• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef V8_PROPERTY_DETAILS_H_
6 #define V8_PROPERTY_DETAILS_H_
7 
8 #include "include/v8.h"
9 #include "src/allocation.h"
10 #include "src/utils.h"
11 
12 // Ecma-262 3rd 8.6.1
13 enum PropertyAttributes {
14   NONE              = v8::None,
15   READ_ONLY         = v8::ReadOnly,
16   DONT_ENUM         = v8::DontEnum,
17   DONT_DELETE       = v8::DontDelete,
18 
19   SEALED            = DONT_DELETE,
20   FROZEN            = SEALED | READ_ONLY,
21 
22   STRING            = 8,  // Used to filter symbols and string names
23   SYMBOLIC          = 16,
24   PRIVATE_SYMBOL    = 32,
25 
26   DONT_SHOW         = DONT_ENUM | SYMBOLIC | PRIVATE_SYMBOL,
27   ABSENT            = 64  // Used in runtime to indicate a property is absent.
28   // ABSENT can never be stored in or returned from a descriptor's attributes
29   // bitfield.  It is only used as a return value meaning the attributes of
30   // a non-existent property.
31 };
32 
33 
34 namespace v8 {
35 namespace internal {
36 
37 class Smi;
38 template<class> class TypeImpl;
39 struct ZoneTypeConfig;
40 typedef TypeImpl<ZoneTypeConfig> Type;
41 class TypeInfo;
42 
43 // Type of properties.
44 // Order of properties is significant.
45 // Must fit in the BitField PropertyDetails::TypeField.
46 // A copy of this is in mirror-debugger.js.
47 enum PropertyType {
48   // Only in slow mode.
49   NORMAL                    = 0,
50   // Only in fast mode.
51   FIELD                     = 1,
52   CONSTANT                  = 2,
53   CALLBACKS                 = 3,
54   // Only in lookup results, not in descriptors.
55   HANDLER                   = 4,
56   INTERCEPTOR               = 5,
57   // Only used as a marker in LookupResult.
58   NONEXISTENT               = 6
59 };
60 
61 
62 class Representation {
63  public:
64   enum Kind {
65     kNone,
66     kInteger8,
67     kUInteger8,
68     kInteger16,
69     kUInteger16,
70     kSmi,
71     kInteger32,
72     kDouble,
73     kHeapObject,
74     kTagged,
75     kExternal,
76     kNumRepresentations
77   };
78 
Representation()79   Representation() : kind_(kNone) { }
80 
None()81   static Representation None() { return Representation(kNone); }
Tagged()82   static Representation Tagged() { return Representation(kTagged); }
Integer8()83   static Representation Integer8() { return Representation(kInteger8); }
UInteger8()84   static Representation UInteger8() { return Representation(kUInteger8); }
Integer16()85   static Representation Integer16() { return Representation(kInteger16); }
UInteger16()86   static Representation UInteger16() { return Representation(kUInteger16); }
Smi()87   static Representation Smi() { return Representation(kSmi); }
Integer32()88   static Representation Integer32() { return Representation(kInteger32); }
Double()89   static Representation Double() { return Representation(kDouble); }
HeapObject()90   static Representation HeapObject() { return Representation(kHeapObject); }
External()91   static Representation External() { return Representation(kExternal); }
92 
FromKind(Kind kind)93   static Representation FromKind(Kind kind) { return Representation(kind); }
94 
95   static Representation FromType(Type* type);
96 
Equals(const Representation & other)97   bool Equals(const Representation& other) const {
98     return kind_ == other.kind_;
99   }
100 
IsCompatibleForLoad(const Representation & other)101   bool IsCompatibleForLoad(const Representation& other) const {
102     return (IsDouble() && other.IsDouble()) ||
103         (!IsDouble() && !other.IsDouble());
104   }
105 
IsCompatibleForStore(const Representation & other)106   bool IsCompatibleForStore(const Representation& other) const {
107     return Equals(other);
108   }
109 
is_more_general_than(const Representation & other)110   bool is_more_general_than(const Representation& other) const {
111     if (kind_ == kExternal && other.kind_ == kNone) return true;
112     if (kind_ == kExternal && other.kind_ == kExternal) return false;
113     if (kind_ == kNone && other.kind_ == kExternal) return false;
114 
115     ASSERT(kind_ != kExternal);
116     ASSERT(other.kind_ != kExternal);
117     if (IsHeapObject()) return other.IsNone();
118     if (kind_ == kUInteger8 && other.kind_ == kInteger8) return false;
119     if (kind_ == kUInteger16 && other.kind_ == kInteger16) return false;
120     return kind_ > other.kind_;
121   }
122 
fits_into(const Representation & other)123   bool fits_into(const Representation& other) const {
124     return other.is_more_general_than(*this) || other.Equals(*this);
125   }
126 
127   bool CanContainDouble(double value);
128 
generalize(Representation other)129   Representation generalize(Representation other) {
130     if (other.fits_into(*this)) return *this;
131     if (other.is_more_general_than(*this)) return other;
132     return Representation::Tagged();
133   }
134 
size()135   int size() const {
136     ASSERT(!IsNone());
137     if (IsInteger8() || IsUInteger8()) {
138       return sizeof(uint8_t);
139     }
140     if (IsInteger16() || IsUInteger16()) {
141       return sizeof(uint16_t);
142     }
143     if (IsInteger32()) {
144       return sizeof(uint32_t);
145     }
146     return kPointerSize;
147   }
148 
kind()149   Kind kind() const { return static_cast<Kind>(kind_); }
IsNone()150   bool IsNone() const { return kind_ == kNone; }
IsInteger8()151   bool IsInteger8() const { return kind_ == kInteger8; }
IsUInteger8()152   bool IsUInteger8() const { return kind_ == kUInteger8; }
IsInteger16()153   bool IsInteger16() const { return kind_ == kInteger16; }
IsUInteger16()154   bool IsUInteger16() const { return kind_ == kUInteger16; }
IsTagged()155   bool IsTagged() const { return kind_ == kTagged; }
IsSmi()156   bool IsSmi() const { return kind_ == kSmi; }
IsSmiOrTagged()157   bool IsSmiOrTagged() const { return IsSmi() || IsTagged(); }
IsInteger32()158   bool IsInteger32() const { return kind_ == kInteger32; }
IsSmiOrInteger32()159   bool IsSmiOrInteger32() const { return IsSmi() || IsInteger32(); }
IsDouble()160   bool IsDouble() const { return kind_ == kDouble; }
IsHeapObject()161   bool IsHeapObject() const { return kind_ == kHeapObject; }
IsExternal()162   bool IsExternal() const { return kind_ == kExternal; }
IsSpecialization()163   bool IsSpecialization() const {
164     return IsInteger8() || IsUInteger8() ||
165       IsInteger16() || IsUInteger16() ||
166       IsSmi() || IsInteger32() || IsDouble();
167   }
168   const char* Mnemonic() const;
169 
170  private:
Representation(Kind k)171   explicit Representation(Kind k) : kind_(k) { }
172 
173   // Make sure kind fits in int8.
174   STATIC_ASSERT(kNumRepresentations <= (1 << kBitsPerByte));
175 
176   int8_t kind_;
177 };
178 
179 
180 static const int kDescriptorIndexBitCount = 10;
181 // The maximum number of descriptors we want in a descriptor array (should
182 // fit in a page).
183 static const int kMaxNumberOfDescriptors =
184     (1 << kDescriptorIndexBitCount) - 2;
185 static const int kInvalidEnumCacheSentinel =
186     (1 << kDescriptorIndexBitCount) - 1;
187 
188 
189 // PropertyDetails captures type and attributes for a property.
190 // They are used both in property dictionaries and instance descriptors.
191 class PropertyDetails BASE_EMBEDDED {
192  public:
PropertyDetails(PropertyAttributes attributes,PropertyType type,int index)193   PropertyDetails(PropertyAttributes attributes,
194                   PropertyType type,
195                   int index) {
196     value_ = TypeField::encode(type)
197         | AttributesField::encode(attributes)
198         | DictionaryStorageField::encode(index);
199 
200     ASSERT(type == this->type());
201     ASSERT(attributes == this->attributes());
202   }
203 
204   PropertyDetails(PropertyAttributes attributes,
205                   PropertyType type,
206                   Representation representation,
207                   int field_index = 0) {
208     value_ = TypeField::encode(type)
209         | AttributesField::encode(attributes)
210         | RepresentationField::encode(EncodeRepresentation(representation))
211         | FieldIndexField::encode(field_index);
212   }
213 
pointer()214   int pointer() const { return DescriptorPointer::decode(value_); }
215 
set_pointer(int i)216   PropertyDetails set_pointer(int i) { return PropertyDetails(value_, i); }
217 
CopyWithRepresentation(Representation representation)218   PropertyDetails CopyWithRepresentation(Representation representation) const {
219     return PropertyDetails(value_, representation);
220   }
CopyAddAttributes(PropertyAttributes new_attributes)221   PropertyDetails CopyAddAttributes(PropertyAttributes new_attributes) {
222     new_attributes =
223         static_cast<PropertyAttributes>(attributes() | new_attributes);
224     return PropertyDetails(value_, new_attributes);
225   }
226 
227   // Conversion for storing details as Object*.
228   explicit inline PropertyDetails(Smi* smi);
229   inline Smi* AsSmi() const;
230 
EncodeRepresentation(Representation representation)231   static uint8_t EncodeRepresentation(Representation representation) {
232     return representation.kind();
233   }
234 
DecodeRepresentation(uint32_t bits)235   static Representation DecodeRepresentation(uint32_t bits) {
236     return Representation::FromKind(static_cast<Representation::Kind>(bits));
237   }
238 
type()239   PropertyType type() const { return TypeField::decode(value_); }
240 
attributes()241   PropertyAttributes attributes() const {
242     return AttributesField::decode(value_);
243   }
244 
dictionary_index()245   int dictionary_index() const {
246     return DictionaryStorageField::decode(value_);
247   }
248 
representation()249   Representation representation() const {
250     ASSERT(type() != NORMAL);
251     return DecodeRepresentation(RepresentationField::decode(value_));
252   }
253 
field_index()254   int field_index() const {
255     return FieldIndexField::decode(value_);
256   }
257 
258   inline PropertyDetails AsDeleted() const;
259 
IsValidIndex(int index)260   static bool IsValidIndex(int index) {
261     return DictionaryStorageField::is_valid(index);
262   }
263 
IsReadOnly()264   bool IsReadOnly() const { return (attributes() & READ_ONLY) != 0; }
IsDontDelete()265   bool IsDontDelete() const { return (attributes() & DONT_DELETE) != 0; }
IsDontEnum()266   bool IsDontEnum() const { return (attributes() & DONT_ENUM) != 0; }
IsDeleted()267   bool IsDeleted() const { return DeletedField::decode(value_) != 0;}
268 
269   // Bit fields in value_ (type, shift, size). Must be public so the
270   // constants can be embedded in generated code.
271   class TypeField:                public BitField<PropertyType,       0,  3> {};
272   class AttributesField:          public BitField<PropertyAttributes, 3,  3> {};
273 
274   // Bit fields for normalized objects.
275   class DeletedField:             public BitField<uint32_t,           6,  1> {};
276   class DictionaryStorageField:   public BitField<uint32_t,           7, 24> {};
277 
278   // Bit fields for fast objects.
279   class RepresentationField:      public BitField<uint32_t,           6,  4> {};
280   class DescriptorPointer:        public BitField<uint32_t, 10,
281       kDescriptorIndexBitCount> {};  // NOLINT
282   class FieldIndexField:          public BitField<uint32_t,
283       10 + kDescriptorIndexBitCount,
284       kDescriptorIndexBitCount> {};  // NOLINT
285   // All bits for fast objects must fix in a smi.
286   STATIC_ASSERT(10 + kDescriptorIndexBitCount + kDescriptorIndexBitCount <= 31);
287 
288   static const int kInitialIndex = 1;
289 
290  private:
PropertyDetails(int value,int pointer)291   PropertyDetails(int value, int pointer) {
292     value_ = DescriptorPointer::update(value, pointer);
293   }
PropertyDetails(int value,Representation representation)294   PropertyDetails(int value, Representation representation) {
295     value_ = RepresentationField::update(
296         value, EncodeRepresentation(representation));
297   }
PropertyDetails(int value,PropertyAttributes attributes)298   PropertyDetails(int value, PropertyAttributes attributes) {
299     value_ = AttributesField::update(value, attributes);
300   }
301 
302   uint32_t value_;
303 };
304 
305 } }  // namespace v8::internal
306 
307 #endif  // V8_PROPERTY_DETAILS_H_
308