1 /*
2 * QEMU KVM support
3 *
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
10 *
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
13 *
14 */
15
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
20
21 #include <linux/kvm.h>
22
23 #include "cpu.h"
24 #include "qemu-common.h"
25 #include "sysemu/sysemu.h"
26 #include "hw/hw.h"
27 #include "android/kvm.h"
28 #include "exec/gdbstub.h"
29 #include "sysemu/kvm.h"
30
31 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
32 #define PAGE_SIZE TARGET_PAGE_SIZE
33
34 //#define DEBUG_KVM
35
36 #ifdef DEBUG_KVM
37 #define dprintf(fmt, ...) \
38 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
39 #else
40 #define dprintf(fmt, ...) \
41 do { } while (0)
42 #endif
43
44 typedef struct KVMSlot
45 {
46 hwaddr start_addr;
47 ram_addr_t memory_size;
48 ram_addr_t phys_offset;
49 int slot;
50 int flags;
51 } KVMSlot;
52
53 typedef struct kvm_dirty_log KVMDirtyLog;
54
55 int kvm_allowed = 0;
56
57 struct KVMState
58 {
59 KVMSlot slots[32];
60 int fd;
61 int vmfd;
62 int coalesced_mmio;
63 int broken_set_mem_region;
64 int migration_log;
65 #ifdef KVM_CAP_SET_GUEST_DEBUG
66 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
67 #endif
68 };
69
70 static KVMState *kvm_state;
71
kvm_alloc_slot(KVMState * s)72 static KVMSlot *kvm_alloc_slot(KVMState *s)
73 {
74 int i;
75
76 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
77 /* KVM private memory slots */
78 if (i >= 8 && i < 12)
79 continue;
80 if (s->slots[i].memory_size == 0)
81 return &s->slots[i];
82 }
83
84 fprintf(stderr, "%s: no free slot available\n", __func__);
85 abort();
86 }
87
kvm_lookup_matching_slot(KVMState * s,hwaddr start_addr,ram_addr_t size)88 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
89 hwaddr start_addr,
90 ram_addr_t size)
91 {
92 int i;
93
94 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
95 KVMSlot *mem = &s->slots[i];
96 if (start_addr == mem->start_addr && size == mem->memory_size) {
97 return mem;
98 }
99 }
100
101 return NULL;
102 }
103
104 /*
105 * Find overlapping slot with lowest start address
106 */
kvm_lookup_overlapping_slot(KVMState * s,hwaddr start_addr,ram_addr_t size)107 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
108 hwaddr start_addr,
109 ram_addr_t size)
110 {
111 KVMSlot *found = NULL;
112 int i;
113
114 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
115 KVMSlot *mem = &s->slots[i];
116
117 // Skip empty slots.
118 if (!mem->memory_size)
119 continue;
120
121 // Skip non-overlapping slots, conditions are:
122 // start_addr + size <= mem->start_addr ||
123 // start_addr >= mem->start_addr + mem->memory_size
124 //
125 // However, we want to avoid wrapping errors, so avoid
126 // additions and only compare positive values.
127 if (start_addr <= mem->start_addr) {
128 if (mem->start_addr - start_addr >= size) {
129 continue;
130 }
131 } else if (start_addr - mem->start_addr >= mem->memory_size) {
132 continue;
133 }
134
135 if (found && found->start_addr < mem->start_addr) {
136 continue;
137 }
138
139 found = mem;
140 }
141
142 return found;
143 }
144
kvm_set_user_memory_region(KVMState * s,KVMSlot * slot)145 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
146 {
147 struct kvm_userspace_memory_region mem;
148
149 mem.slot = slot->slot;
150 mem.guest_phys_addr = slot->start_addr;
151 mem.memory_size = slot->memory_size;
152 mem.userspace_addr = (unsigned long)qemu_get_ram_ptr(slot->phys_offset);
153 mem.flags = slot->flags;
154 if (s->migration_log) {
155 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
156 }
157 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
158 }
159
160
kvm_init_vcpu(CPUState * cpu)161 int kvm_init_vcpu(CPUState *cpu)
162 {
163 KVMState *s = kvm_state;
164 long mmap_size;
165 int ret;
166
167 dprintf("kvm_init_vcpu\n");
168
169 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, cpu->cpu_index);
170 if (ret < 0) {
171 dprintf("kvm_create_vcpu failed\n");
172 goto err;
173 }
174
175 cpu->kvm_fd = ret;
176 cpu->kvm_state = s;
177
178 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
179 if (mmap_size < 0) {
180 dprintf("KVM_GET_VCPU_MMAP_SIZE failed\n");
181 goto err;
182 }
183
184 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
185 cpu->kvm_fd, 0);
186 if (cpu->kvm_run == MAP_FAILED) {
187 ret = -errno;
188 dprintf("mmap'ing vcpu state failed\n");
189 goto err;
190 }
191
192 ret = kvm_arch_init_vcpu(cpu);
193
194 err:
195 return ret;
196 }
197
kvm_put_mp_state(CPUState * cpu)198 int kvm_put_mp_state(CPUState *cpu)
199 {
200 CPUArchState *env = cpu->env_ptr;
201 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
202
203 return kvm_vcpu_ioctl(cpu, KVM_SET_MP_STATE, &mp_state);
204 }
205
kvm_get_mp_state(CPUState * cpu)206 int kvm_get_mp_state(CPUState *cpu)
207 {
208 struct kvm_mp_state mp_state;
209 int ret;
210
211 ret = kvm_vcpu_ioctl(cpu, KVM_GET_MP_STATE, &mp_state);
212 if (ret < 0) {
213 return ret;
214 }
215 CPUArchState *env = cpu->env_ptr;
216 env->mp_state = mp_state.mp_state;
217 return 0;
218 }
219
kvm_sync_vcpus(void)220 int kvm_sync_vcpus(void)
221 {
222 CPUState *cpu;
223
224 CPU_FOREACH(cpu) {
225 int ret = kvm_arch_put_registers(cpu);
226 if (ret)
227 return ret;
228 }
229
230 return 0;
231 }
232
233 /*
234 * dirty pages logging control
235 */
kvm_dirty_pages_log_change(hwaddr phys_addr,ram_addr_t size,int flags,int mask)236 static int kvm_dirty_pages_log_change(hwaddr phys_addr,
237 ram_addr_t size, int flags, int mask)
238 {
239 KVMState *s = kvm_state;
240 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, size);
241 int old_flags;
242
243 if (mem == NULL) {
244 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
245 TARGET_FMT_plx "\n", __func__, (hwaddr)phys_addr,
246 (hwaddr)(phys_addr + size - 1));
247 return -EINVAL;
248 }
249
250 old_flags = mem->flags;
251
252 flags = (mem->flags & ~mask) | flags;
253 mem->flags = flags;
254
255 /* If nothing changed effectively, no need to issue ioctl */
256 if (s->migration_log) {
257 flags |= KVM_MEM_LOG_DIRTY_PAGES;
258 }
259 if (flags == old_flags) {
260 return 0;
261 }
262
263 return kvm_set_user_memory_region(s, mem);
264 }
265
kvm_log_start(hwaddr phys_addr,ram_addr_t size)266 int kvm_log_start(hwaddr phys_addr, ram_addr_t size)
267 {
268 return kvm_dirty_pages_log_change(phys_addr, size,
269 KVM_MEM_LOG_DIRTY_PAGES,
270 KVM_MEM_LOG_DIRTY_PAGES);
271 }
272
kvm_log_stop(hwaddr phys_addr,ram_addr_t size)273 int kvm_log_stop(hwaddr phys_addr, ram_addr_t size)
274 {
275 return kvm_dirty_pages_log_change(phys_addr, size,
276 0,
277 KVM_MEM_LOG_DIRTY_PAGES);
278 }
279
kvm_set_migration_log(int enable)280 int kvm_set_migration_log(int enable)
281 {
282 KVMState *s = kvm_state;
283 KVMSlot *mem;
284 int i, err;
285
286 s->migration_log = enable;
287
288 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
289 mem = &s->slots[i];
290
291 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
292 continue;
293 }
294 err = kvm_set_user_memory_region(s, mem);
295 if (err) {
296 return err;
297 }
298 }
299 return 0;
300 }
301
302 /**
303 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
304 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
305 * This means all bits are set to dirty.
306 *
307 * @start_add: start of logged region.
308 * @end_addr: end of logged region.
309 */
kvm_physical_sync_dirty_bitmap(hwaddr start_addr,hwaddr end_addr)310 int kvm_physical_sync_dirty_bitmap(hwaddr start_addr,
311 hwaddr end_addr)
312 {
313 KVMState *s = kvm_state;
314 unsigned long size, allocated_size = 0;
315 hwaddr phys_addr;
316 ram_addr_t addr;
317 KVMDirtyLog d;
318 KVMSlot *mem;
319 int ret = 0;
320
321 d.dirty_bitmap = NULL;
322 while (start_addr < end_addr) {
323 ram_addr_t start_size = (ram_addr_t)(end_addr - start_addr);
324
325 mem = kvm_lookup_overlapping_slot(s, start_addr, start_size);
326 if (mem == NULL) {
327 break;
328 }
329
330 size = ((mem->memory_size >> TARGET_PAGE_BITS) + 7) / 8;
331 if (size > allocated_size) {
332 d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
333 allocated_size = size;
334 }
335 memset(d.dirty_bitmap, 0, size);
336
337 d.slot = mem->slot;
338
339 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
340 dprintf("ioctl failed %d\n", errno);
341 ret = -1;
342 break;
343 }
344
345 for (phys_addr = mem->start_addr, addr = mem->phys_offset;
346 phys_addr - mem->start_addr < mem->memory_size;
347 phys_addr += TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
348 unsigned long *bitmap = (unsigned long *)d.dirty_bitmap;
349 unsigned nr = (phys_addr - mem->start_addr) >> TARGET_PAGE_BITS;
350 unsigned word = nr / (sizeof(*bitmap) * 8);
351 unsigned bit = nr % (sizeof(*bitmap) * 8);
352
353 if ((bitmap[word] >> bit) & 1) {
354 cpu_physical_memory_set_dirty(addr);
355 }
356 }
357 start_addr = phys_addr;
358 if (!start_addr) {
359 // Handle wrap-around, which happens when a slot is mapped
360 // at the end of the physical address space.
361 break;
362 }
363 }
364 g_free(d.dirty_bitmap);
365
366 return ret;
367 }
368
kvm_coalesce_mmio_region(hwaddr start,ram_addr_t size)369 int kvm_coalesce_mmio_region(hwaddr start, ram_addr_t size)
370 {
371 int ret = -ENOSYS;
372 #ifdef KVM_CAP_COALESCED_MMIO
373 KVMState *s = kvm_state;
374
375 if (s->coalesced_mmio) {
376 struct kvm_coalesced_mmio_zone zone;
377
378 zone.addr = start;
379 zone.size = size;
380
381 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
382 }
383 #endif
384
385 return ret;
386 }
387
kvm_uncoalesce_mmio_region(hwaddr start,ram_addr_t size)388 int kvm_uncoalesce_mmio_region(hwaddr start, ram_addr_t size)
389 {
390 int ret = -ENOSYS;
391 #ifdef KVM_CAP_COALESCED_MMIO
392 KVMState *s = kvm_state;
393
394 if (s->coalesced_mmio) {
395 struct kvm_coalesced_mmio_zone zone;
396
397 zone.addr = start;
398 zone.size = size;
399
400 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
401 }
402 #endif
403
404 return ret;
405 }
406
kvm_check_extension(KVMState * s,unsigned int extension)407 int kvm_check_extension(KVMState *s, unsigned int extension)
408 {
409 int ret;
410
411 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
412 if (ret < 0) {
413 ret = 0;
414 }
415
416 return ret;
417 }
418
kvm_reset_vcpus(void * opaque)419 static void kvm_reset_vcpus(void *opaque)
420 {
421 kvm_sync_vcpus();
422 }
423
kvm_init(int smp_cpus)424 int kvm_init(int smp_cpus)
425 {
426 static const char upgrade_note[] =
427 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
428 "(see http://sourceforge.net/projects/kvm).\n";
429 KVMState *s;
430 int ret;
431 int i;
432
433 if (smp_cpus > 1) {
434 fprintf(stderr, "No SMP KVM support, use '-smp 1'\n");
435 return -EINVAL;
436 }
437
438 s = g_malloc0(sizeof(KVMState));
439
440 #ifdef KVM_CAP_SET_GUEST_DEBUG
441 QTAILQ_INIT(&s->kvm_sw_breakpoints);
442 #endif
443 for (i = 0; i < ARRAY_SIZE(s->slots); i++)
444 s->slots[i].slot = i;
445
446 char* kvm_device = getenv(KVM_DEVICE_NAME_ENV);
447 if (NULL == kvm_device) {
448 kvm_device = "/dev/kvm";
449 }
450
451 s->vmfd = -1;
452 s->fd = open(kvm_device, O_RDWR);
453 if (s->fd == -1) {
454 ret = -errno;
455 fprintf(stderr, "Could not access KVM kernel module: %m\n");
456 goto err;
457 }
458
459 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
460 if (ret < KVM_API_VERSION) {
461 if (ret > 0)
462 ret = -EINVAL;
463 fprintf(stderr, "kvm version too old\n");
464 goto err;
465 }
466
467 if (ret > KVM_API_VERSION) {
468 ret = -EINVAL;
469 fprintf(stderr, "kvm version not supported\n");
470 goto err;
471 }
472
473 do {
474 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
475 } while (s->vmfd < 0 && (EINTR == errno || EAGAIN == errno));
476
477 if (s->vmfd < 0) {
478 ret = -errno;
479 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", errno, strerror(errno));
480 goto err;
481 }
482
483 /* initially, KVM allocated its own memory and we had to jump through
484 * hooks to make phys_ram_base point to this. Modern versions of KVM
485 * just use a user allocated buffer so we can use regular pages
486 * unmodified. Make sure we have a sufficiently modern version of KVM.
487 */
488 if (!kvm_check_extension(s, KVM_CAP_USER_MEMORY)) {
489 ret = -EINVAL;
490 fprintf(stderr, "kvm does not support KVM_CAP_USER_MEMORY\n%s",
491 upgrade_note);
492 goto err;
493 }
494
495 /* There was a nasty bug in < kvm-80 that prevents memory slots from being
496 * destroyed properly. Since we rely on this capability, refuse to work
497 * with any kernel without this capability. */
498 if (!kvm_check_extension(s, KVM_CAP_DESTROY_MEMORY_REGION_WORKS)) {
499 ret = -EINVAL;
500
501 fprintf(stderr,
502 "KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s",
503 upgrade_note);
504 goto err;
505 }
506
507 #ifdef KVM_CAP_COALESCED_MMIO
508 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
509 #else
510 s->coalesced_mmio = 0;
511 #endif
512
513 s->broken_set_mem_region = 1;
514 #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
515 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
516 if (ret > 0) {
517 s->broken_set_mem_region = 0;
518 }
519 #endif
520
521 ret = kvm_arch_init(s, smp_cpus);
522 if (ret < 0)
523 goto err;
524
525 qemu_register_reset(kvm_reset_vcpus, INT_MAX, NULL);
526
527 kvm_state = s;
528
529 return 0;
530
531 err:
532 if (s) {
533 if (s->vmfd != -1)
534 close(s->vmfd);
535 if (s->fd != -1)
536 close(s->fd);
537 }
538 g_free(s);
539
540 return ret;
541 }
542
kvm_handle_io(CPUState * cpu,uint16_t port,void * data,int direction,int size,uint32_t count)543 static int kvm_handle_io(CPUState *cpu, uint16_t port, void *data,
544 int direction, int size, uint32_t count)
545 {
546 int i;
547 uint8_t *ptr = data;
548
549 for (i = 0; i < count; i++) {
550 if (direction == KVM_EXIT_IO_IN) {
551 switch (size) {
552 case 1:
553 stb_p(ptr, cpu_inb(port));
554 break;
555 case 2:
556 stw_p(ptr, cpu_inw(port));
557 break;
558 case 4:
559 stl_p(ptr, cpu_inl(port));
560 break;
561 }
562 } else {
563 switch (size) {
564 case 1:
565 cpu_outb(port, ldub_p(ptr));
566 break;
567 case 2:
568 cpu_outw(port, lduw_p(ptr));
569 break;
570 case 4:
571 cpu_outl(port, ldl_p(ptr));
572 break;
573 }
574 }
575
576 ptr += size;
577 }
578
579 return 1;
580 }
581
kvm_run_coalesced_mmio(CPUState * cpu,struct kvm_run * run)582 static void kvm_run_coalesced_mmio(CPUState *cpu, struct kvm_run *run)
583 {
584 #ifdef KVM_CAP_COALESCED_MMIO
585 KVMState *s = kvm_state;
586 if (s->coalesced_mmio) {
587 struct kvm_coalesced_mmio_ring *ring;
588
589 ring = (void *)run + (s->coalesced_mmio * TARGET_PAGE_SIZE);
590 while (ring->first != ring->last) {
591 struct kvm_coalesced_mmio *ent;
592
593 ent = &ring->coalesced_mmio[ring->first];
594
595 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
596 /* FIXME smp_wmb() */
597 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
598 }
599 }
600 #endif
601 }
602
kvm_cpu_exec(CPUState * cpu)603 int kvm_cpu_exec(CPUState *cpu)
604 {
605 CPUArchState *env = cpu->env_ptr;
606 struct kvm_run *run = cpu->kvm_run;
607 int ret;
608
609 dprintf("kvm_cpu_exec()\n");
610
611 do {
612 if (cpu->exit_request) {
613 dprintf("interrupt exit requested\n");
614 ret = 0;
615 break;
616 }
617
618 kvm_arch_pre_run(cpu, run);
619 ret = kvm_arch_vcpu_run(cpu);
620 kvm_arch_post_run(cpu, run);
621
622 if (ret == -EINTR || ret == -EAGAIN) {
623 dprintf("io window exit\n");
624 ret = 0;
625 break;
626 }
627
628 if (ret < 0) {
629 dprintf("kvm run failed %s\n", strerror(-ret));
630 abort();
631 }
632
633 kvm_run_coalesced_mmio(cpu, run);
634
635 ret = 0; /* exit loop */
636 switch (run->exit_reason) {
637 case KVM_EXIT_IO:
638 dprintf("handle_io\n");
639 ret = kvm_handle_io(cpu, run->io.port,
640 (uint8_t *)run + run->io.data_offset,
641 run->io.direction,
642 run->io.size,
643 run->io.count);
644 break;
645 case KVM_EXIT_MMIO:
646 dprintf("handle_mmio\n");
647 cpu_physical_memory_rw(run->mmio.phys_addr,
648 run->mmio.data,
649 run->mmio.len,
650 run->mmio.is_write);
651 ret = 1;
652 break;
653 case KVM_EXIT_IRQ_WINDOW_OPEN:
654 dprintf("irq_window_open\n");
655 break;
656 case KVM_EXIT_SHUTDOWN:
657 dprintf("shutdown\n");
658 qemu_system_reset_request();
659 ret = 1;
660 break;
661 case KVM_EXIT_UNKNOWN:
662 dprintf("kvm_exit_unknown\n");
663 break;
664 case KVM_EXIT_FAIL_ENTRY:
665 dprintf("kvm_exit_fail_entry\n");
666 break;
667 case KVM_EXIT_EXCEPTION:
668 dprintf("kvm_exit_exception\n");
669 break;
670 case KVM_EXIT_DEBUG:
671 dprintf("kvm_exit_debug\n");
672 #ifdef KVM_CAP_SET_GUEST_DEBUG
673 if (kvm_arch_debug(&run->debug.arch)) {
674 gdb_set_stop_cpu(cpu);
675 vm_stop(EXCP_DEBUG);\
676 env->exception_index = EXCP_DEBUG;
677 return 0;
678 }
679 /* re-enter, this exception was guest-internal */
680 ret = 1;
681 #endif /* KVM_CAP_SET_GUEST_DEBUG */
682 break;
683 default:
684 dprintf("kvm_arch_handle_exit\n");
685 ret = kvm_arch_handle_exit(cpu, run);
686 break;
687 }
688 } while (ret > 0);
689
690 if (cpu->exit_request) {
691 cpu->exit_request = 0;
692 env->exception_index = EXCP_INTERRUPT;
693 }
694
695 return ret;
696 }
697
kvm_set_phys_mem(hwaddr start_addr,ram_addr_t size,ram_addr_t phys_offset)698 void kvm_set_phys_mem(hwaddr start_addr,
699 ram_addr_t size,
700 ram_addr_t phys_offset)
701 {
702 KVMState *s = kvm_state;
703 ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
704 KVMSlot *mem, old;
705 int err;
706
707 if (start_addr & ~TARGET_PAGE_MASK) {
708 if (flags >= IO_MEM_UNASSIGNED) {
709 if (!kvm_lookup_overlapping_slot(s, start_addr, size)) {
710 return;
711 }
712 fprintf(stderr, "Unaligned split of a KVM memory slot\n");
713 } else {
714 fprintf(stderr, "Only page-aligned memory slots supported\n");
715 }
716 abort();
717 }
718
719 /* KVM does not support read-only slots */
720 phys_offset &= ~IO_MEM_ROM;
721
722 while (1) {
723 mem = kvm_lookup_overlapping_slot(s, start_addr, size);
724 if (!mem) {
725 break;
726 }
727
728 if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
729 (start_addr + size <= mem->start_addr + mem->memory_size) &&
730 (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
731 /* The new slot fits into the existing one and comes with
732 * identical parameters - nothing to be done. */
733 return;
734 }
735
736 old = *mem;
737
738 /* unregister the overlapping slot */
739 mem->memory_size = 0;
740 err = kvm_set_user_memory_region(s, mem);
741 if (err) {
742 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
743 __func__, strerror(-err));
744 abort();
745 }
746
747 /* Workaround for older KVM versions: we can't join slots, even not by
748 * unregistering the previous ones and then registering the larger
749 * slot. We have to maintain the existing fragmentation. Sigh.
750 *
751 * This workaround assumes that the new slot starts at the same
752 * address as the first existing one. If not or if some overlapping
753 * slot comes around later, we will fail (not seen in practice so far)
754 * - and actually require a recent KVM version. */
755 if (s->broken_set_mem_region &&
756 old.start_addr == start_addr && old.memory_size < size &&
757 flags < IO_MEM_UNASSIGNED) {
758 mem = kvm_alloc_slot(s);
759 mem->memory_size = old.memory_size;
760 mem->start_addr = old.start_addr;
761 mem->phys_offset = old.phys_offset;
762 mem->flags = 0;
763
764 err = kvm_set_user_memory_region(s, mem);
765 if (err) {
766 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
767 strerror(-err));
768 abort();
769 }
770
771 start_addr += old.memory_size;
772 phys_offset += old.memory_size;
773 size -= old.memory_size;
774 continue;
775 }
776
777 /* register prefix slot */
778 if (old.start_addr < start_addr) {
779 mem = kvm_alloc_slot(s);
780 mem->memory_size = start_addr - old.start_addr;
781 mem->start_addr = old.start_addr;
782 mem->phys_offset = old.phys_offset;
783 mem->flags = 0;
784
785 err = kvm_set_user_memory_region(s, mem);
786 if (err) {
787 fprintf(stderr, "%s: error registering prefix slot: %s\n",
788 __func__, strerror(-err));
789 abort();
790 }
791 }
792
793 /* register suffix slot */
794 if (old.start_addr + old.memory_size > start_addr + size) {
795 ram_addr_t size_delta;
796
797 mem = kvm_alloc_slot(s);
798 mem->start_addr = start_addr + size;
799 size_delta = mem->start_addr - old.start_addr;
800 mem->memory_size = old.memory_size - size_delta;
801 mem->phys_offset = old.phys_offset + size_delta;
802 mem->flags = 0;
803
804 err = kvm_set_user_memory_region(s, mem);
805 if (err) {
806 fprintf(stderr, "%s: error registering suffix slot: %s\n",
807 __func__, strerror(-err));
808 abort();
809 }
810 }
811 }
812
813 /* in case the KVM bug workaround already "consumed" the new slot */
814 if (!size)
815 return;
816
817 /* KVM does not need to know about this memory */
818 if (flags >= IO_MEM_UNASSIGNED)
819 return;
820
821 mem = kvm_alloc_slot(s);
822 mem->memory_size = size;
823 mem->start_addr = start_addr;
824 mem->phys_offset = phys_offset;
825 mem->flags = 0;
826
827 err = kvm_set_user_memory_region(s, mem);
828 if (err) {
829 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
830 strerror(-err));
831 abort();
832 }
833 }
834
kvm_ioctl(KVMState * s,int type,...)835 int kvm_ioctl(KVMState *s, int type, ...)
836 {
837 int ret;
838 void *arg;
839 va_list ap;
840
841 va_start(ap, type);
842 arg = va_arg(ap, void *);
843 va_end(ap);
844
845 ret = ioctl(s->fd, type, arg);
846 if (ret == -1)
847 ret = -errno;
848
849 return ret;
850 }
851
kvm_vm_ioctl(KVMState * s,int type,...)852 int kvm_vm_ioctl(KVMState *s, int type, ...)
853 {
854 int ret;
855 void *arg;
856 va_list ap;
857
858 va_start(ap, type);
859 arg = va_arg(ap, void *);
860 va_end(ap);
861
862 ret = ioctl(s->vmfd, type, arg);
863 if (ret == -1)
864 ret = -errno;
865
866 return ret;
867 }
868
kvm_vcpu_ioctl(CPUState * cpu,int type,...)869 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
870 {
871 int ret;
872 void *arg;
873 va_list ap;
874
875 va_start(ap, type);
876 arg = va_arg(ap, void *);
877 va_end(ap);
878
879 ret = ioctl(cpu->kvm_fd, type, arg);
880 if (ret == -1)
881 ret = -errno;
882
883 return ret;
884 }
885
kvm_has_sync_mmu(void)886 int kvm_has_sync_mmu(void)
887 {
888 #ifdef KVM_CAP_SYNC_MMU
889 KVMState *s = kvm_state;
890
891 return kvm_check_extension(s, KVM_CAP_SYNC_MMU);
892 #else
893 return 0;
894 #endif
895 }
896
kvm_setup_guest_memory(void * start,size_t size)897 void kvm_setup_guest_memory(void *start, size_t size)
898 {
899 if (!kvm_has_sync_mmu()) {
900 #ifdef MADV_DONTFORK
901 int ret = madvise(start, size, MADV_DONTFORK);
902
903 if (ret) {
904 perror("madvice");
905 exit(1);
906 }
907 #else
908 fprintf(stderr,
909 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
910 exit(1);
911 #endif
912 }
913 }
914
915 #ifdef KVM_CAP_SET_GUEST_DEBUG
kvm_find_sw_breakpoint(CPUState * cpu,target_ulong pc)916 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
917 target_ulong pc)
918 {
919 struct kvm_sw_breakpoint *bp;
920
921 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
922 if (bp->pc == pc)
923 return bp;
924 }
925 return NULL;
926 }
927
kvm_sw_breakpoints_active(CPUState * cpu)928 int kvm_sw_breakpoints_active(CPUState *cpu)
929 {
930 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
931 }
932
kvm_update_guest_debug(CPUState * cpu,unsigned long reinject_trap)933 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
934 {
935 struct kvm_guest_debug dbg;
936
937 dbg.control = 0;
938 if (cpu->singlestep_enabled)
939 dbg.control = KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
940
941 kvm_arch_update_guest_debug(cpu, &dbg);
942 dbg.control |= reinject_trap;
943
944 return kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG, &dbg);
945 }
946
kvm_insert_breakpoint(CPUState * cpu,target_ulong addr,target_ulong len,int type)947 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
948 target_ulong len, int type)
949 {
950 struct kvm_sw_breakpoint *bp;
951 int err;
952
953 if (type == GDB_BREAKPOINT_SW) {
954 bp = kvm_find_sw_breakpoint(cpu, addr);
955 if (bp) {
956 bp->use_count++;
957 return 0;
958 }
959
960 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
961 if (!bp)
962 return -ENOMEM;
963
964 bp->pc = addr;
965 bp->use_count = 1;
966 err = kvm_arch_insert_sw_breakpoint(cpu, bp);
967 if (err) {
968 free(bp);
969 return err;
970 }
971
972 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints,
973 bp, entry);
974 } else {
975 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
976 if (err)
977 return err;
978 }
979
980 CPU_FOREACH(cpu) {
981 err = kvm_update_guest_debug(cpu, 0);
982 if (err)
983 return err;
984 }
985 return 0;
986 }
987
kvm_remove_breakpoint(CPUState * cpu,target_ulong addr,target_ulong len,int type)988 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
989 target_ulong len, int type)
990 {
991 struct kvm_sw_breakpoint *bp;
992 int err;
993
994 if (type == GDB_BREAKPOINT_SW) {
995 bp = kvm_find_sw_breakpoint(cpu, addr);
996 if (!bp)
997 return -ENOENT;
998
999 if (bp->use_count > 1) {
1000 bp->use_count--;
1001 return 0;
1002 }
1003
1004 err = kvm_arch_remove_sw_breakpoint(cpu, bp);
1005 if (err)
1006 return err;
1007
1008 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
1009 g_free(bp);
1010 } else {
1011 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1012 if (err)
1013 return err;
1014 }
1015
1016 CPU_FOREACH(cpu) {
1017 err = kvm_update_guest_debug(cpu, 0);
1018 if (err)
1019 return err;
1020 }
1021 return 0;
1022 }
1023
kvm_remove_all_breakpoints(CPUState * cpu)1024 void kvm_remove_all_breakpoints(CPUState *cpu)
1025 {
1026 struct kvm_sw_breakpoint *bp, *next;
1027 KVMState *s = cpu->kvm_state;
1028
1029 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1030 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
1031 /* Try harder to find a CPU that currently sees the breakpoint. */
1032 CPU_FOREACH(cpu) {
1033 if (kvm_arch_remove_sw_breakpoint(cpu, bp) == 0)
1034 break;
1035 }
1036 }
1037 }
1038 kvm_arch_remove_all_hw_breakpoints();
1039
1040 CPU_FOREACH(cpu) {
1041 kvm_update_guest_debug(cpu, 0);
1042 }
1043 }
1044
1045 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1046
kvm_update_guest_debug(CPUState * cpu,unsigned long reinject_trap)1047 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
1048 {
1049 return -EINVAL;
1050 }
1051
kvm_insert_breakpoint(CPUState * cpu,target_ulong addr,target_ulong len,int type)1052 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
1053 target_ulong len, int type)
1054 {
1055 return -EINVAL;
1056 }
1057
kvm_remove_breakpoint(CPUState * cpu,target_ulong addr,target_ulong len,int type)1058 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
1059 target_ulong len, int type)
1060 {
1061 return -EINVAL;
1062 }
1063
kvm_remove_all_breakpoints(CPUState * cpu)1064 void kvm_remove_all_breakpoints(CPUState *cpu)
1065 {
1066 }
1067 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
1068