1 //===--- ParseExpr.cpp - Expression Parsing -------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// \file
11 /// \brief Provides the Expression parsing implementation.
12 ///
13 /// Expressions in C99 basically consist of a bunch of binary operators with
14 /// unary operators and other random stuff at the leaves.
15 ///
16 /// In the C99 grammar, these unary operators bind tightest and are represented
17 /// as the 'cast-expression' production. Everything else is either a binary
18 /// operator (e.g. '/') or a ternary operator ("?:"). The unary leaves are
19 /// handled by ParseCastExpression, the higher level pieces are handled by
20 /// ParseBinaryExpression.
21 ///
22 //===----------------------------------------------------------------------===//
23
24 #include "clang/Parse/Parser.h"
25 #include "RAIIObjectsForParser.h"
26 #include "clang/AST/ASTContext.h"
27 #include "clang/Basic/PrettyStackTrace.h"
28 #include "clang/Sema/DeclSpec.h"
29 #include "clang/Sema/ParsedTemplate.h"
30 #include "clang/Sema/Scope.h"
31 #include "clang/Sema/TypoCorrection.h"
32 #include "llvm/ADT/SmallString.h"
33 #include "llvm/ADT/SmallVector.h"
34 using namespace clang;
35
36 /// \brief Simple precedence-based parser for binary/ternary operators.
37 ///
38 /// Note: we diverge from the C99 grammar when parsing the assignment-expression
39 /// production. C99 specifies that the LHS of an assignment operator should be
40 /// parsed as a unary-expression, but consistency dictates that it be a
41 /// conditional-expession. In practice, the important thing here is that the
42 /// LHS of an assignment has to be an l-value, which productions between
43 /// unary-expression and conditional-expression don't produce. Because we want
44 /// consistency, we parse the LHS as a conditional-expression, then check for
45 /// l-value-ness in semantic analysis stages.
46 ///
47 /// \verbatim
48 /// pm-expression: [C++ 5.5]
49 /// cast-expression
50 /// pm-expression '.*' cast-expression
51 /// pm-expression '->*' cast-expression
52 ///
53 /// multiplicative-expression: [C99 6.5.5]
54 /// Note: in C++, apply pm-expression instead of cast-expression
55 /// cast-expression
56 /// multiplicative-expression '*' cast-expression
57 /// multiplicative-expression '/' cast-expression
58 /// multiplicative-expression '%' cast-expression
59 ///
60 /// additive-expression: [C99 6.5.6]
61 /// multiplicative-expression
62 /// additive-expression '+' multiplicative-expression
63 /// additive-expression '-' multiplicative-expression
64 ///
65 /// shift-expression: [C99 6.5.7]
66 /// additive-expression
67 /// shift-expression '<<' additive-expression
68 /// shift-expression '>>' additive-expression
69 ///
70 /// relational-expression: [C99 6.5.8]
71 /// shift-expression
72 /// relational-expression '<' shift-expression
73 /// relational-expression '>' shift-expression
74 /// relational-expression '<=' shift-expression
75 /// relational-expression '>=' shift-expression
76 ///
77 /// equality-expression: [C99 6.5.9]
78 /// relational-expression
79 /// equality-expression '==' relational-expression
80 /// equality-expression '!=' relational-expression
81 ///
82 /// AND-expression: [C99 6.5.10]
83 /// equality-expression
84 /// AND-expression '&' equality-expression
85 ///
86 /// exclusive-OR-expression: [C99 6.5.11]
87 /// AND-expression
88 /// exclusive-OR-expression '^' AND-expression
89 ///
90 /// inclusive-OR-expression: [C99 6.5.12]
91 /// exclusive-OR-expression
92 /// inclusive-OR-expression '|' exclusive-OR-expression
93 ///
94 /// logical-AND-expression: [C99 6.5.13]
95 /// inclusive-OR-expression
96 /// logical-AND-expression '&&' inclusive-OR-expression
97 ///
98 /// logical-OR-expression: [C99 6.5.14]
99 /// logical-AND-expression
100 /// logical-OR-expression '||' logical-AND-expression
101 ///
102 /// conditional-expression: [C99 6.5.15]
103 /// logical-OR-expression
104 /// logical-OR-expression '?' expression ':' conditional-expression
105 /// [GNU] logical-OR-expression '?' ':' conditional-expression
106 /// [C++] the third operand is an assignment-expression
107 ///
108 /// assignment-expression: [C99 6.5.16]
109 /// conditional-expression
110 /// unary-expression assignment-operator assignment-expression
111 /// [C++] throw-expression [C++ 15]
112 ///
113 /// assignment-operator: one of
114 /// = *= /= %= += -= <<= >>= &= ^= |=
115 ///
116 /// expression: [C99 6.5.17]
117 /// assignment-expression ...[opt]
118 /// expression ',' assignment-expression ...[opt]
119 /// \endverbatim
ParseExpression(TypeCastState isTypeCast)120 ExprResult Parser::ParseExpression(TypeCastState isTypeCast) {
121 ExprResult LHS(ParseAssignmentExpression(isTypeCast));
122 return ParseRHSOfBinaryExpression(LHS, prec::Comma);
123 }
124
125 /// This routine is called when the '@' is seen and consumed.
126 /// Current token is an Identifier and is not a 'try'. This
127 /// routine is necessary to disambiguate \@try-statement from,
128 /// for example, \@encode-expression.
129 ///
130 ExprResult
ParseExpressionWithLeadingAt(SourceLocation AtLoc)131 Parser::ParseExpressionWithLeadingAt(SourceLocation AtLoc) {
132 ExprResult LHS(ParseObjCAtExpression(AtLoc));
133 return ParseRHSOfBinaryExpression(LHS, prec::Comma);
134 }
135
136 /// This routine is called when a leading '__extension__' is seen and
137 /// consumed. This is necessary because the token gets consumed in the
138 /// process of disambiguating between an expression and a declaration.
139 ExprResult
ParseExpressionWithLeadingExtension(SourceLocation ExtLoc)140 Parser::ParseExpressionWithLeadingExtension(SourceLocation ExtLoc) {
141 ExprResult LHS(true);
142 {
143 // Silence extension warnings in the sub-expression
144 ExtensionRAIIObject O(Diags);
145
146 LHS = ParseCastExpression(false);
147 }
148
149 if (!LHS.isInvalid())
150 LHS = Actions.ActOnUnaryOp(getCurScope(), ExtLoc, tok::kw___extension__,
151 LHS.get());
152
153 return ParseRHSOfBinaryExpression(LHS, prec::Comma);
154 }
155
156 /// \brief Parse an expr that doesn't include (top-level) commas.
ParseAssignmentExpression(TypeCastState isTypeCast)157 ExprResult Parser::ParseAssignmentExpression(TypeCastState isTypeCast) {
158 if (Tok.is(tok::code_completion)) {
159 Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Expression);
160 cutOffParsing();
161 return ExprError();
162 }
163
164 if (Tok.is(tok::kw_throw))
165 return ParseThrowExpression();
166
167 ExprResult LHS = ParseCastExpression(/*isUnaryExpression=*/false,
168 /*isAddressOfOperand=*/false,
169 isTypeCast);
170 return ParseRHSOfBinaryExpression(LHS, prec::Assignment);
171 }
172
173 /// \brief Parse an assignment expression where part of an Objective-C message
174 /// send has already been parsed.
175 ///
176 /// In this case \p LBracLoc indicates the location of the '[' of the message
177 /// send, and either \p ReceiverName or \p ReceiverExpr is non-null indicating
178 /// the receiver of the message.
179 ///
180 /// Since this handles full assignment-expression's, it handles postfix
181 /// expressions and other binary operators for these expressions as well.
182 ExprResult
ParseAssignmentExprWithObjCMessageExprStart(SourceLocation LBracLoc,SourceLocation SuperLoc,ParsedType ReceiverType,Expr * ReceiverExpr)183 Parser::ParseAssignmentExprWithObjCMessageExprStart(SourceLocation LBracLoc,
184 SourceLocation SuperLoc,
185 ParsedType ReceiverType,
186 Expr *ReceiverExpr) {
187 ExprResult R
188 = ParseObjCMessageExpressionBody(LBracLoc, SuperLoc,
189 ReceiverType, ReceiverExpr);
190 R = ParsePostfixExpressionSuffix(R);
191 return ParseRHSOfBinaryExpression(R, prec::Assignment);
192 }
193
194
ParseConstantExpression(TypeCastState isTypeCast)195 ExprResult Parser::ParseConstantExpression(TypeCastState isTypeCast) {
196 // C++03 [basic.def.odr]p2:
197 // An expression is potentially evaluated unless it appears where an
198 // integral constant expression is required (see 5.19) [...].
199 // C++98 and C++11 have no such rule, but this is only a defect in C++98.
200 EnterExpressionEvaluationContext Unevaluated(Actions,
201 Sema::ConstantEvaluated);
202
203 ExprResult LHS(ParseCastExpression(false, false, isTypeCast));
204 ExprResult Res(ParseRHSOfBinaryExpression(LHS, prec::Conditional));
205 return Actions.ActOnConstantExpression(Res);
206 }
207
isNotExpressionStart()208 bool Parser::isNotExpressionStart() {
209 tok::TokenKind K = Tok.getKind();
210 if (K == tok::l_brace || K == tok::r_brace ||
211 K == tok::kw_for || K == tok::kw_while ||
212 K == tok::kw_if || K == tok::kw_else ||
213 K == tok::kw_goto || K == tok::kw_try)
214 return true;
215 // If this is a decl-specifier, we can't be at the start of an expression.
216 return isKnownToBeDeclarationSpecifier();
217 }
218
219 /// \brief Parse a binary expression that starts with \p LHS and has a
220 /// precedence of at least \p MinPrec.
221 ExprResult
ParseRHSOfBinaryExpression(ExprResult LHS,prec::Level MinPrec)222 Parser::ParseRHSOfBinaryExpression(ExprResult LHS, prec::Level MinPrec) {
223 prec::Level NextTokPrec = getBinOpPrecedence(Tok.getKind(),
224 GreaterThanIsOperator,
225 getLangOpts().CPlusPlus11);
226 SourceLocation ColonLoc;
227
228 while (1) {
229 // If this token has a lower precedence than we are allowed to parse (e.g.
230 // because we are called recursively, or because the token is not a binop),
231 // then we are done!
232 if (NextTokPrec < MinPrec)
233 return LHS;
234
235 // Consume the operator, saving the operator token for error reporting.
236 Token OpToken = Tok;
237 ConsumeToken();
238
239 // Bail out when encountering a comma followed by a token which can't
240 // possibly be the start of an expression. For instance:
241 // int f() { return 1, }
242 // We can't do this before consuming the comma, because
243 // isNotExpressionStart() looks at the token stream.
244 if (OpToken.is(tok::comma) && isNotExpressionStart()) {
245 PP.EnterToken(Tok);
246 Tok = OpToken;
247 return LHS;
248 }
249
250 // Special case handling for the ternary operator.
251 ExprResult TernaryMiddle(true);
252 if (NextTokPrec == prec::Conditional) {
253 if (Tok.isNot(tok::colon)) {
254 // Don't parse FOO:BAR as if it were a typo for FOO::BAR.
255 ColonProtectionRAIIObject X(*this);
256
257 // Handle this production specially:
258 // logical-OR-expression '?' expression ':' conditional-expression
259 // In particular, the RHS of the '?' is 'expression', not
260 // 'logical-OR-expression' as we might expect.
261 TernaryMiddle = ParseExpression();
262 if (TernaryMiddle.isInvalid()) {
263 LHS = ExprError();
264 TernaryMiddle = nullptr;
265 }
266 } else {
267 // Special case handling of "X ? Y : Z" where Y is empty:
268 // logical-OR-expression '?' ':' conditional-expression [GNU]
269 TernaryMiddle = nullptr;
270 Diag(Tok, diag::ext_gnu_conditional_expr);
271 }
272
273 if (!TryConsumeToken(tok::colon, ColonLoc)) {
274 // Otherwise, we're missing a ':'. Assume that this was a typo that
275 // the user forgot. If we're not in a macro expansion, we can suggest
276 // a fixit hint. If there were two spaces before the current token,
277 // suggest inserting the colon in between them, otherwise insert ": ".
278 SourceLocation FILoc = Tok.getLocation();
279 const char *FIText = ": ";
280 const SourceManager &SM = PP.getSourceManager();
281 if (FILoc.isFileID() || PP.isAtStartOfMacroExpansion(FILoc, &FILoc)) {
282 assert(FILoc.isFileID());
283 bool IsInvalid = false;
284 const char *SourcePtr =
285 SM.getCharacterData(FILoc.getLocWithOffset(-1), &IsInvalid);
286 if (!IsInvalid && *SourcePtr == ' ') {
287 SourcePtr =
288 SM.getCharacterData(FILoc.getLocWithOffset(-2), &IsInvalid);
289 if (!IsInvalid && *SourcePtr == ' ') {
290 FILoc = FILoc.getLocWithOffset(-1);
291 FIText = ":";
292 }
293 }
294 }
295
296 Diag(Tok, diag::err_expected)
297 << tok::colon << FixItHint::CreateInsertion(FILoc, FIText);
298 Diag(OpToken, diag::note_matching) << tok::question;
299 ColonLoc = Tok.getLocation();
300 }
301 }
302
303 // Code completion for the right-hand side of an assignment expression
304 // goes through a special hook that takes the left-hand side into account.
305 if (Tok.is(tok::code_completion) && NextTokPrec == prec::Assignment) {
306 Actions.CodeCompleteAssignmentRHS(getCurScope(), LHS.get());
307 cutOffParsing();
308 return ExprError();
309 }
310
311 // Parse another leaf here for the RHS of the operator.
312 // ParseCastExpression works here because all RHS expressions in C have it
313 // as a prefix, at least. However, in C++, an assignment-expression could
314 // be a throw-expression, which is not a valid cast-expression.
315 // Therefore we need some special-casing here.
316 // Also note that the third operand of the conditional operator is
317 // an assignment-expression in C++, and in C++11, we can have a
318 // braced-init-list on the RHS of an assignment. For better diagnostics,
319 // parse as if we were allowed braced-init-lists everywhere, and check that
320 // they only appear on the RHS of assignments later.
321 ExprResult RHS;
322 bool RHSIsInitList = false;
323 if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
324 RHS = ParseBraceInitializer();
325 RHSIsInitList = true;
326 } else if (getLangOpts().CPlusPlus && NextTokPrec <= prec::Conditional)
327 RHS = ParseAssignmentExpression();
328 else
329 RHS = ParseCastExpression(false);
330
331 if (RHS.isInvalid())
332 LHS = ExprError();
333
334 // Remember the precedence of this operator and get the precedence of the
335 // operator immediately to the right of the RHS.
336 prec::Level ThisPrec = NextTokPrec;
337 NextTokPrec = getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator,
338 getLangOpts().CPlusPlus11);
339
340 // Assignment and conditional expressions are right-associative.
341 bool isRightAssoc = ThisPrec == prec::Conditional ||
342 ThisPrec == prec::Assignment;
343
344 // Get the precedence of the operator to the right of the RHS. If it binds
345 // more tightly with RHS than we do, evaluate it completely first.
346 if (ThisPrec < NextTokPrec ||
347 (ThisPrec == NextTokPrec && isRightAssoc)) {
348 if (!RHS.isInvalid() && RHSIsInitList) {
349 Diag(Tok, diag::err_init_list_bin_op)
350 << /*LHS*/0 << PP.getSpelling(Tok) << Actions.getExprRange(RHS.get());
351 RHS = ExprError();
352 }
353 // If this is left-associative, only parse things on the RHS that bind
354 // more tightly than the current operator. If it is left-associative, it
355 // is okay, to bind exactly as tightly. For example, compile A=B=C=D as
356 // A=(B=(C=D)), where each paren is a level of recursion here.
357 // The function takes ownership of the RHS.
358 RHS = ParseRHSOfBinaryExpression(RHS,
359 static_cast<prec::Level>(ThisPrec + !isRightAssoc));
360 RHSIsInitList = false;
361
362 if (RHS.isInvalid())
363 LHS = ExprError();
364
365 NextTokPrec = getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator,
366 getLangOpts().CPlusPlus11);
367 }
368 assert(NextTokPrec <= ThisPrec && "Recursion didn't work!");
369
370 if (!RHS.isInvalid() && RHSIsInitList) {
371 if (ThisPrec == prec::Assignment) {
372 Diag(OpToken, diag::warn_cxx98_compat_generalized_initializer_lists)
373 << Actions.getExprRange(RHS.get());
374 } else {
375 Diag(OpToken, diag::err_init_list_bin_op)
376 << /*RHS*/1 << PP.getSpelling(OpToken)
377 << Actions.getExprRange(RHS.get());
378 LHS = ExprError();
379 }
380 }
381
382 if (!LHS.isInvalid()) {
383 // Combine the LHS and RHS into the LHS (e.g. build AST).
384 if (TernaryMiddle.isInvalid()) {
385 // If we're using '>>' as an operator within a template
386 // argument list (in C++98), suggest the addition of
387 // parentheses so that the code remains well-formed in C++0x.
388 if (!GreaterThanIsOperator && OpToken.is(tok::greatergreater))
389 SuggestParentheses(OpToken.getLocation(),
390 diag::warn_cxx11_right_shift_in_template_arg,
391 SourceRange(Actions.getExprRange(LHS.get()).getBegin(),
392 Actions.getExprRange(RHS.get()).getEnd()));
393
394 LHS = Actions.ActOnBinOp(getCurScope(), OpToken.getLocation(),
395 OpToken.getKind(), LHS.get(), RHS.get());
396 } else
397 LHS = Actions.ActOnConditionalOp(OpToken.getLocation(), ColonLoc,
398 LHS.get(), TernaryMiddle.get(),
399 RHS.get());
400 }
401 }
402 }
403
404 /// \brief Parse a cast-expression, or, if \p isUnaryExpression is true,
405 /// parse a unary-expression.
406 ///
407 /// \p isAddressOfOperand exists because an id-expression that is the
408 /// operand of address-of gets special treatment due to member pointers.
409 ///
ParseCastExpression(bool isUnaryExpression,bool isAddressOfOperand,TypeCastState isTypeCast)410 ExprResult Parser::ParseCastExpression(bool isUnaryExpression,
411 bool isAddressOfOperand,
412 TypeCastState isTypeCast) {
413 bool NotCastExpr;
414 ExprResult Res = ParseCastExpression(isUnaryExpression,
415 isAddressOfOperand,
416 NotCastExpr,
417 isTypeCast);
418 if (NotCastExpr)
419 Diag(Tok, diag::err_expected_expression);
420 return Res;
421 }
422
423 namespace {
424 class CastExpressionIdValidator : public CorrectionCandidateCallback {
425 public:
CastExpressionIdValidator(bool AllowTypes,bool AllowNonTypes)426 CastExpressionIdValidator(bool AllowTypes, bool AllowNonTypes)
427 : AllowNonTypes(AllowNonTypes) {
428 WantTypeSpecifiers = AllowTypes;
429 }
430
ValidateCandidate(const TypoCorrection & candidate)431 bool ValidateCandidate(const TypoCorrection &candidate) override {
432 NamedDecl *ND = candidate.getCorrectionDecl();
433 if (!ND)
434 return candidate.isKeyword();
435
436 if (isa<TypeDecl>(ND))
437 return WantTypeSpecifiers;
438 return AllowNonTypes &&
439 CorrectionCandidateCallback::ValidateCandidate(candidate);
440 }
441
442 private:
443 bool AllowNonTypes;
444 };
445 }
446
447 /// \brief Parse a cast-expression, or, if \pisUnaryExpression is true, parse
448 /// a unary-expression.
449 ///
450 /// \p isAddressOfOperand exists because an id-expression that is the operand
451 /// of address-of gets special treatment due to member pointers. NotCastExpr
452 /// is set to true if the token is not the start of a cast-expression, and no
453 /// diagnostic is emitted in this case.
454 ///
455 /// \verbatim
456 /// cast-expression: [C99 6.5.4]
457 /// unary-expression
458 /// '(' type-name ')' cast-expression
459 ///
460 /// unary-expression: [C99 6.5.3]
461 /// postfix-expression
462 /// '++' unary-expression
463 /// '--' unary-expression
464 /// unary-operator cast-expression
465 /// 'sizeof' unary-expression
466 /// 'sizeof' '(' type-name ')'
467 /// [C++11] 'sizeof' '...' '(' identifier ')'
468 /// [GNU] '__alignof' unary-expression
469 /// [GNU] '__alignof' '(' type-name ')'
470 /// [C11] '_Alignof' '(' type-name ')'
471 /// [C++11] 'alignof' '(' type-id ')'
472 /// [GNU] '&&' identifier
473 /// [C++11] 'noexcept' '(' expression ')' [C++11 5.3.7]
474 /// [C++] new-expression
475 /// [C++] delete-expression
476 ///
477 /// unary-operator: one of
478 /// '&' '*' '+' '-' '~' '!'
479 /// [GNU] '__extension__' '__real' '__imag'
480 ///
481 /// primary-expression: [C99 6.5.1]
482 /// [C99] identifier
483 /// [C++] id-expression
484 /// constant
485 /// string-literal
486 /// [C++] boolean-literal [C++ 2.13.5]
487 /// [C++11] 'nullptr' [C++11 2.14.7]
488 /// [C++11] user-defined-literal
489 /// '(' expression ')'
490 /// [C11] generic-selection
491 /// '__func__' [C99 6.4.2.2]
492 /// [GNU] '__FUNCTION__'
493 /// [MS] '__FUNCDNAME__'
494 /// [MS] 'L__FUNCTION__'
495 /// [GNU] '__PRETTY_FUNCTION__'
496 /// [GNU] '(' compound-statement ')'
497 /// [GNU] '__builtin_va_arg' '(' assignment-expression ',' type-name ')'
498 /// [GNU] '__builtin_offsetof' '(' type-name ',' offsetof-member-designator')'
499 /// [GNU] '__builtin_choose_expr' '(' assign-expr ',' assign-expr ','
500 /// assign-expr ')'
501 /// [GNU] '__builtin_types_compatible_p' '(' type-name ',' type-name ')'
502 /// [GNU] '__null'
503 /// [OBJC] '[' objc-message-expr ']'
504 /// [OBJC] '\@selector' '(' objc-selector-arg ')'
505 /// [OBJC] '\@protocol' '(' identifier ')'
506 /// [OBJC] '\@encode' '(' type-name ')'
507 /// [OBJC] objc-string-literal
508 /// [C++] simple-type-specifier '(' expression-list[opt] ')' [C++ 5.2.3]
509 /// [C++11] simple-type-specifier braced-init-list [C++11 5.2.3]
510 /// [C++] typename-specifier '(' expression-list[opt] ')' [C++ 5.2.3]
511 /// [C++11] typename-specifier braced-init-list [C++11 5.2.3]
512 /// [C++] 'const_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1]
513 /// [C++] 'dynamic_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1]
514 /// [C++] 'reinterpret_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1]
515 /// [C++] 'static_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1]
516 /// [C++] 'typeid' '(' expression ')' [C++ 5.2p1]
517 /// [C++] 'typeid' '(' type-id ')' [C++ 5.2p1]
518 /// [C++] 'this' [C++ 9.3.2]
519 /// [G++] unary-type-trait '(' type-id ')'
520 /// [G++] binary-type-trait '(' type-id ',' type-id ')' [TODO]
521 /// [EMBT] array-type-trait '(' type-id ',' integer ')'
522 /// [clang] '^' block-literal
523 ///
524 /// constant: [C99 6.4.4]
525 /// integer-constant
526 /// floating-constant
527 /// enumeration-constant -> identifier
528 /// character-constant
529 ///
530 /// id-expression: [C++ 5.1]
531 /// unqualified-id
532 /// qualified-id
533 ///
534 /// unqualified-id: [C++ 5.1]
535 /// identifier
536 /// operator-function-id
537 /// conversion-function-id
538 /// '~' class-name
539 /// template-id
540 ///
541 /// new-expression: [C++ 5.3.4]
542 /// '::'[opt] 'new' new-placement[opt] new-type-id
543 /// new-initializer[opt]
544 /// '::'[opt] 'new' new-placement[opt] '(' type-id ')'
545 /// new-initializer[opt]
546 ///
547 /// delete-expression: [C++ 5.3.5]
548 /// '::'[opt] 'delete' cast-expression
549 /// '::'[opt] 'delete' '[' ']' cast-expression
550 ///
551 /// [GNU/Embarcadero] unary-type-trait:
552 /// '__is_arithmetic'
553 /// '__is_floating_point'
554 /// '__is_integral'
555 /// '__is_lvalue_expr'
556 /// '__is_rvalue_expr'
557 /// '__is_complete_type'
558 /// '__is_void'
559 /// '__is_array'
560 /// '__is_function'
561 /// '__is_reference'
562 /// '__is_lvalue_reference'
563 /// '__is_rvalue_reference'
564 /// '__is_fundamental'
565 /// '__is_object'
566 /// '__is_scalar'
567 /// '__is_compound'
568 /// '__is_pointer'
569 /// '__is_member_object_pointer'
570 /// '__is_member_function_pointer'
571 /// '__is_member_pointer'
572 /// '__is_const'
573 /// '__is_volatile'
574 /// '__is_trivial'
575 /// '__is_standard_layout'
576 /// '__is_signed'
577 /// '__is_unsigned'
578 ///
579 /// [GNU] unary-type-trait:
580 /// '__has_nothrow_assign'
581 /// '__has_nothrow_copy'
582 /// '__has_nothrow_constructor'
583 /// '__has_trivial_assign' [TODO]
584 /// '__has_trivial_copy' [TODO]
585 /// '__has_trivial_constructor'
586 /// '__has_trivial_destructor'
587 /// '__has_virtual_destructor'
588 /// '__is_abstract' [TODO]
589 /// '__is_class'
590 /// '__is_empty' [TODO]
591 /// '__is_enum'
592 /// '__is_final'
593 /// '__is_pod'
594 /// '__is_polymorphic'
595 /// '__is_sealed' [MS]
596 /// '__is_trivial'
597 /// '__is_union'
598 ///
599 /// [Clang] unary-type-trait:
600 /// '__trivially_copyable'
601 ///
602 /// binary-type-trait:
603 /// [GNU] '__is_base_of'
604 /// [MS] '__is_convertible_to'
605 /// '__is_convertible'
606 /// '__is_same'
607 ///
608 /// [Embarcadero] array-type-trait:
609 /// '__array_rank'
610 /// '__array_extent'
611 ///
612 /// [Embarcadero] expression-trait:
613 /// '__is_lvalue_expr'
614 /// '__is_rvalue_expr'
615 /// \endverbatim
616 ///
ParseCastExpression(bool isUnaryExpression,bool isAddressOfOperand,bool & NotCastExpr,TypeCastState isTypeCast)617 ExprResult Parser::ParseCastExpression(bool isUnaryExpression,
618 bool isAddressOfOperand,
619 bool &NotCastExpr,
620 TypeCastState isTypeCast) {
621 ExprResult Res;
622 tok::TokenKind SavedKind = Tok.getKind();
623 NotCastExpr = false;
624
625 // This handles all of cast-expression, unary-expression, postfix-expression,
626 // and primary-expression. We handle them together like this for efficiency
627 // and to simplify handling of an expression starting with a '(' token: which
628 // may be one of a parenthesized expression, cast-expression, compound literal
629 // expression, or statement expression.
630 //
631 // If the parsed tokens consist of a primary-expression, the cases below
632 // break out of the switch; at the end we call ParsePostfixExpressionSuffix
633 // to handle the postfix expression suffixes. Cases that cannot be followed
634 // by postfix exprs should return without invoking
635 // ParsePostfixExpressionSuffix.
636 switch (SavedKind) {
637 case tok::l_paren: {
638 // If this expression is limited to being a unary-expression, the parent can
639 // not start a cast expression.
640 ParenParseOption ParenExprType =
641 (isUnaryExpression && !getLangOpts().CPlusPlus) ? CompoundLiteral
642 : CastExpr;
643 ParsedType CastTy;
644 SourceLocation RParenLoc;
645 Res = ParseParenExpression(ParenExprType, false/*stopIfCastExr*/,
646 isTypeCast == IsTypeCast, CastTy, RParenLoc);
647
648 switch (ParenExprType) {
649 case SimpleExpr: break; // Nothing else to do.
650 case CompoundStmt: break; // Nothing else to do.
651 case CompoundLiteral:
652 // We parsed '(' type-name ')' '{' ... '}'. If any suffixes of
653 // postfix-expression exist, parse them now.
654 break;
655 case CastExpr:
656 // We have parsed the cast-expression and no postfix-expr pieces are
657 // following.
658 return Res;
659 }
660
661 break;
662 }
663
664 // primary-expression
665 case tok::numeric_constant:
666 // constant: integer-constant
667 // constant: floating-constant
668
669 Res = Actions.ActOnNumericConstant(Tok, /*UDLScope*/getCurScope());
670 ConsumeToken();
671 break;
672
673 case tok::kw_true:
674 case tok::kw_false:
675 return ParseCXXBoolLiteral();
676
677 case tok::kw___objc_yes:
678 case tok::kw___objc_no:
679 return ParseObjCBoolLiteral();
680
681 case tok::kw_nullptr:
682 Diag(Tok, diag::warn_cxx98_compat_nullptr);
683 return Actions.ActOnCXXNullPtrLiteral(ConsumeToken());
684
685 case tok::annot_primary_expr:
686 assert(Res.get() == nullptr && "Stray primary-expression annotation?");
687 Res = getExprAnnotation(Tok);
688 ConsumeToken();
689 break;
690
691 case tok::kw_decltype:
692 // Annotate the token and tail recurse.
693 if (TryAnnotateTypeOrScopeToken())
694 return ExprError();
695 assert(Tok.isNot(tok::kw_decltype));
696 return ParseCastExpression(isUnaryExpression, isAddressOfOperand);
697
698 case tok::identifier: { // primary-expression: identifier
699 // unqualified-id: identifier
700 // constant: enumeration-constant
701 // Turn a potentially qualified name into a annot_typename or
702 // annot_cxxscope if it would be valid. This handles things like x::y, etc.
703 if (getLangOpts().CPlusPlus) {
704 // Avoid the unnecessary parse-time lookup in the common case
705 // where the syntax forbids a type.
706 const Token &Next = NextToken();
707
708 // If this identifier was reverted from a token ID, and the next token
709 // is a parenthesis, this is likely to be a use of a type trait. Check
710 // those tokens.
711 if (Next.is(tok::l_paren) && Tok.is(tok::identifier) &&
712 Tok.getIdentifierInfo()->hasRevertedTokenIDToIdentifier() &&
713 TryIdentKeywordUpgrade())
714 return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
715 NotCastExpr, isTypeCast);
716
717 if (Next.is(tok::coloncolon) ||
718 (!ColonIsSacred && Next.is(tok::colon)) ||
719 Next.is(tok::less) ||
720 Next.is(tok::l_paren) ||
721 Next.is(tok::l_brace)) {
722 // If TryAnnotateTypeOrScopeToken annotates the token, tail recurse.
723 if (TryAnnotateTypeOrScopeToken())
724 return ExprError();
725 if (!Tok.is(tok::identifier))
726 return ParseCastExpression(isUnaryExpression, isAddressOfOperand);
727 }
728 }
729
730 // Consume the identifier so that we can see if it is followed by a '(' or
731 // '.'.
732 IdentifierInfo &II = *Tok.getIdentifierInfo();
733 SourceLocation ILoc = ConsumeToken();
734
735 // Support 'Class.property' and 'super.property' notation.
736 if (getLangOpts().ObjC1 && Tok.is(tok::period) &&
737 (Actions.getTypeName(II, ILoc, getCurScope()) ||
738 // Allow the base to be 'super' if in an objc-method.
739 (&II == Ident_super && getCurScope()->isInObjcMethodScope()))) {
740 ConsumeToken();
741
742 // Allow either an identifier or the keyword 'class' (in C++).
743 if (Tok.isNot(tok::identifier) &&
744 !(getLangOpts().CPlusPlus && Tok.is(tok::kw_class))) {
745 Diag(Tok, diag::err_expected_property_name);
746 return ExprError();
747 }
748 IdentifierInfo &PropertyName = *Tok.getIdentifierInfo();
749 SourceLocation PropertyLoc = ConsumeToken();
750
751 Res = Actions.ActOnClassPropertyRefExpr(II, PropertyName,
752 ILoc, PropertyLoc);
753 break;
754 }
755
756 // In an Objective-C method, if we have "super" followed by an identifier,
757 // the token sequence is ill-formed. However, if there's a ':' or ']' after
758 // that identifier, this is probably a message send with a missing open
759 // bracket. Treat it as such.
760 if (getLangOpts().ObjC1 && &II == Ident_super && !InMessageExpression &&
761 getCurScope()->isInObjcMethodScope() &&
762 ((Tok.is(tok::identifier) &&
763 (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) ||
764 Tok.is(tok::code_completion))) {
765 Res = ParseObjCMessageExpressionBody(SourceLocation(), ILoc, ParsedType(),
766 nullptr);
767 break;
768 }
769
770 // If we have an Objective-C class name followed by an identifier
771 // and either ':' or ']', this is an Objective-C class message
772 // send that's missing the opening '['. Recovery
773 // appropriately. Also take this path if we're performing code
774 // completion after an Objective-C class name.
775 if (getLangOpts().ObjC1 &&
776 ((Tok.is(tok::identifier) && !InMessageExpression) ||
777 Tok.is(tok::code_completion))) {
778 const Token& Next = NextToken();
779 if (Tok.is(tok::code_completion) ||
780 Next.is(tok::colon) || Next.is(tok::r_square))
781 if (ParsedType Typ = Actions.getTypeName(II, ILoc, getCurScope()))
782 if (Typ.get()->isObjCObjectOrInterfaceType()) {
783 // Fake up a Declarator to use with ActOnTypeName.
784 DeclSpec DS(AttrFactory);
785 DS.SetRangeStart(ILoc);
786 DS.SetRangeEnd(ILoc);
787 const char *PrevSpec = nullptr;
788 unsigned DiagID;
789 DS.SetTypeSpecType(TST_typename, ILoc, PrevSpec, DiagID, Typ,
790 Actions.getASTContext().getPrintingPolicy());
791
792 Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
793 TypeResult Ty = Actions.ActOnTypeName(getCurScope(),
794 DeclaratorInfo);
795 if (Ty.isInvalid())
796 break;
797
798 Res = ParseObjCMessageExpressionBody(SourceLocation(),
799 SourceLocation(),
800 Ty.get(), nullptr);
801 break;
802 }
803 }
804
805 // Make sure to pass down the right value for isAddressOfOperand.
806 if (isAddressOfOperand && isPostfixExpressionSuffixStart())
807 isAddressOfOperand = false;
808
809 // Function designators are allowed to be undeclared (C99 6.5.1p2), so we
810 // need to know whether or not this identifier is a function designator or
811 // not.
812 UnqualifiedId Name;
813 CXXScopeSpec ScopeSpec;
814 SourceLocation TemplateKWLoc;
815 CastExpressionIdValidator Validator(isTypeCast != NotTypeCast,
816 isTypeCast != IsTypeCast);
817 Validator.IsAddressOfOperand = isAddressOfOperand;
818 Name.setIdentifier(&II, ILoc);
819 Res = Actions.ActOnIdExpression(getCurScope(), ScopeSpec, TemplateKWLoc,
820 Name, Tok.is(tok::l_paren),
821 isAddressOfOperand, &Validator);
822 break;
823 }
824 case tok::char_constant: // constant: character-constant
825 case tok::wide_char_constant:
826 case tok::utf16_char_constant:
827 case tok::utf32_char_constant:
828 Res = Actions.ActOnCharacterConstant(Tok, /*UDLScope*/getCurScope());
829 ConsumeToken();
830 break;
831 case tok::kw___func__: // primary-expression: __func__ [C99 6.4.2.2]
832 case tok::kw___FUNCTION__: // primary-expression: __FUNCTION__ [GNU]
833 case tok::kw___FUNCDNAME__: // primary-expression: __FUNCDNAME__ [MS]
834 case tok::kw___FUNCSIG__: // primary-expression: __FUNCSIG__ [MS]
835 case tok::kw_L__FUNCTION__: // primary-expression: L__FUNCTION__ [MS]
836 case tok::kw___PRETTY_FUNCTION__: // primary-expression: __P..Y_F..N__ [GNU]
837 Res = Actions.ActOnPredefinedExpr(Tok.getLocation(), SavedKind);
838 ConsumeToken();
839 break;
840 case tok::string_literal: // primary-expression: string-literal
841 case tok::wide_string_literal:
842 case tok::utf8_string_literal:
843 case tok::utf16_string_literal:
844 case tok::utf32_string_literal:
845 Res = ParseStringLiteralExpression(true);
846 break;
847 case tok::kw__Generic: // primary-expression: generic-selection [C11 6.5.1]
848 Res = ParseGenericSelectionExpression();
849 break;
850 case tok::kw___builtin_va_arg:
851 case tok::kw___builtin_offsetof:
852 case tok::kw___builtin_choose_expr:
853 case tok::kw___builtin_astype: // primary-expression: [OCL] as_type()
854 case tok::kw___builtin_convertvector:
855 return ParseBuiltinPrimaryExpression();
856 case tok::kw___null:
857 return Actions.ActOnGNUNullExpr(ConsumeToken());
858
859 case tok::plusplus: // unary-expression: '++' unary-expression [C99]
860 case tok::minusminus: { // unary-expression: '--' unary-expression [C99]
861 // C++ [expr.unary] has:
862 // unary-expression:
863 // ++ cast-expression
864 // -- cast-expression
865 SourceLocation SavedLoc = ConsumeToken();
866 Res = ParseCastExpression(!getLangOpts().CPlusPlus);
867 if (!Res.isInvalid())
868 Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get());
869 return Res;
870 }
871 case tok::amp: { // unary-expression: '&' cast-expression
872 // Special treatment because of member pointers
873 SourceLocation SavedLoc = ConsumeToken();
874 Res = ParseCastExpression(false, true);
875 if (!Res.isInvalid())
876 Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get());
877 return Res;
878 }
879
880 case tok::star: // unary-expression: '*' cast-expression
881 case tok::plus: // unary-expression: '+' cast-expression
882 case tok::minus: // unary-expression: '-' cast-expression
883 case tok::tilde: // unary-expression: '~' cast-expression
884 case tok::exclaim: // unary-expression: '!' cast-expression
885 case tok::kw___real: // unary-expression: '__real' cast-expression [GNU]
886 case tok::kw___imag: { // unary-expression: '__imag' cast-expression [GNU]
887 SourceLocation SavedLoc = ConsumeToken();
888 Res = ParseCastExpression(false);
889 if (!Res.isInvalid())
890 Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get());
891 return Res;
892 }
893
894 case tok::kw___extension__:{//unary-expression:'__extension__' cast-expr [GNU]
895 // __extension__ silences extension warnings in the subexpression.
896 ExtensionRAIIObject O(Diags); // Use RAII to do this.
897 SourceLocation SavedLoc = ConsumeToken();
898 Res = ParseCastExpression(false);
899 if (!Res.isInvalid())
900 Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get());
901 return Res;
902 }
903 case tok::kw__Alignof: // unary-expression: '_Alignof' '(' type-name ')'
904 if (!getLangOpts().C11)
905 Diag(Tok, diag::ext_c11_alignment) << Tok.getName();
906 // fallthrough
907 case tok::kw_alignof: // unary-expression: 'alignof' '(' type-id ')'
908 case tok::kw___alignof: // unary-expression: '__alignof' unary-expression
909 // unary-expression: '__alignof' '(' type-name ')'
910 case tok::kw_sizeof: // unary-expression: 'sizeof' unary-expression
911 // unary-expression: 'sizeof' '(' type-name ')'
912 case tok::kw_vec_step: // unary-expression: OpenCL 'vec_step' expression
913 return ParseUnaryExprOrTypeTraitExpression();
914 case tok::ampamp: { // unary-expression: '&&' identifier
915 SourceLocation AmpAmpLoc = ConsumeToken();
916 if (Tok.isNot(tok::identifier))
917 return ExprError(Diag(Tok, diag::err_expected) << tok::identifier);
918
919 if (getCurScope()->getFnParent() == nullptr)
920 return ExprError(Diag(Tok, diag::err_address_of_label_outside_fn));
921
922 Diag(AmpAmpLoc, diag::ext_gnu_address_of_label);
923 LabelDecl *LD = Actions.LookupOrCreateLabel(Tok.getIdentifierInfo(),
924 Tok.getLocation());
925 Res = Actions.ActOnAddrLabel(AmpAmpLoc, Tok.getLocation(), LD);
926 ConsumeToken();
927 return Res;
928 }
929 case tok::kw_const_cast:
930 case tok::kw_dynamic_cast:
931 case tok::kw_reinterpret_cast:
932 case tok::kw_static_cast:
933 Res = ParseCXXCasts();
934 break;
935 case tok::kw_typeid:
936 Res = ParseCXXTypeid();
937 break;
938 case tok::kw___uuidof:
939 Res = ParseCXXUuidof();
940 break;
941 case tok::kw_this:
942 Res = ParseCXXThis();
943 break;
944
945 case tok::annot_typename:
946 if (isStartOfObjCClassMessageMissingOpenBracket()) {
947 ParsedType Type = getTypeAnnotation(Tok);
948
949 // Fake up a Declarator to use with ActOnTypeName.
950 DeclSpec DS(AttrFactory);
951 DS.SetRangeStart(Tok.getLocation());
952 DS.SetRangeEnd(Tok.getLastLoc());
953
954 const char *PrevSpec = nullptr;
955 unsigned DiagID;
956 DS.SetTypeSpecType(TST_typename, Tok.getAnnotationEndLoc(),
957 PrevSpec, DiagID, Type,
958 Actions.getASTContext().getPrintingPolicy());
959
960 Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
961 TypeResult Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
962 if (Ty.isInvalid())
963 break;
964
965 ConsumeToken();
966 Res = ParseObjCMessageExpressionBody(SourceLocation(), SourceLocation(),
967 Ty.get(), nullptr);
968 break;
969 }
970 // Fall through
971
972 case tok::annot_decltype:
973 case tok::kw_char:
974 case tok::kw_wchar_t:
975 case tok::kw_char16_t:
976 case tok::kw_char32_t:
977 case tok::kw_bool:
978 case tok::kw_short:
979 case tok::kw_int:
980 case tok::kw_long:
981 case tok::kw___int64:
982 case tok::kw___int128:
983 case tok::kw_signed:
984 case tok::kw_unsigned:
985 case tok::kw_half:
986 case tok::kw_float:
987 case tok::kw_double:
988 case tok::kw_void:
989 case tok::kw_typename:
990 case tok::kw_typeof:
991 case tok::kw___vector: {
992 if (!getLangOpts().CPlusPlus) {
993 Diag(Tok, diag::err_expected_expression);
994 return ExprError();
995 }
996
997 if (SavedKind == tok::kw_typename) {
998 // postfix-expression: typename-specifier '(' expression-list[opt] ')'
999 // typename-specifier braced-init-list
1000 if (TryAnnotateTypeOrScopeToken())
1001 return ExprError();
1002
1003 if (!Actions.isSimpleTypeSpecifier(Tok.getKind()))
1004 // We are trying to parse a simple-type-specifier but might not get such
1005 // a token after error recovery.
1006 return ExprError();
1007 }
1008
1009 // postfix-expression: simple-type-specifier '(' expression-list[opt] ')'
1010 // simple-type-specifier braced-init-list
1011 //
1012 DeclSpec DS(AttrFactory);
1013
1014 ParseCXXSimpleTypeSpecifier(DS);
1015 if (Tok.isNot(tok::l_paren) &&
1016 (!getLangOpts().CPlusPlus11 || Tok.isNot(tok::l_brace)))
1017 return ExprError(Diag(Tok, diag::err_expected_lparen_after_type)
1018 << DS.getSourceRange());
1019
1020 if (Tok.is(tok::l_brace))
1021 Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
1022
1023 Res = ParseCXXTypeConstructExpression(DS);
1024 break;
1025 }
1026
1027 case tok::annot_cxxscope: { // [C++] id-expression: qualified-id
1028 // If TryAnnotateTypeOrScopeToken annotates the token, tail recurse.
1029 // (We can end up in this situation after tentative parsing.)
1030 if (TryAnnotateTypeOrScopeToken())
1031 return ExprError();
1032 if (!Tok.is(tok::annot_cxxscope))
1033 return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
1034 NotCastExpr, isTypeCast);
1035
1036 Token Next = NextToken();
1037 if (Next.is(tok::annot_template_id)) {
1038 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Next);
1039 if (TemplateId->Kind == TNK_Type_template) {
1040 // We have a qualified template-id that we know refers to a
1041 // type, translate it into a type and continue parsing as a
1042 // cast expression.
1043 CXXScopeSpec SS;
1044 ParseOptionalCXXScopeSpecifier(SS, ParsedType(),
1045 /*EnteringContext=*/false);
1046 AnnotateTemplateIdTokenAsType();
1047 return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
1048 NotCastExpr, isTypeCast);
1049 }
1050 }
1051
1052 // Parse as an id-expression.
1053 Res = ParseCXXIdExpression(isAddressOfOperand);
1054 break;
1055 }
1056
1057 case tok::annot_template_id: { // [C++] template-id
1058 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
1059 if (TemplateId->Kind == TNK_Type_template) {
1060 // We have a template-id that we know refers to a type,
1061 // translate it into a type and continue parsing as a cast
1062 // expression.
1063 AnnotateTemplateIdTokenAsType();
1064 return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
1065 NotCastExpr, isTypeCast);
1066 }
1067
1068 // Fall through to treat the template-id as an id-expression.
1069 }
1070
1071 case tok::kw_operator: // [C++] id-expression: operator/conversion-function-id
1072 Res = ParseCXXIdExpression(isAddressOfOperand);
1073 break;
1074
1075 case tok::coloncolon: {
1076 // ::foo::bar -> global qualified name etc. If TryAnnotateTypeOrScopeToken
1077 // annotates the token, tail recurse.
1078 if (TryAnnotateTypeOrScopeToken())
1079 return ExprError();
1080 if (!Tok.is(tok::coloncolon))
1081 return ParseCastExpression(isUnaryExpression, isAddressOfOperand);
1082
1083 // ::new -> [C++] new-expression
1084 // ::delete -> [C++] delete-expression
1085 SourceLocation CCLoc = ConsumeToken();
1086 if (Tok.is(tok::kw_new))
1087 return ParseCXXNewExpression(true, CCLoc);
1088 if (Tok.is(tok::kw_delete))
1089 return ParseCXXDeleteExpression(true, CCLoc);
1090
1091 // This is not a type name or scope specifier, it is an invalid expression.
1092 Diag(CCLoc, diag::err_expected_expression);
1093 return ExprError();
1094 }
1095
1096 case tok::kw_new: // [C++] new-expression
1097 return ParseCXXNewExpression(false, Tok.getLocation());
1098
1099 case tok::kw_delete: // [C++] delete-expression
1100 return ParseCXXDeleteExpression(false, Tok.getLocation());
1101
1102 case tok::kw_noexcept: { // [C++0x] 'noexcept' '(' expression ')'
1103 Diag(Tok, diag::warn_cxx98_compat_noexcept_expr);
1104 SourceLocation KeyLoc = ConsumeToken();
1105 BalancedDelimiterTracker T(*this, tok::l_paren);
1106
1107 if (T.expectAndConsume(diag::err_expected_lparen_after, "noexcept"))
1108 return ExprError();
1109 // C++11 [expr.unary.noexcept]p1:
1110 // The noexcept operator determines whether the evaluation of its operand,
1111 // which is an unevaluated operand, can throw an exception.
1112 EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated);
1113 ExprResult Result = ParseExpression();
1114
1115 T.consumeClose();
1116
1117 if (!Result.isInvalid())
1118 Result = Actions.ActOnNoexceptExpr(KeyLoc, T.getOpenLocation(),
1119 Result.get(), T.getCloseLocation());
1120 return Result;
1121 }
1122
1123 #define TYPE_TRAIT(N,Spelling,K) \
1124 case tok::kw_##Spelling:
1125 #include "clang/Basic/TokenKinds.def"
1126 return ParseTypeTrait();
1127
1128 case tok::kw___array_rank:
1129 case tok::kw___array_extent:
1130 return ParseArrayTypeTrait();
1131
1132 case tok::kw___is_lvalue_expr:
1133 case tok::kw___is_rvalue_expr:
1134 return ParseExpressionTrait();
1135
1136 case tok::at: {
1137 SourceLocation AtLoc = ConsumeToken();
1138 return ParseObjCAtExpression(AtLoc);
1139 }
1140 case tok::caret:
1141 Res = ParseBlockLiteralExpression();
1142 break;
1143 case tok::code_completion: {
1144 Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Expression);
1145 cutOffParsing();
1146 return ExprError();
1147 }
1148 case tok::l_square:
1149 if (getLangOpts().CPlusPlus11) {
1150 if (getLangOpts().ObjC1) {
1151 // C++11 lambda expressions and Objective-C message sends both start with a
1152 // square bracket. There are three possibilities here:
1153 // we have a valid lambda expression, we have an invalid lambda
1154 // expression, or we have something that doesn't appear to be a lambda.
1155 // If we're in the last case, we fall back to ParseObjCMessageExpression.
1156 Res = TryParseLambdaExpression();
1157 if (!Res.isInvalid() && !Res.get())
1158 Res = ParseObjCMessageExpression();
1159 break;
1160 }
1161 Res = ParseLambdaExpression();
1162 break;
1163 }
1164 if (getLangOpts().ObjC1) {
1165 Res = ParseObjCMessageExpression();
1166 break;
1167 }
1168 // FALL THROUGH.
1169 default:
1170 NotCastExpr = true;
1171 return ExprError();
1172 }
1173
1174 // These can be followed by postfix-expr pieces.
1175 return ParsePostfixExpressionSuffix(Res);
1176 }
1177
1178 /// \brief Once the leading part of a postfix-expression is parsed, this
1179 /// method parses any suffixes that apply.
1180 ///
1181 /// \verbatim
1182 /// postfix-expression: [C99 6.5.2]
1183 /// primary-expression
1184 /// postfix-expression '[' expression ']'
1185 /// postfix-expression '[' braced-init-list ']'
1186 /// postfix-expression '(' argument-expression-list[opt] ')'
1187 /// postfix-expression '.' identifier
1188 /// postfix-expression '->' identifier
1189 /// postfix-expression '++'
1190 /// postfix-expression '--'
1191 /// '(' type-name ')' '{' initializer-list '}'
1192 /// '(' type-name ')' '{' initializer-list ',' '}'
1193 ///
1194 /// argument-expression-list: [C99 6.5.2]
1195 /// argument-expression ...[opt]
1196 /// argument-expression-list ',' assignment-expression ...[opt]
1197 /// \endverbatim
1198 ExprResult
ParsePostfixExpressionSuffix(ExprResult LHS)1199 Parser::ParsePostfixExpressionSuffix(ExprResult LHS) {
1200 // Now that the primary-expression piece of the postfix-expression has been
1201 // parsed, see if there are any postfix-expression pieces here.
1202 SourceLocation Loc;
1203 while (1) {
1204 switch (Tok.getKind()) {
1205 case tok::code_completion:
1206 if (InMessageExpression)
1207 return LHS;
1208
1209 Actions.CodeCompletePostfixExpression(getCurScope(), LHS);
1210 cutOffParsing();
1211 return ExprError();
1212
1213 case tok::identifier:
1214 // If we see identifier: after an expression, and we're not already in a
1215 // message send, then this is probably a message send with a missing
1216 // opening bracket '['.
1217 if (getLangOpts().ObjC1 && !InMessageExpression &&
1218 (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) {
1219 LHS = ParseObjCMessageExpressionBody(SourceLocation(), SourceLocation(),
1220 ParsedType(), LHS.get());
1221 break;
1222 }
1223
1224 // Fall through; this isn't a message send.
1225
1226 default: // Not a postfix-expression suffix.
1227 return LHS;
1228 case tok::l_square: { // postfix-expression: p-e '[' expression ']'
1229 // If we have a array postfix expression that starts on a new line and
1230 // Objective-C is enabled, it is highly likely that the user forgot a
1231 // semicolon after the base expression and that the array postfix-expr is
1232 // actually another message send. In this case, do some look-ahead to see
1233 // if the contents of the square brackets are obviously not a valid
1234 // expression and recover by pretending there is no suffix.
1235 if (getLangOpts().ObjC1 && Tok.isAtStartOfLine() &&
1236 isSimpleObjCMessageExpression())
1237 return LHS;
1238
1239 // Reject array indices starting with a lambda-expression. '[[' is
1240 // reserved for attributes.
1241 if (CheckProhibitedCXX11Attribute())
1242 return ExprError();
1243
1244 BalancedDelimiterTracker T(*this, tok::l_square);
1245 T.consumeOpen();
1246 Loc = T.getOpenLocation();
1247 ExprResult Idx;
1248 if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
1249 Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
1250 Idx = ParseBraceInitializer();
1251 } else
1252 Idx = ParseExpression();
1253
1254 SourceLocation RLoc = Tok.getLocation();
1255
1256 if (!LHS.isInvalid() && !Idx.isInvalid() && Tok.is(tok::r_square)) {
1257 LHS = Actions.ActOnArraySubscriptExpr(getCurScope(), LHS.get(), Loc,
1258 Idx.get(), RLoc);
1259 } else
1260 LHS = ExprError();
1261
1262 // Match the ']'.
1263 T.consumeClose();
1264 break;
1265 }
1266
1267 case tok::l_paren: // p-e: p-e '(' argument-expression-list[opt] ')'
1268 case tok::lesslessless: { // p-e: p-e '<<<' argument-expression-list '>>>'
1269 // '(' argument-expression-list[opt] ')'
1270 tok::TokenKind OpKind = Tok.getKind();
1271 InMessageExpressionRAIIObject InMessage(*this, false);
1272
1273 Expr *ExecConfig = nullptr;
1274
1275 BalancedDelimiterTracker PT(*this, tok::l_paren);
1276
1277 if (OpKind == tok::lesslessless) {
1278 ExprVector ExecConfigExprs;
1279 CommaLocsTy ExecConfigCommaLocs;
1280 SourceLocation OpenLoc = ConsumeToken();
1281
1282 if (ParseSimpleExpressionList(ExecConfigExprs, ExecConfigCommaLocs)) {
1283 LHS = ExprError();
1284 }
1285
1286 SourceLocation CloseLoc;
1287 if (TryConsumeToken(tok::greatergreatergreater, CloseLoc)) {
1288 } else if (LHS.isInvalid()) {
1289 SkipUntil(tok::greatergreatergreater, StopAtSemi);
1290 } else {
1291 // There was an error closing the brackets
1292 Diag(Tok, diag::err_expected) << tok::greatergreatergreater;
1293 Diag(OpenLoc, diag::note_matching) << tok::lesslessless;
1294 SkipUntil(tok::greatergreatergreater, StopAtSemi);
1295 LHS = ExprError();
1296 }
1297
1298 if (!LHS.isInvalid()) {
1299 if (ExpectAndConsume(tok::l_paren))
1300 LHS = ExprError();
1301 else
1302 Loc = PrevTokLocation;
1303 }
1304
1305 if (!LHS.isInvalid()) {
1306 ExprResult ECResult = Actions.ActOnCUDAExecConfigExpr(getCurScope(),
1307 OpenLoc,
1308 ExecConfigExprs,
1309 CloseLoc);
1310 if (ECResult.isInvalid())
1311 LHS = ExprError();
1312 else
1313 ExecConfig = ECResult.get();
1314 }
1315 } else {
1316 PT.consumeOpen();
1317 Loc = PT.getOpenLocation();
1318 }
1319
1320 ExprVector ArgExprs;
1321 CommaLocsTy CommaLocs;
1322
1323 if (Tok.is(tok::code_completion)) {
1324 Actions.CodeCompleteCall(getCurScope(), LHS.get(), None);
1325 cutOffParsing();
1326 return ExprError();
1327 }
1328
1329 if (OpKind == tok::l_paren || !LHS.isInvalid()) {
1330 if (Tok.isNot(tok::r_paren)) {
1331 if (ParseExpressionList(ArgExprs, CommaLocs, &Sema::CodeCompleteCall,
1332 LHS.get())) {
1333 LHS = ExprError();
1334 }
1335 }
1336 }
1337
1338 // Match the ')'.
1339 if (LHS.isInvalid()) {
1340 SkipUntil(tok::r_paren, StopAtSemi);
1341 } else if (Tok.isNot(tok::r_paren)) {
1342 PT.consumeClose();
1343 LHS = ExprError();
1344 } else {
1345 assert((ArgExprs.size() == 0 ||
1346 ArgExprs.size()-1 == CommaLocs.size())&&
1347 "Unexpected number of commas!");
1348 LHS = Actions.ActOnCallExpr(getCurScope(), LHS.get(), Loc,
1349 ArgExprs, Tok.getLocation(),
1350 ExecConfig);
1351 PT.consumeClose();
1352 }
1353
1354 break;
1355 }
1356 case tok::arrow:
1357 case tok::period: {
1358 // postfix-expression: p-e '->' template[opt] id-expression
1359 // postfix-expression: p-e '.' template[opt] id-expression
1360 tok::TokenKind OpKind = Tok.getKind();
1361 SourceLocation OpLoc = ConsumeToken(); // Eat the "." or "->" token.
1362
1363 CXXScopeSpec SS;
1364 ParsedType ObjectType;
1365 bool MayBePseudoDestructor = false;
1366 if (getLangOpts().CPlusPlus && !LHS.isInvalid()) {
1367 Expr *Base = LHS.get();
1368 const Type* BaseType = Base->getType().getTypePtrOrNull();
1369 if (BaseType && Tok.is(tok::l_paren) &&
1370 (BaseType->isFunctionType() ||
1371 BaseType->isSpecificPlaceholderType(BuiltinType::BoundMember))) {
1372 Diag(OpLoc, diag::err_function_is_not_record)
1373 << OpKind << Base->getSourceRange()
1374 << FixItHint::CreateRemoval(OpLoc);
1375 return ParsePostfixExpressionSuffix(Base);
1376 }
1377
1378 LHS = Actions.ActOnStartCXXMemberReference(getCurScope(), Base,
1379 OpLoc, OpKind, ObjectType,
1380 MayBePseudoDestructor);
1381 if (LHS.isInvalid())
1382 break;
1383
1384 ParseOptionalCXXScopeSpecifier(SS, ObjectType,
1385 /*EnteringContext=*/false,
1386 &MayBePseudoDestructor);
1387 if (SS.isNotEmpty())
1388 ObjectType = ParsedType();
1389 }
1390
1391 if (Tok.is(tok::code_completion)) {
1392 // Code completion for a member access expression.
1393 Actions.CodeCompleteMemberReferenceExpr(getCurScope(), LHS.get(),
1394 OpLoc, OpKind == tok::arrow);
1395
1396 cutOffParsing();
1397 return ExprError();
1398 }
1399
1400 if (MayBePseudoDestructor && !LHS.isInvalid()) {
1401 LHS = ParseCXXPseudoDestructor(LHS.get(), OpLoc, OpKind, SS,
1402 ObjectType);
1403 break;
1404 }
1405
1406 // Either the action has told is that this cannot be a
1407 // pseudo-destructor expression (based on the type of base
1408 // expression), or we didn't see a '~' in the right place. We
1409 // can still parse a destructor name here, but in that case it
1410 // names a real destructor.
1411 // Allow explicit constructor calls in Microsoft mode.
1412 // FIXME: Add support for explicit call of template constructor.
1413 SourceLocation TemplateKWLoc;
1414 UnqualifiedId Name;
1415 if (getLangOpts().ObjC2 && OpKind == tok::period && Tok.is(tok::kw_class)) {
1416 // Objective-C++:
1417 // After a '.' in a member access expression, treat the keyword
1418 // 'class' as if it were an identifier.
1419 //
1420 // This hack allows property access to the 'class' method because it is
1421 // such a common method name. For other C++ keywords that are
1422 // Objective-C method names, one must use the message send syntax.
1423 IdentifierInfo *Id = Tok.getIdentifierInfo();
1424 SourceLocation Loc = ConsumeToken();
1425 Name.setIdentifier(Id, Loc);
1426 } else if (ParseUnqualifiedId(SS,
1427 /*EnteringContext=*/false,
1428 /*AllowDestructorName=*/true,
1429 /*AllowConstructorName=*/
1430 getLangOpts().MicrosoftExt,
1431 ObjectType, TemplateKWLoc, Name))
1432 LHS = ExprError();
1433
1434 if (!LHS.isInvalid())
1435 LHS = Actions.ActOnMemberAccessExpr(getCurScope(), LHS.get(), OpLoc,
1436 OpKind, SS, TemplateKWLoc, Name,
1437 CurParsedObjCImpl ? CurParsedObjCImpl->Dcl
1438 : nullptr,
1439 Tok.is(tok::l_paren));
1440 break;
1441 }
1442 case tok::plusplus: // postfix-expression: postfix-expression '++'
1443 case tok::minusminus: // postfix-expression: postfix-expression '--'
1444 if (!LHS.isInvalid()) {
1445 LHS = Actions.ActOnPostfixUnaryOp(getCurScope(), Tok.getLocation(),
1446 Tok.getKind(), LHS.get());
1447 }
1448 ConsumeToken();
1449 break;
1450 }
1451 }
1452 }
1453
1454 /// ParseExprAfterUnaryExprOrTypeTrait - We parsed a typeof/sizeof/alignof/
1455 /// vec_step and we are at the start of an expression or a parenthesized
1456 /// type-id. OpTok is the operand token (typeof/sizeof/alignof). Returns the
1457 /// expression (isCastExpr == false) or the type (isCastExpr == true).
1458 ///
1459 /// \verbatim
1460 /// unary-expression: [C99 6.5.3]
1461 /// 'sizeof' unary-expression
1462 /// 'sizeof' '(' type-name ')'
1463 /// [GNU] '__alignof' unary-expression
1464 /// [GNU] '__alignof' '(' type-name ')'
1465 /// [C11] '_Alignof' '(' type-name ')'
1466 /// [C++0x] 'alignof' '(' type-id ')'
1467 ///
1468 /// [GNU] typeof-specifier:
1469 /// typeof ( expressions )
1470 /// typeof ( type-name )
1471 /// [GNU/C++] typeof unary-expression
1472 ///
1473 /// [OpenCL 1.1 6.11.12] vec_step built-in function:
1474 /// vec_step ( expressions )
1475 /// vec_step ( type-name )
1476 /// \endverbatim
1477 ExprResult
ParseExprAfterUnaryExprOrTypeTrait(const Token & OpTok,bool & isCastExpr,ParsedType & CastTy,SourceRange & CastRange)1478 Parser::ParseExprAfterUnaryExprOrTypeTrait(const Token &OpTok,
1479 bool &isCastExpr,
1480 ParsedType &CastTy,
1481 SourceRange &CastRange) {
1482
1483 assert((OpTok.is(tok::kw_typeof) || OpTok.is(tok::kw_sizeof) ||
1484 OpTok.is(tok::kw___alignof) || OpTok.is(tok::kw_alignof) ||
1485 OpTok.is(tok::kw__Alignof) || OpTok.is(tok::kw_vec_step)) &&
1486 "Not a typeof/sizeof/alignof/vec_step expression!");
1487
1488 ExprResult Operand;
1489
1490 // If the operand doesn't start with an '(', it must be an expression.
1491 if (Tok.isNot(tok::l_paren)) {
1492 // If construct allows a form without parenthesis, user may forget to put
1493 // pathenthesis around type name.
1494 if (OpTok.is(tok::kw_sizeof) || OpTok.is(tok::kw___alignof) ||
1495 OpTok.is(tok::kw_alignof) || OpTok.is(tok::kw__Alignof)) {
1496 if (isTypeIdUnambiguously()) {
1497 DeclSpec DS(AttrFactory);
1498 ParseSpecifierQualifierList(DS);
1499 Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
1500 ParseDeclarator(DeclaratorInfo);
1501
1502 SourceLocation LParenLoc = PP.getLocForEndOfToken(OpTok.getLocation());
1503 SourceLocation RParenLoc = PP.getLocForEndOfToken(PrevTokLocation);
1504 Diag(LParenLoc, diag::err_expected_parentheses_around_typename)
1505 << OpTok.getName()
1506 << FixItHint::CreateInsertion(LParenLoc, "(")
1507 << FixItHint::CreateInsertion(RParenLoc, ")");
1508 isCastExpr = true;
1509 return ExprEmpty();
1510 }
1511 }
1512
1513 isCastExpr = false;
1514 if (OpTok.is(tok::kw_typeof) && !getLangOpts().CPlusPlus) {
1515 Diag(Tok, diag::err_expected_after) << OpTok.getIdentifierInfo()
1516 << tok::l_paren;
1517 return ExprError();
1518 }
1519
1520 Operand = ParseCastExpression(true/*isUnaryExpression*/);
1521 } else {
1522 // If it starts with a '(', we know that it is either a parenthesized
1523 // type-name, or it is a unary-expression that starts with a compound
1524 // literal, or starts with a primary-expression that is a parenthesized
1525 // expression.
1526 ParenParseOption ExprType = CastExpr;
1527 SourceLocation LParenLoc = Tok.getLocation(), RParenLoc;
1528
1529 Operand = ParseParenExpression(ExprType, true/*stopIfCastExpr*/,
1530 false, CastTy, RParenLoc);
1531 CastRange = SourceRange(LParenLoc, RParenLoc);
1532
1533 // If ParseParenExpression parsed a '(typename)' sequence only, then this is
1534 // a type.
1535 if (ExprType == CastExpr) {
1536 isCastExpr = true;
1537 return ExprEmpty();
1538 }
1539
1540 if (getLangOpts().CPlusPlus || OpTok.isNot(tok::kw_typeof)) {
1541 // GNU typeof in C requires the expression to be parenthesized. Not so for
1542 // sizeof/alignof or in C++. Therefore, the parenthesized expression is
1543 // the start of a unary-expression, but doesn't include any postfix
1544 // pieces. Parse these now if present.
1545 if (!Operand.isInvalid())
1546 Operand = ParsePostfixExpressionSuffix(Operand.get());
1547 }
1548 }
1549
1550 // If we get here, the operand to the typeof/sizeof/alignof was an expresion.
1551 isCastExpr = false;
1552 return Operand;
1553 }
1554
1555
1556 /// \brief Parse a sizeof or alignof expression.
1557 ///
1558 /// \verbatim
1559 /// unary-expression: [C99 6.5.3]
1560 /// 'sizeof' unary-expression
1561 /// 'sizeof' '(' type-name ')'
1562 /// [C++11] 'sizeof' '...' '(' identifier ')'
1563 /// [GNU] '__alignof' unary-expression
1564 /// [GNU] '__alignof' '(' type-name ')'
1565 /// [C11] '_Alignof' '(' type-name ')'
1566 /// [C++11] 'alignof' '(' type-id ')'
1567 /// \endverbatim
ParseUnaryExprOrTypeTraitExpression()1568 ExprResult Parser::ParseUnaryExprOrTypeTraitExpression() {
1569 assert((Tok.is(tok::kw_sizeof) || Tok.is(tok::kw___alignof) ||
1570 Tok.is(tok::kw_alignof) || Tok.is(tok::kw__Alignof) ||
1571 Tok.is(tok::kw_vec_step)) &&
1572 "Not a sizeof/alignof/vec_step expression!");
1573 Token OpTok = Tok;
1574 ConsumeToken();
1575
1576 // [C++11] 'sizeof' '...' '(' identifier ')'
1577 if (Tok.is(tok::ellipsis) && OpTok.is(tok::kw_sizeof)) {
1578 SourceLocation EllipsisLoc = ConsumeToken();
1579 SourceLocation LParenLoc, RParenLoc;
1580 IdentifierInfo *Name = nullptr;
1581 SourceLocation NameLoc;
1582 if (Tok.is(tok::l_paren)) {
1583 BalancedDelimiterTracker T(*this, tok::l_paren);
1584 T.consumeOpen();
1585 LParenLoc = T.getOpenLocation();
1586 if (Tok.is(tok::identifier)) {
1587 Name = Tok.getIdentifierInfo();
1588 NameLoc = ConsumeToken();
1589 T.consumeClose();
1590 RParenLoc = T.getCloseLocation();
1591 if (RParenLoc.isInvalid())
1592 RParenLoc = PP.getLocForEndOfToken(NameLoc);
1593 } else {
1594 Diag(Tok, diag::err_expected_parameter_pack);
1595 SkipUntil(tok::r_paren, StopAtSemi);
1596 }
1597 } else if (Tok.is(tok::identifier)) {
1598 Name = Tok.getIdentifierInfo();
1599 NameLoc = ConsumeToken();
1600 LParenLoc = PP.getLocForEndOfToken(EllipsisLoc);
1601 RParenLoc = PP.getLocForEndOfToken(NameLoc);
1602 Diag(LParenLoc, diag::err_paren_sizeof_parameter_pack)
1603 << Name
1604 << FixItHint::CreateInsertion(LParenLoc, "(")
1605 << FixItHint::CreateInsertion(RParenLoc, ")");
1606 } else {
1607 Diag(Tok, diag::err_sizeof_parameter_pack);
1608 }
1609
1610 if (!Name)
1611 return ExprError();
1612
1613 EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated,
1614 Sema::ReuseLambdaContextDecl);
1615
1616 return Actions.ActOnSizeofParameterPackExpr(getCurScope(),
1617 OpTok.getLocation(),
1618 *Name, NameLoc,
1619 RParenLoc);
1620 }
1621
1622 if (OpTok.is(tok::kw_alignof) || OpTok.is(tok::kw__Alignof))
1623 Diag(OpTok, diag::warn_cxx98_compat_alignof);
1624
1625 EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated,
1626 Sema::ReuseLambdaContextDecl);
1627
1628 bool isCastExpr;
1629 ParsedType CastTy;
1630 SourceRange CastRange;
1631 ExprResult Operand = ParseExprAfterUnaryExprOrTypeTrait(OpTok,
1632 isCastExpr,
1633 CastTy,
1634 CastRange);
1635
1636 UnaryExprOrTypeTrait ExprKind = UETT_SizeOf;
1637 if (OpTok.is(tok::kw_alignof) || OpTok.is(tok::kw___alignof) ||
1638 OpTok.is(tok::kw__Alignof))
1639 ExprKind = UETT_AlignOf;
1640 else if (OpTok.is(tok::kw_vec_step))
1641 ExprKind = UETT_VecStep;
1642
1643 if (isCastExpr)
1644 return Actions.ActOnUnaryExprOrTypeTraitExpr(OpTok.getLocation(),
1645 ExprKind,
1646 /*isType=*/true,
1647 CastTy.getAsOpaquePtr(),
1648 CastRange);
1649
1650 if (OpTok.is(tok::kw_alignof) || OpTok.is(tok::kw__Alignof))
1651 Diag(OpTok, diag::ext_alignof_expr) << OpTok.getIdentifierInfo();
1652
1653 // If we get here, the operand to the sizeof/alignof was an expresion.
1654 if (!Operand.isInvalid())
1655 Operand = Actions.ActOnUnaryExprOrTypeTraitExpr(OpTok.getLocation(),
1656 ExprKind,
1657 /*isType=*/false,
1658 Operand.get(),
1659 CastRange);
1660 return Operand;
1661 }
1662
1663 /// ParseBuiltinPrimaryExpression
1664 ///
1665 /// \verbatim
1666 /// primary-expression: [C99 6.5.1]
1667 /// [GNU] '__builtin_va_arg' '(' assignment-expression ',' type-name ')'
1668 /// [GNU] '__builtin_offsetof' '(' type-name ',' offsetof-member-designator')'
1669 /// [GNU] '__builtin_choose_expr' '(' assign-expr ',' assign-expr ','
1670 /// assign-expr ')'
1671 /// [GNU] '__builtin_types_compatible_p' '(' type-name ',' type-name ')'
1672 /// [OCL] '__builtin_astype' '(' assignment-expression ',' type-name ')'
1673 ///
1674 /// [GNU] offsetof-member-designator:
1675 /// [GNU] identifier
1676 /// [GNU] offsetof-member-designator '.' identifier
1677 /// [GNU] offsetof-member-designator '[' expression ']'
1678 /// \endverbatim
ParseBuiltinPrimaryExpression()1679 ExprResult Parser::ParseBuiltinPrimaryExpression() {
1680 ExprResult Res;
1681 const IdentifierInfo *BuiltinII = Tok.getIdentifierInfo();
1682
1683 tok::TokenKind T = Tok.getKind();
1684 SourceLocation StartLoc = ConsumeToken(); // Eat the builtin identifier.
1685
1686 // All of these start with an open paren.
1687 if (Tok.isNot(tok::l_paren))
1688 return ExprError(Diag(Tok, diag::err_expected_after) << BuiltinII
1689 << tok::l_paren);
1690
1691 BalancedDelimiterTracker PT(*this, tok::l_paren);
1692 PT.consumeOpen();
1693
1694 // TODO: Build AST.
1695
1696 switch (T) {
1697 default: llvm_unreachable("Not a builtin primary expression!");
1698 case tok::kw___builtin_va_arg: {
1699 ExprResult Expr(ParseAssignmentExpression());
1700
1701 if (ExpectAndConsume(tok::comma)) {
1702 SkipUntil(tok::r_paren, StopAtSemi);
1703 Expr = ExprError();
1704 }
1705
1706 TypeResult Ty = ParseTypeName();
1707
1708 if (Tok.isNot(tok::r_paren)) {
1709 Diag(Tok, diag::err_expected) << tok::r_paren;
1710 Expr = ExprError();
1711 }
1712
1713 if (Expr.isInvalid() || Ty.isInvalid())
1714 Res = ExprError();
1715 else
1716 Res = Actions.ActOnVAArg(StartLoc, Expr.get(), Ty.get(), ConsumeParen());
1717 break;
1718 }
1719 case tok::kw___builtin_offsetof: {
1720 SourceLocation TypeLoc = Tok.getLocation();
1721 TypeResult Ty = ParseTypeName();
1722 if (Ty.isInvalid()) {
1723 SkipUntil(tok::r_paren, StopAtSemi);
1724 return ExprError();
1725 }
1726
1727 if (ExpectAndConsume(tok::comma)) {
1728 SkipUntil(tok::r_paren, StopAtSemi);
1729 return ExprError();
1730 }
1731
1732 // We must have at least one identifier here.
1733 if (Tok.isNot(tok::identifier)) {
1734 Diag(Tok, diag::err_expected) << tok::identifier;
1735 SkipUntil(tok::r_paren, StopAtSemi);
1736 return ExprError();
1737 }
1738
1739 // Keep track of the various subcomponents we see.
1740 SmallVector<Sema::OffsetOfComponent, 4> Comps;
1741
1742 Comps.push_back(Sema::OffsetOfComponent());
1743 Comps.back().isBrackets = false;
1744 Comps.back().U.IdentInfo = Tok.getIdentifierInfo();
1745 Comps.back().LocStart = Comps.back().LocEnd = ConsumeToken();
1746
1747 // FIXME: This loop leaks the index expressions on error.
1748 while (1) {
1749 if (Tok.is(tok::period)) {
1750 // offsetof-member-designator: offsetof-member-designator '.' identifier
1751 Comps.push_back(Sema::OffsetOfComponent());
1752 Comps.back().isBrackets = false;
1753 Comps.back().LocStart = ConsumeToken();
1754
1755 if (Tok.isNot(tok::identifier)) {
1756 Diag(Tok, diag::err_expected) << tok::identifier;
1757 SkipUntil(tok::r_paren, StopAtSemi);
1758 return ExprError();
1759 }
1760 Comps.back().U.IdentInfo = Tok.getIdentifierInfo();
1761 Comps.back().LocEnd = ConsumeToken();
1762
1763 } else if (Tok.is(tok::l_square)) {
1764 if (CheckProhibitedCXX11Attribute())
1765 return ExprError();
1766
1767 // offsetof-member-designator: offsetof-member-design '[' expression ']'
1768 Comps.push_back(Sema::OffsetOfComponent());
1769 Comps.back().isBrackets = true;
1770 BalancedDelimiterTracker ST(*this, tok::l_square);
1771 ST.consumeOpen();
1772 Comps.back().LocStart = ST.getOpenLocation();
1773 Res = ParseExpression();
1774 if (Res.isInvalid()) {
1775 SkipUntil(tok::r_paren, StopAtSemi);
1776 return Res;
1777 }
1778 Comps.back().U.E = Res.get();
1779
1780 ST.consumeClose();
1781 Comps.back().LocEnd = ST.getCloseLocation();
1782 } else {
1783 if (Tok.isNot(tok::r_paren)) {
1784 PT.consumeClose();
1785 Res = ExprError();
1786 } else if (Ty.isInvalid()) {
1787 Res = ExprError();
1788 } else {
1789 PT.consumeClose();
1790 Res = Actions.ActOnBuiltinOffsetOf(getCurScope(), StartLoc, TypeLoc,
1791 Ty.get(), &Comps[0], Comps.size(),
1792 PT.getCloseLocation());
1793 }
1794 break;
1795 }
1796 }
1797 break;
1798 }
1799 case tok::kw___builtin_choose_expr: {
1800 ExprResult Cond(ParseAssignmentExpression());
1801 if (Cond.isInvalid()) {
1802 SkipUntil(tok::r_paren, StopAtSemi);
1803 return Cond;
1804 }
1805 if (ExpectAndConsume(tok::comma)) {
1806 SkipUntil(tok::r_paren, StopAtSemi);
1807 return ExprError();
1808 }
1809
1810 ExprResult Expr1(ParseAssignmentExpression());
1811 if (Expr1.isInvalid()) {
1812 SkipUntil(tok::r_paren, StopAtSemi);
1813 return Expr1;
1814 }
1815 if (ExpectAndConsume(tok::comma)) {
1816 SkipUntil(tok::r_paren, StopAtSemi);
1817 return ExprError();
1818 }
1819
1820 ExprResult Expr2(ParseAssignmentExpression());
1821 if (Expr2.isInvalid()) {
1822 SkipUntil(tok::r_paren, StopAtSemi);
1823 return Expr2;
1824 }
1825 if (Tok.isNot(tok::r_paren)) {
1826 Diag(Tok, diag::err_expected) << tok::r_paren;
1827 return ExprError();
1828 }
1829 Res = Actions.ActOnChooseExpr(StartLoc, Cond.get(), Expr1.get(),
1830 Expr2.get(), ConsumeParen());
1831 break;
1832 }
1833 case tok::kw___builtin_astype: {
1834 // The first argument is an expression to be converted, followed by a comma.
1835 ExprResult Expr(ParseAssignmentExpression());
1836 if (Expr.isInvalid()) {
1837 SkipUntil(tok::r_paren, StopAtSemi);
1838 return ExprError();
1839 }
1840
1841 if (ExpectAndConsume(tok::comma)) {
1842 SkipUntil(tok::r_paren, StopAtSemi);
1843 return ExprError();
1844 }
1845
1846 // Second argument is the type to bitcast to.
1847 TypeResult DestTy = ParseTypeName();
1848 if (DestTy.isInvalid())
1849 return ExprError();
1850
1851 // Attempt to consume the r-paren.
1852 if (Tok.isNot(tok::r_paren)) {
1853 Diag(Tok, diag::err_expected) << tok::r_paren;
1854 SkipUntil(tok::r_paren, StopAtSemi);
1855 return ExprError();
1856 }
1857
1858 Res = Actions.ActOnAsTypeExpr(Expr.get(), DestTy.get(), StartLoc,
1859 ConsumeParen());
1860 break;
1861 }
1862 case tok::kw___builtin_convertvector: {
1863 // The first argument is an expression to be converted, followed by a comma.
1864 ExprResult Expr(ParseAssignmentExpression());
1865 if (Expr.isInvalid()) {
1866 SkipUntil(tok::r_paren, StopAtSemi);
1867 return ExprError();
1868 }
1869
1870 if (ExpectAndConsume(tok::comma)) {
1871 SkipUntil(tok::r_paren, StopAtSemi);
1872 return ExprError();
1873 }
1874
1875 // Second argument is the type to bitcast to.
1876 TypeResult DestTy = ParseTypeName();
1877 if (DestTy.isInvalid())
1878 return ExprError();
1879
1880 // Attempt to consume the r-paren.
1881 if (Tok.isNot(tok::r_paren)) {
1882 Diag(Tok, diag::err_expected) << tok::r_paren;
1883 SkipUntil(tok::r_paren, StopAtSemi);
1884 return ExprError();
1885 }
1886
1887 Res = Actions.ActOnConvertVectorExpr(Expr.get(), DestTy.get(), StartLoc,
1888 ConsumeParen());
1889 break;
1890 }
1891 }
1892
1893 if (Res.isInvalid())
1894 return ExprError();
1895
1896 // These can be followed by postfix-expr pieces because they are
1897 // primary-expressions.
1898 return ParsePostfixExpressionSuffix(Res.get());
1899 }
1900
1901 /// ParseParenExpression - This parses the unit that starts with a '(' token,
1902 /// based on what is allowed by ExprType. The actual thing parsed is returned
1903 /// in ExprType. If stopIfCastExpr is true, it will only return the parsed type,
1904 /// not the parsed cast-expression.
1905 ///
1906 /// \verbatim
1907 /// primary-expression: [C99 6.5.1]
1908 /// '(' expression ')'
1909 /// [GNU] '(' compound-statement ')' (if !ParenExprOnly)
1910 /// postfix-expression: [C99 6.5.2]
1911 /// '(' type-name ')' '{' initializer-list '}'
1912 /// '(' type-name ')' '{' initializer-list ',' '}'
1913 /// cast-expression: [C99 6.5.4]
1914 /// '(' type-name ')' cast-expression
1915 /// [ARC] bridged-cast-expression
1916 ///
1917 /// [ARC] bridged-cast-expression:
1918 /// (__bridge type-name) cast-expression
1919 /// (__bridge_transfer type-name) cast-expression
1920 /// (__bridge_retained type-name) cast-expression
1921 /// \endverbatim
1922 ExprResult
ParseParenExpression(ParenParseOption & ExprType,bool stopIfCastExpr,bool isTypeCast,ParsedType & CastTy,SourceLocation & RParenLoc)1923 Parser::ParseParenExpression(ParenParseOption &ExprType, bool stopIfCastExpr,
1924 bool isTypeCast, ParsedType &CastTy,
1925 SourceLocation &RParenLoc) {
1926 assert(Tok.is(tok::l_paren) && "Not a paren expr!");
1927 ColonProtectionRAIIObject ColonProtection(*this, false);
1928 BalancedDelimiterTracker T(*this, tok::l_paren);
1929 if (T.consumeOpen())
1930 return ExprError();
1931 SourceLocation OpenLoc = T.getOpenLocation();
1932
1933 ExprResult Result(true);
1934 bool isAmbiguousTypeId;
1935 CastTy = ParsedType();
1936
1937 if (Tok.is(tok::code_completion)) {
1938 Actions.CodeCompleteOrdinaryName(getCurScope(),
1939 ExprType >= CompoundLiteral? Sema::PCC_ParenthesizedExpression
1940 : Sema::PCC_Expression);
1941 cutOffParsing();
1942 return ExprError();
1943 }
1944
1945 // Diagnose use of bridge casts in non-arc mode.
1946 bool BridgeCast = (getLangOpts().ObjC2 &&
1947 (Tok.is(tok::kw___bridge) ||
1948 Tok.is(tok::kw___bridge_transfer) ||
1949 Tok.is(tok::kw___bridge_retained) ||
1950 Tok.is(tok::kw___bridge_retain)));
1951 if (BridgeCast && !getLangOpts().ObjCAutoRefCount) {
1952 if (!TryConsumeToken(tok::kw___bridge)) {
1953 StringRef BridgeCastName = Tok.getName();
1954 SourceLocation BridgeKeywordLoc = ConsumeToken();
1955 if (!PP.getSourceManager().isInSystemHeader(BridgeKeywordLoc))
1956 Diag(BridgeKeywordLoc, diag::warn_arc_bridge_cast_nonarc)
1957 << BridgeCastName
1958 << FixItHint::CreateReplacement(BridgeKeywordLoc, "");
1959 }
1960 BridgeCast = false;
1961 }
1962
1963 // None of these cases should fall through with an invalid Result
1964 // unless they've already reported an error.
1965 if (ExprType >= CompoundStmt && Tok.is(tok::l_brace)) {
1966 Diag(Tok, diag::ext_gnu_statement_expr);
1967 Actions.ActOnStartStmtExpr();
1968
1969 StmtResult Stmt(ParseCompoundStatement(true));
1970 ExprType = CompoundStmt;
1971
1972 // If the substmt parsed correctly, build the AST node.
1973 if (!Stmt.isInvalid()) {
1974 Result = Actions.ActOnStmtExpr(OpenLoc, Stmt.get(), Tok.getLocation());
1975 } else {
1976 Actions.ActOnStmtExprError();
1977 }
1978 } else if (ExprType >= CompoundLiteral && BridgeCast) {
1979 tok::TokenKind tokenKind = Tok.getKind();
1980 SourceLocation BridgeKeywordLoc = ConsumeToken();
1981
1982 // Parse an Objective-C ARC ownership cast expression.
1983 ObjCBridgeCastKind Kind;
1984 if (tokenKind == tok::kw___bridge)
1985 Kind = OBC_Bridge;
1986 else if (tokenKind == tok::kw___bridge_transfer)
1987 Kind = OBC_BridgeTransfer;
1988 else if (tokenKind == tok::kw___bridge_retained)
1989 Kind = OBC_BridgeRetained;
1990 else {
1991 // As a hopefully temporary workaround, allow __bridge_retain as
1992 // a synonym for __bridge_retained, but only in system headers.
1993 assert(tokenKind == tok::kw___bridge_retain);
1994 Kind = OBC_BridgeRetained;
1995 if (!PP.getSourceManager().isInSystemHeader(BridgeKeywordLoc))
1996 Diag(BridgeKeywordLoc, diag::err_arc_bridge_retain)
1997 << FixItHint::CreateReplacement(BridgeKeywordLoc,
1998 "__bridge_retained");
1999 }
2000
2001 TypeResult Ty = ParseTypeName();
2002 T.consumeClose();
2003 ColonProtection.restore();
2004 RParenLoc = T.getCloseLocation();
2005 ExprResult SubExpr = ParseCastExpression(/*isUnaryExpression=*/false);
2006
2007 if (Ty.isInvalid() || SubExpr.isInvalid())
2008 return ExprError();
2009
2010 return Actions.ActOnObjCBridgedCast(getCurScope(), OpenLoc, Kind,
2011 BridgeKeywordLoc, Ty.get(),
2012 RParenLoc, SubExpr.get());
2013 } else if (ExprType >= CompoundLiteral &&
2014 isTypeIdInParens(isAmbiguousTypeId)) {
2015
2016 // Otherwise, this is a compound literal expression or cast expression.
2017
2018 // In C++, if the type-id is ambiguous we disambiguate based on context.
2019 // If stopIfCastExpr is true the context is a typeof/sizeof/alignof
2020 // in which case we should treat it as type-id.
2021 // if stopIfCastExpr is false, we need to determine the context past the
2022 // parens, so we defer to ParseCXXAmbiguousParenExpression for that.
2023 if (isAmbiguousTypeId && !stopIfCastExpr) {
2024 ExprResult res = ParseCXXAmbiguousParenExpression(ExprType, CastTy, T,
2025 ColonProtection);
2026 RParenLoc = T.getCloseLocation();
2027 return res;
2028 }
2029
2030 // Parse the type declarator.
2031 DeclSpec DS(AttrFactory);
2032 ParseSpecifierQualifierList(DS);
2033 Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
2034 ParseDeclarator(DeclaratorInfo);
2035
2036 // If our type is followed by an identifier and either ':' or ']', then
2037 // this is probably an Objective-C message send where the leading '[' is
2038 // missing. Recover as if that were the case.
2039 if (!DeclaratorInfo.isInvalidType() && Tok.is(tok::identifier) &&
2040 !InMessageExpression && getLangOpts().ObjC1 &&
2041 (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) {
2042 TypeResult Ty;
2043 {
2044 InMessageExpressionRAIIObject InMessage(*this, false);
2045 Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
2046 }
2047 Result = ParseObjCMessageExpressionBody(SourceLocation(),
2048 SourceLocation(),
2049 Ty.get(), nullptr);
2050 } else {
2051 // Match the ')'.
2052 T.consumeClose();
2053 ColonProtection.restore();
2054 RParenLoc = T.getCloseLocation();
2055 if (Tok.is(tok::l_brace)) {
2056 ExprType = CompoundLiteral;
2057 TypeResult Ty;
2058 {
2059 InMessageExpressionRAIIObject InMessage(*this, false);
2060 Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
2061 }
2062 return ParseCompoundLiteralExpression(Ty.get(), OpenLoc, RParenLoc);
2063 }
2064
2065 if (ExprType == CastExpr) {
2066 // We parsed '(' type-name ')' and the thing after it wasn't a '{'.
2067
2068 if (DeclaratorInfo.isInvalidType())
2069 return ExprError();
2070
2071 // Note that this doesn't parse the subsequent cast-expression, it just
2072 // returns the parsed type to the callee.
2073 if (stopIfCastExpr) {
2074 TypeResult Ty;
2075 {
2076 InMessageExpressionRAIIObject InMessage(*this, false);
2077 Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
2078 }
2079 CastTy = Ty.get();
2080 return ExprResult();
2081 }
2082
2083 // Reject the cast of super idiom in ObjC.
2084 if (Tok.is(tok::identifier) && getLangOpts().ObjC1 &&
2085 Tok.getIdentifierInfo() == Ident_super &&
2086 getCurScope()->isInObjcMethodScope() &&
2087 GetLookAheadToken(1).isNot(tok::period)) {
2088 Diag(Tok.getLocation(), diag::err_illegal_super_cast)
2089 << SourceRange(OpenLoc, RParenLoc);
2090 return ExprError();
2091 }
2092
2093 // Parse the cast-expression that follows it next.
2094 // TODO: For cast expression with CastTy.
2095 Result = ParseCastExpression(/*isUnaryExpression=*/false,
2096 /*isAddressOfOperand=*/false,
2097 /*isTypeCast=*/IsTypeCast);
2098 if (!Result.isInvalid()) {
2099 Result = Actions.ActOnCastExpr(getCurScope(), OpenLoc,
2100 DeclaratorInfo, CastTy,
2101 RParenLoc, Result.get());
2102 }
2103 return Result;
2104 }
2105
2106 Diag(Tok, diag::err_expected_lbrace_in_compound_literal);
2107 return ExprError();
2108 }
2109 } else if (isTypeCast) {
2110 // Parse the expression-list.
2111 InMessageExpressionRAIIObject InMessage(*this, false);
2112
2113 ExprVector ArgExprs;
2114 CommaLocsTy CommaLocs;
2115
2116 if (!ParseSimpleExpressionList(ArgExprs, CommaLocs)) {
2117 ExprType = SimpleExpr;
2118 Result = Actions.ActOnParenListExpr(OpenLoc, Tok.getLocation(),
2119 ArgExprs);
2120 }
2121 } else {
2122 InMessageExpressionRAIIObject InMessage(*this, false);
2123
2124 Result = ParseExpression(MaybeTypeCast);
2125 ExprType = SimpleExpr;
2126
2127 // Don't build a paren expression unless we actually match a ')'.
2128 if (!Result.isInvalid() && Tok.is(tok::r_paren))
2129 Result =
2130 Actions.ActOnParenExpr(OpenLoc, Tok.getLocation(), Result.get());
2131 }
2132
2133 // Match the ')'.
2134 if (Result.isInvalid()) {
2135 SkipUntil(tok::r_paren, StopAtSemi);
2136 return ExprError();
2137 }
2138
2139 T.consumeClose();
2140 RParenLoc = T.getCloseLocation();
2141 return Result;
2142 }
2143
2144 /// ParseCompoundLiteralExpression - We have parsed the parenthesized type-name
2145 /// and we are at the left brace.
2146 ///
2147 /// \verbatim
2148 /// postfix-expression: [C99 6.5.2]
2149 /// '(' type-name ')' '{' initializer-list '}'
2150 /// '(' type-name ')' '{' initializer-list ',' '}'
2151 /// \endverbatim
2152 ExprResult
ParseCompoundLiteralExpression(ParsedType Ty,SourceLocation LParenLoc,SourceLocation RParenLoc)2153 Parser::ParseCompoundLiteralExpression(ParsedType Ty,
2154 SourceLocation LParenLoc,
2155 SourceLocation RParenLoc) {
2156 assert(Tok.is(tok::l_brace) && "Not a compound literal!");
2157 if (!getLangOpts().C99) // Compound literals don't exist in C90.
2158 Diag(LParenLoc, diag::ext_c99_compound_literal);
2159 ExprResult Result = ParseInitializer();
2160 if (!Result.isInvalid() && Ty)
2161 return Actions.ActOnCompoundLiteral(LParenLoc, Ty, RParenLoc, Result.get());
2162 return Result;
2163 }
2164
2165 /// ParseStringLiteralExpression - This handles the various token types that
2166 /// form string literals, and also handles string concatenation [C99 5.1.1.2,
2167 /// translation phase #6].
2168 ///
2169 /// \verbatim
2170 /// primary-expression: [C99 6.5.1]
2171 /// string-literal
2172 /// \verbatim
ParseStringLiteralExpression(bool AllowUserDefinedLiteral)2173 ExprResult Parser::ParseStringLiteralExpression(bool AllowUserDefinedLiteral) {
2174 assert(isTokenStringLiteral() && "Not a string literal!");
2175
2176 // String concat. Note that keywords like __func__ and __FUNCTION__ are not
2177 // considered to be strings for concatenation purposes.
2178 SmallVector<Token, 4> StringToks;
2179
2180 do {
2181 StringToks.push_back(Tok);
2182 ConsumeStringToken();
2183 } while (isTokenStringLiteral());
2184
2185 // Pass the set of string tokens, ready for concatenation, to the actions.
2186 return Actions.ActOnStringLiteral(StringToks,
2187 AllowUserDefinedLiteral ? getCurScope()
2188 : nullptr);
2189 }
2190
2191 /// ParseGenericSelectionExpression - Parse a C11 generic-selection
2192 /// [C11 6.5.1.1].
2193 ///
2194 /// \verbatim
2195 /// generic-selection:
2196 /// _Generic ( assignment-expression , generic-assoc-list )
2197 /// generic-assoc-list:
2198 /// generic-association
2199 /// generic-assoc-list , generic-association
2200 /// generic-association:
2201 /// type-name : assignment-expression
2202 /// default : assignment-expression
2203 /// \endverbatim
ParseGenericSelectionExpression()2204 ExprResult Parser::ParseGenericSelectionExpression() {
2205 assert(Tok.is(tok::kw__Generic) && "_Generic keyword expected");
2206 SourceLocation KeyLoc = ConsumeToken();
2207
2208 if (!getLangOpts().C11)
2209 Diag(KeyLoc, diag::ext_c11_generic_selection);
2210
2211 BalancedDelimiterTracker T(*this, tok::l_paren);
2212 if (T.expectAndConsume())
2213 return ExprError();
2214
2215 ExprResult ControllingExpr;
2216 {
2217 // C11 6.5.1.1p3 "The controlling expression of a generic selection is
2218 // not evaluated."
2219 EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated);
2220 ControllingExpr = ParseAssignmentExpression();
2221 if (ControllingExpr.isInvalid()) {
2222 SkipUntil(tok::r_paren, StopAtSemi);
2223 return ExprError();
2224 }
2225 }
2226
2227 if (ExpectAndConsume(tok::comma)) {
2228 SkipUntil(tok::r_paren, StopAtSemi);
2229 return ExprError();
2230 }
2231
2232 SourceLocation DefaultLoc;
2233 TypeVector Types;
2234 ExprVector Exprs;
2235 do {
2236 ParsedType Ty;
2237 if (Tok.is(tok::kw_default)) {
2238 // C11 6.5.1.1p2 "A generic selection shall have no more than one default
2239 // generic association."
2240 if (!DefaultLoc.isInvalid()) {
2241 Diag(Tok, diag::err_duplicate_default_assoc);
2242 Diag(DefaultLoc, diag::note_previous_default_assoc);
2243 SkipUntil(tok::r_paren, StopAtSemi);
2244 return ExprError();
2245 }
2246 DefaultLoc = ConsumeToken();
2247 Ty = ParsedType();
2248 } else {
2249 ColonProtectionRAIIObject X(*this);
2250 TypeResult TR = ParseTypeName();
2251 if (TR.isInvalid()) {
2252 SkipUntil(tok::r_paren, StopAtSemi);
2253 return ExprError();
2254 }
2255 Ty = TR.get();
2256 }
2257 Types.push_back(Ty);
2258
2259 if (ExpectAndConsume(tok::colon)) {
2260 SkipUntil(tok::r_paren, StopAtSemi);
2261 return ExprError();
2262 }
2263
2264 // FIXME: These expressions should be parsed in a potentially potentially
2265 // evaluated context.
2266 ExprResult ER(ParseAssignmentExpression());
2267 if (ER.isInvalid()) {
2268 SkipUntil(tok::r_paren, StopAtSemi);
2269 return ExprError();
2270 }
2271 Exprs.push_back(ER.get());
2272 } while (TryConsumeToken(tok::comma));
2273
2274 T.consumeClose();
2275 if (T.getCloseLocation().isInvalid())
2276 return ExprError();
2277
2278 return Actions.ActOnGenericSelectionExpr(KeyLoc, DefaultLoc,
2279 T.getCloseLocation(),
2280 ControllingExpr.get(),
2281 Types, Exprs);
2282 }
2283
2284 /// ParseExpressionList - Used for C/C++ (argument-)expression-list.
2285 ///
2286 /// \verbatim
2287 /// argument-expression-list:
2288 /// assignment-expression
2289 /// argument-expression-list , assignment-expression
2290 ///
2291 /// [C++] expression-list:
2292 /// [C++] assignment-expression
2293 /// [C++] expression-list , assignment-expression
2294 ///
2295 /// [C++0x] expression-list:
2296 /// [C++0x] initializer-list
2297 ///
2298 /// [C++0x] initializer-list
2299 /// [C++0x] initializer-clause ...[opt]
2300 /// [C++0x] initializer-list , initializer-clause ...[opt]
2301 ///
2302 /// [C++0x] initializer-clause:
2303 /// [C++0x] assignment-expression
2304 /// [C++0x] braced-init-list
2305 /// \endverbatim
ParseExpressionList(SmallVectorImpl<Expr * > & Exprs,SmallVectorImpl<SourceLocation> & CommaLocs,void (Sema::* Completer)(Scope * S,Expr * Data,ArrayRef<Expr * > Args),Expr * Data)2306 bool Parser::ParseExpressionList(SmallVectorImpl<Expr*> &Exprs,
2307 SmallVectorImpl<SourceLocation> &CommaLocs,
2308 void (Sema::*Completer)(Scope *S,
2309 Expr *Data,
2310 ArrayRef<Expr *> Args),
2311 Expr *Data) {
2312 while (1) {
2313 if (Tok.is(tok::code_completion)) {
2314 if (Completer)
2315 (Actions.*Completer)(getCurScope(), Data, Exprs);
2316 else
2317 Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Expression);
2318 cutOffParsing();
2319 return true;
2320 }
2321
2322 ExprResult Expr;
2323 if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
2324 Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
2325 Expr = ParseBraceInitializer();
2326 } else
2327 Expr = ParseAssignmentExpression();
2328
2329 if (Tok.is(tok::ellipsis))
2330 Expr = Actions.ActOnPackExpansion(Expr.get(), ConsumeToken());
2331 if (Expr.isInvalid())
2332 return true;
2333
2334 Exprs.push_back(Expr.get());
2335
2336 if (Tok.isNot(tok::comma))
2337 return false;
2338 // Move to the next argument, remember where the comma was.
2339 CommaLocs.push_back(ConsumeToken());
2340 }
2341 }
2342
2343 /// ParseSimpleExpressionList - A simple comma-separated list of expressions,
2344 /// used for misc language extensions.
2345 ///
2346 /// \verbatim
2347 /// simple-expression-list:
2348 /// assignment-expression
2349 /// simple-expression-list , assignment-expression
2350 /// \endverbatim
2351 bool
ParseSimpleExpressionList(SmallVectorImpl<Expr * > & Exprs,SmallVectorImpl<SourceLocation> & CommaLocs)2352 Parser::ParseSimpleExpressionList(SmallVectorImpl<Expr*> &Exprs,
2353 SmallVectorImpl<SourceLocation> &CommaLocs) {
2354 while (1) {
2355 ExprResult Expr = ParseAssignmentExpression();
2356 if (Expr.isInvalid())
2357 return true;
2358
2359 Exprs.push_back(Expr.get());
2360
2361 if (Tok.isNot(tok::comma))
2362 return false;
2363
2364 // Move to the next argument, remember where the comma was.
2365 CommaLocs.push_back(ConsumeToken());
2366 }
2367 }
2368
2369 /// ParseBlockId - Parse a block-id, which roughly looks like int (int x).
2370 ///
2371 /// \verbatim
2372 /// [clang] block-id:
2373 /// [clang] specifier-qualifier-list block-declarator
2374 /// \endverbatim
ParseBlockId(SourceLocation CaretLoc)2375 void Parser::ParseBlockId(SourceLocation CaretLoc) {
2376 if (Tok.is(tok::code_completion)) {
2377 Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Type);
2378 return cutOffParsing();
2379 }
2380
2381 // Parse the specifier-qualifier-list piece.
2382 DeclSpec DS(AttrFactory);
2383 ParseSpecifierQualifierList(DS);
2384
2385 // Parse the block-declarator.
2386 Declarator DeclaratorInfo(DS, Declarator::BlockLiteralContext);
2387 ParseDeclarator(DeclaratorInfo);
2388
2389 // We do this for: ^ __attribute__((noreturn)) {, as DS has the attributes.
2390 DeclaratorInfo.takeAttributes(DS.getAttributes(), SourceLocation());
2391
2392 MaybeParseGNUAttributes(DeclaratorInfo);
2393
2394 // Inform sema that we are starting a block.
2395 Actions.ActOnBlockArguments(CaretLoc, DeclaratorInfo, getCurScope());
2396 }
2397
2398 /// ParseBlockLiteralExpression - Parse a block literal, which roughly looks
2399 /// like ^(int x){ return x+1; }
2400 ///
2401 /// \verbatim
2402 /// block-literal:
2403 /// [clang] '^' block-args[opt] compound-statement
2404 /// [clang] '^' block-id compound-statement
2405 /// [clang] block-args:
2406 /// [clang] '(' parameter-list ')'
2407 /// \endverbatim
ParseBlockLiteralExpression()2408 ExprResult Parser::ParseBlockLiteralExpression() {
2409 assert(Tok.is(tok::caret) && "block literal starts with ^");
2410 SourceLocation CaretLoc = ConsumeToken();
2411
2412 PrettyStackTraceLoc CrashInfo(PP.getSourceManager(), CaretLoc,
2413 "block literal parsing");
2414
2415 // Enter a scope to hold everything within the block. This includes the
2416 // argument decls, decls within the compound expression, etc. This also
2417 // allows determining whether a variable reference inside the block is
2418 // within or outside of the block.
2419 ParseScope BlockScope(this, Scope::BlockScope | Scope::FnScope |
2420 Scope::DeclScope);
2421
2422 // Inform sema that we are starting a block.
2423 Actions.ActOnBlockStart(CaretLoc, getCurScope());
2424
2425 // Parse the return type if present.
2426 DeclSpec DS(AttrFactory);
2427 Declarator ParamInfo(DS, Declarator::BlockLiteralContext);
2428 // FIXME: Since the return type isn't actually parsed, it can't be used to
2429 // fill ParamInfo with an initial valid range, so do it manually.
2430 ParamInfo.SetSourceRange(SourceRange(Tok.getLocation(), Tok.getLocation()));
2431
2432 // If this block has arguments, parse them. There is no ambiguity here with
2433 // the expression case, because the expression case requires a parameter list.
2434 if (Tok.is(tok::l_paren)) {
2435 ParseParenDeclarator(ParamInfo);
2436 // Parse the pieces after the identifier as if we had "int(...)".
2437 // SetIdentifier sets the source range end, but in this case we're past
2438 // that location.
2439 SourceLocation Tmp = ParamInfo.getSourceRange().getEnd();
2440 ParamInfo.SetIdentifier(nullptr, CaretLoc);
2441 ParamInfo.SetRangeEnd(Tmp);
2442 if (ParamInfo.isInvalidType()) {
2443 // If there was an error parsing the arguments, they may have
2444 // tried to use ^(x+y) which requires an argument list. Just
2445 // skip the whole block literal.
2446 Actions.ActOnBlockError(CaretLoc, getCurScope());
2447 return ExprError();
2448 }
2449
2450 MaybeParseGNUAttributes(ParamInfo);
2451
2452 // Inform sema that we are starting a block.
2453 Actions.ActOnBlockArguments(CaretLoc, ParamInfo, getCurScope());
2454 } else if (!Tok.is(tok::l_brace)) {
2455 ParseBlockId(CaretLoc);
2456 } else {
2457 // Otherwise, pretend we saw (void).
2458 ParsedAttributes attrs(AttrFactory);
2459 SourceLocation NoLoc;
2460 ParamInfo.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/true,
2461 /*IsAmbiguous=*/false,
2462 /*RParenLoc=*/NoLoc,
2463 /*ArgInfo=*/nullptr,
2464 /*NumArgs=*/0,
2465 /*EllipsisLoc=*/NoLoc,
2466 /*RParenLoc=*/NoLoc,
2467 /*TypeQuals=*/0,
2468 /*RefQualifierIsLvalueRef=*/true,
2469 /*RefQualifierLoc=*/NoLoc,
2470 /*ConstQualifierLoc=*/NoLoc,
2471 /*VolatileQualifierLoc=*/NoLoc,
2472 /*MutableLoc=*/NoLoc,
2473 EST_None,
2474 /*ESpecLoc=*/NoLoc,
2475 /*Exceptions=*/nullptr,
2476 /*ExceptionRanges=*/nullptr,
2477 /*NumExceptions=*/0,
2478 /*NoexceptExpr=*/nullptr,
2479 CaretLoc, CaretLoc,
2480 ParamInfo),
2481 attrs, CaretLoc);
2482
2483 MaybeParseGNUAttributes(ParamInfo);
2484
2485 // Inform sema that we are starting a block.
2486 Actions.ActOnBlockArguments(CaretLoc, ParamInfo, getCurScope());
2487 }
2488
2489
2490 ExprResult Result(true);
2491 if (!Tok.is(tok::l_brace)) {
2492 // Saw something like: ^expr
2493 Diag(Tok, diag::err_expected_expression);
2494 Actions.ActOnBlockError(CaretLoc, getCurScope());
2495 return ExprError();
2496 }
2497
2498 StmtResult Stmt(ParseCompoundStatementBody());
2499 BlockScope.Exit();
2500 if (!Stmt.isInvalid())
2501 Result = Actions.ActOnBlockStmtExpr(CaretLoc, Stmt.get(), getCurScope());
2502 else
2503 Actions.ActOnBlockError(CaretLoc, getCurScope());
2504 return Result;
2505 }
2506
2507 /// ParseObjCBoolLiteral - This handles the objective-c Boolean literals.
2508 ///
2509 /// '__objc_yes'
2510 /// '__objc_no'
ParseObjCBoolLiteral()2511 ExprResult Parser::ParseObjCBoolLiteral() {
2512 tok::TokenKind Kind = Tok.getKind();
2513 return Actions.ActOnObjCBoolLiteral(ConsumeToken(), Kind);
2514 }
2515