1 //===-- CGValue.h - LLVM CodeGen wrappers for llvm::Value* ------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // These classes implement wrappers around llvm::Value in order to 11 // fully represent the range of values for C L- and R- values. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #ifndef CLANG_CODEGEN_CGVALUE_H 16 #define CLANG_CODEGEN_CGVALUE_H 17 18 #include "clang/AST/ASTContext.h" 19 #include "clang/AST/CharUnits.h" 20 #include "clang/AST/Type.h" 21 #include "llvm/IR/Value.h" 22 23 namespace llvm { 24 class Constant; 25 class MDNode; 26 } 27 28 namespace clang { 29 namespace CodeGen { 30 class AggValueSlot; 31 struct CGBitFieldInfo; 32 33 /// RValue - This trivial value class is used to represent the result of an 34 /// expression that is evaluated. It can be one of three things: either a 35 /// simple LLVM SSA value, a pair of SSA values for complex numbers, or the 36 /// address of an aggregate value in memory. 37 class RValue { 38 enum Flavor { Scalar, Complex, Aggregate }; 39 40 // Stores first value and flavor. 41 llvm::PointerIntPair<llvm::Value *, 2, Flavor> V1; 42 // Stores second value and volatility. 43 llvm::PointerIntPair<llvm::Value *, 1, bool> V2; 44 45 public: isScalar()46 bool isScalar() const { return V1.getInt() == Scalar; } isComplex()47 bool isComplex() const { return V1.getInt() == Complex; } isAggregate()48 bool isAggregate() const { return V1.getInt() == Aggregate; } 49 isVolatileQualified()50 bool isVolatileQualified() const { return V2.getInt(); } 51 52 /// getScalarVal() - Return the Value* of this scalar value. getScalarVal()53 llvm::Value *getScalarVal() const { 54 assert(isScalar() && "Not a scalar!"); 55 return V1.getPointer(); 56 } 57 58 /// getComplexVal - Return the real/imag components of this complex value. 59 /// getComplexVal()60 std::pair<llvm::Value *, llvm::Value *> getComplexVal() const { 61 return std::make_pair(V1.getPointer(), V2.getPointer()); 62 } 63 64 /// getAggregateAddr() - Return the Value* of the address of the aggregate. getAggregateAddr()65 llvm::Value *getAggregateAddr() const { 66 assert(isAggregate() && "Not an aggregate!"); 67 return V1.getPointer(); 68 } 69 get(llvm::Value * V)70 static RValue get(llvm::Value *V) { 71 RValue ER; 72 ER.V1.setPointer(V); 73 ER.V1.setInt(Scalar); 74 ER.V2.setInt(false); 75 return ER; 76 } getComplex(llvm::Value * V1,llvm::Value * V2)77 static RValue getComplex(llvm::Value *V1, llvm::Value *V2) { 78 RValue ER; 79 ER.V1.setPointer(V1); 80 ER.V2.setPointer(V2); 81 ER.V1.setInt(Complex); 82 ER.V2.setInt(false); 83 return ER; 84 } getComplex(const std::pair<llvm::Value *,llvm::Value * > & C)85 static RValue getComplex(const std::pair<llvm::Value *, llvm::Value *> &C) { 86 return getComplex(C.first, C.second); 87 } 88 // FIXME: Aggregate rvalues need to retain information about whether they are 89 // volatile or not. Remove default to find all places that probably get this 90 // wrong. 91 static RValue getAggregate(llvm::Value *V, bool Volatile = false) { 92 RValue ER; 93 ER.V1.setPointer(V); 94 ER.V1.setInt(Aggregate); 95 ER.V2.setInt(Volatile); 96 return ER; 97 } 98 }; 99 100 /// Does an ARC strong l-value have precise lifetime? 101 enum ARCPreciseLifetime_t { 102 ARCImpreciseLifetime, ARCPreciseLifetime 103 }; 104 105 /// LValue - This represents an lvalue references. Because C/C++ allow 106 /// bitfields, this is not a simple LLVM pointer, it may be a pointer plus a 107 /// bitrange. 108 class LValue { 109 enum { 110 Simple, // This is a normal l-value, use getAddress(). 111 VectorElt, // This is a vector element l-value (V[i]), use getVector* 112 BitField, // This is a bitfield l-value, use getBitfield*. 113 ExtVectorElt, // This is an extended vector subset, use getExtVectorComp 114 GlobalReg // This is a register l-value, use getGlobalReg() 115 } LVType; 116 117 llvm::Value *V; 118 119 union { 120 // Index into a vector subscript: V[i] 121 llvm::Value *VectorIdx; 122 123 // ExtVector element subset: V.xyx 124 llvm::Constant *VectorElts; 125 126 // BitField start bit and size 127 const CGBitFieldInfo *BitFieldInfo; 128 }; 129 130 QualType Type; 131 132 // 'const' is unused here 133 Qualifiers Quals; 134 135 // The alignment to use when accessing this lvalue. (For vector elements, 136 // this is the alignment of the whole vector.) 137 int64_t Alignment; 138 139 // objective-c's ivar 140 bool Ivar:1; 141 142 // objective-c's ivar is an array 143 bool ObjIsArray:1; 144 145 // LValue is non-gc'able for any reason, including being a parameter or local 146 // variable. 147 bool NonGC: 1; 148 149 // Lvalue is a global reference of an objective-c object 150 bool GlobalObjCRef : 1; 151 152 // Lvalue is a thread local reference 153 bool ThreadLocalRef : 1; 154 155 // Lvalue has ARC imprecise lifetime. We store this inverted to try 156 // to make the default bitfield pattern all-zeroes. 157 bool ImpreciseLifetime : 1; 158 159 Expr *BaseIvarExp; 160 161 /// Used by struct-path-aware TBAA. 162 QualType TBAABaseType; 163 /// Offset relative to the base type. 164 uint64_t TBAAOffset; 165 166 /// TBAAInfo - TBAA information to attach to dereferences of this LValue. 167 llvm::MDNode *TBAAInfo; 168 169 private: 170 void Initialize(QualType Type, Qualifiers Quals, 171 CharUnits Alignment, 172 llvm::MDNode *TBAAInfo = nullptr) { 173 this->Type = Type; 174 this->Quals = Quals; 175 this->Alignment = Alignment.getQuantity(); 176 assert(this->Alignment == Alignment.getQuantity() && 177 "Alignment exceeds allowed max!"); 178 179 // Initialize Objective-C flags. 180 this->Ivar = this->ObjIsArray = this->NonGC = this->GlobalObjCRef = false; 181 this->ImpreciseLifetime = false; 182 this->ThreadLocalRef = false; 183 this->BaseIvarExp = nullptr; 184 185 // Initialize fields for TBAA. 186 this->TBAABaseType = Type; 187 this->TBAAOffset = 0; 188 this->TBAAInfo = TBAAInfo; 189 } 190 191 public: isSimple()192 bool isSimple() const { return LVType == Simple; } isVectorElt()193 bool isVectorElt() const { return LVType == VectorElt; } isBitField()194 bool isBitField() const { return LVType == BitField; } isExtVectorElt()195 bool isExtVectorElt() const { return LVType == ExtVectorElt; } isGlobalReg()196 bool isGlobalReg() const { return LVType == GlobalReg; } 197 isVolatileQualified()198 bool isVolatileQualified() const { return Quals.hasVolatile(); } isRestrictQualified()199 bool isRestrictQualified() const { return Quals.hasRestrict(); } getVRQualifiers()200 unsigned getVRQualifiers() const { 201 return Quals.getCVRQualifiers() & ~Qualifiers::Const; 202 } 203 getType()204 QualType getType() const { return Type; } 205 getObjCLifetime()206 Qualifiers::ObjCLifetime getObjCLifetime() const { 207 return Quals.getObjCLifetime(); 208 } 209 isObjCIvar()210 bool isObjCIvar() const { return Ivar; } setObjCIvar(bool Value)211 void setObjCIvar(bool Value) { Ivar = Value; } 212 isObjCArray()213 bool isObjCArray() const { return ObjIsArray; } setObjCArray(bool Value)214 void setObjCArray(bool Value) { ObjIsArray = Value; } 215 isNonGC()216 bool isNonGC () const { return NonGC; } setNonGC(bool Value)217 void setNonGC(bool Value) { NonGC = Value; } 218 isGlobalObjCRef()219 bool isGlobalObjCRef() const { return GlobalObjCRef; } setGlobalObjCRef(bool Value)220 void setGlobalObjCRef(bool Value) { GlobalObjCRef = Value; } 221 isThreadLocalRef()222 bool isThreadLocalRef() const { return ThreadLocalRef; } setThreadLocalRef(bool Value)223 void setThreadLocalRef(bool Value) { ThreadLocalRef = Value;} 224 isARCPreciseLifetime()225 ARCPreciseLifetime_t isARCPreciseLifetime() const { 226 return ARCPreciseLifetime_t(!ImpreciseLifetime); 227 } setARCPreciseLifetime(ARCPreciseLifetime_t value)228 void setARCPreciseLifetime(ARCPreciseLifetime_t value) { 229 ImpreciseLifetime = (value == ARCImpreciseLifetime); 230 } 231 isObjCWeak()232 bool isObjCWeak() const { 233 return Quals.getObjCGCAttr() == Qualifiers::Weak; 234 } isObjCStrong()235 bool isObjCStrong() const { 236 return Quals.getObjCGCAttr() == Qualifiers::Strong; 237 } 238 isVolatile()239 bool isVolatile() const { 240 return Quals.hasVolatile(); 241 } 242 getBaseIvarExp()243 Expr *getBaseIvarExp() const { return BaseIvarExp; } setBaseIvarExp(Expr * V)244 void setBaseIvarExp(Expr *V) { BaseIvarExp = V; } 245 getTBAABaseType()246 QualType getTBAABaseType() const { return TBAABaseType; } setTBAABaseType(QualType T)247 void setTBAABaseType(QualType T) { TBAABaseType = T; } 248 getTBAAOffset()249 uint64_t getTBAAOffset() const { return TBAAOffset; } setTBAAOffset(uint64_t O)250 void setTBAAOffset(uint64_t O) { TBAAOffset = O; } 251 getTBAAInfo()252 llvm::MDNode *getTBAAInfo() const { return TBAAInfo; } setTBAAInfo(llvm::MDNode * N)253 void setTBAAInfo(llvm::MDNode *N) { TBAAInfo = N; } 254 getQuals()255 const Qualifiers &getQuals() const { return Quals; } getQuals()256 Qualifiers &getQuals() { return Quals; } 257 getAddressSpace()258 unsigned getAddressSpace() const { return Quals.getAddressSpace(); } 259 getAlignment()260 CharUnits getAlignment() const { return CharUnits::fromQuantity(Alignment); } setAlignment(CharUnits A)261 void setAlignment(CharUnits A) { Alignment = A.getQuantity(); } 262 263 // simple lvalue getAddress()264 llvm::Value *getAddress() const { assert(isSimple()); return V; } setAddress(llvm::Value * address)265 void setAddress(llvm::Value *address) { 266 assert(isSimple()); 267 V = address; 268 } 269 270 // vector elt lvalue getVectorAddr()271 llvm::Value *getVectorAddr() const { assert(isVectorElt()); return V; } getVectorIdx()272 llvm::Value *getVectorIdx() const { assert(isVectorElt()); return VectorIdx; } 273 274 // extended vector elements. getExtVectorAddr()275 llvm::Value *getExtVectorAddr() const { assert(isExtVectorElt()); return V; } getExtVectorElts()276 llvm::Constant *getExtVectorElts() const { 277 assert(isExtVectorElt()); 278 return VectorElts; 279 } 280 281 // bitfield lvalue getBitFieldAddr()282 llvm::Value *getBitFieldAddr() const { 283 assert(isBitField()); 284 return V; 285 } getBitFieldInfo()286 const CGBitFieldInfo &getBitFieldInfo() const { 287 assert(isBitField()); 288 return *BitFieldInfo; 289 } 290 291 // global register lvalue getGlobalReg()292 llvm::Value *getGlobalReg() const { assert(isGlobalReg()); return V; } 293 294 static LValue MakeAddr(llvm::Value *address, QualType type, 295 CharUnits alignment, ASTContext &Context, 296 llvm::MDNode *TBAAInfo = nullptr) { 297 Qualifiers qs = type.getQualifiers(); 298 qs.setObjCGCAttr(Context.getObjCGCAttrKind(type)); 299 300 LValue R; 301 R.LVType = Simple; 302 R.V = address; 303 R.Initialize(type, qs, alignment, TBAAInfo); 304 return R; 305 } 306 MakeVectorElt(llvm::Value * Vec,llvm::Value * Idx,QualType type,CharUnits Alignment)307 static LValue MakeVectorElt(llvm::Value *Vec, llvm::Value *Idx, 308 QualType type, CharUnits Alignment) { 309 LValue R; 310 R.LVType = VectorElt; 311 R.V = Vec; 312 R.VectorIdx = Idx; 313 R.Initialize(type, type.getQualifiers(), Alignment); 314 return R; 315 } 316 MakeExtVectorElt(llvm::Value * Vec,llvm::Constant * Elts,QualType type,CharUnits Alignment)317 static LValue MakeExtVectorElt(llvm::Value *Vec, llvm::Constant *Elts, 318 QualType type, CharUnits Alignment) { 319 LValue R; 320 R.LVType = ExtVectorElt; 321 R.V = Vec; 322 R.VectorElts = Elts; 323 R.Initialize(type, type.getQualifiers(), Alignment); 324 return R; 325 } 326 327 /// \brief Create a new object to represent a bit-field access. 328 /// 329 /// \param Addr - The base address of the bit-field sequence this 330 /// bit-field refers to. 331 /// \param Info - The information describing how to perform the bit-field 332 /// access. MakeBitfield(llvm::Value * Addr,const CGBitFieldInfo & Info,QualType type,CharUnits Alignment)333 static LValue MakeBitfield(llvm::Value *Addr, 334 const CGBitFieldInfo &Info, 335 QualType type, CharUnits Alignment) { 336 LValue R; 337 R.LVType = BitField; 338 R.V = Addr; 339 R.BitFieldInfo = &Info; 340 R.Initialize(type, type.getQualifiers(), Alignment); 341 return R; 342 } 343 MakeGlobalReg(llvm::Value * Reg,QualType type,CharUnits Alignment)344 static LValue MakeGlobalReg(llvm::Value *Reg, 345 QualType type, 346 CharUnits Alignment) { 347 LValue R; 348 R.LVType = GlobalReg; 349 R.V = Reg; 350 R.Initialize(type, type.getQualifiers(), Alignment); 351 return R; 352 } 353 asAggregateRValue()354 RValue asAggregateRValue() const { 355 // FIMXE: Alignment 356 return RValue::getAggregate(getAddress(), isVolatileQualified()); 357 } 358 }; 359 360 /// An aggregate value slot. 361 class AggValueSlot { 362 /// The address. 363 llvm::Value *Addr; 364 365 // Qualifiers 366 Qualifiers Quals; 367 368 unsigned short Alignment; 369 370 /// DestructedFlag - This is set to true if some external code is 371 /// responsible for setting up a destructor for the slot. Otherwise 372 /// the code which constructs it should push the appropriate cleanup. 373 bool DestructedFlag : 1; 374 375 /// ObjCGCFlag - This is set to true if writing to the memory in the 376 /// slot might require calling an appropriate Objective-C GC 377 /// barrier. The exact interaction here is unnecessarily mysterious. 378 bool ObjCGCFlag : 1; 379 380 /// ZeroedFlag - This is set to true if the memory in the slot is 381 /// known to be zero before the assignment into it. This means that 382 /// zero fields don't need to be set. 383 bool ZeroedFlag : 1; 384 385 /// AliasedFlag - This is set to true if the slot might be aliased 386 /// and it's not undefined behavior to access it through such an 387 /// alias. Note that it's always undefined behavior to access a C++ 388 /// object that's under construction through an alias derived from 389 /// outside the construction process. 390 /// 391 /// This flag controls whether calls that produce the aggregate 392 /// value may be evaluated directly into the slot, or whether they 393 /// must be evaluated into an unaliased temporary and then memcpy'ed 394 /// over. Since it's invalid in general to memcpy a non-POD C++ 395 /// object, it's important that this flag never be set when 396 /// evaluating an expression which constructs such an object. 397 bool AliasedFlag : 1; 398 399 public: 400 enum IsAliased_t { IsNotAliased, IsAliased }; 401 enum IsDestructed_t { IsNotDestructed, IsDestructed }; 402 enum IsZeroed_t { IsNotZeroed, IsZeroed }; 403 enum NeedsGCBarriers_t { DoesNotNeedGCBarriers, NeedsGCBarriers }; 404 405 /// ignored - Returns an aggregate value slot indicating that the 406 /// aggregate value is being ignored. ignored()407 static AggValueSlot ignored() { 408 return forAddr(nullptr, CharUnits(), Qualifiers(), IsNotDestructed, 409 DoesNotNeedGCBarriers, IsNotAliased); 410 } 411 412 /// forAddr - Make a slot for an aggregate value. 413 /// 414 /// \param quals - The qualifiers that dictate how the slot should 415 /// be initialied. Only 'volatile' and the Objective-C lifetime 416 /// qualifiers matter. 417 /// 418 /// \param isDestructed - true if something else is responsible 419 /// for calling destructors on this object 420 /// \param needsGC - true if the slot is potentially located 421 /// somewhere that ObjC GC calls should be emitted for 422 static AggValueSlot forAddr(llvm::Value *addr, CharUnits align, 423 Qualifiers quals, 424 IsDestructed_t isDestructed, 425 NeedsGCBarriers_t needsGC, 426 IsAliased_t isAliased, 427 IsZeroed_t isZeroed = IsNotZeroed) { 428 AggValueSlot AV; 429 AV.Addr = addr; 430 AV.Alignment = align.getQuantity(); 431 AV.Quals = quals; 432 AV.DestructedFlag = isDestructed; 433 AV.ObjCGCFlag = needsGC; 434 AV.ZeroedFlag = isZeroed; 435 AV.AliasedFlag = isAliased; 436 return AV; 437 } 438 439 static AggValueSlot forLValue(const LValue &LV, 440 IsDestructed_t isDestructed, 441 NeedsGCBarriers_t needsGC, 442 IsAliased_t isAliased, 443 IsZeroed_t isZeroed = IsNotZeroed) { 444 return forAddr(LV.getAddress(), LV.getAlignment(), 445 LV.getQuals(), isDestructed, needsGC, isAliased, isZeroed); 446 } 447 isExternallyDestructed()448 IsDestructed_t isExternallyDestructed() const { 449 return IsDestructed_t(DestructedFlag); 450 } 451 void setExternallyDestructed(bool destructed = true) { 452 DestructedFlag = destructed; 453 } 454 getQualifiers()455 Qualifiers getQualifiers() const { return Quals; } 456 isVolatile()457 bool isVolatile() const { 458 return Quals.hasVolatile(); 459 } 460 setVolatile(bool flag)461 void setVolatile(bool flag) { 462 Quals.setVolatile(flag); 463 } 464 getObjCLifetime()465 Qualifiers::ObjCLifetime getObjCLifetime() const { 466 return Quals.getObjCLifetime(); 467 } 468 requiresGCollection()469 NeedsGCBarriers_t requiresGCollection() const { 470 return NeedsGCBarriers_t(ObjCGCFlag); 471 } 472 getAddr()473 llvm::Value *getAddr() const { 474 return Addr; 475 } 476 isIgnored()477 bool isIgnored() const { 478 return Addr == nullptr; 479 } 480 getAlignment()481 CharUnits getAlignment() const { 482 return CharUnits::fromQuantity(Alignment); 483 } 484 isPotentiallyAliased()485 IsAliased_t isPotentiallyAliased() const { 486 return IsAliased_t(AliasedFlag); 487 } 488 489 // FIXME: Alignment? asRValue()490 RValue asRValue() const { 491 return RValue::getAggregate(getAddr(), isVolatile()); 492 } 493 494 void setZeroed(bool V = true) { ZeroedFlag = V; } isZeroed()495 IsZeroed_t isZeroed() const { 496 return IsZeroed_t(ZeroedFlag); 497 } 498 }; 499 500 } // end namespace CodeGen 501 } // end namespace clang 502 503 #endif 504