1 //===-- Instruction.cpp - Implement the Instruction class -----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Instruction class for the IR library.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/IR/Instruction.h"
15 #include "llvm/IR/CallSite.h"
16 #include "llvm/IR/Constants.h"
17 #include "llvm/IR/Instructions.h"
18 #include "llvm/IR/LeakDetector.h"
19 #include "llvm/IR/Module.h"
20 #include "llvm/IR/Operator.h"
21 #include "llvm/IR/Type.h"
22 using namespace llvm;
23
Instruction(Type * ty,unsigned it,Use * Ops,unsigned NumOps,Instruction * InsertBefore)24 Instruction::Instruction(Type *ty, unsigned it, Use *Ops, unsigned NumOps,
25 Instruction *InsertBefore)
26 : User(ty, Value::InstructionVal + it, Ops, NumOps), Parent(nullptr) {
27 // Make sure that we get added to a basicblock
28 LeakDetector::addGarbageObject(this);
29
30 // If requested, insert this instruction into a basic block...
31 if (InsertBefore) {
32 assert(InsertBefore->getParent() &&
33 "Instruction to insert before is not in a basic block!");
34 InsertBefore->getParent()->getInstList().insert(InsertBefore, this);
35 }
36 }
37
getDataLayout() const38 const DataLayout *Instruction::getDataLayout() const {
39 return getParent()->getDataLayout();
40 }
41
Instruction(Type * ty,unsigned it,Use * Ops,unsigned NumOps,BasicBlock * InsertAtEnd)42 Instruction::Instruction(Type *ty, unsigned it, Use *Ops, unsigned NumOps,
43 BasicBlock *InsertAtEnd)
44 : User(ty, Value::InstructionVal + it, Ops, NumOps), Parent(nullptr) {
45 // Make sure that we get added to a basicblock
46 LeakDetector::addGarbageObject(this);
47
48 // append this instruction into the basic block
49 assert(InsertAtEnd && "Basic block to append to may not be NULL!");
50 InsertAtEnd->getInstList().push_back(this);
51 }
52
53
54 // Out of line virtual method, so the vtable, etc has a home.
~Instruction()55 Instruction::~Instruction() {
56 assert(!Parent && "Instruction still linked in the program!");
57 if (hasMetadataHashEntry())
58 clearMetadataHashEntries();
59 }
60
61
setParent(BasicBlock * P)62 void Instruction::setParent(BasicBlock *P) {
63 if (getParent()) {
64 if (!P) LeakDetector::addGarbageObject(this);
65 } else {
66 if (P) LeakDetector::removeGarbageObject(this);
67 }
68
69 Parent = P;
70 }
71
removeFromParent()72 void Instruction::removeFromParent() {
73 getParent()->getInstList().remove(this);
74 }
75
eraseFromParent()76 void Instruction::eraseFromParent() {
77 getParent()->getInstList().erase(this);
78 }
79
80 /// insertBefore - Insert an unlinked instructions into a basic block
81 /// immediately before the specified instruction.
insertBefore(Instruction * InsertPos)82 void Instruction::insertBefore(Instruction *InsertPos) {
83 InsertPos->getParent()->getInstList().insert(InsertPos, this);
84 }
85
86 /// insertAfter - Insert an unlinked instructions into a basic block
87 /// immediately after the specified instruction.
insertAfter(Instruction * InsertPos)88 void Instruction::insertAfter(Instruction *InsertPos) {
89 InsertPos->getParent()->getInstList().insertAfter(InsertPos, this);
90 }
91
92 /// moveBefore - Unlink this instruction from its current basic block and
93 /// insert it into the basic block that MovePos lives in, right before
94 /// MovePos.
moveBefore(Instruction * MovePos)95 void Instruction::moveBefore(Instruction *MovePos) {
96 MovePos->getParent()->getInstList().splice(MovePos,getParent()->getInstList(),
97 this);
98 }
99
100 /// Set or clear the unsafe-algebra flag on this instruction, which must be an
101 /// operator which supports this flag. See LangRef.html for the meaning of this
102 /// flag.
setHasUnsafeAlgebra(bool B)103 void Instruction::setHasUnsafeAlgebra(bool B) {
104 assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
105 cast<FPMathOperator>(this)->setHasUnsafeAlgebra(B);
106 }
107
108 /// Set or clear the NoNaNs flag on this instruction, which must be an operator
109 /// which supports this flag. See LangRef.html for the meaning of this flag.
setHasNoNaNs(bool B)110 void Instruction::setHasNoNaNs(bool B) {
111 assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
112 cast<FPMathOperator>(this)->setHasNoNaNs(B);
113 }
114
115 /// Set or clear the no-infs flag on this instruction, which must be an operator
116 /// which supports this flag. See LangRef.html for the meaning of this flag.
setHasNoInfs(bool B)117 void Instruction::setHasNoInfs(bool B) {
118 assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
119 cast<FPMathOperator>(this)->setHasNoInfs(B);
120 }
121
122 /// Set or clear the no-signed-zeros flag on this instruction, which must be an
123 /// operator which supports this flag. See LangRef.html for the meaning of this
124 /// flag.
setHasNoSignedZeros(bool B)125 void Instruction::setHasNoSignedZeros(bool B) {
126 assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
127 cast<FPMathOperator>(this)->setHasNoSignedZeros(B);
128 }
129
130 /// Set or clear the allow-reciprocal flag on this instruction, which must be an
131 /// operator which supports this flag. See LangRef.html for the meaning of this
132 /// flag.
setHasAllowReciprocal(bool B)133 void Instruction::setHasAllowReciprocal(bool B) {
134 assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
135 cast<FPMathOperator>(this)->setHasAllowReciprocal(B);
136 }
137
138 /// Convenience function for setting all the fast-math flags on this
139 /// instruction, which must be an operator which supports these flags. See
140 /// LangRef.html for the meaning of these flats.
setFastMathFlags(FastMathFlags FMF)141 void Instruction::setFastMathFlags(FastMathFlags FMF) {
142 assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
143 cast<FPMathOperator>(this)->setFastMathFlags(FMF);
144 }
145
146 /// Determine whether the unsafe-algebra flag is set.
hasUnsafeAlgebra() const147 bool Instruction::hasUnsafeAlgebra() const {
148 assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
149 return cast<FPMathOperator>(this)->hasUnsafeAlgebra();
150 }
151
152 /// Determine whether the no-NaNs flag is set.
hasNoNaNs() const153 bool Instruction::hasNoNaNs() const {
154 assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
155 return cast<FPMathOperator>(this)->hasNoNaNs();
156 }
157
158 /// Determine whether the no-infs flag is set.
hasNoInfs() const159 bool Instruction::hasNoInfs() const {
160 assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
161 return cast<FPMathOperator>(this)->hasNoInfs();
162 }
163
164 /// Determine whether the no-signed-zeros flag is set.
hasNoSignedZeros() const165 bool Instruction::hasNoSignedZeros() const {
166 assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
167 return cast<FPMathOperator>(this)->hasNoSignedZeros();
168 }
169
170 /// Determine whether the allow-reciprocal flag is set.
hasAllowReciprocal() const171 bool Instruction::hasAllowReciprocal() const {
172 assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
173 return cast<FPMathOperator>(this)->hasAllowReciprocal();
174 }
175
176 /// Convenience function for getting all the fast-math flags, which must be an
177 /// operator which supports these flags. See LangRef.html for the meaning of
178 /// these flats.
getFastMathFlags() const179 FastMathFlags Instruction::getFastMathFlags() const {
180 assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
181 return cast<FPMathOperator>(this)->getFastMathFlags();
182 }
183
184 /// Copy I's fast-math flags
copyFastMathFlags(const Instruction * I)185 void Instruction::copyFastMathFlags(const Instruction *I) {
186 setFastMathFlags(I->getFastMathFlags());
187 }
188
189
getOpcodeName(unsigned OpCode)190 const char *Instruction::getOpcodeName(unsigned OpCode) {
191 switch (OpCode) {
192 // Terminators
193 case Ret: return "ret";
194 case Br: return "br";
195 case Switch: return "switch";
196 case IndirectBr: return "indirectbr";
197 case Invoke: return "invoke";
198 case Resume: return "resume";
199 case Unreachable: return "unreachable";
200
201 // Standard binary operators...
202 case Add: return "add";
203 case FAdd: return "fadd";
204 case Sub: return "sub";
205 case FSub: return "fsub";
206 case Mul: return "mul";
207 case FMul: return "fmul";
208 case UDiv: return "udiv";
209 case SDiv: return "sdiv";
210 case FDiv: return "fdiv";
211 case URem: return "urem";
212 case SRem: return "srem";
213 case FRem: return "frem";
214
215 // Logical operators...
216 case And: return "and";
217 case Or : return "or";
218 case Xor: return "xor";
219
220 // Memory instructions...
221 case Alloca: return "alloca";
222 case Load: return "load";
223 case Store: return "store";
224 case AtomicCmpXchg: return "cmpxchg";
225 case AtomicRMW: return "atomicrmw";
226 case Fence: return "fence";
227 case GetElementPtr: return "getelementptr";
228
229 // Convert instructions...
230 case Trunc: return "trunc";
231 case ZExt: return "zext";
232 case SExt: return "sext";
233 case FPTrunc: return "fptrunc";
234 case FPExt: return "fpext";
235 case FPToUI: return "fptoui";
236 case FPToSI: return "fptosi";
237 case UIToFP: return "uitofp";
238 case SIToFP: return "sitofp";
239 case IntToPtr: return "inttoptr";
240 case PtrToInt: return "ptrtoint";
241 case BitCast: return "bitcast";
242 case AddrSpaceCast: return "addrspacecast";
243
244 // Other instructions...
245 case ICmp: return "icmp";
246 case FCmp: return "fcmp";
247 case PHI: return "phi";
248 case Select: return "select";
249 case Call: return "call";
250 case Shl: return "shl";
251 case LShr: return "lshr";
252 case AShr: return "ashr";
253 case VAArg: return "va_arg";
254 case ExtractElement: return "extractelement";
255 case InsertElement: return "insertelement";
256 case ShuffleVector: return "shufflevector";
257 case ExtractValue: return "extractvalue";
258 case InsertValue: return "insertvalue";
259 case LandingPad: return "landingpad";
260
261 default: return "<Invalid operator> ";
262 }
263 }
264
265 /// Return true if both instructions have the same special state
266 /// This must be kept in sync with lib/Transforms/IPO/MergeFunctions.cpp.
haveSameSpecialState(const Instruction * I1,const Instruction * I2,bool IgnoreAlignment=false)267 static bool haveSameSpecialState(const Instruction *I1, const Instruction *I2,
268 bool IgnoreAlignment = false) {
269 assert(I1->getOpcode() == I2->getOpcode() &&
270 "Can not compare special state of different instructions");
271
272 if (const LoadInst *LI = dyn_cast<LoadInst>(I1))
273 return LI->isVolatile() == cast<LoadInst>(I2)->isVolatile() &&
274 (LI->getAlignment() == cast<LoadInst>(I2)->getAlignment() ||
275 IgnoreAlignment) &&
276 LI->getOrdering() == cast<LoadInst>(I2)->getOrdering() &&
277 LI->getSynchScope() == cast<LoadInst>(I2)->getSynchScope();
278 if (const StoreInst *SI = dyn_cast<StoreInst>(I1))
279 return SI->isVolatile() == cast<StoreInst>(I2)->isVolatile() &&
280 (SI->getAlignment() == cast<StoreInst>(I2)->getAlignment() ||
281 IgnoreAlignment) &&
282 SI->getOrdering() == cast<StoreInst>(I2)->getOrdering() &&
283 SI->getSynchScope() == cast<StoreInst>(I2)->getSynchScope();
284 if (const CmpInst *CI = dyn_cast<CmpInst>(I1))
285 return CI->getPredicate() == cast<CmpInst>(I2)->getPredicate();
286 if (const CallInst *CI = dyn_cast<CallInst>(I1))
287 return CI->isTailCall() == cast<CallInst>(I2)->isTailCall() &&
288 CI->getCallingConv() == cast<CallInst>(I2)->getCallingConv() &&
289 CI->getAttributes() == cast<CallInst>(I2)->getAttributes();
290 if (const InvokeInst *CI = dyn_cast<InvokeInst>(I1))
291 return CI->getCallingConv() == cast<InvokeInst>(I2)->getCallingConv() &&
292 CI->getAttributes() ==
293 cast<InvokeInst>(I2)->getAttributes();
294 if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(I1))
295 return IVI->getIndices() == cast<InsertValueInst>(I2)->getIndices();
296 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I1))
297 return EVI->getIndices() == cast<ExtractValueInst>(I2)->getIndices();
298 if (const FenceInst *FI = dyn_cast<FenceInst>(I1))
299 return FI->getOrdering() == cast<FenceInst>(I2)->getOrdering() &&
300 FI->getSynchScope() == cast<FenceInst>(I2)->getSynchScope();
301 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I1))
302 return CXI->isVolatile() == cast<AtomicCmpXchgInst>(I2)->isVolatile() &&
303 CXI->isWeak() == cast<AtomicCmpXchgInst>(I2)->isWeak() &&
304 CXI->getSuccessOrdering() ==
305 cast<AtomicCmpXchgInst>(I2)->getSuccessOrdering() &&
306 CXI->getFailureOrdering() ==
307 cast<AtomicCmpXchgInst>(I2)->getFailureOrdering() &&
308 CXI->getSynchScope() == cast<AtomicCmpXchgInst>(I2)->getSynchScope();
309 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I1))
310 return RMWI->getOperation() == cast<AtomicRMWInst>(I2)->getOperation() &&
311 RMWI->isVolatile() == cast<AtomicRMWInst>(I2)->isVolatile() &&
312 RMWI->getOrdering() == cast<AtomicRMWInst>(I2)->getOrdering() &&
313 RMWI->getSynchScope() == cast<AtomicRMWInst>(I2)->getSynchScope();
314
315 return true;
316 }
317
318 /// isIdenticalTo - Return true if the specified instruction is exactly
319 /// identical to the current one. This means that all operands match and any
320 /// extra information (e.g. load is volatile) agree.
isIdenticalTo(const Instruction * I) const321 bool Instruction::isIdenticalTo(const Instruction *I) const {
322 return isIdenticalToWhenDefined(I) &&
323 SubclassOptionalData == I->SubclassOptionalData;
324 }
325
326 /// isIdenticalToWhenDefined - This is like isIdenticalTo, except that it
327 /// ignores the SubclassOptionalData flags, which specify conditions
328 /// under which the instruction's result is undefined.
isIdenticalToWhenDefined(const Instruction * I) const329 bool Instruction::isIdenticalToWhenDefined(const Instruction *I) const {
330 if (getOpcode() != I->getOpcode() ||
331 getNumOperands() != I->getNumOperands() ||
332 getType() != I->getType())
333 return false;
334
335 // If both instructions have no operands, they are identical.
336 if (getNumOperands() == 0 && I->getNumOperands() == 0)
337 return haveSameSpecialState(this, I);
338
339 // We have two instructions of identical opcode and #operands. Check to see
340 // if all operands are the same.
341 if (!std::equal(op_begin(), op_end(), I->op_begin()))
342 return false;
343
344 if (const PHINode *thisPHI = dyn_cast<PHINode>(this)) {
345 const PHINode *otherPHI = cast<PHINode>(I);
346 return std::equal(thisPHI->block_begin(), thisPHI->block_end(),
347 otherPHI->block_begin());
348 }
349
350 return haveSameSpecialState(this, I);
351 }
352
353 // isSameOperationAs
354 // This should be kept in sync with isEquivalentOperation in
355 // lib/Transforms/IPO/MergeFunctions.cpp.
isSameOperationAs(const Instruction * I,unsigned flags) const356 bool Instruction::isSameOperationAs(const Instruction *I,
357 unsigned flags) const {
358 bool IgnoreAlignment = flags & CompareIgnoringAlignment;
359 bool UseScalarTypes = flags & CompareUsingScalarTypes;
360
361 if (getOpcode() != I->getOpcode() ||
362 getNumOperands() != I->getNumOperands() ||
363 (UseScalarTypes ?
364 getType()->getScalarType() != I->getType()->getScalarType() :
365 getType() != I->getType()))
366 return false;
367
368 // We have two instructions of identical opcode and #operands. Check to see
369 // if all operands are the same type
370 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
371 if (UseScalarTypes ?
372 getOperand(i)->getType()->getScalarType() !=
373 I->getOperand(i)->getType()->getScalarType() :
374 getOperand(i)->getType() != I->getOperand(i)->getType())
375 return false;
376
377 return haveSameSpecialState(this, I, IgnoreAlignment);
378 }
379
380 /// isUsedOutsideOfBlock - Return true if there are any uses of I outside of the
381 /// specified block. Note that PHI nodes are considered to evaluate their
382 /// operands in the corresponding predecessor block.
isUsedOutsideOfBlock(const BasicBlock * BB) const383 bool Instruction::isUsedOutsideOfBlock(const BasicBlock *BB) const {
384 for (const Use &U : uses()) {
385 // PHI nodes uses values in the corresponding predecessor block. For other
386 // instructions, just check to see whether the parent of the use matches up.
387 const Instruction *I = cast<Instruction>(U.getUser());
388 const PHINode *PN = dyn_cast<PHINode>(I);
389 if (!PN) {
390 if (I->getParent() != BB)
391 return true;
392 continue;
393 }
394
395 if (PN->getIncomingBlock(U) != BB)
396 return true;
397 }
398 return false;
399 }
400
401 /// mayReadFromMemory - Return true if this instruction may read memory.
402 ///
mayReadFromMemory() const403 bool Instruction::mayReadFromMemory() const {
404 switch (getOpcode()) {
405 default: return false;
406 case Instruction::VAArg:
407 case Instruction::Load:
408 case Instruction::Fence: // FIXME: refine definition of mayReadFromMemory
409 case Instruction::AtomicCmpXchg:
410 case Instruction::AtomicRMW:
411 return true;
412 case Instruction::Call:
413 return !cast<CallInst>(this)->doesNotAccessMemory();
414 case Instruction::Invoke:
415 return !cast<InvokeInst>(this)->doesNotAccessMemory();
416 case Instruction::Store:
417 return !cast<StoreInst>(this)->isUnordered();
418 }
419 }
420
421 /// mayWriteToMemory - Return true if this instruction may modify memory.
422 ///
mayWriteToMemory() const423 bool Instruction::mayWriteToMemory() const {
424 switch (getOpcode()) {
425 default: return false;
426 case Instruction::Fence: // FIXME: refine definition of mayWriteToMemory
427 case Instruction::Store:
428 case Instruction::VAArg:
429 case Instruction::AtomicCmpXchg:
430 case Instruction::AtomicRMW:
431 return true;
432 case Instruction::Call:
433 return !cast<CallInst>(this)->onlyReadsMemory();
434 case Instruction::Invoke:
435 return !cast<InvokeInst>(this)->onlyReadsMemory();
436 case Instruction::Load:
437 return !cast<LoadInst>(this)->isUnordered();
438 }
439 }
440
mayThrow() const441 bool Instruction::mayThrow() const {
442 if (const CallInst *CI = dyn_cast<CallInst>(this))
443 return !CI->doesNotThrow();
444 return isa<ResumeInst>(this);
445 }
446
mayReturn() const447 bool Instruction::mayReturn() const {
448 if (const CallInst *CI = dyn_cast<CallInst>(this))
449 return !CI->doesNotReturn();
450 return true;
451 }
452
453 /// isAssociative - Return true if the instruction is associative:
454 ///
455 /// Associative operators satisfy: x op (y op z) === (x op y) op z
456 ///
457 /// In LLVM, the Add, Mul, And, Or, and Xor operators are associative.
458 ///
isAssociative(unsigned Opcode)459 bool Instruction::isAssociative(unsigned Opcode) {
460 return Opcode == And || Opcode == Or || Opcode == Xor ||
461 Opcode == Add || Opcode == Mul;
462 }
463
isAssociative() const464 bool Instruction::isAssociative() const {
465 unsigned Opcode = getOpcode();
466 if (isAssociative(Opcode))
467 return true;
468
469 switch (Opcode) {
470 case FMul:
471 case FAdd:
472 return cast<FPMathOperator>(this)->hasUnsafeAlgebra();
473 default:
474 return false;
475 }
476 }
477
478 /// isCommutative - Return true if the instruction is commutative:
479 ///
480 /// Commutative operators satisfy: (x op y) === (y op x)
481 ///
482 /// In LLVM, these are the associative operators, plus SetEQ and SetNE, when
483 /// applied to any type.
484 ///
isCommutative(unsigned op)485 bool Instruction::isCommutative(unsigned op) {
486 switch (op) {
487 case Add:
488 case FAdd:
489 case Mul:
490 case FMul:
491 case And:
492 case Or:
493 case Xor:
494 return true;
495 default:
496 return false;
497 }
498 }
499
500 /// isIdempotent - Return true if the instruction is idempotent:
501 ///
502 /// Idempotent operators satisfy: x op x === x
503 ///
504 /// In LLVM, the And and Or operators are idempotent.
505 ///
isIdempotent(unsigned Opcode)506 bool Instruction::isIdempotent(unsigned Opcode) {
507 return Opcode == And || Opcode == Or;
508 }
509
510 /// isNilpotent - Return true if the instruction is nilpotent:
511 ///
512 /// Nilpotent operators satisfy: x op x === Id,
513 ///
514 /// where Id is the identity for the operator, i.e. a constant such that
515 /// x op Id === x and Id op x === x for all x.
516 ///
517 /// In LLVM, the Xor operator is nilpotent.
518 ///
isNilpotent(unsigned Opcode)519 bool Instruction::isNilpotent(unsigned Opcode) {
520 return Opcode == Xor;
521 }
522
clone() const523 Instruction *Instruction::clone() const {
524 Instruction *New = clone_impl();
525 New->SubclassOptionalData = SubclassOptionalData;
526 if (!hasMetadata())
527 return New;
528
529 // Otherwise, enumerate and copy over metadata from the old instruction to the
530 // new one.
531 SmallVector<std::pair<unsigned, MDNode*>, 4> TheMDs;
532 getAllMetadataOtherThanDebugLoc(TheMDs);
533 for (const auto &MD : TheMDs)
534 New->setMetadata(MD.first, MD.second);
535
536 New->setDebugLoc(getDebugLoc());
537 return New;
538 }
539