• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 2011 The LevelDB Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file. See the AUTHORS file for names of contributors.
4 
5 #ifndef STORAGE_LEVELDB_DB_FORMAT_H_
6 #define STORAGE_LEVELDB_DB_FORMAT_H_
7 
8 #include <stdio.h>
9 #include "leveldb/comparator.h"
10 #include "leveldb/db.h"
11 #include "leveldb/filter_policy.h"
12 #include "leveldb/slice.h"
13 #include "leveldb/table_builder.h"
14 #include "util/coding.h"
15 #include "util/logging.h"
16 
17 namespace leveldb {
18 
19 // Grouping of constants.  We may want to make some of these
20 // parameters set via options.
21 namespace config {
22 static const int kNumLevels = 7;
23 
24 // Level-0 compaction is started when we hit this many files.
25 static const int kL0_CompactionTrigger = 4;
26 
27 // Soft limit on number of level-0 files.  We slow down writes at this point.
28 static const int kL0_SlowdownWritesTrigger = 8;
29 
30 // Maximum number of level-0 files.  We stop writes at this point.
31 static const int kL0_StopWritesTrigger = 12;
32 
33 // Maximum level to which a new compacted memtable is pushed if it
34 // does not create overlap.  We try to push to level 2 to avoid the
35 // relatively expensive level 0=>1 compactions and to avoid some
36 // expensive manifest file operations.  We do not push all the way to
37 // the largest level since that can generate a lot of wasted disk
38 // space if the same key space is being repeatedly overwritten.
39 static const int kMaxMemCompactLevel = 2;
40 
41 // Approximate gap in bytes between samples of data read during iteration.
42 static const int kReadBytesPeriod = 1048576;
43 
44 }  // namespace config
45 
46 class InternalKey;
47 
48 // Value types encoded as the last component of internal keys.
49 // DO NOT CHANGE THESE ENUM VALUES: they are embedded in the on-disk
50 // data structures.
51 enum ValueType {
52   kTypeDeletion = 0x0,
53   kTypeValue = 0x1
54 };
55 // kValueTypeForSeek defines the ValueType that should be passed when
56 // constructing a ParsedInternalKey object for seeking to a particular
57 // sequence number (since we sort sequence numbers in decreasing order
58 // and the value type is embedded as the low 8 bits in the sequence
59 // number in internal keys, we need to use the highest-numbered
60 // ValueType, not the lowest).
61 static const ValueType kValueTypeForSeek = kTypeValue;
62 
63 typedef uint64_t SequenceNumber;
64 
65 // We leave eight bits empty at the bottom so a type and sequence#
66 // can be packed together into 64-bits.
67 static const SequenceNumber kMaxSequenceNumber =
68     ((0x1ull << 56) - 1);
69 
70 struct ParsedInternalKey {
71   Slice user_key;
72   SequenceNumber sequence;
73   ValueType type;
74 
ParsedInternalKeyParsedInternalKey75   ParsedInternalKey() { }  // Intentionally left uninitialized (for speed)
ParsedInternalKeyParsedInternalKey76   ParsedInternalKey(const Slice& u, const SequenceNumber& seq, ValueType t)
77       : user_key(u), sequence(seq), type(t) { }
78   std::string DebugString() const;
79 };
80 
81 // Return the length of the encoding of "key".
InternalKeyEncodingLength(const ParsedInternalKey & key)82 inline size_t InternalKeyEncodingLength(const ParsedInternalKey& key) {
83   return key.user_key.size() + 8;
84 }
85 
86 // Append the serialization of "key" to *result.
87 extern void AppendInternalKey(std::string* result,
88                               const ParsedInternalKey& key);
89 
90 // Attempt to parse an internal key from "internal_key".  On success,
91 // stores the parsed data in "*result", and returns true.
92 //
93 // On error, returns false, leaves "*result" in an undefined state.
94 extern bool ParseInternalKey(const Slice& internal_key,
95                              ParsedInternalKey* result);
96 
97 // Returns the user key portion of an internal key.
ExtractUserKey(const Slice & internal_key)98 inline Slice ExtractUserKey(const Slice& internal_key) {
99   assert(internal_key.size() >= 8);
100   return Slice(internal_key.data(), internal_key.size() - 8);
101 }
102 
ExtractValueType(const Slice & internal_key)103 inline ValueType ExtractValueType(const Slice& internal_key) {
104   assert(internal_key.size() >= 8);
105   const size_t n = internal_key.size();
106   uint64_t num = DecodeFixed64(internal_key.data() + n - 8);
107   unsigned char c = num & 0xff;
108   return static_cast<ValueType>(c);
109 }
110 
111 // A comparator for internal keys that uses a specified comparator for
112 // the user key portion and breaks ties by decreasing sequence number.
113 class InternalKeyComparator : public Comparator {
114  private:
115   const Comparator* user_comparator_;
116  public:
InternalKeyComparator(const Comparator * c)117   explicit InternalKeyComparator(const Comparator* c) : user_comparator_(c) { }
118   virtual const char* Name() const;
119   virtual int Compare(const Slice& a, const Slice& b) const;
120   virtual void FindShortestSeparator(
121       std::string* start,
122       const Slice& limit) const;
123   virtual void FindShortSuccessor(std::string* key) const;
124 
user_comparator()125   const Comparator* user_comparator() const { return user_comparator_; }
126 
127   int Compare(const InternalKey& a, const InternalKey& b) const;
128 };
129 
130 // Filter policy wrapper that converts from internal keys to user keys
131 class InternalFilterPolicy : public FilterPolicy {
132  private:
133   const FilterPolicy* const user_policy_;
134  public:
InternalFilterPolicy(const FilterPolicy * p)135   explicit InternalFilterPolicy(const FilterPolicy* p) : user_policy_(p) { }
136   virtual const char* Name() const;
137   virtual void CreateFilter(const Slice* keys, int n, std::string* dst) const;
138   virtual bool KeyMayMatch(const Slice& key, const Slice& filter) const;
139 };
140 
141 // Modules in this directory should keep internal keys wrapped inside
142 // the following class instead of plain strings so that we do not
143 // incorrectly use string comparisons instead of an InternalKeyComparator.
144 class InternalKey {
145  private:
146   std::string rep_;
147  public:
InternalKey()148   InternalKey() { }   // Leave rep_ as empty to indicate it is invalid
InternalKey(const Slice & user_key,SequenceNumber s,ValueType t)149   InternalKey(const Slice& user_key, SequenceNumber s, ValueType t) {
150     AppendInternalKey(&rep_, ParsedInternalKey(user_key, s, t));
151   }
152 
DecodeFrom(const Slice & s)153   void DecodeFrom(const Slice& s) { rep_.assign(s.data(), s.size()); }
Encode()154   Slice Encode() const {
155     assert(!rep_.empty());
156     return rep_;
157   }
158 
user_key()159   Slice user_key() const { return ExtractUserKey(rep_); }
160 
SetFrom(const ParsedInternalKey & p)161   void SetFrom(const ParsedInternalKey& p) {
162     rep_.clear();
163     AppendInternalKey(&rep_, p);
164   }
165 
Clear()166   void Clear() { rep_.clear(); }
167 
168   std::string DebugString() const;
169 };
170 
Compare(const InternalKey & a,const InternalKey & b)171 inline int InternalKeyComparator::Compare(
172     const InternalKey& a, const InternalKey& b) const {
173   return Compare(a.Encode(), b.Encode());
174 }
175 
ParseInternalKey(const Slice & internal_key,ParsedInternalKey * result)176 inline bool ParseInternalKey(const Slice& internal_key,
177                              ParsedInternalKey* result) {
178   const size_t n = internal_key.size();
179   if (n < 8) return false;
180   uint64_t num = DecodeFixed64(internal_key.data() + n - 8);
181   unsigned char c = num & 0xff;
182   result->sequence = num >> 8;
183   result->type = static_cast<ValueType>(c);
184   result->user_key = Slice(internal_key.data(), n - 8);
185   return (c <= static_cast<unsigned char>(kTypeValue));
186 }
187 
188 // A helper class useful for DBImpl::Get()
189 class LookupKey {
190  public:
191   // Initialize *this for looking up user_key at a snapshot with
192   // the specified sequence number.
193   LookupKey(const Slice& user_key, SequenceNumber sequence);
194 
195   ~LookupKey();
196 
197   // Return a key suitable for lookup in a MemTable.
memtable_key()198   Slice memtable_key() const { return Slice(start_, end_ - start_); }
199 
200   // Return an internal key (suitable for passing to an internal iterator)
internal_key()201   Slice internal_key() const { return Slice(kstart_, end_ - kstart_); }
202 
203   // Return the user key
user_key()204   Slice user_key() const { return Slice(kstart_, end_ - kstart_ - 8); }
205 
206  private:
207   // We construct a char array of the form:
208   //    klength  varint32               <-- start_
209   //    userkey  char[klength]          <-- kstart_
210   //    tag      uint64
211   //                                    <-- end_
212   // The array is a suitable MemTable key.
213   // The suffix starting with "userkey" can be used as an InternalKey.
214   const char* start_;
215   const char* kstart_;
216   const char* end_;
217   char space_[200];      // Avoid allocation for short keys
218 
219   // No copying allowed
220   LookupKey(const LookupKey&);
221   void operator=(const LookupKey&);
222 };
223 
~LookupKey()224 inline LookupKey::~LookupKey() {
225   if (start_ != space_) delete[] start_;
226 }
227 
228 }  // namespace leveldb
229 
230 #endif  // STORAGE_LEVELDB_DB_FORMAT_H_
231