStandardLayout = false;
662
663 // Keep track of the presence of mutable fields.
664 if (Field->isMutable())
665 data().HasMutableFields = true;
666
667 // C++11 [class.union]p8, DR1460:
668 // If X is a union, a non-static data member of X that is not an anonymous
669 // union is a variant member of X.
670 if (isUnion() && !Field->isAnonymousStructOrUnion())
671 data().HasVariantMembers = true;
672
673 // C++0x [class]p9:
674 // A POD struct is a class that is both a trivial class and a
675 // standard-layout class, and has no non-static data members of type
676 // non-POD struct, non-POD union (or array of such types).
677 //
678 // Automatic Reference Counting: the presence of a member of Objective-C pointer type
679 // that does not explicitly have no lifetime makes the class a non-POD.
680 // However, we delay setting PlainOldData to false in this case so that
681 // Sema has a chance to diagnostic causes where the same class will be
682 // non-POD with Automatic Reference Counting but a POD without ARC.
683 // In this case, the class will become a non-POD class when we complete
684 // the definition.
685 ASTContext &Context = getASTContext();
686 QualType T = Context.getBaseElementType(Field->getType());
687 if (T->isObjCRetainableType() || T.isObjCGCStrong()) {
688 if (!Context.getLangOpts().ObjCAutoRefCount ||
689 T.getObjCLifetime() != Qualifiers::OCL_ExplicitNone)
690 setHasObjectMember(true);
691 } else if (!T.isCXX98PODType(Context))
692 data().PlainOldData = false;
693
694 if (T->isReferenceType()) {
695 if (!Field->hasInClassInitializer())
696 data().HasUninitializedReferenceMember = true;
697
698 // C++0x [class]p7:
699 // A standard-layout class is a class that:
700 // -- has no non-static data members of type [...] reference,
701 data().IsStandardLayout = false;
702 }
703
704 // Record if this field is the first non-literal or volatile field or base.
705 if (!T->isLiteralType(Context) || T.isVolatileQualified())
706 data().HasNonLiteralTypeFieldsOrBases = true;
707
708 if (Field->hasInClassInitializer() ||
709 (Field->isAnonymousStructOrUnion() &&
710 Field->getType()->getAsCXXRecordDecl()->hasInClassInitializer())) {
711 data().HasInClassInitializer = true;
712
713 // C++11 [class]p5:
714 // A default constructor is trivial if [...] no non-static data member
715 // of its class has a brace-or-equal-initializer.
716 data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor;
717
718 // C++11 [dcl.init.aggr]p1:
719 // An aggregate is a [...] class with [...] no
720 // brace-or-equal-initializers for non-static data members.
721 //
722 // This rule was removed in C++1y.
723 if (!getASTContext().getLangOpts().CPlusPlus1y)
724 data().Aggregate = false;
725
726 // C++11 [class]p10:
727 // A POD struct is [...] a trivial class.
728 data().PlainOldData = false;
729 }
730
731 // C++11 [class.copy]p23:
732 // A defaulted copy/move assignment operator for a class X is defined
733 // as deleted if X has:
734 // -- a non-static data member of reference type
735 if (T->isReferenceType())
736 data().DefaultedMoveAssignmentIsDeleted = true;
737
738 if (const RecordType *RecordTy = T->getAs<RecordType>()) {
739 CXXRecordDecl* FieldRec = cast<CXXRecordDecl>(RecordTy->getDecl());
740 if (FieldRec->getDefinition()) {
741 addedClassSubobject(FieldRec);
742
743 // We may need to perform overload resolution to determine whether a
744 // field can be moved if it's const or volatile qualified.
745 if (T.getCVRQualifiers() & (Qualifiers::Const | Qualifiers::Volatile)) {
746 data().NeedOverloadResolutionForMoveConstructor = true;
747 data().NeedOverloadResolutionForMoveAssignment = true;
748 }
749
750 // C++11 [class.ctor]p5, C++11 [class.copy]p11:
751 // A defaulted [special member] for a class X is defined as
752 // deleted if:
753 // -- X is a union-like class that has a variant member with a
754 // non-trivial [corresponding special member]
755 if (isUnion()) {
756 if (FieldRec->hasNonTrivialMoveConstructor())
757 data().DefaultedMoveConstructorIsDeleted = true;
758 if (FieldRec->hasNonTrivialMoveAssignment())
759 data().DefaultedMoveAssignmentIsDeleted = true;
760 if (FieldRec->hasNonTrivialDestructor())
761 data().DefaultedDestructorIsDeleted = true;
762 }
763
764 // C++0x [class.ctor]p5:
765 // A default constructor is trivial [...] if:
766 // -- for all the non-static data members of its class that are of
767 // class type (or array thereof), each such class has a trivial
768 // default constructor.
769 if (!FieldRec->hasTrivialDefaultConstructor())
770 data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor;
771
772 // C++0x [class.copy]p13:
773 // A copy/move constructor for class X is trivial if [...]
774 // [...]
775 // -- for each non-static data member of X that is of class type (or
776 // an array thereof), the constructor selected to copy/move that
777 // member is trivial;
778 if (!FieldRec->hasTrivialCopyConstructor())
779 data().HasTrivialSpecialMembers &= ~SMF_CopyConstructor;
780 // If the field doesn't have a simple move constructor, we'll eagerly
781 // declare the move constructor for this class and we'll decide whether
782 // it's trivial then.
783 if (!FieldRec->hasTrivialMoveConstructor())
784 data().HasTrivialSpecialMembers &= ~SMF_MoveConstructor;
785
786 // C++0x [class.copy]p27:
787 // A copy/move assignment operator for class X is trivial if [...]
788 // [...]
789 // -- for each non-static data member of X that is of class type (or
790 // an array thereof), the assignment operator selected to
791 // copy/move that member is trivial;
792 if (!FieldRec->hasTrivialCopyAssignment())
793 data().HasTrivialSpecialMembers &= ~SMF_CopyAssignment;
794 // If the field doesn't have a simple move assignment, we'll eagerly
795 // declare the move assignment for this class and we'll decide whether
796 // it's trivial then.
797 if (!FieldRec->hasTrivialMoveAssignment())
798 data().HasTrivialSpecialMembers &= ~SMF_MoveAssignment;
799
800 if (!FieldRec->hasTrivialDestructor())
801 data().HasTrivialSpecialMembers &= ~SMF_Destructor;
802 if (!FieldRec->hasIrrelevantDestructor())
803 data().HasIrrelevantDestructor = false;
804 if (FieldRec->hasObjectMember())
805 setHasObjectMember(true);
806 if (FieldRec->hasVolatileMember())
807 setHasVolatileMember(true);
808
809 // C++0x [class]p7:
810 // A standard-layout class is a class that:
811 // -- has no non-static data members of type non-standard-layout
812 // class (or array of such types) [...]
813 if (!FieldRec->isStandardLayout())
814 data().IsStandardLayout = false;
815
816 // C++0x [class]p7:
817 // A standard-layout class is a class that:
818 // [...]
819 // -- has no base classes of the same type as the first non-static
820 // data member.
821 // We don't want to expend bits in the state of the record decl
822 // tracking whether this is the first non-static data member so we
823 // cheat a bit and use some of the existing state: the empty bit.
824 // Virtual bases and virtual methods make a class non-empty, but they
825 // also make it non-standard-layout so we needn't check here.
826 // A non-empty base class may leave the class standard-layout, but not
827 // if we have arrived here, and have at least one non-static data
828 // member. If IsStandardLayout remains true, then the first non-static
829 // data member must come through here with Empty still true, and Empty
830 // will subsequently be set to false below.
831 if (data().IsStandardLayout && data().Empty) {
832 for (const auto &BI : bases()) {
833 if (Context.hasSameUnqualifiedType(BI.getType(), T)) {
834 data().IsStandardLayout = false;
835 break;
836 }
837 }
838 }
839
840 // Keep track of the presence of mutable fields.
841 if (FieldRec->hasMutableFields())
842 data().HasMutableFields = true;
843
844 // C++11 [class.copy]p13:
845 // If the implicitly-defined constructor would satisfy the
846 // requirements of a constexpr constructor, the implicitly-defined
847 // constructor is constexpr.
848 // C++11 [dcl.constexpr]p4:
849 // -- every constructor involved in initializing non-static data
850 // members [...] shall be a constexpr constructor
851 if (!Field->hasInClassInitializer() &&
852 !FieldRec->hasConstexprDefaultConstructor() && !isUnion())
853 // The standard requires any in-class initializer to be a constant
854 // expression. We consider this to be a defect.
855 data().DefaultedDefaultConstructorIsConstexpr = false;
856
857 // C++11 [class.copy]p8:
858 // The implicitly-declared copy constructor for a class X will have
859 // the form 'X::X(const X&)' if [...] for all the non-static data
860 // members of X that are of a class type M (or array thereof), each
861 // such class type has a copy constructor whose first parameter is
862 // of type 'const M&' or 'const volatile M&'.
863 if (!FieldRec->hasCopyConstructorWithConstParam())
864 data().ImplicitCopyConstructorHasConstParam = false;
865
866 // C++11 [class.copy]p18:
867 // The implicitly-declared copy assignment oeprator for a class X will
868 // have the form 'X& X::operator=(const X&)' if [...] for all the
869 // non-static data members of X that are of a class type M (or array
870 // thereof), each such class type has a copy assignment operator whose
871 // parameter is of type 'const M&', 'const volatile M&' or 'M'.
872 if (!FieldRec->hasCopyAssignmentWithConstParam())
873 data().ImplicitCopyAssignmentHasConstParam = false;
874
875 if (FieldRec->hasUninitializedReferenceMember() &&
876 !Field->hasInClassInitializer())
877 data().HasUninitializedReferenceMember = true;
878
879 // C++11 [class.union]p8, DR1460:
880 // a non-static data member of an anonymous union that is a member of
881 // X is also a variant member of X.
882 if (FieldRec->hasVariantMembers() &&
883 Field->isAnonymousStructOrUnion())
884 data().HasVariantMembers = true;
885 }
886 } else {
887 // Base element type of field is a non-class type.
888 if (!T->isLiteralType(Context) ||
889 (!Field->hasInClassInitializer() && !isUnion()))
890 data().DefaultedDefaultConstructorIsConstexpr = false;
891
892 // C++11 [class.copy]p23:
893 // A defaulted copy/move assignment operator for a class X is defined
894 // as deleted if X has:
895 // -- a non-static data member of const non-class type (or array
896 // thereof)
897 if (T.isConstQualified())
898 data().DefaultedMoveAssignmentIsDeleted = true;
899 }
900
901 // C++0x [class]p7:
902 // A standard-layout class is a class that:
903 // [...]
904 // -- either has no non-static data members in the most derived
905 // class and at most one base class with non-static data members,
906 // or has no base classes with non-static data members, and
907 // At this point we know that we have a non-static data member, so the last
908 // clause holds.
909 if (!data().HasNoNonEmptyBases)
910 data().IsStandardLayout = false;
911
912 // If this is not a zero-length bit-field, then the class is not empty.
913 if (data().Empty) {
914 if (!Field->isBitField() ||
915 (!Field->getBitWidth()->isTypeDependent() &&
916 !Field->getBitWidth()->isValueDependent() &&
917 Field->getBitWidthValue(Context) != 0))
918 data().Empty = false;
919 }
920 }
921
922 // Handle using declarations of conversion functions.
923 if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(D)) {
924 if (Shadow->getDeclName().getNameKind()
925 == DeclarationName::CXXConversionFunctionName) {
926 ASTContext &Ctx = getASTContext();
927 data().Conversions.get(Ctx).addDecl(Ctx, Shadow, Shadow->getAccess());
928 }
929 }
930 }
931
finishedDefaultedOrDeletedMember(CXXMethodDecl * D)932 void CXXRecordDecl::finishedDefaultedOrDeletedMember(CXXMethodDecl *D) {
933 assert(!D->isImplicit() && !D->isUserProvided());
934
935 // The kind of special member this declaration is, if any.
936 unsigned SMKind = 0;
937
938 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
939 if (Constructor->isDefaultConstructor()) {
940 SMKind |= SMF_DefaultConstructor;
941 if (Constructor->isConstexpr())
942 data().HasConstexprDefaultConstructor = true;
943 }
944 if (Constructor->isCopyConstructor())
945 SMKind |= SMF_CopyConstructor;
946 else if (Constructor->isMoveConstructor())
947 SMKind |= SMF_MoveConstructor;
948 else if (Constructor->isConstexpr())
949 // We may now know that the constructor is constexpr.
950 data().HasConstexprNonCopyMoveConstructor = true;
951 } else if (isa<CXXDestructorDecl>(D)) {
952 SMKind |= SMF_Destructor;
953 if (!D->isTrivial() || D->getAccess() != AS_public || D->isDeleted())
954 data().HasIrrelevantDestructor = false;
955 } else if (D->isCopyAssignmentOperator())
956 SMKind |= SMF_CopyAssignment;
957 else if (D->isMoveAssignmentOperator())
958 SMKind |= SMF_MoveAssignment;
959
960 // Update which trivial / non-trivial special members we have.
961 // addedMember will have skipped this step for this member.
962 if (D->isTrivial())
963 data().HasTrivialSpecialMembers |= SMKind;
964 else
965 data().DeclaredNonTrivialSpecialMembers |= SMKind;
966 }
967
isCLike() const968 bool CXXRecordDecl::isCLike() const {
969 if (getTagKind() == TTK_Class || getTagKind() == TTK_Interface ||
970 !TemplateOrInstantiation.isNull())
971 return false;
972 if (!hasDefinition())
973 return true;
974
975 return isPOD() && data().HasOnlyCMembers;
976 }
977
isGenericLambda() const978 bool CXXRecordDecl::isGenericLambda() const {
979 if (!isLambda()) return false;
980 return getLambdaData().IsGenericLambda;
981 }
982
getLambdaCallOperator() const983 CXXMethodDecl* CXXRecordDecl::getLambdaCallOperator() const {
984 if (!isLambda()) return nullptr;
985 DeclarationName Name =
986 getASTContext().DeclarationNames.getCXXOperatorName(OO_Call);
987 DeclContext::lookup_const_result Calls = lookup(Name);
988
989 assert(!Calls.empty() && "Missing lambda call operator!");
990 assert(Calls.size() == 1 && "More than one lambda call operator!");
991
992 NamedDecl *CallOp = Calls.front();
993 if (FunctionTemplateDecl *CallOpTmpl =
994 dyn_cast<FunctionTemplateDecl>(CallOp))
995 return cast<CXXMethodDecl>(CallOpTmpl->getTemplatedDecl());
996
997 return cast<CXXMethodDecl>(CallOp);
998 }
999
getLambdaStaticInvoker() const1000 CXXMethodDecl* CXXRecordDecl::getLambdaStaticInvoker() const {
1001 if (!isLambda()) return nullptr;
1002 DeclarationName Name =
1003 &getASTContext().Idents.get(getLambdaStaticInvokerName());
1004 DeclContext::lookup_const_result Invoker = lookup(Name);
1005 if (Invoker.empty()) return nullptr;
1006 assert(Invoker.size() == 1 && "More than one static invoker operator!");
1007 NamedDecl *InvokerFun = Invoker.front();
1008 if (FunctionTemplateDecl *InvokerTemplate =
1009 dyn_cast<FunctionTemplateDecl>(InvokerFun))
1010 return cast<CXXMethodDecl>(InvokerTemplate->getTemplatedDecl());
1011
1012 return cast<CXXMethodDecl>(InvokerFun);
1013 }
1014
getCaptureFields(llvm::DenseMap<const VarDecl *,FieldDecl * > & Captures,FieldDecl * & ThisCapture) const1015 void CXXRecordDecl::getCaptureFields(
1016 llvm::DenseMap<const VarDecl *, FieldDecl *> &Captures,
1017 FieldDecl *&ThisCapture) const {
1018 Captures.clear();
1019 ThisCapture = nullptr;
1020
1021 LambdaDefinitionData &Lambda = getLambdaData();
1022 RecordDecl::field_iterator Field = field_begin();
1023 for (const LambdaCapture *C = Lambda.Captures, *CEnd = C + Lambda.NumCaptures;
1024 C != CEnd; ++C, ++Field) {
1025 if (C->capturesThis())
1026 ThisCapture = *Field;
1027 else if (C->capturesVariable())
1028 Captures[C->getCapturedVar()] = *Field;
1029 }
1030 assert(Field == field_end());
1031 }
1032
1033 TemplateParameterList *
getGenericLambdaTemplateParameterList() const1034 CXXRecordDecl::getGenericLambdaTemplateParameterList() const {
1035 if (!isLambda()) return nullptr;
1036 CXXMethodDecl *CallOp = getLambdaCallOperator();
1037 if (FunctionTemplateDecl *Tmpl = CallOp->getDescribedFunctionTemplate())
1038 return Tmpl->getTemplateParameters();
1039 return nullptr;
1040 }
1041
GetConversionType(ASTContext & Context,NamedDecl * Conv)1042 static CanQualType GetConversionType(ASTContext &Context, NamedDecl *Conv) {
1043 QualType T =
1044 cast<CXXConversionDecl>(Conv->getUnderlyingDecl()->getAsFunction())
1045 ->getConversionType();
1046 return Context.getCanonicalType(T);
1047 }
1048
1049 /// Collect the visible conversions of a base class.
1050 ///
1051 /// \param Record a base class of the class we're considering
1052 /// \param InVirtual whether this base class is a virtual base (or a base
1053 /// of a virtual base)
1054 /// \param Access the access along the inheritance path to this base
1055 /// \param ParentHiddenTypes the conversions provided by the inheritors
1056 /// of this base
1057 /// \param Output the set to which to add conversions from non-virtual bases
1058 /// \param VOutput the set to which to add conversions from virtual bases
1059 /// \param HiddenVBaseCs the set of conversions which were hidden in a
1060 /// virtual base along some inheritance path
CollectVisibleConversions(ASTContext & Context,CXXRecordDecl * Record,bool InVirtual,AccessSpecifier Access,const llvm::SmallPtrSet<CanQualType,8> & ParentHiddenTypes,ASTUnresolvedSet & Output,UnresolvedSetImpl & VOutput,llvm::SmallPtrSet<NamedDecl *,8> & HiddenVBaseCs)1061 static void CollectVisibleConversions(ASTContext &Context,
1062 CXXRecordDecl *Record,
1063 bool InVirtual,
1064 AccessSpecifier Access,
1065 const llvm::SmallPtrSet<CanQualType, 8> &ParentHiddenTypes,
1066 ASTUnresolvedSet &Output,
1067 UnresolvedSetImpl &VOutput,
1068 llvm::SmallPtrSet<NamedDecl*, 8> &HiddenVBaseCs) {
1069 // The set of types which have conversions in this class or its
1070 // subclasses. As an optimization, we don't copy the derived set
1071 // unless it might change.
1072 const llvm::SmallPtrSet<CanQualType, 8> *HiddenTypes = &ParentHiddenTypes;
1073 llvm::SmallPtrSet<CanQualType, 8> HiddenTypesBuffer;
1074
1075 // Collect the direct conversions and figure out which conversions
1076 // will be hidden in the subclasses.
1077 CXXRecordDecl::conversion_iterator ConvI = Record->conversion_begin();
1078 CXXRecordDecl::conversion_iterator ConvE = Record->conversion_end();
1079 if (ConvI != ConvE) {
1080 HiddenTypesBuffer = ParentHiddenTypes;
1081 HiddenTypes = &HiddenTypesBuffer;
1082
1083 for (CXXRecordDecl::conversion_iterator I = ConvI; I != ConvE; ++I) {
1084 CanQualType ConvType(GetConversionType(Context, I.getDecl()));
1085 bool Hidden = ParentHiddenTypes.count(ConvType);
1086 if (!Hidden)
1087 HiddenTypesBuffer.insert(ConvType);
1088
1089 // If this conversion is hidden and we're in a virtual base,
1090 // remember that it's hidden along some inheritance path.
1091 if (Hidden && InVirtual)
1092 HiddenVBaseCs.insert(cast<NamedDecl>(I.getDecl()->getCanonicalDecl()));
1093
1094 // If this conversion isn't hidden, add it to the appropriate output.
1095 else if (!Hidden) {
1096 AccessSpecifier IAccess
1097 = CXXRecordDecl::MergeAccess(Access, I.getAccess());
1098
1099 if (InVirtual)
1100 VOutput.addDecl(I.getDecl(), IAccess);
1101 else
1102 Output.addDecl(Context, I.getDecl(), IAccess);
1103 }
1104 }
1105 }
1106
1107 // Collect information recursively from any base classes.
1108 for (const auto &I : Record->bases()) {
1109 const RecordType *RT = I.getType()->getAs<RecordType>();
1110 if (!RT) continue;
1111
1112 AccessSpecifier BaseAccess
1113 = CXXRecordDecl::MergeAccess(Access, I.getAccessSpecifier());
1114 bool BaseInVirtual = InVirtual || I.isVirtual();
1115
1116 CXXRecordDecl *Base = cast<CXXRecordDecl>(RT->getDecl());
1117 CollectVisibleConversions(Context, Base, BaseInVirtual, BaseAccess,
1118 *HiddenTypes, Output, VOutput, HiddenVBaseCs);
1119 }
1120 }
1121
1122 /// Collect the visible conversions of a class.
1123 ///
1124 /// This would be extremely straightforward if it weren't for virtual
1125 /// bases. It might be worth special-casing that, really.
CollectVisibleConversions(ASTContext & Context,CXXRecordDecl * Record,ASTUnresolvedSet & Output)1126 static void CollectVisibleConversions(ASTContext &Context,
1127 CXXRecordDecl *Record,
1128 ASTUnresolvedSet &Output) {
1129 // The collection of all conversions in virtual bases that we've
1130 // found. These will be added to the output as long as they don't
1131 // appear in the hidden-conversions set.
1132 UnresolvedSet<8> VBaseCs;
1133
1134 // The set of conversions in virtual bases that we've determined to
1135 // be hidden.
1136 llvm::SmallPtrSet<NamedDecl*, 8> HiddenVBaseCs;
1137
1138 // The set of types hidden by classes derived from this one.
1139 llvm::SmallPtrSet<CanQualType, 8> HiddenTypes;
1140
1141 // Go ahead and collect the direct conversions and add them to the
1142 // hidden-types set.
1143 CXXRecordDecl::conversion_iterator ConvI = Record->conversion_begin();
1144 CXXRecordDecl::conversion_iterator ConvE = Record->conversion_end();
1145 Output.append(Context, ConvI, ConvE);
1146 for (; ConvI != ConvE; ++ConvI)
1147 HiddenTypes.insert(GetConversionType(Context, ConvI.getDecl()));
1148
1149 // Recursively collect conversions from base classes.
1150 for (const auto &I : Record->bases()) {
1151 const RecordType *RT = I.getType()->getAs<RecordType>();
1152 if (!RT) continue;
1153
1154 CollectVisibleConversions(Context, cast<CXXRecordDecl>(RT->getDecl()),
1155 I.isVirtual(), I.getAccessSpecifier(),
1156 HiddenTypes, Output, VBaseCs, HiddenVBaseCs);
1157 }
1158
1159 // Add any unhidden conversions provided by virtual bases.
1160 for (UnresolvedSetIterator I = VBaseCs.begin(), E = VBaseCs.end();
1161 I != E; ++I) {
1162 if (!HiddenVBaseCs.count(cast<NamedDecl>(I.getDecl()->getCanonicalDecl())))
1163 Output.addDecl(Context, I.getDecl(), I.getAccess());
1164 }
1165 }
1166
1167 /// getVisibleConversionFunctions - get all conversion functions visible
1168 /// in current class; including conversion function templates.
1169 std::pair<CXXRecordDecl::conversion_iterator,CXXRecordDecl::conversion_iterator>
getVisibleConversionFunctions()1170 CXXRecordDecl::getVisibleConversionFunctions() {
1171 ASTContext &Ctx = getASTContext();
1172
1173 ASTUnresolvedSet *Set;
1174 if (bases_begin() == bases_end()) {
1175 // If root class, all conversions are visible.
1176 Set = &data().Conversions.get(Ctx);
1177 } else {
1178 Set = &data().VisibleConversions.get(Ctx);
1179 // If visible conversion list is not evaluated, evaluate it.
1180 if (!data().ComputedVisibleConversions) {
1181 CollectVisibleConversions(Ctx, this, *Set);
1182 data().ComputedVisibleConversions = true;
1183 }
1184 }
1185 return std::make_pair(Set->begin(), Set->end());
1186 }
1187
removeConversion(const NamedDecl * ConvDecl)1188 void CXXRecordDecl::removeConversion(const NamedDecl *ConvDecl) {
1189 // This operation is O(N) but extremely rare. Sema only uses it to
1190 // remove UsingShadowDecls in a class that were followed by a direct
1191 // declaration, e.g.:
1192 // class A : B {
1193 // using B::operator int;
1194 // operator int();
1195 // };
1196 // This is uncommon by itself and even more uncommon in conjunction
1197 // with sufficiently large numbers of directly-declared conversions
1198 // that asymptotic behavior matters.
1199
1200 ASTUnresolvedSet &Convs = data().Conversions.get(getASTContext());
1201 for (unsigned I = 0, E = Convs.size(); I != E; ++I) {
1202 if (Convs[I].getDecl() == ConvDecl) {
1203 Convs.erase(I);
1204 assert(std::find(Convs.begin(), Convs.end(), ConvDecl) == Convs.end()
1205 && "conversion was found multiple times in unresolved set");
1206 return;
1207 }
1208 }
1209
1210 llvm_unreachable("conversion not found in set!");
1211 }
1212
getInstantiatedFromMemberClass() const1213 CXXRecordDecl *CXXRecordDecl::getInstantiatedFromMemberClass() const {
1214 if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo())
1215 return cast<CXXRecordDecl>(MSInfo->getInstantiatedFrom());
1216
1217 return nullptr;
1218 }
1219
1220 void
setInstantiationOfMemberClass(CXXRecordDecl * RD,TemplateSpecializationKind TSK)1221 CXXRecordDecl::setInstantiationOfMemberClass(CXXRecordDecl *RD,
1222 TemplateSpecializationKind TSK) {
1223 assert(TemplateOrInstantiation.isNull() &&
1224 "Previous template or instantiation?");
1225 assert(!isa<ClassTemplatePartialSpecializationDecl>(this));
1226 TemplateOrInstantiation
1227 = new (getASTContext()) MemberSpecializationInfo(RD, TSK);
1228 }
1229
getTemplateSpecializationKind() const1230 TemplateSpecializationKind CXXRecordDecl::getTemplateSpecializationKind() const{
1231 if (const ClassTemplateSpecializationDecl *Spec
1232 = dyn_cast<ClassTemplateSpecializationDecl>(this))
1233 return Spec->getSpecializationKind();
1234
1235 if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo())
1236 return MSInfo->getTemplateSpecializationKind();
1237
1238 return TSK_Undeclared;
1239 }
1240
1241 void
setTemplateSpecializationKind(TemplateSpecializationKind TSK)1242 CXXRecordDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK) {
1243 if (ClassTemplateSpecializationDecl *Spec
1244 = dyn_cast<ClassTemplateSpecializationDecl>(this)) {
1245 Spec->setSpecializationKind(TSK);
1246 return;
1247 }
1248
1249 if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
1250 MSInfo->setTemplateSpecializationKind(TSK);
1251 return;
1252 }
1253
1254 llvm_unreachable("Not a class template or member class specialization");
1255 }
1256
getDestructor() const1257 CXXDestructorDecl *CXXRecordDecl::getDestructor() const {
1258 ASTContext &Context = getASTContext();
1259 QualType ClassType = Context.getTypeDeclType(this);
1260
1261 DeclarationName Name
1262 = Context.DeclarationNames.getCXXDestructorName(
1263 Context.getCanonicalType(ClassType));
1264
1265 DeclContext::lookup_const_result R = lookup(Name);
1266 if (R.empty())
1267 return nullptr;
1268
1269 CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(R.front());
1270 return Dtor;
1271 }
1272
completeDefinition()1273 void CXXRecordDecl::completeDefinition() {
1274 completeDefinition(nullptr);
1275 }
1276
completeDefinition(CXXFinalOverriderMap * FinalOverriders)1277 void CXXRecordDecl::completeDefinition(CXXFinalOverriderMap *FinalOverriders) {
1278 RecordDecl::completeDefinition();
1279
1280 if (hasObjectMember() && getASTContext().getLangOpts().ObjCAutoRefCount) {
1281 // Objective-C Automatic Reference Counting:
1282 // If a class has a non-static data member of Objective-C pointer
1283 // type (or array thereof), it is a non-POD type and its
1284 // default constructor (if any), copy constructor, move constructor,
1285 // copy assignment operator, move assignment operator, and destructor are
1286 // non-trivial.
1287 struct DefinitionData &Data = data();
1288 Data.PlainOldData = false;
1289 Data.HasTrivialSpecialMembers = 0;
1290 Data.HasIrrelevantDestructor = false;
1291 }
1292
1293 // If the class may be abstract (but hasn't been marked as such), check for
1294 // any pure final overriders.
1295 if (mayBeAbstract()) {
1296 CXXFinalOverriderMap MyFinalOverriders;
1297 if (!FinalOverriders) {
1298 getFinalOverriders(MyFinalOverriders);
1299 FinalOverriders = &MyFinalOverriders;
1300 }
1301
1302 bool Done = false;
1303 for (CXXFinalOverriderMap::iterator M = FinalOverriders->begin(),
1304 MEnd = FinalOverriders->end();
1305 M != MEnd && !Done; ++M) {
1306 for (OverridingMethods::iterator SO = M->second.begin(),
1307 SOEnd = M->second.end();
1308 SO != SOEnd && !Done; ++SO) {
1309 assert(SO->second.size() > 0 &&
1310 "All virtual functions have overridding virtual functions");
1311
1312 // C++ [class.abstract]p4:
1313 // A class is abstract if it contains or inherits at least one
1314 // pure virtual function for which the final overrider is pure
1315 // virtual.
1316 if (SO->second.front().Method->isPure()) {
1317 data().Abstract = true;
1318 Done = true;
1319 break;
1320 }
1321 }
1322 }
1323 }
1324
1325 // Set access bits correctly on the directly-declared conversions.
1326 for (conversion_iterator I = conversion_begin(), E = conversion_end();
1327 I != E; ++I)
1328 I.setAccess((*I)->getAccess());
1329 }
1330
mayBeAbstract() const1331 bool CXXRecordDecl::mayBeAbstract() const {
1332 if (data().Abstract || isInvalidDecl() || !data().Polymorphic ||
1333 isDependentContext())
1334 return false;
1335
1336 for (const auto &B : bases()) {
1337 CXXRecordDecl *BaseDecl
1338 = cast<CXXRecordDecl>(B.getType()->getAs<RecordType>()->getDecl());
1339 if (BaseDecl->isAbstract())
1340 return true;
1341 }
1342
1343 return false;
1344 }
1345
anchor()1346 void CXXMethodDecl::anchor() { }
1347
isStatic() const1348 bool CXXMethodDecl::isStatic() const {
1349 const CXXMethodDecl *MD = getCanonicalDecl();
1350
1351 if (MD->getStorageClass() == SC_Static)
1352 return true;
1353
1354 OverloadedOperatorKind OOK = getDeclName().getCXXOverloadedOperator();
1355 return isStaticOverloadedOperator(OOK);
1356 }
1357
recursivelyOverrides(const CXXMethodDecl * DerivedMD,const CXXMethodDecl * BaseMD)1358 static bool recursivelyOverrides(const CXXMethodDecl *DerivedMD,
1359 const CXXMethodDecl *BaseMD) {
1360 for (CXXMethodDecl::method_iterator I = DerivedMD->begin_overridden_methods(),
1361 E = DerivedMD->end_overridden_methods(); I != E; ++I) {
1362 const CXXMethodDecl *MD = *I;
1363 if (MD->getCanonicalDecl() == BaseMD->getCanonicalDecl())
1364 return true;
1365 if (recursivelyOverrides(MD, BaseMD))
1366 return true;
1367 }
1368 return false;
1369 }
1370
1371 CXXMethodDecl *
getCorrespondingMethodInClass(const CXXRecordDecl * RD,bool MayBeBase)1372 CXXMethodDecl::getCorrespondingMethodInClass(const CXXRecordDecl *RD,
1373 bool MayBeBase) {
1374 if (this->getParent()->getCanonicalDecl() == RD->getCanonicalDecl())
1375 return this;
1376
1377 // Lookup doesn't work for destructors, so handle them separately.
1378 if (isa<CXXDestructorDecl>(this)) {
1379 CXXMethodDecl *MD = RD->getDestructor();
1380 if (MD) {
1381 if (recursivelyOverrides(MD, this))
1382 return MD;
1383 if (MayBeBase && recursivelyOverrides(this, MD))
1384 return MD;
1385 }
1386 return nullptr;
1387 }
1388
1389 lookup_const_result Candidates = RD->lookup(getDeclName());
1390 for (NamedDecl * const * I = Candidates.begin(); I != Candidates.end(); ++I) {
1391 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*I);
1392 if (!MD)
1393 continue;
1394 if (recursivelyOverrides(MD, this))
1395 return MD;
1396 if (MayBeBase && recursivelyOverrides(this, MD))
1397 return MD;
1398 }
1399
1400 for (const auto &I : RD->bases()) {
1401 const RecordType *RT = I.getType()->getAs<RecordType>();
1402 if (!RT)
1403 continue;
1404 const CXXRecordDecl *Base = cast<CXXRecordDecl>(RT->getDecl());
1405 CXXMethodDecl *T = this->getCorrespondingMethodInClass(Base);
1406 if (T)
1407 return T;
1408 }
1409
1410 return nullptr;
1411 }
1412
1413 CXXMethodDecl *
Create(ASTContext & C,CXXRecordDecl * RD,SourceLocation StartLoc,const DeclarationNameInfo & NameInfo,QualType T,TypeSourceInfo * TInfo,StorageClass SC,bool isInline,bool isConstexpr,SourceLocation EndLocation)1414 CXXMethodDecl::Create(ASTContext &C, CXXRecordDecl *RD,
1415 SourceLocation StartLoc,
1416 const DeclarationNameInfo &NameInfo,
1417 QualType T, TypeSourceInfo *TInfo,
1418 StorageClass SC, bool isInline,
1419 bool isConstexpr, SourceLocation EndLocation) {
1420 return new (C, RD) CXXMethodDecl(CXXMethod, C, RD, StartLoc, NameInfo,
1421 T, TInfo, SC, isInline, isConstexpr,
1422 EndLocation);
1423 }
1424
CreateDeserialized(ASTContext & C,unsigned ID)1425 CXXMethodDecl *CXXMethodDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
1426 return new (C, ID) CXXMethodDecl(CXXMethod, C, nullptr, SourceLocation(),
1427 DeclarationNameInfo(), QualType(), nullptr,
1428 SC_None, false, false, SourceLocation());
1429 }
1430
isUsualDeallocationFunction() const1431 bool CXXMethodDecl::isUsualDeallocationFunction() const {
1432 if (getOverloadedOperator() != OO_Delete &&
1433 getOverloadedOperator() != OO_Array_Delete)
1434 return false;
1435
1436 // C++ [basic.stc.dynamic.deallocation]p2:
1437 // A template instance is never a usual deallocation function,
1438 // regardless of its signature.
1439 if (getPrimaryTemplate())
1440 return false;
1441
1442 // C++ [basic.stc.dynamic.deallocation]p2:
1443 // If a class T has a member deallocation function named operator delete
1444 // with exactly one parameter, then that function is a usual (non-placement)
1445 // deallocation function. [...]
1446 if (getNumParams() == 1)
1447 return true;
1448
1449 // C++ [basic.stc.dynamic.deallocation]p2:
1450 // [...] If class T does not declare such an operator delete but does
1451 // declare a member deallocation function named operator delete with
1452 // exactly two parameters, the second of which has type std::size_t (18.1),
1453 // then this function is a usual deallocation function.
1454 ASTContext &Context = getASTContext();
1455 if (getNumParams() != 2 ||
1456 !Context.hasSameUnqualifiedType(getParamDecl(1)->getType(),
1457 Context.getSizeType()))
1458 return false;
1459
1460 // This function is a usual deallocation function if there are no
1461 // single-parameter deallocation functions of the same kind.
1462 DeclContext::lookup_const_result R = getDeclContext()->lookup(getDeclName());
1463 for (DeclContext::lookup_const_result::iterator I = R.begin(), E = R.end();
1464 I != E; ++I) {
1465 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(*I))
1466 if (FD->getNumParams() == 1)
1467 return false;
1468 }
1469
1470 return true;
1471 }
1472
isCopyAssignmentOperator() const1473 bool CXXMethodDecl::isCopyAssignmentOperator() const {
1474 // C++0x [class.copy]p17:
1475 // A user-declared copy assignment operator X::operator= is a non-static
1476 // non-template member function of class X with exactly one parameter of
1477 // type X, X&, const X&, volatile X& or const volatile X&.
1478 if (/*operator=*/getOverloadedOperator() != OO_Equal ||
1479 /*non-static*/ isStatic() ||
1480 /*non-template*/getPrimaryTemplate() || getDescribedFunctionTemplate() ||
1481 getNumParams() != 1)
1482 return false;
1483
1484 QualType ParamType = getParamDecl(0)->getType();
1485 if (const LValueReferenceType *Ref = ParamType->getAs<LValueReferenceType>())
1486 ParamType = Ref->getPointeeType();
1487
1488 ASTContext &Context = getASTContext();
1489 QualType ClassType
1490 = Context.getCanonicalType(Context.getTypeDeclType(getParent()));
1491 return Context.hasSameUnqualifiedType(ClassType, ParamType);
1492 }
1493
isMoveAssignmentOperator() const1494 bool CXXMethodDecl::isMoveAssignmentOperator() const {
1495 // C++0x [class.copy]p19:
1496 // A user-declared move assignment operator X::operator= is a non-static
1497 // non-template member function of class X with exactly one parameter of type
1498 // X&&, const X&&, volatile X&&, or const volatile X&&.
1499 if (getOverloadedOperator() != OO_Equal || isStatic() ||
1500 getPrimaryTemplate() || getDescribedFunctionTemplate() ||
1501 getNumParams() != 1)
1502 return false;
1503
1504 QualType ParamType = getParamDecl(0)->getType();
1505 if (!isa<RValueReferenceType>(ParamType))
1506 return false;
1507 ParamType = ParamType->getPointeeType();
1508
1509 ASTContext &Context = getASTContext();
1510 QualType ClassType
1511 = Context.getCanonicalType(Context.getTypeDeclType(getParent()));
1512 return Context.hasSameUnqualifiedType(ClassType, ParamType);
1513 }
1514
addOverriddenMethod(const CXXMethodDecl * MD)1515 void CXXMethodDecl::addOverriddenMethod(const CXXMethodDecl *MD) {
1516 assert(MD->isCanonicalDecl() && "Method is not canonical!");
1517 assert(!MD->getParent()->isDependentContext() &&
1518 "Can't add an overridden method to a class template!");
1519 assert(MD->isVirtual() && "Method is not virtual!");
1520
1521 getASTContext().addOverriddenMethod(this, MD);
1522 }
1523
begin_overridden_methods() const1524 CXXMethodDecl::method_iterator CXXMethodDecl::begin_overridden_methods() const {
1525 if (isa<CXXConstructorDecl>(this)) return nullptr;
1526 return getASTContext().overridden_methods_begin(this);
1527 }
1528
end_overridden_methods() const1529 CXXMethodDecl::method_iterator CXXMethodDecl::end_overridden_methods() const {
1530 if (isa<CXXConstructorDecl>(this)) return nullptr;
1531 return getASTContext().overridden_methods_end(this);
1532 }
1533
size_overridden_methods() const1534 unsigned CXXMethodDecl::size_overridden_methods() const {
1535 if (isa<CXXConstructorDecl>(this)) return 0;
1536 return getASTContext().overridden_methods_size(this);
1537 }
1538
getThisType(ASTContext & C) const1539 QualType CXXMethodDecl::getThisType(ASTContext &C) const {
1540 // C++ 9.3.2p1: The type of this in a member function of a class X is X*.
1541 // If the member function is declared const, the type of this is const X*,
1542 // if the member function is declared volatile, the type of this is
1543 // volatile X*, and if the member function is declared const volatile,
1544 // the type of this is const volatile X*.
1545
1546 assert(isInstance() && "No 'this' for static methods!");
1547
1548 QualType ClassTy = C.getTypeDeclType(getParent());
1549 ClassTy = C.getQualifiedType(ClassTy,
1550 Qualifiers::fromCVRMask(getTypeQualifiers()));
1551 return C.getPointerType(ClassTy);
1552 }
1553
hasInlineBody() const1554 bool CXXMethodDecl::hasInlineBody() const {
1555 // If this function is a template instantiation, look at the template from
1556 // which it was instantiated.
1557 const FunctionDecl *CheckFn = getTemplateInstantiationPattern();
1558 if (!CheckFn)
1559 CheckFn = this;
1560
1561 const FunctionDecl *fn;
1562 return CheckFn->hasBody(fn) && !fn->isOutOfLine();
1563 }
1564
isLambdaStaticInvoker() const1565 bool CXXMethodDecl::isLambdaStaticInvoker() const {
1566 const CXXRecordDecl *P = getParent();
1567 if (P->isLambda()) {
1568 if (const CXXMethodDecl *StaticInvoker = P->getLambdaStaticInvoker()) {
1569 if (StaticInvoker == this) return true;
1570 if (P->isGenericLambda() && this->isFunctionTemplateSpecialization())
1571 return StaticInvoker == this->getPrimaryTemplate()->getTemplatedDecl();
1572 }
1573 }
1574 return false;
1575 }
1576
CXXCtorInitializer(ASTContext & Context,TypeSourceInfo * TInfo,bool IsVirtual,SourceLocation L,Expr * Init,SourceLocation R,SourceLocation EllipsisLoc)1577 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
1578 TypeSourceInfo *TInfo, bool IsVirtual,
1579 SourceLocation L, Expr *Init,
1580 SourceLocation R,
1581 SourceLocation EllipsisLoc)
1582 : Initializee(TInfo), MemberOrEllipsisLocation(EllipsisLoc), Init(Init),
1583 LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(IsVirtual),
1584 IsWritten(false), SourceOrderOrNumArrayIndices(0)
1585 {
1586 }
1587
CXXCtorInitializer(ASTContext & Context,FieldDecl * Member,SourceLocation MemberLoc,SourceLocation L,Expr * Init,SourceLocation R)1588 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
1589 FieldDecl *Member,
1590 SourceLocation MemberLoc,
1591 SourceLocation L, Expr *Init,
1592 SourceLocation R)
1593 : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init),
1594 LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false),
1595 IsWritten(false), SourceOrderOrNumArrayIndices(0)
1596 {
1597 }
1598
CXXCtorInitializer(ASTContext & Context,IndirectFieldDecl * Member,SourceLocation MemberLoc,SourceLocation L,Expr * Init,SourceLocation R)1599 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
1600 IndirectFieldDecl *Member,
1601 SourceLocation MemberLoc,
1602 SourceLocation L, Expr *Init,
1603 SourceLocation R)
1604 : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init),
1605 LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false),
1606 IsWritten(false), SourceOrderOrNumArrayIndices(0)
1607 {
1608 }
1609
CXXCtorInitializer(ASTContext & Context,TypeSourceInfo * TInfo,SourceLocation L,Expr * Init,SourceLocation R)1610 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
1611 TypeSourceInfo *TInfo,
1612 SourceLocation L, Expr *Init,
1613 SourceLocation R)
1614 : Initializee(TInfo), MemberOrEllipsisLocation(), Init(Init),
1615 LParenLoc(L), RParenLoc(R), IsDelegating(true), IsVirtual(false),
1616 IsWritten(false), SourceOrderOrNumArrayIndices(0)
1617 {
1618 }
1619
CXXCtorInitializer(ASTContext & Context,FieldDecl * Member,SourceLocation MemberLoc,SourceLocation L,Expr * Init,SourceLocation R,VarDecl ** Indices,unsigned NumIndices)1620 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
1621 FieldDecl *Member,
1622 SourceLocation MemberLoc,
1623 SourceLocation L, Expr *Init,
1624 SourceLocation R,
1625 VarDecl **Indices,
1626 unsigned NumIndices)
1627 : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init),
1628 LParenLoc(L), RParenLoc(R), IsVirtual(false),
1629 IsWritten(false), SourceOrderOrNumArrayIndices(NumIndices)
1630 {
1631 VarDecl **MyIndices = reinterpret_cast<VarDecl **> (this + 1);
1632 memcpy(MyIndices, Indices, NumIndices * sizeof(VarDecl *));
1633 }
1634
Create(ASTContext & Context,FieldDecl * Member,SourceLocation MemberLoc,SourceLocation L,Expr * Init,SourceLocation R,VarDecl ** Indices,unsigned NumIndices)1635 CXXCtorInitializer *CXXCtorInitializer::Create(ASTContext &Context,
1636 FieldDecl *Member,
1637 SourceLocation MemberLoc,
1638 SourceLocation L, Expr *Init,
1639 SourceLocation R,
1640 VarDecl **Indices,
1641 unsigned NumIndices) {
1642 void *Mem = Context.Allocate(sizeof(CXXCtorInitializer) +
1643 sizeof(VarDecl *) * NumIndices,
1644 llvm::alignOf<CXXCtorInitializer>());
1645 return new (Mem) CXXCtorInitializer(Context, Member, MemberLoc, L, Init, R,
1646 Indices, NumIndices);
1647 }
1648
getBaseClassLoc() const1649 TypeLoc CXXCtorInitializer::getBaseClassLoc() const {
1650 if (isBaseInitializer())
1651 return Initializee.get<TypeSourceInfo*>()->getTypeLoc();
1652 else
1653 return TypeLoc();
1654 }
1655
getBaseClass() const1656 const Type *CXXCtorInitializer::getBaseClass() const {
1657 if (isBaseInitializer())
1658 return Initializee.get<TypeSourceInfo*>()->getType().getTypePtr();
1659 else
1660 return nullptr;
1661 }
1662
getSourceLocation() const1663 SourceLocation CXXCtorInitializer::getSourceLocation() const {
1664 if (isAnyMemberInitializer())
1665 return getMemberLocation();
1666
1667 if (isInClassMemberInitializer())
1668 return getAnyMember()->getLocation();
1669
1670 if (TypeSourceInfo *TSInfo = Initializee.get<TypeSourceInfo*>())
1671 return TSInfo->getTypeLoc().getLocalSourceRange().getBegin();
1672
1673 return SourceLocation();
1674 }
1675
getSourceRange() const1676 SourceRange CXXCtorInitializer::getSourceRange() const {
1677 if (isInClassMemberInitializer()) {
1678 FieldDecl *D = getAnyMember();
1679 if (Expr *I = D->getInClassInitializer())
1680 return I->getSourceRange();
1681 return SourceRange();
1682 }
1683
1684 return SourceRange(getSourceLocation(), getRParenLoc());
1685 }
1686
anchor()1687 void CXXConstructorDecl::anchor() { }
1688
1689 CXXConstructorDecl *
CreateDeserialized(ASTContext & C,unsigned ID)1690 CXXConstructorDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
1691 return new (C, ID) CXXConstructorDecl(C, nullptr, SourceLocation(),
1692 DeclarationNameInfo(), QualType(),
1693 nullptr, false, false, false, false);
1694 }
1695
1696 CXXConstructorDecl *
Create(ASTContext & C,CXXRecordDecl * RD,SourceLocation StartLoc,const DeclarationNameInfo & NameInfo,QualType T,TypeSourceInfo * TInfo,bool isExplicit,bool isInline,bool isImplicitlyDeclared,bool isConstexpr)1697 CXXConstructorDecl::Create(ASTContext &C, CXXRecordDecl *RD,
1698 SourceLocation StartLoc,
1699 const DeclarationNameInfo &NameInfo,
1700 QualType T, TypeSourceInfo *TInfo,
1701 bool isExplicit, bool isInline,
1702 bool isImplicitlyDeclared, bool isConstexpr) {
1703 assert(NameInfo.getName().getNameKind()
1704 == DeclarationName::CXXConstructorName &&
1705 "Name must refer to a constructor");
1706 return new (C, RD) CXXConstructorDecl(C, RD, StartLoc, NameInfo, T, TInfo,
1707 isExplicit, isInline,
1708 isImplicitlyDeclared, isConstexpr);
1709 }
1710
getTargetConstructor() const1711 CXXConstructorDecl *CXXConstructorDecl::getTargetConstructor() const {
1712 assert(isDelegatingConstructor() && "Not a delegating constructor!");
1713 Expr *E = (*init_begin())->getInit()->IgnoreImplicit();
1714 if (CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(E))
1715 return Construct->getConstructor();
1716
1717 return nullptr;
1718 }
1719
isDefaultConstructor() const1720 bool CXXConstructorDecl::isDefaultConstructor() const {
1721 // C++ [class.ctor]p5:
1722 // A default constructor for a class X is a constructor of class
1723 // X that can be called without an argument.
1724 return (getNumParams() == 0) ||
1725 (getNumParams() > 0 && getParamDecl(0)->hasDefaultArg());
1726 }
1727
1728 bool
isCopyConstructor(unsigned & TypeQuals) const1729 CXXConstructorDecl::isCopyConstructor(unsigned &TypeQuals) const {
1730 return isCopyOrMoveConstructor(TypeQuals) &&
1731 getParamDecl(0)->getType()->isLValueReferenceType();
1732 }
1733
isMoveConstructor(unsigned & TypeQuals) const1734 bool CXXConstructorDecl::isMoveConstructor(unsigned &TypeQuals) const {
1735 return isCopyOrMoveConstructor(TypeQuals) &&
1736 getParamDecl(0)->getType()->isRValueReferenceType();
1737 }
1738
1739 /// \brief Determine whether this is a copy or move constructor.
isCopyOrMoveConstructor(unsigned & TypeQuals) const1740 bool CXXConstructorDecl::isCopyOrMoveConstructor(unsigned &TypeQuals) const {
1741 // C++ [class.copy]p2:
1742 // A non-template constructor for class X is a copy constructor
1743 // if its first parameter is of type X&, const X&, volatile X& or
1744 // const volatile X&, and either there are no other parameters
1745 // or else all other parameters have default arguments (8.3.6).
1746 // C++0x [class.copy]p3:
1747 // A non-template constructor for class X is a move constructor if its
1748 // first parameter is of type X&&, const X&&, volatile X&&, or
1749 // const volatile X&&, and either there are no other parameters or else
1750 // all other parameters have default arguments.
1751 if ((getNumParams() < 1) ||
1752 (getNumParams() > 1 && !getParamDecl(1)->hasDefaultArg()) ||
1753 (getPrimaryTemplate() != nullptr) ||
1754 (getDescribedFunctionTemplate() != nullptr))
1755 return false;
1756
1757 const ParmVarDecl *Param = getParamDecl(0);
1758
1759 // Do we have a reference type?
1760 const ReferenceType *ParamRefType = Param->getType()->getAs<ReferenceType>();
1761 if (!ParamRefType)
1762 return false;
1763
1764 // Is it a reference to our class type?
1765 ASTContext &Context = getASTContext();
1766
1767 CanQualType PointeeType
1768 = Context.getCanonicalType(ParamRefType->getPointeeType());
1769 CanQualType ClassTy
1770 = Context.getCanonicalType(Context.getTagDeclType(getParent()));
1771 if (PointeeType.getUnqualifiedType() != ClassTy)
1772 return false;
1773
1774 // FIXME: other qualifiers?
1775
1776 // We have a copy or move constructor.
1777 TypeQuals = PointeeType.getCVRQualifiers();
1778 return true;
1779 }
1780
isConvertingConstructor(bool AllowExplicit) const1781 bool CXXConstructorDecl::isConvertingConstructor(bool AllowExplicit) const {
1782 // C++ [class.conv.ctor]p1:
1783 // A constructor declared without the function-specifier explicit
1784 // that can be called with a single parameter specifies a
1785 // conversion from the type of its first parameter to the type of
1786 // its class. Such a constructor is called a converting
1787 // constructor.
1788 if (isExplicit() && !AllowExplicit)
1789 return false;
1790
1791 return (getNumParams() == 0 &&
1792 getType()->getAs<FunctionProtoType>()->isVariadic()) ||
1793 (getNumParams() == 1) ||
1794 (getNumParams() > 1 &&
1795 (getParamDecl(1)->hasDefaultArg() ||
1796 getParamDecl(1)->isParameterPack()));
1797 }
1798
isSpecializationCopyingObject() const1799 bool CXXConstructorDecl::isSpecializationCopyingObject() const {
1800 if ((getNumParams() < 1) ||
1801 (getNumParams() > 1 && !getParamDecl(1)->hasDefaultArg()) ||
1802 (getPrimaryTemplate() == nullptr) ||
1803 (getDescribedFunctionTemplate() != nullptr))
1804 return false;
1805
1806 const ParmVarDecl *Param = getParamDecl(0);
1807
1808 ASTContext &Context = getASTContext();
1809 CanQualType ParamType = Context.getCanonicalType(Param->getType());
1810
1811 // Is it the same as our our class type?
1812 CanQualType ClassTy
1813 = Context.getCanonicalType(Context.getTagDeclType(getParent()));
1814 if (ParamType.getUnqualifiedType() != ClassTy)
1815 return false;
1816
1817 return true;
1818 }
1819
getInheritedConstructor() const1820 const CXXConstructorDecl *CXXConstructorDecl::getInheritedConstructor() const {
1821 // Hack: we store the inherited constructor in the overridden method table
1822 method_iterator It = getASTContext().overridden_methods_begin(this);
1823 if (It == getASTContext().overridden_methods_end(this))
1824 return nullptr;
1825
1826 return cast<CXXConstructorDecl>(*It);
1827 }
1828
1829 void
setInheritedConstructor(const CXXConstructorDecl * BaseCtor)1830 CXXConstructorDecl::setInheritedConstructor(const CXXConstructorDecl *BaseCtor){
1831 // Hack: we store the inherited constructor in the overridden method table
1832 assert(getASTContext().overridden_methods_size(this) == 0 &&
1833 "Base ctor already set.");
1834 getASTContext().addOverriddenMethod(this, BaseCtor);
1835 }
1836
anchor()1837 void CXXDestructorDecl::anchor() { }
1838
1839 CXXDestructorDecl *
CreateDeserialized(ASTContext & C,unsigned ID)1840 CXXDestructorDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
1841 return new (C, ID)
1842 CXXDestructorDecl(C, nullptr, SourceLocation(), DeclarationNameInfo(),
1843 QualType(), nullptr, false, false);
1844 }
1845
1846 CXXDestructorDecl *
Create(ASTContext & C,CXXRecordDecl * RD,SourceLocation StartLoc,const DeclarationNameInfo & NameInfo,QualType T,TypeSourceInfo * TInfo,bool isInline,bool isImplicitlyDeclared)1847 CXXDestructorDecl::Create(ASTContext &C, CXXRecordDecl *RD,
1848 SourceLocation StartLoc,
1849 const DeclarationNameInfo &NameInfo,
1850 QualType T, TypeSourceInfo *TInfo,
1851 bool isInline, bool isImplicitlyDeclared) {
1852 assert(NameInfo.getName().getNameKind()
1853 == DeclarationName::CXXDestructorName &&
1854 "Name must refer to a destructor");
1855 return new (C, RD) CXXDestructorDecl(C, RD, StartLoc, NameInfo, T, TInfo,
1856 isInline, isImplicitlyDeclared);
1857 }
1858
anchor()1859 void CXXConversionDecl::anchor() { }
1860
1861 CXXConversionDecl *
CreateDeserialized(ASTContext & C,unsigned ID)1862 CXXConversionDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
1863 return new (C, ID) CXXConversionDecl(C, nullptr, SourceLocation(),
1864 DeclarationNameInfo(), QualType(),
1865 nullptr, false, false, false,
1866 SourceLocation());
1867 }
1868
1869 CXXConversionDecl *
Create(ASTContext & C,CXXRecordDecl * RD,SourceLocation StartLoc,const DeclarationNameInfo & NameInfo,QualType T,TypeSourceInfo * TInfo,bool isInline,bool isExplicit,bool isConstexpr,SourceLocation EndLocation)1870 CXXConversionDecl::Create(ASTContext &C, CXXRecordDecl *RD,
1871 SourceLocation StartLoc,
1872 const DeclarationNameInfo &NameInfo,
1873 QualType T, TypeSourceInfo *TInfo,
1874 bool isInline, bool isExplicit,
1875 bool isConstexpr, SourceLocation EndLocation) {
1876 assert(NameInfo.getName().getNameKind()
1877 == DeclarationName::CXXConversionFunctionName &&
1878 "Name must refer to a conversion function");
1879 return new (C, RD) CXXConversionDecl(C, RD, StartLoc, NameInfo, T, TInfo,
1880 isInline, isExplicit, isConstexpr,
1881 EndLocation);
1882 }
1883
isLambdaToBlockPointerConversion() const1884 bool CXXConversionDecl::isLambdaToBlockPointerConversion() const {
1885 return isImplicit() && getParent()->isLambda() &&
1886 getConversionType()->isBlockPointerType();
1887 }
1888
anchor()1889 void LinkageSpecDecl::anchor() { }
1890
Create(ASTContext & C,DeclContext * DC,SourceLocation ExternLoc,SourceLocation LangLoc,LanguageIDs Lang,bool HasBraces)1891 LinkageSpecDecl *LinkageSpecDecl::Create(ASTContext &C,
1892 DeclContext *DC,
1893 SourceLocation ExternLoc,
1894 SourceLocation LangLoc,
1895 LanguageIDs Lang,
1896 bool HasBraces) {
1897 return new (C, DC) LinkageSpecDecl(DC, ExternLoc, LangLoc, Lang, HasBraces);
1898 }
1899
CreateDeserialized(ASTContext & C,unsigned ID)1900 LinkageSpecDecl *LinkageSpecDecl::CreateDeserialized(ASTContext &C,
1901 unsigned ID) {
1902 return new (C, ID) LinkageSpecDecl(nullptr, SourceLocation(),
1903 SourceLocation(), lang_c, false);
1904 }
1905
anchor()1906 void UsingDirectiveDecl::anchor() { }
1907
Create(ASTContext & C,DeclContext * DC,SourceLocation L,SourceLocation NamespaceLoc,NestedNameSpecifierLoc QualifierLoc,SourceLocation IdentLoc,NamedDecl * Used,DeclContext * CommonAncestor)1908 UsingDirectiveDecl *UsingDirectiveDecl::Create(ASTContext &C, DeclContext *DC,
1909 SourceLocation L,
1910 SourceLocation NamespaceLoc,
1911 NestedNameSpecifierLoc QualifierLoc,
1912 SourceLocation IdentLoc,
1913 NamedDecl *Used,
1914 DeclContext *CommonAncestor) {
1915 if (NamespaceDecl *NS = dyn_cast_or_null<NamespaceDecl>(Used))
1916 Used = NS->getOriginalNamespace();
1917 return new (C, DC) UsingDirectiveDecl(DC, L, NamespaceLoc, QualifierLoc,
1918 IdentLoc, Used, CommonAncestor);
1919 }
1920
CreateDeserialized(ASTContext & C,unsigned ID)1921 UsingDirectiveDecl *UsingDirectiveDecl::CreateDeserialized(ASTContext &C,
1922 unsigned ID) {
1923 return new (C, ID) UsingDirectiveDecl(nullptr, SourceLocation(),
1924 SourceLocation(),
1925 NestedNameSpecifierLoc(),
1926 SourceLocation(), nullptr, nullptr);
1927 }
1928
getNominatedNamespace()1929 NamespaceDecl *UsingDirectiveDecl::getNominatedNamespace() {
1930 if (NamespaceAliasDecl *NA =
1931 dyn_cast_or_null<NamespaceAliasDecl>(NominatedNamespace))
1932 return NA->getNamespace();
1933 return cast_or_null<NamespaceDecl>(NominatedNamespace);
1934 }
1935
NamespaceDecl(ASTContext & C,DeclContext * DC,bool Inline,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,NamespaceDecl * PrevDecl)1936 NamespaceDecl::NamespaceDecl(ASTContext &C, DeclContext *DC, bool Inline,
1937 SourceLocation StartLoc, SourceLocation IdLoc,
1938 IdentifierInfo *Id, NamespaceDecl *PrevDecl)
1939 : NamedDecl(Namespace, DC, IdLoc, Id), DeclContext(Namespace),
1940 redeclarable_base(C), LocStart(StartLoc), RBraceLoc(),
1941 AnonOrFirstNamespaceAndInline(nullptr, Inline) {
1942 setPreviousDecl(PrevDecl);
1943
1944 if (PrevDecl)
1945 AnonOrFirstNamespaceAndInline.setPointer(PrevDecl->getOriginalNamespace());
1946 }
1947
Create(ASTContext & C,DeclContext * DC,bool Inline,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,NamespaceDecl * PrevDecl)1948 NamespaceDecl *NamespaceDecl::Create(ASTContext &C, DeclContext *DC,
1949 bool Inline, SourceLocation StartLoc,
1950 SourceLocation IdLoc, IdentifierInfo *Id,
1951 NamespaceDecl *PrevDecl) {
1952 return new (C, DC) NamespaceDecl(C, DC, Inline, StartLoc, IdLoc, Id,
1953 PrevDecl);
1954 }
1955
CreateDeserialized(ASTContext & C,unsigned ID)1956 NamespaceDecl *NamespaceDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
1957 return new (C, ID) NamespaceDecl(C, nullptr, false, SourceLocation(),
1958 SourceLocation(), nullptr, nullptr);
1959 }
1960
getNextRedeclarationImpl()1961 NamespaceDecl *NamespaceDecl::getNextRedeclarationImpl() {
1962 return getNextRedeclaration();
1963 }
getPreviousDeclImpl()1964 NamespaceDecl *NamespaceDecl::getPreviousDeclImpl() {
1965 return getPreviousDecl();
1966 }
getMostRecentDeclImpl()1967 NamespaceDecl *NamespaceDecl::getMostRecentDeclImpl() {
1968 return getMostRecentDecl();
1969 }
1970
anchor()1971 void NamespaceAliasDecl::anchor() { }
1972
Create(ASTContext & C,DeclContext * DC,SourceLocation UsingLoc,SourceLocation AliasLoc,IdentifierInfo * Alias,NestedNameSpecifierLoc QualifierLoc,SourceLocation IdentLoc,NamedDecl * Namespace)1973 NamespaceAliasDecl *NamespaceAliasDecl::Create(ASTContext &C, DeclContext *DC,
1974 SourceLocation UsingLoc,
1975 SourceLocation AliasLoc,
1976 IdentifierInfo *Alias,
1977 NestedNameSpecifierLoc QualifierLoc,
1978 SourceLocation IdentLoc,
1979 NamedDecl *Namespace) {
1980 if (NamespaceDecl *NS = dyn_cast_or_null<NamespaceDecl>(Namespace))
1981 Namespace = NS->getOriginalNamespace();
1982 return new (C, DC) NamespaceAliasDecl(DC, UsingLoc, AliasLoc, Alias,
1983 QualifierLoc, IdentLoc, Namespace);
1984 }
1985
1986 NamespaceAliasDecl *
CreateDeserialized(ASTContext & C,unsigned ID)1987 NamespaceAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
1988 return new (C, ID) NamespaceAliasDecl(nullptr, SourceLocation(),
1989 SourceLocation(), nullptr,
1990 NestedNameSpecifierLoc(),
1991 SourceLocation(), nullptr);
1992 }
1993
anchor()1994 void UsingShadowDecl::anchor() { }
1995
1996 UsingShadowDecl *
CreateDeserialized(ASTContext & C,unsigned ID)1997 UsingShadowDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
1998 return new (C, ID) UsingShadowDecl(C, nullptr, SourceLocation(),
1999 nullptr, nullptr);
2000 }
2001
getUsingDecl() const2002 UsingDecl *UsingShadowDecl::getUsingDecl() const {
2003 const UsingShadowDecl *Shadow = this;
2004 while (const UsingShadowDecl *NextShadow =
2005 dyn_cast<UsingShadowDecl>(Shadow->UsingOrNextShadow))
2006 Shadow = NextShadow;
2007 return cast<UsingDecl>(Shadow->UsingOrNextShadow);
2008 }
2009
anchor()2010 void UsingDecl::anchor() { }
2011
addShadowDecl(UsingShadowDecl * S)2012 void UsingDecl::addShadowDecl(UsingShadowDecl *S) {
2013 assert(std::find(shadow_begin(), shadow_end(), S) == shadow_end() &&
2014 "declaration already in set");
2015 assert(S->getUsingDecl() == this);
2016
2017 if (FirstUsingShadow.getPointer())
2018 S->UsingOrNextShadow = FirstUsingShadow.getPointer();
2019 FirstUsingShadow.setPointer(S);
2020 }
2021
removeShadowDecl(UsingShadowDecl * S)2022 void UsingDecl::removeShadowDecl(UsingShadowDecl *S) {
2023 assert(std::find(shadow_begin(), shadow_end(), S) != shadow_end() &&
2024 "declaration not in set");
2025 assert(S->getUsingDecl() == this);
2026
2027 // Remove S from the shadow decl chain. This is O(n) but hopefully rare.
2028
2029 if (FirstUsingShadow.getPointer() == S) {
2030 FirstUsingShadow.setPointer(
2031 dyn_cast<UsingShadowDecl>(S->UsingOrNextShadow));
2032 S->UsingOrNextShadow = this;
2033 return;
2034 }
2035
2036 UsingShadowDecl *Prev = FirstUsingShadow.getPointer();
2037 while (Prev->UsingOrNextShadow != S)
2038 Prev = cast<UsingShadowDecl>(Prev->UsingOrNextShadow);
2039 Prev->UsingOrNextShadow = S->UsingOrNextShadow;
2040 S->UsingOrNextShadow = this;
2041 }
2042
Create(ASTContext & C,DeclContext * DC,SourceLocation UL,NestedNameSpecifierLoc QualifierLoc,const DeclarationNameInfo & NameInfo,bool HasTypename)2043 UsingDecl *UsingDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation UL,
2044 NestedNameSpecifierLoc QualifierLoc,
2045 const DeclarationNameInfo &NameInfo,
2046 bool HasTypename) {
2047 return new (C, DC) UsingDecl(DC, UL, QualifierLoc, NameInfo, HasTypename);
2048 }
2049
CreateDeserialized(ASTContext & C,unsigned ID)2050 UsingDecl *UsingDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2051 return new (C, ID) UsingDecl(nullptr, SourceLocation(),
2052 NestedNameSpecifierLoc(), DeclarationNameInfo(),
2053 false);
2054 }
2055
getSourceRange() const2056 SourceRange UsingDecl::getSourceRange() const {
2057 SourceLocation Begin = isAccessDeclaration()
2058 ? getQualifierLoc().getBeginLoc() : UsingLocation;
2059 return SourceRange(Begin, getNameInfo().getEndLoc());
2060 }
2061
anchor()2062 void UnresolvedUsingValueDecl::anchor() { }
2063
2064 UnresolvedUsingValueDecl *
Create(ASTContext & C,DeclContext * DC,SourceLocation UsingLoc,NestedNameSpecifierLoc QualifierLoc,const DeclarationNameInfo & NameInfo)2065 UnresolvedUsingValueDecl::Create(ASTContext &C, DeclContext *DC,
2066 SourceLocation UsingLoc,
2067 NestedNameSpecifierLoc QualifierLoc,
2068 const DeclarationNameInfo &NameInfo) {
2069 return new (C, DC) UnresolvedUsingValueDecl(DC, C.DependentTy, UsingLoc,
2070 QualifierLoc, NameInfo);
2071 }
2072
2073 UnresolvedUsingValueDecl *
CreateDeserialized(ASTContext & C,unsigned ID)2074 UnresolvedUsingValueDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2075 return new (C, ID) UnresolvedUsingValueDecl(nullptr, QualType(),
2076 SourceLocation(),
2077 NestedNameSpecifierLoc(),
2078 DeclarationNameInfo());
2079 }
2080
getSourceRange() const2081 SourceRange UnresolvedUsingValueDecl::getSourceRange() const {
2082 SourceLocation Begin = isAccessDeclaration()
2083 ? getQualifierLoc().getBeginLoc() : UsingLocation;
2084 return SourceRange(Begin, getNameInfo().getEndLoc());
2085 }
2086
anchor()2087 void UnresolvedUsingTypenameDecl::anchor() { }
2088
2089 UnresolvedUsingTypenameDecl *
Create(ASTContext & C,DeclContext * DC,SourceLocation UsingLoc,SourceLocation TypenameLoc,NestedNameSpecifierLoc QualifierLoc,SourceLocation TargetNameLoc,DeclarationName TargetName)2090 UnresolvedUsingTypenameDecl::Create(ASTContext &C, DeclContext *DC,
2091 SourceLocation UsingLoc,
2092 SourceLocation TypenameLoc,
2093 NestedNameSpecifierLoc QualifierLoc,
2094 SourceLocation TargetNameLoc,
2095 DeclarationName TargetName) {
2096 return new (C, DC) UnresolvedUsingTypenameDecl(
2097 DC, UsingLoc, TypenameLoc, QualifierLoc, TargetNameLoc,
2098 TargetName.getAsIdentifierInfo());
2099 }
2100
2101 UnresolvedUsingTypenameDecl *
CreateDeserialized(ASTContext & C,unsigned ID)2102 UnresolvedUsingTypenameDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2103 return new (C, ID) UnresolvedUsingTypenameDecl(
2104 nullptr, SourceLocation(), SourceLocation(), NestedNameSpecifierLoc(),
2105 SourceLocation(), nullptr);
2106 }
2107
anchor()2108 void StaticAssertDecl::anchor() { }
2109
Create(ASTContext & C,DeclContext * DC,SourceLocation StaticAssertLoc,Expr * AssertExpr,StringLiteral * Message,SourceLocation RParenLoc,bool Failed)2110 StaticAssertDecl *StaticAssertDecl::Create(ASTContext &C, DeclContext *DC,
2111 SourceLocation StaticAssertLoc,
2112 Expr *AssertExpr,
2113 StringLiteral *Message,
2114 SourceLocation RParenLoc,
2115 bool Failed) {
2116 return new (C, DC) StaticAssertDecl(DC, StaticAssertLoc, AssertExpr, Message,
2117 RParenLoc, Failed);
2118 }
2119
CreateDeserialized(ASTContext & C,unsigned ID)2120 StaticAssertDecl *StaticAssertDecl::CreateDeserialized(ASTContext &C,
2121 unsigned ID) {
2122 return new (C, ID) StaticAssertDecl(nullptr, SourceLocation(), nullptr,
2123 nullptr, SourceLocation(), false);
2124 }
2125
Create(ASTContext & C,DeclContext * DC,SourceLocation L,DeclarationName N,QualType T,TypeSourceInfo * TInfo,SourceLocation StartL,IdentifierInfo * Getter,IdentifierInfo * Setter)2126 MSPropertyDecl *MSPropertyDecl::Create(ASTContext &C, DeclContext *DC,
2127 SourceLocation L, DeclarationName N,
2128 QualType T, TypeSourceInfo *TInfo,
2129 SourceLocation StartL,
2130 IdentifierInfo *Getter,
2131 IdentifierInfo *Setter) {
2132 return new (C, DC) MSPropertyDecl(DC, L, N, T, TInfo, StartL, Getter, Setter);
2133 }
2134
CreateDeserialized(ASTContext & C,unsigned ID)2135 MSPropertyDecl *MSPropertyDecl::CreateDeserialized(ASTContext &C,
2136 unsigned ID) {
2137 return new (C, ID) MSPropertyDecl(nullptr, SourceLocation(),
2138 DeclarationName(), QualType(), nullptr,
2139 SourceLocation(), nullptr, nullptr);
2140 }
2141
getAccessName(AccessSpecifier AS)2142 static const char *getAccessName(AccessSpecifier AS) {
2143 switch (AS) {
2144 case AS_none:
2145 llvm_unreachable("Invalid access specifier!");
2146 case AS_public:
2147 return "public";
2148 case AS_private:
2149 return "private";
2150 case AS_protected:
2151 return "protected";
2152 }
2153 llvm_unreachable("Invalid access specifier!");
2154 }
2155
operator <<(const DiagnosticBuilder & DB,AccessSpecifier AS)2156 const DiagnosticBuilder &clang::operator<<(const DiagnosticBuilder &DB,
2157 AccessSpecifier AS) {
2158 return DB << getAccessName(AS);
2159 }
2160
operator <<(const PartialDiagnostic & DB,AccessSpecifier AS)2161 const PartialDiagnostic &clang::operator<<(const PartialDiagnostic &DB,
2162 AccessSpecifier AS) {
2163 return DB << getAccessName(AS);
2164 }
2165