• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 #ifndef WEBRTC_MODULES_AUDIO_PROCESSING_INCLUDE_AUDIO_PROCESSING_H_
12 #define WEBRTC_MODULES_AUDIO_PROCESSING_INCLUDE_AUDIO_PROCESSING_H_
13 
14 #include <stddef.h>  // size_t
15 #include <stdio.h>  // FILE
16 
17 #include "webrtc/common.h"
18 #include "webrtc/typedefs.h"
19 
20 struct AecCore;
21 
22 namespace webrtc {
23 
24 class AudioFrame;
25 class EchoCancellation;
26 class EchoControlMobile;
27 class GainControl;
28 class HighPassFilter;
29 class LevelEstimator;
30 class NoiseSuppression;
31 class VoiceDetection;
32 
33 // Use to enable the delay correction feature. This now engages an extended
34 // filter mode in the AEC, along with robustness measures around the reported
35 // system delays. It comes with a significant increase in AEC complexity, but is
36 // much more robust to unreliable reported delays.
37 //
38 // Detailed changes to the algorithm:
39 // - The filter length is changed from 48 to 128 ms. This comes with tuning of
40 //   several parameters: i) filter adaptation stepsize and error threshold;
41 //   ii) non-linear processing smoothing and overdrive.
42 // - Option to ignore the reported delays on platforms which we deem
43 //   sufficiently unreliable. See WEBRTC_UNTRUSTED_DELAY in echo_cancellation.c.
44 // - Faster startup times by removing the excessive "startup phase" processing
45 //   of reported delays.
46 // - Much more conservative adjustments to the far-end read pointer. We smooth
47 //   the delay difference more heavily, and back off from the difference more.
48 //   Adjustments force a readaptation of the filter, so they should be avoided
49 //   except when really necessary.
50 struct DelayCorrection {
DelayCorrectionDelayCorrection51   DelayCorrection() : enabled(false) {}
DelayCorrectionDelayCorrection52   explicit DelayCorrection(bool enabled) : enabled(enabled) {}
53   bool enabled;
54 };
55 
56 // Use to disable the reported system delays. By disabling the reported system
57 // delays the echo cancellation algorithm assumes the process and reverse
58 // streams to be aligned. This configuration only applies to EchoCancellation
59 // and not EchoControlMobile and is set with AudioProcessing::SetExtraOptions().
60 // Note that by disabling reported system delays the EchoCancellation may
61 // regress in performance.
62 struct ReportedDelay {
ReportedDelayReportedDelay63   ReportedDelay() : enabled(true) {}
ReportedDelayReportedDelay64   explicit ReportedDelay(bool enabled) : enabled(enabled) {}
65   bool enabled;
66 };
67 
68 // Must be provided through AudioProcessing::Create(Confg&). It will have no
69 // impact if used with AudioProcessing::SetExtraOptions().
70 struct ExperimentalAgc {
ExperimentalAgcExperimentalAgc71   ExperimentalAgc() : enabled(true) {}
ExperimentalAgcExperimentalAgc72   explicit ExperimentalAgc(bool enabled) : enabled(enabled) {}
73   bool enabled;
74 };
75 
76 static const int kAudioProcMaxNativeSampleRateHz = 32000;
77 
78 // The Audio Processing Module (APM) provides a collection of voice processing
79 // components designed for real-time communications software.
80 //
81 // APM operates on two audio streams on a frame-by-frame basis. Frames of the
82 // primary stream, on which all processing is applied, are passed to
83 // |ProcessStream()|. Frames of the reverse direction stream, which are used for
84 // analysis by some components, are passed to |AnalyzeReverseStream()|. On the
85 // client-side, this will typically be the near-end (capture) and far-end
86 // (render) streams, respectively. APM should be placed in the signal chain as
87 // close to the audio hardware abstraction layer (HAL) as possible.
88 //
89 // On the server-side, the reverse stream will normally not be used, with
90 // processing occurring on each incoming stream.
91 //
92 // Component interfaces follow a similar pattern and are accessed through
93 // corresponding getters in APM. All components are disabled at create-time,
94 // with default settings that are recommended for most situations. New settings
95 // can be applied without enabling a component. Enabling a component triggers
96 // memory allocation and initialization to allow it to start processing the
97 // streams.
98 //
99 // Thread safety is provided with the following assumptions to reduce locking
100 // overhead:
101 //   1. The stream getters and setters are called from the same thread as
102 //      ProcessStream(). More precisely, stream functions are never called
103 //      concurrently with ProcessStream().
104 //   2. Parameter getters are never called concurrently with the corresponding
105 //      setter.
106 //
107 // APM accepts only linear PCM audio data in chunks of 10 ms. The int16
108 // interfaces use interleaved data, while the float interfaces use deinterleaved
109 // data.
110 //
111 // Usage example, omitting error checking:
112 // AudioProcessing* apm = AudioProcessing::Create(0);
113 //
114 // apm->high_pass_filter()->Enable(true);
115 //
116 // apm->echo_cancellation()->enable_drift_compensation(false);
117 // apm->echo_cancellation()->Enable(true);
118 //
119 // apm->noise_reduction()->set_level(kHighSuppression);
120 // apm->noise_reduction()->Enable(true);
121 //
122 // apm->gain_control()->set_analog_level_limits(0, 255);
123 // apm->gain_control()->set_mode(kAdaptiveAnalog);
124 // apm->gain_control()->Enable(true);
125 //
126 // apm->voice_detection()->Enable(true);
127 //
128 // // Start a voice call...
129 //
130 // // ... Render frame arrives bound for the audio HAL ...
131 // apm->AnalyzeReverseStream(render_frame);
132 //
133 // // ... Capture frame arrives from the audio HAL ...
134 // // Call required set_stream_ functions.
135 // apm->set_stream_delay_ms(delay_ms);
136 // apm->gain_control()->set_stream_analog_level(analog_level);
137 //
138 // apm->ProcessStream(capture_frame);
139 //
140 // // Call required stream_ functions.
141 // analog_level = apm->gain_control()->stream_analog_level();
142 // has_voice = apm->stream_has_voice();
143 //
144 // // Repeate render and capture processing for the duration of the call...
145 // // Start a new call...
146 // apm->Initialize();
147 //
148 // // Close the application...
149 // delete apm;
150 //
151 class AudioProcessing {
152  public:
153   enum ChannelLayout {
154     kMono,
155     // Left, right.
156     kStereo,
157     // Mono, keyboard mic.
158     kMonoAndKeyboard,
159     // Left, right, keyboard mic.
160     kStereoAndKeyboard
161   };
162 
163   // Creates an APM instance. Use one instance for every primary audio stream
164   // requiring processing. On the client-side, this would typically be one
165   // instance for the near-end stream, and additional instances for each far-end
166   // stream which requires processing. On the server-side, this would typically
167   // be one instance for every incoming stream.
168   static AudioProcessing* Create();
169   // Allows passing in an optional configuration at create-time.
170   static AudioProcessing* Create(const Config& config);
171   // TODO(ajm): Deprecated; remove all calls to it.
172   static AudioProcessing* Create(int id);
~AudioProcessing()173   virtual ~AudioProcessing() {}
174 
175   // Initializes internal states, while retaining all user settings. This
176   // should be called before beginning to process a new audio stream. However,
177   // it is not necessary to call before processing the first stream after
178   // creation.
179   //
180   // It is also not necessary to call if the audio parameters (sample
181   // rate and number of channels) have changed. Passing updated parameters
182   // directly to |ProcessStream()| and |AnalyzeReverseStream()| is permissible.
183   // If the parameters are known at init-time though, they may be provided.
184   virtual int Initialize() = 0;
185 
186   // The int16 interfaces require:
187   //   - only |NativeRate|s be used
188   //   - that the input, output and reverse rates must match
189   //   - that |output_layout| matches |input_layout|
190   //
191   // The float interfaces accept arbitrary rates and support differing input
192   // and output layouts, but the output may only remove channels, not add.
193   virtual int Initialize(int input_sample_rate_hz,
194                          int output_sample_rate_hz,
195                          int reverse_sample_rate_hz,
196                          ChannelLayout input_layout,
197                          ChannelLayout output_layout,
198                          ChannelLayout reverse_layout) = 0;
199 
200   // Pass down additional options which don't have explicit setters. This
201   // ensures the options are applied immediately.
202   virtual void SetExtraOptions(const Config& config) = 0;
203 
204   virtual int EnableExperimentalNs(bool enable) = 0;
205   virtual bool experimental_ns_enabled() const = 0;
206 
207   // DEPRECATED.
208   // TODO(ajm): Remove after Chromium has upgraded to using Initialize().
209   virtual int set_sample_rate_hz(int rate) = 0;
210   // TODO(ajm): Remove after voice engine no longer requires it to resample
211   // the reverse stream to the forward rate.
212   virtual int input_sample_rate_hz() const = 0;
213   // TODO(ajm): Remove after Chromium no longer depends on it.
214   virtual int sample_rate_hz() const = 0;
215 
216   // TODO(ajm): Only intended for internal use. Make private and friend the
217   // necessary classes?
218   virtual int proc_sample_rate_hz() const = 0;
219   virtual int proc_split_sample_rate_hz() const = 0;
220   virtual int num_input_channels() const = 0;
221   virtual int num_output_channels() const = 0;
222   virtual int num_reverse_channels() const = 0;
223 
224   // Set to true when the output of AudioProcessing will be muted or in some
225   // other way not used. Ideally, the captured audio would still be processed,
226   // but some components may change behavior based on this information.
227   // Default false.
228   virtual void set_output_will_be_muted(bool muted) = 0;
229   virtual bool output_will_be_muted() const = 0;
230 
231   // Processes a 10 ms |frame| of the primary audio stream. On the client-side,
232   // this is the near-end (or captured) audio.
233   //
234   // If needed for enabled functionality, any function with the set_stream_ tag
235   // must be called prior to processing the current frame. Any getter function
236   // with the stream_ tag which is needed should be called after processing.
237   //
238   // The |sample_rate_hz_|, |num_channels_|, and |samples_per_channel_|
239   // members of |frame| must be valid. If changed from the previous call to this
240   // method, it will trigger an initialization.
241   virtual int ProcessStream(AudioFrame* frame) = 0;
242 
243   // Accepts deinterleaved float audio with the range [-1, 1]. Each element
244   // of |src| points to a channel buffer, arranged according to
245   // |input_layout|. At output, the channels will be arranged according to
246   // |output_layout| at |output_sample_rate_hz| in |dest|.
247   //
248   // The output layout may only remove channels, not add. |src| and |dest|
249   // may use the same memory, if desired.
250   virtual int ProcessStream(const float* const* src,
251                             int samples_per_channel,
252                             int input_sample_rate_hz,
253                             ChannelLayout input_layout,
254                             int output_sample_rate_hz,
255                             ChannelLayout output_layout,
256                             float* const* dest) = 0;
257 
258   // Analyzes a 10 ms |frame| of the reverse direction audio stream. The frame
259   // will not be modified. On the client-side, this is the far-end (or to be
260   // rendered) audio.
261   //
262   // It is only necessary to provide this if echo processing is enabled, as the
263   // reverse stream forms the echo reference signal. It is recommended, but not
264   // necessary, to provide if gain control is enabled. On the server-side this
265   // typically will not be used. If you're not sure what to pass in here,
266   // chances are you don't need to use it.
267   //
268   // The |sample_rate_hz_|, |num_channels_|, and |samples_per_channel_|
269   // members of |frame| must be valid. |sample_rate_hz_| must correspond to
270   // |input_sample_rate_hz()|
271   //
272   // TODO(ajm): add const to input; requires an implementation fix.
273   virtual int AnalyzeReverseStream(AudioFrame* frame) = 0;
274 
275   // Accepts deinterleaved float audio with the range [-1, 1]. Each element
276   // of |data| points to a channel buffer, arranged according to |layout|.
277   virtual int AnalyzeReverseStream(const float* const* data,
278                                    int samples_per_channel,
279                                    int sample_rate_hz,
280                                    ChannelLayout layout) = 0;
281 
282   // This must be called if and only if echo processing is enabled.
283   //
284   // Sets the |delay| in ms between AnalyzeReverseStream() receiving a far-end
285   // frame and ProcessStream() receiving a near-end frame containing the
286   // corresponding echo. On the client-side this can be expressed as
287   //   delay = (t_render - t_analyze) + (t_process - t_capture)
288   // where,
289   //   - t_analyze is the time a frame is passed to AnalyzeReverseStream() and
290   //     t_render is the time the first sample of the same frame is rendered by
291   //     the audio hardware.
292   //   - t_capture is the time the first sample of a frame is captured by the
293   //     audio hardware and t_pull is the time the same frame is passed to
294   //     ProcessStream().
295   virtual int set_stream_delay_ms(int delay) = 0;
296   virtual int stream_delay_ms() const = 0;
297   virtual bool was_stream_delay_set() const = 0;
298 
299   // Call to signal that a key press occurred (true) or did not occur (false)
300   // with this chunk of audio.
301   virtual void set_stream_key_pressed(bool key_pressed) = 0;
302   virtual bool stream_key_pressed() const = 0;
303 
304   // Sets a delay |offset| in ms to add to the values passed in through
305   // set_stream_delay_ms(). May be positive or negative.
306   //
307   // Note that this could cause an otherwise valid value passed to
308   // set_stream_delay_ms() to return an error.
309   virtual void set_delay_offset_ms(int offset) = 0;
310   virtual int delay_offset_ms() const = 0;
311 
312   // Starts recording debugging information to a file specified by |filename|,
313   // a NULL-terminated string. If there is an ongoing recording, the old file
314   // will be closed, and recording will continue in the newly specified file.
315   // An already existing file will be overwritten without warning.
316   static const size_t kMaxFilenameSize = 1024;
317   virtual int StartDebugRecording(const char filename[kMaxFilenameSize]) = 0;
318 
319   // Same as above but uses an existing file handle. Takes ownership
320   // of |handle| and closes it at StopDebugRecording().
321   virtual int StartDebugRecording(FILE* handle) = 0;
322 
323   // Stops recording debugging information, and closes the file. Recording
324   // cannot be resumed in the same file (without overwriting it).
325   virtual int StopDebugRecording() = 0;
326 
327   // These provide access to the component interfaces and should never return
328   // NULL. The pointers will be valid for the lifetime of the APM instance.
329   // The memory for these objects is entirely managed internally.
330   virtual EchoCancellation* echo_cancellation() const = 0;
331   virtual EchoControlMobile* echo_control_mobile() const = 0;
332   virtual GainControl* gain_control() const = 0;
333   virtual HighPassFilter* high_pass_filter() const = 0;
334   virtual LevelEstimator* level_estimator() const = 0;
335   virtual NoiseSuppression* noise_suppression() const = 0;
336   virtual VoiceDetection* voice_detection() const = 0;
337 
338   struct Statistic {
339     int instant;  // Instantaneous value.
340     int average;  // Long-term average.
341     int maximum;  // Long-term maximum.
342     int minimum;  // Long-term minimum.
343   };
344 
345   enum Error {
346     // Fatal errors.
347     kNoError = 0,
348     kUnspecifiedError = -1,
349     kCreationFailedError = -2,
350     kUnsupportedComponentError = -3,
351     kUnsupportedFunctionError = -4,
352     kNullPointerError = -5,
353     kBadParameterError = -6,
354     kBadSampleRateError = -7,
355     kBadDataLengthError = -8,
356     kBadNumberChannelsError = -9,
357     kFileError = -10,
358     kStreamParameterNotSetError = -11,
359     kNotEnabledError = -12,
360 
361     // Warnings are non-fatal.
362     // This results when a set_stream_ parameter is out of range. Processing
363     // will continue, but the parameter may have been truncated.
364     kBadStreamParameterWarning = -13
365   };
366 
367   enum NativeRate {
368     kSampleRate8kHz = 8000,
369     kSampleRate16kHz = 16000,
370     kSampleRate32kHz = 32000
371   };
372 
373   static const int kChunkSizeMs = 10;
374 };
375 
376 // The acoustic echo cancellation (AEC) component provides better performance
377 // than AECM but also requires more processing power and is dependent on delay
378 // stability and reporting accuracy. As such it is well-suited and recommended
379 // for PC and IP phone applications.
380 //
381 // Not recommended to be enabled on the server-side.
382 class EchoCancellation {
383  public:
384   // EchoCancellation and EchoControlMobile may not be enabled simultaneously.
385   // Enabling one will disable the other.
386   virtual int Enable(bool enable) = 0;
387   virtual bool is_enabled() const = 0;
388 
389   // Differences in clock speed on the primary and reverse streams can impact
390   // the AEC performance. On the client-side, this could be seen when different
391   // render and capture devices are used, particularly with webcams.
392   //
393   // This enables a compensation mechanism, and requires that
394   // set_stream_drift_samples() be called.
395   virtual int enable_drift_compensation(bool enable) = 0;
396   virtual bool is_drift_compensation_enabled() const = 0;
397 
398   // Sets the difference between the number of samples rendered and captured by
399   // the audio devices since the last call to |ProcessStream()|. Must be called
400   // if drift compensation is enabled, prior to |ProcessStream()|.
401   virtual void set_stream_drift_samples(int drift) = 0;
402   virtual int stream_drift_samples() const = 0;
403 
404   enum SuppressionLevel {
405     kLowSuppression,
406     kModerateSuppression,
407     kHighSuppression
408   };
409 
410   // Sets the aggressiveness of the suppressor. A higher level trades off
411   // double-talk performance for increased echo suppression.
412   virtual int set_suppression_level(SuppressionLevel level) = 0;
413   virtual SuppressionLevel suppression_level() const = 0;
414 
415   // Returns false if the current frame almost certainly contains no echo
416   // and true if it _might_ contain echo.
417   virtual bool stream_has_echo() const = 0;
418 
419   // Enables the computation of various echo metrics. These are obtained
420   // through |GetMetrics()|.
421   virtual int enable_metrics(bool enable) = 0;
422   virtual bool are_metrics_enabled() const = 0;
423 
424   // Each statistic is reported in dB.
425   // P_far:  Far-end (render) signal power.
426   // P_echo: Near-end (capture) echo signal power.
427   // P_out:  Signal power at the output of the AEC.
428   // P_a:    Internal signal power at the point before the AEC's non-linear
429   //         processor.
430   struct Metrics {
431     // RERL = ERL + ERLE
432     AudioProcessing::Statistic residual_echo_return_loss;
433 
434     // ERL = 10log_10(P_far / P_echo)
435     AudioProcessing::Statistic echo_return_loss;
436 
437     // ERLE = 10log_10(P_echo / P_out)
438     AudioProcessing::Statistic echo_return_loss_enhancement;
439 
440     // (Pre non-linear processing suppression) A_NLP = 10log_10(P_echo / P_a)
441     AudioProcessing::Statistic a_nlp;
442   };
443 
444   // TODO(ajm): discuss the metrics update period.
445   virtual int GetMetrics(Metrics* metrics) = 0;
446 
447   // Enables computation and logging of delay values. Statistics are obtained
448   // through |GetDelayMetrics()|.
449   virtual int enable_delay_logging(bool enable) = 0;
450   virtual bool is_delay_logging_enabled() const = 0;
451 
452   // The delay metrics consists of the delay |median| and the delay standard
453   // deviation |std|. The values are averaged over the time period since the
454   // last call to |GetDelayMetrics()|.
455   virtual int GetDelayMetrics(int* median, int* std) = 0;
456 
457   // Returns a pointer to the low level AEC component.  In case of multiple
458   // channels, the pointer to the first one is returned.  A NULL pointer is
459   // returned when the AEC component is disabled or has not been initialized
460   // successfully.
461   virtual struct AecCore* aec_core() const = 0;
462 
463  protected:
~EchoCancellation()464   virtual ~EchoCancellation() {}
465 };
466 
467 // The acoustic echo control for mobile (AECM) component is a low complexity
468 // robust option intended for use on mobile devices.
469 //
470 // Not recommended to be enabled on the server-side.
471 class EchoControlMobile {
472  public:
473   // EchoCancellation and EchoControlMobile may not be enabled simultaneously.
474   // Enabling one will disable the other.
475   virtual int Enable(bool enable) = 0;
476   virtual bool is_enabled() const = 0;
477 
478   // Recommended settings for particular audio routes. In general, the louder
479   // the echo is expected to be, the higher this value should be set. The
480   // preferred setting may vary from device to device.
481   enum RoutingMode {
482     kQuietEarpieceOrHeadset,
483     kEarpiece,
484     kLoudEarpiece,
485     kSpeakerphone,
486     kLoudSpeakerphone
487   };
488 
489   // Sets echo control appropriate for the audio routing |mode| on the device.
490   // It can and should be updated during a call if the audio routing changes.
491   virtual int set_routing_mode(RoutingMode mode) = 0;
492   virtual RoutingMode routing_mode() const = 0;
493 
494   // Comfort noise replaces suppressed background noise to maintain a
495   // consistent signal level.
496   virtual int enable_comfort_noise(bool enable) = 0;
497   virtual bool is_comfort_noise_enabled() const = 0;
498 
499   // A typical use case is to initialize the component with an echo path from a
500   // previous call. The echo path is retrieved using |GetEchoPath()|, typically
501   // at the end of a call. The data can then be stored for later use as an
502   // initializer before the next call, using |SetEchoPath()|.
503   //
504   // Controlling the echo path this way requires the data |size_bytes| to match
505   // the internal echo path size. This size can be acquired using
506   // |echo_path_size_bytes()|. |SetEchoPath()| causes an entire reset, worth
507   // noting if it is to be called during an ongoing call.
508   //
509   // It is possible that version incompatibilities may result in a stored echo
510   // path of the incorrect size. In this case, the stored path should be
511   // discarded.
512   virtual int SetEchoPath(const void* echo_path, size_t size_bytes) = 0;
513   virtual int GetEchoPath(void* echo_path, size_t size_bytes) const = 0;
514 
515   // The returned path size is guaranteed not to change for the lifetime of
516   // the application.
517   static size_t echo_path_size_bytes();
518 
519  protected:
~EchoControlMobile()520   virtual ~EchoControlMobile() {}
521 };
522 
523 // The automatic gain control (AGC) component brings the signal to an
524 // appropriate range. This is done by applying a digital gain directly and, in
525 // the analog mode, prescribing an analog gain to be applied at the audio HAL.
526 //
527 // Recommended to be enabled on the client-side.
528 class GainControl {
529  public:
530   virtual int Enable(bool enable) = 0;
531   virtual bool is_enabled() const = 0;
532 
533   // When an analog mode is set, this must be called prior to |ProcessStream()|
534   // to pass the current analog level from the audio HAL. Must be within the
535   // range provided to |set_analog_level_limits()|.
536   virtual int set_stream_analog_level(int level) = 0;
537 
538   // When an analog mode is set, this should be called after |ProcessStream()|
539   // to obtain the recommended new analog level for the audio HAL. It is the
540   // users responsibility to apply this level.
541   virtual int stream_analog_level() = 0;
542 
543   enum Mode {
544     // Adaptive mode intended for use if an analog volume control is available
545     // on the capture device. It will require the user to provide coupling
546     // between the OS mixer controls and AGC through the |stream_analog_level()|
547     // functions.
548     //
549     // It consists of an analog gain prescription for the audio device and a
550     // digital compression stage.
551     kAdaptiveAnalog,
552 
553     // Adaptive mode intended for situations in which an analog volume control
554     // is unavailable. It operates in a similar fashion to the adaptive analog
555     // mode, but with scaling instead applied in the digital domain. As with
556     // the analog mode, it additionally uses a digital compression stage.
557     kAdaptiveDigital,
558 
559     // Fixed mode which enables only the digital compression stage also used by
560     // the two adaptive modes.
561     //
562     // It is distinguished from the adaptive modes by considering only a
563     // short time-window of the input signal. It applies a fixed gain through
564     // most of the input level range, and compresses (gradually reduces gain
565     // with increasing level) the input signal at higher levels. This mode is
566     // preferred on embedded devices where the capture signal level is
567     // predictable, so that a known gain can be applied.
568     kFixedDigital
569   };
570 
571   virtual int set_mode(Mode mode) = 0;
572   virtual Mode mode() const = 0;
573 
574   // Sets the target peak |level| (or envelope) of the AGC in dBFs (decibels
575   // from digital full-scale). The convention is to use positive values. For
576   // instance, passing in a value of 3 corresponds to -3 dBFs, or a target
577   // level 3 dB below full-scale. Limited to [0, 31].
578   //
579   // TODO(ajm): use a negative value here instead, if/when VoE will similarly
580   //            update its interface.
581   virtual int set_target_level_dbfs(int level) = 0;
582   virtual int target_level_dbfs() const = 0;
583 
584   // Sets the maximum |gain| the digital compression stage may apply, in dB. A
585   // higher number corresponds to greater compression, while a value of 0 will
586   // leave the signal uncompressed. Limited to [0, 90].
587   virtual int set_compression_gain_db(int gain) = 0;
588   virtual int compression_gain_db() const = 0;
589 
590   // When enabled, the compression stage will hard limit the signal to the
591   // target level. Otherwise, the signal will be compressed but not limited
592   // above the target level.
593   virtual int enable_limiter(bool enable) = 0;
594   virtual bool is_limiter_enabled() const = 0;
595 
596   // Sets the |minimum| and |maximum| analog levels of the audio capture device.
597   // Must be set if and only if an analog mode is used. Limited to [0, 65535].
598   virtual int set_analog_level_limits(int minimum,
599                                       int maximum) = 0;
600   virtual int analog_level_minimum() const = 0;
601   virtual int analog_level_maximum() const = 0;
602 
603   // Returns true if the AGC has detected a saturation event (period where the
604   // signal reaches digital full-scale) in the current frame and the analog
605   // level cannot be reduced.
606   //
607   // This could be used as an indicator to reduce or disable analog mic gain at
608   // the audio HAL.
609   virtual bool stream_is_saturated() const = 0;
610 
611  protected:
~GainControl()612   virtual ~GainControl() {}
613 };
614 
615 // A filtering component which removes DC offset and low-frequency noise.
616 // Recommended to be enabled on the client-side.
617 class HighPassFilter {
618  public:
619   virtual int Enable(bool enable) = 0;
620   virtual bool is_enabled() const = 0;
621 
622  protected:
~HighPassFilter()623   virtual ~HighPassFilter() {}
624 };
625 
626 // An estimation component used to retrieve level metrics.
627 class LevelEstimator {
628  public:
629   virtual int Enable(bool enable) = 0;
630   virtual bool is_enabled() const = 0;
631 
632   // Returns the root mean square (RMS) level in dBFs (decibels from digital
633   // full-scale), or alternately dBov. It is computed over all primary stream
634   // frames since the last call to RMS(). The returned value is positive but
635   // should be interpreted as negative. It is constrained to [0, 127].
636   //
637   // The computation follows: https://tools.ietf.org/html/rfc6465
638   // with the intent that it can provide the RTP audio level indication.
639   //
640   // Frames passed to ProcessStream() with an |_energy| of zero are considered
641   // to have been muted. The RMS of the frame will be interpreted as -127.
642   virtual int RMS() = 0;
643 
644  protected:
~LevelEstimator()645   virtual ~LevelEstimator() {}
646 };
647 
648 // The noise suppression (NS) component attempts to remove noise while
649 // retaining speech. Recommended to be enabled on the client-side.
650 //
651 // Recommended to be enabled on the client-side.
652 class NoiseSuppression {
653  public:
654   virtual int Enable(bool enable) = 0;
655   virtual bool is_enabled() const = 0;
656 
657   // Determines the aggressiveness of the suppression. Increasing the level
658   // will reduce the noise level at the expense of a higher speech distortion.
659   enum Level {
660     kLow,
661     kModerate,
662     kHigh,
663     kVeryHigh
664   };
665 
666   virtual int set_level(Level level) = 0;
667   virtual Level level() const = 0;
668 
669   // Returns the internally computed prior speech probability of current frame
670   // averaged over output channels. This is not supported in fixed point, for
671   // which |kUnsupportedFunctionError| is returned.
672   virtual float speech_probability() const = 0;
673 
674  protected:
~NoiseSuppression()675   virtual ~NoiseSuppression() {}
676 };
677 
678 // The voice activity detection (VAD) component analyzes the stream to
679 // determine if voice is present. A facility is also provided to pass in an
680 // external VAD decision.
681 //
682 // In addition to |stream_has_voice()| the VAD decision is provided through the
683 // |AudioFrame| passed to |ProcessStream()|. The |vad_activity_| member will be
684 // modified to reflect the current decision.
685 class VoiceDetection {
686  public:
687   virtual int Enable(bool enable) = 0;
688   virtual bool is_enabled() const = 0;
689 
690   // Returns true if voice is detected in the current frame. Should be called
691   // after |ProcessStream()|.
692   virtual bool stream_has_voice() const = 0;
693 
694   // Some of the APM functionality requires a VAD decision. In the case that
695   // a decision is externally available for the current frame, it can be passed
696   // in here, before |ProcessStream()| is called.
697   //
698   // VoiceDetection does _not_ need to be enabled to use this. If it happens to
699   // be enabled, detection will be skipped for any frame in which an external
700   // VAD decision is provided.
701   virtual int set_stream_has_voice(bool has_voice) = 0;
702 
703   // Specifies the likelihood that a frame will be declared to contain voice.
704   // A higher value makes it more likely that speech will not be clipped, at
705   // the expense of more noise being detected as voice.
706   enum Likelihood {
707     kVeryLowLikelihood,
708     kLowLikelihood,
709     kModerateLikelihood,
710     kHighLikelihood
711   };
712 
713   virtual int set_likelihood(Likelihood likelihood) = 0;
714   virtual Likelihood likelihood() const = 0;
715 
716   // Sets the |size| of the frames in ms on which the VAD will operate. Larger
717   // frames will improve detection accuracy, but reduce the frequency of
718   // updates.
719   //
720   // This does not impact the size of frames passed to |ProcessStream()|.
721   virtual int set_frame_size_ms(int size) = 0;
722   virtual int frame_size_ms() const = 0;
723 
724  protected:
~VoiceDetection()725   virtual ~VoiceDetection() {}
726 };
727 }  // namespace webrtc
728 
729 #endif  // WEBRTC_MODULES_AUDIO_PROCESSING_INCLUDE_AUDIO_PROCESSING_H_
730