• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 #include "webrtc/modules/video_coding/main/source/jitter_buffer.h"
11 
12 #include <assert.h>
13 
14 #include <algorithm>
15 #include <utility>
16 
17 #include "webrtc/modules/video_coding/main/interface/video_coding.h"
18 #include "webrtc/modules/video_coding/main/source/frame_buffer.h"
19 #include "webrtc/modules/video_coding/main/source/inter_frame_delay.h"
20 #include "webrtc/modules/video_coding/main/source/internal_defines.h"
21 #include "webrtc/modules/video_coding/main/source/jitter_buffer_common.h"
22 #include "webrtc/modules/video_coding/main/source/jitter_estimator.h"
23 #include "webrtc/modules/video_coding/main/source/packet.h"
24 #include "webrtc/system_wrappers/interface/clock.h"
25 #include "webrtc/system_wrappers/interface/critical_section_wrapper.h"
26 #include "webrtc/system_wrappers/interface/event_wrapper.h"
27 #include "webrtc/system_wrappers/interface/logging.h"
28 #include "webrtc/system_wrappers/interface/trace_event.h"
29 
30 namespace webrtc {
31 
32 // Use this rtt if no value has been reported.
33 static const uint32_t kDefaultRtt = 200;
34 
35 typedef std::pair<uint32_t, VCMFrameBuffer*> FrameListPair;
36 
IsKeyFrame(FrameListPair pair)37 bool IsKeyFrame(FrameListPair pair) {
38   return pair.second->FrameType() == kVideoFrameKey;
39 }
40 
HasNonEmptyState(FrameListPair pair)41 bool HasNonEmptyState(FrameListPair pair) {
42   return pair.second->GetState() != kStateEmpty;
43 }
44 
InsertFrame(VCMFrameBuffer * frame)45 void FrameList::InsertFrame(VCMFrameBuffer* frame) {
46   insert(rbegin().base(), FrameListPair(frame->TimeStamp(), frame));
47 }
48 
FindFrame(uint32_t timestamp) const49 VCMFrameBuffer* FrameList::FindFrame(uint32_t timestamp) const {
50   FrameList::const_iterator it = find(timestamp);
51   if (it == end())
52     return NULL;
53   return it->second;
54 }
55 
PopFrame(uint32_t timestamp)56 VCMFrameBuffer* FrameList::PopFrame(uint32_t timestamp) {
57   FrameList::iterator it = find(timestamp);
58   if (it == end())
59     return NULL;
60   VCMFrameBuffer* frame = it->second;
61   erase(it);
62   return frame;
63 }
64 
Front() const65 VCMFrameBuffer* FrameList::Front() const {
66   return begin()->second;
67 }
68 
Back() const69 VCMFrameBuffer* FrameList::Back() const {
70   return rbegin()->second;
71 }
72 
RecycleFramesUntilKeyFrame(FrameList::iterator * key_frame_it,UnorderedFrameList * free_frames)73 int FrameList::RecycleFramesUntilKeyFrame(FrameList::iterator* key_frame_it,
74                                           UnorderedFrameList* free_frames) {
75   int drop_count = 0;
76   FrameList::iterator it = begin();
77   while (!empty()) {
78     // Throw at least one frame.
79     it->second->Reset();
80     free_frames->push_back(it->second);
81     erase(it++);
82     ++drop_count;
83     if (it != end() && it->second->FrameType() == kVideoFrameKey) {
84       *key_frame_it = it;
85       return drop_count;
86     }
87   }
88   *key_frame_it = end();
89   return drop_count;
90 }
91 
CleanUpOldOrEmptyFrames(VCMDecodingState * decoding_state,UnorderedFrameList * free_frames)92 int FrameList::CleanUpOldOrEmptyFrames(VCMDecodingState* decoding_state,
93                                        UnorderedFrameList* free_frames) {
94   int drop_count = 0;
95   while (!empty()) {
96     VCMFrameBuffer* oldest_frame = Front();
97     bool remove_frame = false;
98     if (oldest_frame->GetState() == kStateEmpty && size() > 1) {
99       // This frame is empty, try to update the last decoded state and drop it
100       // if successful.
101       remove_frame = decoding_state->UpdateEmptyFrame(oldest_frame);
102     } else {
103       remove_frame = decoding_state->IsOldFrame(oldest_frame);
104     }
105     if (!remove_frame) {
106       break;
107     }
108     free_frames->push_back(oldest_frame);
109     ++drop_count;
110     TRACE_EVENT_INSTANT1("webrtc", "JB::OldOrEmptyFrameDropped", "timestamp",
111                          oldest_frame->TimeStamp());
112     erase(begin());
113   }
114   return drop_count;
115 }
116 
Reset(UnorderedFrameList * free_frames)117 void FrameList::Reset(UnorderedFrameList* free_frames) {
118   while (!empty()) {
119     begin()->second->Reset();
120     free_frames->push_back(begin()->second);
121     erase(begin());
122   }
123 }
124 
VCMJitterBuffer(Clock * clock,EventFactory * event_factory)125 VCMJitterBuffer::VCMJitterBuffer(Clock* clock,
126                                  EventFactory* event_factory)
127     : clock_(clock),
128       running_(false),
129       crit_sect_(CriticalSectionWrapper::CreateCriticalSection()),
130       frame_event_(event_factory->CreateEvent()),
131       packet_event_(event_factory->CreateEvent()),
132       max_number_of_frames_(kStartNumberOfFrames),
133       frame_buffers_(),
134       free_frames_(),
135       decodable_frames_(),
136       incomplete_frames_(),
137       last_decoded_state_(),
138       first_packet_since_reset_(true),
139       incoming_frame_rate_(0),
140       incoming_frame_count_(0),
141       time_last_incoming_frame_count_(0),
142       incoming_bit_count_(0),
143       incoming_bit_rate_(0),
144       drop_count_(0),
145       num_consecutive_old_frames_(0),
146       num_consecutive_old_packets_(0),
147       num_discarded_packets_(0),
148       jitter_estimate_(),
149       inter_frame_delay_(clock_->TimeInMilliseconds()),
150       rtt_ms_(kDefaultRtt),
151       nack_mode_(kNoNack),
152       low_rtt_nack_threshold_ms_(-1),
153       high_rtt_nack_threshold_ms_(-1),
154       missing_sequence_numbers_(SequenceNumberLessThan()),
155       nack_seq_nums_(),
156       max_nack_list_size_(0),
157       max_packet_age_to_nack_(0),
158       max_incomplete_time_ms_(0),
159       decode_error_mode_(kNoErrors),
160       average_packets_per_frame_(0.0f),
161       frame_counter_(0) {
162   memset(frame_buffers_, 0, sizeof(frame_buffers_));
163 
164   for (int i = 0; i < kStartNumberOfFrames; i++) {
165     frame_buffers_[i] = new VCMFrameBuffer();
166     free_frames_.push_back(frame_buffers_[i]);
167   }
168 }
169 
~VCMJitterBuffer()170 VCMJitterBuffer::~VCMJitterBuffer() {
171   Stop();
172   for (int i = 0; i < kMaxNumberOfFrames; i++) {
173     if (frame_buffers_[i]) {
174       delete frame_buffers_[i];
175     }
176   }
177   delete crit_sect_;
178 }
179 
CopyFrom(const VCMJitterBuffer & rhs)180 void VCMJitterBuffer::CopyFrom(const VCMJitterBuffer& rhs) {
181   if (this != &rhs) {
182     crit_sect_->Enter();
183     rhs.crit_sect_->Enter();
184     running_ = rhs.running_;
185     max_number_of_frames_ = rhs.max_number_of_frames_;
186     incoming_frame_rate_ = rhs.incoming_frame_rate_;
187     incoming_frame_count_ = rhs.incoming_frame_count_;
188     time_last_incoming_frame_count_ = rhs.time_last_incoming_frame_count_;
189     incoming_bit_count_ = rhs.incoming_bit_count_;
190     incoming_bit_rate_ = rhs.incoming_bit_rate_;
191     drop_count_ = rhs.drop_count_;
192     num_consecutive_old_frames_ = rhs.num_consecutive_old_frames_;
193     num_consecutive_old_packets_ = rhs.num_consecutive_old_packets_;
194     num_discarded_packets_ = rhs.num_discarded_packets_;
195     jitter_estimate_ = rhs.jitter_estimate_;
196     inter_frame_delay_ = rhs.inter_frame_delay_;
197     waiting_for_completion_ = rhs.waiting_for_completion_;
198     rtt_ms_ = rhs.rtt_ms_;
199     first_packet_since_reset_ = rhs.first_packet_since_reset_;
200     last_decoded_state_ =  rhs.last_decoded_state_;
201     decode_error_mode_ = rhs.decode_error_mode_;
202     assert(max_nack_list_size_ == rhs.max_nack_list_size_);
203     assert(max_packet_age_to_nack_ == rhs.max_packet_age_to_nack_);
204     assert(max_incomplete_time_ms_ == rhs.max_incomplete_time_ms_);
205     receive_statistics_ = rhs.receive_statistics_;
206     nack_seq_nums_.resize(rhs.nack_seq_nums_.size());
207     missing_sequence_numbers_ = rhs.missing_sequence_numbers_;
208     latest_received_sequence_number_ = rhs.latest_received_sequence_number_;
209     average_packets_per_frame_ = rhs.average_packets_per_frame_;
210     for (int i = 0; i < kMaxNumberOfFrames; i++) {
211       if (frame_buffers_[i] != NULL) {
212         delete frame_buffers_[i];
213         frame_buffers_[i] = NULL;
214       }
215     }
216     free_frames_.clear();
217     decodable_frames_.clear();
218     incomplete_frames_.clear();
219     int i = 0;
220     for (UnorderedFrameList::const_iterator it = rhs.free_frames_.begin();
221          it != rhs.free_frames_.end(); ++it, ++i) {
222       frame_buffers_[i] = new VCMFrameBuffer;
223       free_frames_.push_back(frame_buffers_[i]);
224     }
225     CopyFrames(&decodable_frames_, rhs.decodable_frames_, &i);
226     CopyFrames(&incomplete_frames_, rhs.incomplete_frames_, &i);
227     rhs.crit_sect_->Leave();
228     crit_sect_->Leave();
229   }
230 }
231 
CopyFrames(FrameList * to_list,const FrameList & from_list,int * index)232 void VCMJitterBuffer::CopyFrames(FrameList* to_list,
233     const FrameList& from_list, int* index) {
234   to_list->clear();
235   for (FrameList::const_iterator it = from_list.begin();
236        it != from_list.end(); ++it, ++*index) {
237     frame_buffers_[*index] = new VCMFrameBuffer(*it->second);
238     to_list->InsertFrame(frame_buffers_[*index]);
239   }
240 }
241 
Start()242 void VCMJitterBuffer::Start() {
243   CriticalSectionScoped cs(crit_sect_);
244   running_ = true;
245   incoming_frame_count_ = 0;
246   incoming_frame_rate_ = 0;
247   incoming_bit_count_ = 0;
248   incoming_bit_rate_ = 0;
249   time_last_incoming_frame_count_ = clock_->TimeInMilliseconds();
250   receive_statistics_.clear();
251 
252   num_consecutive_old_frames_ = 0;
253   num_consecutive_old_packets_ = 0;
254   num_discarded_packets_ = 0;
255 
256   // Start in a non-signaled state.
257   frame_event_->Reset();
258   packet_event_->Reset();
259   waiting_for_completion_.frame_size = 0;
260   waiting_for_completion_.timestamp = 0;
261   waiting_for_completion_.latest_packet_time = -1;
262   first_packet_since_reset_ = true;
263   rtt_ms_ = kDefaultRtt;
264   last_decoded_state_.Reset();
265 }
266 
Stop()267 void VCMJitterBuffer::Stop() {
268   crit_sect_->Enter();
269   running_ = false;
270   last_decoded_state_.Reset();
271   free_frames_.clear();
272   decodable_frames_.clear();
273   incomplete_frames_.clear();
274   // Make sure all frames are reset and free.
275   for (int i = 0; i < kMaxNumberOfFrames; i++) {
276     if (frame_buffers_[i] != NULL) {
277       static_cast<VCMFrameBuffer*>(frame_buffers_[i])->Reset();
278       free_frames_.push_back(frame_buffers_[i]);
279     }
280   }
281   crit_sect_->Leave();
282   // Make sure we wake up any threads waiting on these events.
283   frame_event_->Set();
284   packet_event_->Set();
285 }
286 
Running() const287 bool VCMJitterBuffer::Running() const {
288   CriticalSectionScoped cs(crit_sect_);
289   return running_;
290 }
291 
Flush()292 void VCMJitterBuffer::Flush() {
293   CriticalSectionScoped cs(crit_sect_);
294   decodable_frames_.Reset(&free_frames_);
295   incomplete_frames_.Reset(&free_frames_);
296   last_decoded_state_.Reset();  // TODO(mikhal): sync reset.
297   frame_event_->Reset();
298   packet_event_->Reset();
299   num_consecutive_old_frames_ = 0;
300   num_consecutive_old_packets_ = 0;
301   // Also reset the jitter and delay estimates
302   jitter_estimate_.Reset();
303   inter_frame_delay_.Reset(clock_->TimeInMilliseconds());
304   waiting_for_completion_.frame_size = 0;
305   waiting_for_completion_.timestamp = 0;
306   waiting_for_completion_.latest_packet_time = -1;
307   first_packet_since_reset_ = true;
308   missing_sequence_numbers_.clear();
309 }
310 
311 // Get received key and delta frames
FrameStatistics() const312 std::map<FrameType, uint32_t> VCMJitterBuffer::FrameStatistics() const {
313   CriticalSectionScoped cs(crit_sect_);
314   return receive_statistics_;
315 }
316 
num_discarded_packets() const317 int VCMJitterBuffer::num_discarded_packets() const {
318   CriticalSectionScoped cs(crit_sect_);
319   return num_discarded_packets_;
320 }
321 
322 // Calculate framerate and bitrate.
IncomingRateStatistics(unsigned int * framerate,unsigned int * bitrate)323 void VCMJitterBuffer::IncomingRateStatistics(unsigned int* framerate,
324                                              unsigned int* bitrate) {
325   assert(framerate);
326   assert(bitrate);
327   CriticalSectionScoped cs(crit_sect_);
328   const int64_t now = clock_->TimeInMilliseconds();
329   int64_t diff = now - time_last_incoming_frame_count_;
330   if (diff < 1000 && incoming_frame_rate_ > 0 && incoming_bit_rate_ > 0) {
331     // Make sure we report something even though less than
332     // 1 second has passed since last update.
333     *framerate = incoming_frame_rate_;
334     *bitrate = incoming_bit_rate_;
335   } else if (incoming_frame_count_ != 0) {
336     // We have received frame(s) since last call to this function
337 
338     // Prepare calculations
339     if (diff <= 0) {
340       diff = 1;
341     }
342     // we add 0.5f for rounding
343     float rate = 0.5f + ((incoming_frame_count_ * 1000.0f) / diff);
344     if (rate < 1.0f) {
345       rate = 1.0f;
346     }
347 
348     // Calculate frame rate
349     // Let r be rate.
350     // r(0) = 1000*framecount/delta_time.
351     // (I.e. frames per second since last calculation.)
352     // frame_rate = r(0)/2 + r(-1)/2
353     // (I.e. fr/s average this and the previous calculation.)
354     *framerate = (incoming_frame_rate_ + static_cast<unsigned int>(rate)) / 2;
355     incoming_frame_rate_ = static_cast<unsigned int>(rate);
356 
357     // Calculate bit rate
358     if (incoming_bit_count_ == 0) {
359       *bitrate = 0;
360     } else {
361       *bitrate = 10 * ((100 * incoming_bit_count_) /
362                        static_cast<unsigned int>(diff));
363     }
364     incoming_bit_rate_ = *bitrate;
365 
366     // Reset count
367     incoming_frame_count_ = 0;
368     incoming_bit_count_ = 0;
369     time_last_incoming_frame_count_ = now;
370 
371   } else {
372     // No frames since last call
373     time_last_incoming_frame_count_ = clock_->TimeInMilliseconds();
374     *framerate = 0;
375     *bitrate = 0;
376     incoming_frame_rate_ = 0;
377     incoming_bit_rate_ = 0;
378   }
379 }
380 
381 // Answers the question:
382 // Will the packet sequence be complete if the next frame is grabbed for
383 // decoding right now? That is, have we lost a frame between the last decoded
384 // frame and the next, or is the next
385 // frame missing one or more packets?
CompleteSequenceWithNextFrame()386 bool VCMJitterBuffer::CompleteSequenceWithNextFrame() {
387   CriticalSectionScoped cs(crit_sect_);
388   // Finding oldest frame ready for decoder, check sequence number and size
389   CleanUpOldOrEmptyFrames();
390   if (!decodable_frames_.empty()) {
391     if (decodable_frames_.Front()->GetState() == kStateComplete) {
392       return true;
393     }
394   } else if (incomplete_frames_.size() <= 1) {
395     // Frame not ready to be decoded.
396     return true;
397   }
398   return false;
399 }
400 
401 // Returns immediately or a |max_wait_time_ms| ms event hang waiting for a
402 // complete frame, |max_wait_time_ms| decided by caller.
NextCompleteTimestamp(uint32_t max_wait_time_ms,uint32_t * timestamp)403 bool VCMJitterBuffer::NextCompleteTimestamp(
404     uint32_t max_wait_time_ms, uint32_t* timestamp) {
405   crit_sect_->Enter();
406   if (!running_) {
407     crit_sect_->Leave();
408     return false;
409   }
410   CleanUpOldOrEmptyFrames();
411 
412   if (decodable_frames_.empty() ||
413       decodable_frames_.Front()->GetState() != kStateComplete) {
414     const int64_t end_wait_time_ms = clock_->TimeInMilliseconds() +
415         max_wait_time_ms;
416     int64_t wait_time_ms = max_wait_time_ms;
417     while (wait_time_ms > 0) {
418       crit_sect_->Leave();
419       const EventTypeWrapper ret =
420         frame_event_->Wait(static_cast<uint32_t>(wait_time_ms));
421       crit_sect_->Enter();
422       if (ret == kEventSignaled) {
423         // Are we shutting down the jitter buffer?
424         if (!running_) {
425           crit_sect_->Leave();
426           return false;
427         }
428         // Finding oldest frame ready for decoder.
429         CleanUpOldOrEmptyFrames();
430         if (decodable_frames_.empty() ||
431             decodable_frames_.Front()->GetState() != kStateComplete) {
432           wait_time_ms = end_wait_time_ms - clock_->TimeInMilliseconds();
433         } else {
434           break;
435         }
436       } else {
437         break;
438       }
439     }
440     // Inside |crit_sect_|.
441   } else {
442     // We already have a frame, reset the event.
443     frame_event_->Reset();
444   }
445   if (decodable_frames_.empty() ||
446       decodable_frames_.Front()->GetState() != kStateComplete) {
447     crit_sect_->Leave();
448     return false;
449   }
450   *timestamp = decodable_frames_.Front()->TimeStamp();
451   crit_sect_->Leave();
452   return true;
453 }
454 
NextMaybeIncompleteTimestamp(uint32_t * timestamp)455 bool VCMJitterBuffer::NextMaybeIncompleteTimestamp(uint32_t* timestamp) {
456   CriticalSectionScoped cs(crit_sect_);
457   if (!running_) {
458     return false;
459   }
460   if (decode_error_mode_ == kNoErrors) {
461     // No point to continue, as we are not decoding with errors.
462     return false;
463   }
464 
465   CleanUpOldOrEmptyFrames();
466 
467   if (decodable_frames_.empty()) {
468     return false;
469   }
470   VCMFrameBuffer* oldest_frame = decodable_frames_.Front();
471   // If we have exactly one frame in the buffer, release it only if it is
472   // complete. We know decodable_frames_ is  not empty due to the previous
473   // check.
474   if (decodable_frames_.size() == 1 && incomplete_frames_.empty()
475       && oldest_frame->GetState() != kStateComplete) {
476     return false;
477   }
478 
479   *timestamp = oldest_frame->TimeStamp();
480   return true;
481 }
482 
ExtractAndSetDecode(uint32_t timestamp)483 VCMEncodedFrame* VCMJitterBuffer::ExtractAndSetDecode(uint32_t timestamp) {
484   CriticalSectionScoped cs(crit_sect_);
485 
486   if (!running_) {
487     return NULL;
488   }
489   // Extract the frame with the desired timestamp.
490   VCMFrameBuffer* frame = decodable_frames_.PopFrame(timestamp);
491   bool continuous = true;
492   if (!frame) {
493     frame = incomplete_frames_.PopFrame(timestamp);
494     if (frame)
495       continuous = last_decoded_state_.ContinuousFrame(frame);
496     else
497       return NULL;
498   }
499   TRACE_EVENT_ASYNC_STEP0("webrtc", "Video", timestamp, "Extract");
500   // Frame pulled out from jitter buffer, update the jitter estimate.
501   const bool retransmitted = (frame->GetNackCount() > 0);
502   if (retransmitted) {
503     jitter_estimate_.FrameNacked();
504   } else if (frame->Length() > 0) {
505     // Ignore retransmitted and empty frames.
506     if (waiting_for_completion_.latest_packet_time >= 0) {
507       UpdateJitterEstimate(waiting_for_completion_, true);
508     }
509     if (frame->GetState() == kStateComplete) {
510       UpdateJitterEstimate(*frame, false);
511     } else {
512       // Wait for this one to get complete.
513       waiting_for_completion_.frame_size = frame->Length();
514       waiting_for_completion_.latest_packet_time =
515           frame->LatestPacketTimeMs();
516       waiting_for_completion_.timestamp = frame->TimeStamp();
517     }
518   }
519 
520   // The state must be changed to decoding before cleaning up zero sized
521   // frames to avoid empty frames being cleaned up and then given to the
522   // decoder. Propagates the missing_frame bit.
523   frame->PrepareForDecode(continuous);
524 
525   // We have a frame - update the last decoded state and nack list.
526   last_decoded_state_.SetState(frame);
527   DropPacketsFromNackList(last_decoded_state_.sequence_num());
528 
529   if ((*frame).IsSessionComplete())
530     UpdateAveragePacketsPerFrame(frame->NumPackets());
531 
532   return frame;
533 }
534 
535 // Release frame when done with decoding. Should never be used to release
536 // frames from within the jitter buffer.
ReleaseFrame(VCMEncodedFrame * frame)537 void VCMJitterBuffer::ReleaseFrame(VCMEncodedFrame* frame) {
538   CriticalSectionScoped cs(crit_sect_);
539   VCMFrameBuffer* frame_buffer = static_cast<VCMFrameBuffer*>(frame);
540   if (frame_buffer) {
541     free_frames_.push_back(frame_buffer);
542   }
543 }
544 
545 // Gets frame to use for this timestamp. If no match, get empty frame.
GetFrame(const VCMPacket & packet,VCMFrameBuffer ** frame)546 VCMFrameBufferEnum VCMJitterBuffer::GetFrame(const VCMPacket& packet,
547                                              VCMFrameBuffer** frame) {
548   // Does this packet belong to an old frame?
549   if (last_decoded_state_.IsOldPacket(&packet)) {
550     // Account only for media packets.
551     if (packet.sizeBytes > 0) {
552       num_discarded_packets_++;
553       num_consecutive_old_packets_++;
554     }
555     // Update last decoded sequence number if the packet arrived late and
556     // belongs to a frame with a timestamp equal to the last decoded
557     // timestamp.
558     last_decoded_state_.UpdateOldPacket(&packet);
559     DropPacketsFromNackList(last_decoded_state_.sequence_num());
560 
561     if (num_consecutive_old_packets_ > kMaxConsecutiveOldPackets) {
562       LOG(LS_WARNING) << num_consecutive_old_packets_ << " consecutive old "
563                          "packets received. Flushing the jitter buffer.";
564       Flush();
565       return kFlushIndicator;
566     }
567     return kOldPacket;
568   }
569   num_consecutive_old_packets_ = 0;
570 
571   *frame = incomplete_frames_.FindFrame(packet.timestamp);
572   if (*frame)
573     return kNoError;
574   *frame = decodable_frames_.FindFrame(packet.timestamp);
575   if (*frame)
576     return kNoError;
577 
578   // No match, return empty frame.
579   *frame = GetEmptyFrame();
580   VCMFrameBufferEnum ret = kNoError;
581   if (!*frame) {
582     // No free frame! Try to reclaim some...
583     LOG(LS_WARNING) << "Unable to get empty frame; Recycling.";
584     bool found_key_frame = RecycleFramesUntilKeyFrame();
585     *frame = GetEmptyFrame();
586     assert(*frame);
587     if (!found_key_frame) {
588       ret = kFlushIndicator;
589     }
590   }
591   (*frame)->Reset();
592   return ret;
593 }
594 
LastPacketTime(const VCMEncodedFrame * frame,bool * retransmitted) const595 int64_t VCMJitterBuffer::LastPacketTime(const VCMEncodedFrame* frame,
596                                         bool* retransmitted) const {
597   assert(retransmitted);
598   CriticalSectionScoped cs(crit_sect_);
599   const VCMFrameBuffer* frame_buffer =
600       static_cast<const VCMFrameBuffer*>(frame);
601   *retransmitted = (frame_buffer->GetNackCount() > 0);
602   return frame_buffer->LatestPacketTimeMs();
603 }
604 
InsertPacket(const VCMPacket & packet,bool * retransmitted)605 VCMFrameBufferEnum VCMJitterBuffer::InsertPacket(const VCMPacket& packet,
606                                                  bool* retransmitted) {
607   CriticalSectionScoped cs(crit_sect_);
608 
609   VCMFrameBuffer* frame = NULL;
610   const VCMFrameBufferEnum error = GetFrame(packet, &frame);
611   if (error != kNoError && frame == NULL) {
612     return error;
613   }
614 
615   int64_t now_ms = clock_->TimeInMilliseconds();
616   // We are keeping track of the first and latest seq numbers, and
617   // the number of wraps to be able to calculate how many packets we expect.
618   if (first_packet_since_reset_) {
619     // Now it's time to start estimating jitter
620     // reset the delay estimate.
621     inter_frame_delay_.Reset(now_ms);
622   }
623   if (last_decoded_state_.IsOldPacket(&packet)) {
624     // This packet belongs to an old, already decoded frame, we want to update
625     // the last decoded sequence number.
626     last_decoded_state_.UpdateOldPacket(&packet);
627     drop_count_++;
628     // Flush if this happens consistently.
629     num_consecutive_old_frames_++;
630     if (num_consecutive_old_frames_ > kMaxConsecutiveOldFrames) {
631       LOG(LS_WARNING) << num_consecutive_old_packets_ << " consecutive old "
632                          "frames received. Flushing the jitter buffer.";
633       Flush();
634       return kFlushIndicator;
635     }
636     return kNoError;
637   }
638 
639   num_consecutive_old_frames_ = 0;
640 
641   // Empty packets may bias the jitter estimate (lacking size component),
642   // therefore don't let empty packet trigger the following updates:
643   if (packet.frameType != kFrameEmpty) {
644     if (waiting_for_completion_.timestamp == packet.timestamp) {
645       // This can get bad if we have a lot of duplicate packets,
646       // we will then count some packet multiple times.
647       waiting_for_completion_.frame_size += packet.sizeBytes;
648       waiting_for_completion_.latest_packet_time = now_ms;
649     } else if (waiting_for_completion_.latest_packet_time >= 0 &&
650                waiting_for_completion_.latest_packet_time + 2000 <= now_ms) {
651       // A packet should never be more than two seconds late
652       UpdateJitterEstimate(waiting_for_completion_, true);
653       waiting_for_completion_.latest_packet_time = -1;
654       waiting_for_completion_.frame_size = 0;
655       waiting_for_completion_.timestamp = 0;
656     }
657   }
658 
659   VCMFrameBufferStateEnum previous_state = frame->GetState();
660   // Insert packet.
661   // Check for first packet. High sequence number will be -1 if neither an empty
662   // packet nor a media packet has been inserted.
663   bool first = (frame->GetHighSeqNum() == -1);
664   FrameData frame_data;
665   frame_data.rtt_ms = rtt_ms_;
666   frame_data.rolling_average_packets_per_frame = average_packets_per_frame_;
667   VCMFrameBufferEnum buffer_return = frame->InsertPacket(packet,
668                                                          now_ms,
669                                                          decode_error_mode_,
670                                                          frame_data);
671   if (!frame->GetCountedFrame()) {
672     TRACE_EVENT_ASYNC_BEGIN1("webrtc", "Video", frame->TimeStamp(),
673                              "timestamp", frame->TimeStamp());
674   }
675 
676   if (buffer_return > 0) {
677     incoming_bit_count_ += packet.sizeBytes << 3;
678     if (first_packet_since_reset_) {
679       latest_received_sequence_number_ = packet.seqNum;
680       first_packet_since_reset_ = false;
681     } else {
682       if (IsPacketRetransmitted(packet)) {
683         frame->IncrementNackCount();
684       }
685       if (!UpdateNackList(packet.seqNum) &&
686           packet.frameType != kVideoFrameKey) {
687         buffer_return = kFlushIndicator;
688       }
689       latest_received_sequence_number_ = LatestSequenceNumber(
690           latest_received_sequence_number_, packet.seqNum);
691     }
692   }
693 
694   // Is the frame already in the decodable list?
695   bool update_decodable_list = (previous_state != kStateDecodable &&
696       previous_state != kStateComplete);
697   bool continuous = IsContinuous(*frame);
698   switch (buffer_return) {
699     case kGeneralError:
700     case kTimeStampError:
701     case kSizeError: {
702       // This frame will be cleaned up later from the frame list.
703       frame->Reset();
704       break;
705     }
706     case kCompleteSession: {
707       if (update_decodable_list) {
708         CountFrame(*frame);
709         frame->SetCountedFrame(true);
710         if (continuous) {
711           // Signal that we have a complete session.
712           frame_event_->Set();
713         }
714       }
715     }
716     // Note: There is no break here - continuing to kDecodableSession.
717     case kDecodableSession: {
718       *retransmitted = (frame->GetNackCount() > 0);
719       // Signal that we have a received packet.
720       packet_event_->Set();
721       if (!update_decodable_list) {
722         break;
723       }
724       if (continuous) {
725         if (!first) {
726           incomplete_frames_.PopFrame(packet.timestamp);
727         }
728         decodable_frames_.InsertFrame(frame);
729         FindAndInsertContinuousFrames(*frame);
730       } else if (first) {
731         incomplete_frames_.InsertFrame(frame);
732       }
733       break;
734     }
735     case kIncomplete: {
736       // No point in storing empty continuous frames.
737       if (frame->GetState() == kStateEmpty &&
738           last_decoded_state_.UpdateEmptyFrame(frame)) {
739         free_frames_.push_back(frame);
740         frame->Reset();
741         frame = NULL;
742         return kNoError;
743       } else if (first) {
744         incomplete_frames_.InsertFrame(frame);
745       }
746       // Signal that we have received a packet.
747       packet_event_->Set();
748       break;
749     }
750     case kNoError:
751     case kOutOfBoundsPacket:
752     case kDuplicatePacket: {
753       break;
754     }
755     case kFlushIndicator:
756       return kFlushIndicator;
757     default: {
758       assert(false && "JitterBuffer::InsertPacket: Undefined value");
759     }
760   }
761   return buffer_return;
762 }
763 
IsContinuousInState(const VCMFrameBuffer & frame,const VCMDecodingState & decoding_state) const764 bool VCMJitterBuffer::IsContinuousInState(const VCMFrameBuffer& frame,
765     const VCMDecodingState& decoding_state) const {
766   if (decode_error_mode_ == kWithErrors)
767     return true;
768   // Is this frame (complete or decodable) and continuous?
769   // kStateDecodable will never be set when decode_error_mode_ is false
770   // as SessionInfo determines this state based on the error mode (and frame
771   // completeness).
772   if ((frame.GetState() == kStateComplete ||
773        frame.GetState() == kStateDecodable) &&
774        decoding_state.ContinuousFrame(&frame)) {
775     return true;
776   } else {
777     return false;
778   }
779 }
780 
IsContinuous(const VCMFrameBuffer & frame) const781 bool VCMJitterBuffer::IsContinuous(const VCMFrameBuffer& frame) const {
782   if (IsContinuousInState(frame, last_decoded_state_)) {
783     return true;
784   }
785   VCMDecodingState decoding_state;
786   decoding_state.CopyFrom(last_decoded_state_);
787   for (FrameList::const_iterator it = decodable_frames_.begin();
788        it != decodable_frames_.end(); ++it)  {
789     VCMFrameBuffer* decodable_frame = it->second;
790     if (IsNewerTimestamp(decodable_frame->TimeStamp(), frame.TimeStamp())) {
791       break;
792     }
793     decoding_state.SetState(decodable_frame);
794     if (IsContinuousInState(frame, decoding_state)) {
795       return true;
796     }
797   }
798   return false;
799 }
800 
FindAndInsertContinuousFrames(const VCMFrameBuffer & new_frame)801 void VCMJitterBuffer::FindAndInsertContinuousFrames(
802     const VCMFrameBuffer& new_frame) {
803   VCMDecodingState decoding_state;
804   decoding_state.CopyFrom(last_decoded_state_);
805   decoding_state.SetState(&new_frame);
806   // When temporal layers are available, we search for a complete or decodable
807   // frame until we hit one of the following:
808   // 1. Continuous base or sync layer.
809   // 2. The end of the list was reached.
810   for (FrameList::iterator it = incomplete_frames_.begin();
811        it != incomplete_frames_.end();)  {
812     VCMFrameBuffer* frame = it->second;
813     if (IsNewerTimestamp(new_frame.TimeStamp(), frame->TimeStamp())) {
814       ++it;
815       continue;
816     }
817     if (IsContinuousInState(*frame, decoding_state)) {
818       decodable_frames_.InsertFrame(frame);
819       incomplete_frames_.erase(it++);
820       decoding_state.SetState(frame);
821     } else if (frame->TemporalId() <= 0) {
822       break;
823     } else {
824       ++it;
825     }
826   }
827 }
828 
EstimatedJitterMs()829 uint32_t VCMJitterBuffer::EstimatedJitterMs() {
830   CriticalSectionScoped cs(crit_sect_);
831   // Compute RTT multiplier for estimation.
832   // low_rtt_nackThresholdMs_ == -1 means no FEC.
833   double rtt_mult = 1.0f;
834   if (low_rtt_nack_threshold_ms_ >= 0 &&
835       static_cast<int>(rtt_ms_) >= low_rtt_nack_threshold_ms_) {
836     // For RTTs above low_rtt_nack_threshold_ms_ we don't apply extra delay
837     // when waiting for retransmissions.
838     rtt_mult = 0.0f;
839   }
840   return jitter_estimate_.GetJitterEstimate(rtt_mult);
841 }
842 
UpdateRtt(uint32_t rtt_ms)843 void VCMJitterBuffer::UpdateRtt(uint32_t rtt_ms) {
844   CriticalSectionScoped cs(crit_sect_);
845   rtt_ms_ = rtt_ms;
846   jitter_estimate_.UpdateRtt(rtt_ms);
847 }
848 
SetNackMode(VCMNackMode mode,int low_rtt_nack_threshold_ms,int high_rtt_nack_threshold_ms)849 void VCMJitterBuffer::SetNackMode(VCMNackMode mode,
850                                   int low_rtt_nack_threshold_ms,
851                                   int high_rtt_nack_threshold_ms) {
852   CriticalSectionScoped cs(crit_sect_);
853   nack_mode_ = mode;
854   if (mode == kNoNack) {
855     missing_sequence_numbers_.clear();
856   }
857   assert(low_rtt_nack_threshold_ms >= -1 && high_rtt_nack_threshold_ms >= -1);
858   assert(high_rtt_nack_threshold_ms == -1 ||
859          low_rtt_nack_threshold_ms <= high_rtt_nack_threshold_ms);
860   assert(low_rtt_nack_threshold_ms > -1 || high_rtt_nack_threshold_ms == -1);
861   low_rtt_nack_threshold_ms_ = low_rtt_nack_threshold_ms;
862   high_rtt_nack_threshold_ms_ = high_rtt_nack_threshold_ms;
863   // Don't set a high start rtt if high_rtt_nack_threshold_ms_ is used, to not
864   // disable NACK in hybrid mode.
865   if (rtt_ms_ == kDefaultRtt && high_rtt_nack_threshold_ms_ != -1) {
866     rtt_ms_ = 0;
867   }
868   if (!WaitForRetransmissions()) {
869     jitter_estimate_.ResetNackCount();
870   }
871 }
872 
SetNackSettings(size_t max_nack_list_size,int max_packet_age_to_nack,int max_incomplete_time_ms)873 void VCMJitterBuffer::SetNackSettings(size_t max_nack_list_size,
874                                       int max_packet_age_to_nack,
875                                       int max_incomplete_time_ms) {
876   CriticalSectionScoped cs(crit_sect_);
877   assert(max_packet_age_to_nack >= 0);
878   assert(max_incomplete_time_ms_ >= 0);
879   max_nack_list_size_ = max_nack_list_size;
880   max_packet_age_to_nack_ = max_packet_age_to_nack;
881   max_incomplete_time_ms_ = max_incomplete_time_ms;
882   nack_seq_nums_.resize(max_nack_list_size_);
883 }
884 
nack_mode() const885 VCMNackMode VCMJitterBuffer::nack_mode() const {
886   CriticalSectionScoped cs(crit_sect_);
887   return nack_mode_;
888 }
889 
NonContinuousOrIncompleteDuration()890 int VCMJitterBuffer::NonContinuousOrIncompleteDuration() {
891   if (incomplete_frames_.empty()) {
892     return 0;
893   }
894   uint32_t start_timestamp = incomplete_frames_.Front()->TimeStamp();
895   if (!decodable_frames_.empty()) {
896     start_timestamp = decodable_frames_.Back()->TimeStamp();
897   }
898   return incomplete_frames_.Back()->TimeStamp() - start_timestamp;
899 }
900 
EstimatedLowSequenceNumber(const VCMFrameBuffer & frame) const901 uint16_t VCMJitterBuffer::EstimatedLowSequenceNumber(
902     const VCMFrameBuffer& frame) const {
903   assert(frame.GetLowSeqNum() >= 0);
904   if (frame.HaveFirstPacket())
905     return frame.GetLowSeqNum();
906 
907   // This estimate is not accurate if more than one packet with lower sequence
908   // number is lost.
909   return frame.GetLowSeqNum() - 1;
910 }
911 
GetNackList(uint16_t * nack_list_size,bool * request_key_frame)912 uint16_t* VCMJitterBuffer::GetNackList(uint16_t* nack_list_size,
913                                        bool* request_key_frame) {
914   CriticalSectionScoped cs(crit_sect_);
915   *request_key_frame = false;
916   if (nack_mode_ == kNoNack) {
917     *nack_list_size = 0;
918     return NULL;
919   }
920   if (last_decoded_state_.in_initial_state()) {
921     VCMFrameBuffer* next_frame =  NextFrame();
922     const bool first_frame_is_key = next_frame &&
923         next_frame->FrameType() == kVideoFrameKey &&
924         next_frame->HaveFirstPacket();
925     if (!first_frame_is_key) {
926       bool have_non_empty_frame = decodable_frames_.end() != find_if(
927           decodable_frames_.begin(), decodable_frames_.end(),
928           HasNonEmptyState);
929       if (!have_non_empty_frame) {
930         have_non_empty_frame = incomplete_frames_.end() != find_if(
931             incomplete_frames_.begin(), incomplete_frames_.end(),
932             HasNonEmptyState);
933       }
934       bool found_key_frame = RecycleFramesUntilKeyFrame();
935       if (!found_key_frame) {
936         *request_key_frame = have_non_empty_frame;
937         *nack_list_size = 0;
938         return NULL;
939       }
940     }
941   }
942   if (TooLargeNackList()) {
943     *request_key_frame = !HandleTooLargeNackList();
944   }
945   if (max_incomplete_time_ms_ > 0) {
946     int non_continuous_incomplete_duration =
947         NonContinuousOrIncompleteDuration();
948     if (non_continuous_incomplete_duration > 90 * max_incomplete_time_ms_) {
949       LOG_F(LS_WARNING) << "Too long non-decodable duration: "
950                         << non_continuous_incomplete_duration << " > "
951                         << 90 * max_incomplete_time_ms_;
952       FrameList::reverse_iterator rit = find_if(incomplete_frames_.rbegin(),
953           incomplete_frames_.rend(), IsKeyFrame);
954       if (rit == incomplete_frames_.rend()) {
955         // Request a key frame if we don't have one already.
956         *request_key_frame = true;
957         *nack_list_size = 0;
958         return NULL;
959       } else {
960         // Skip to the last key frame. If it's incomplete we will start
961         // NACKing it.
962         // Note that the estimated low sequence number is correct for VP8
963         // streams because only the first packet of a key frame is marked.
964         last_decoded_state_.Reset();
965         DropPacketsFromNackList(EstimatedLowSequenceNumber(*rit->second));
966       }
967     }
968   }
969   unsigned int i = 0;
970   SequenceNumberSet::iterator it = missing_sequence_numbers_.begin();
971   for (; it != missing_sequence_numbers_.end(); ++it, ++i) {
972     nack_seq_nums_[i] = *it;
973   }
974   *nack_list_size = i;
975   return &nack_seq_nums_[0];
976 }
977 
SetDecodeErrorMode(VCMDecodeErrorMode error_mode)978 void VCMJitterBuffer::SetDecodeErrorMode(VCMDecodeErrorMode error_mode) {
979   CriticalSectionScoped cs(crit_sect_);
980   decode_error_mode_ = error_mode;
981 }
982 
NextFrame() const983 VCMFrameBuffer* VCMJitterBuffer::NextFrame() const {
984   if (!decodable_frames_.empty())
985     return decodable_frames_.Front();
986   if (!incomplete_frames_.empty())
987     return incomplete_frames_.Front();
988   return NULL;
989 }
990 
UpdateNackList(uint16_t sequence_number)991 bool VCMJitterBuffer::UpdateNackList(uint16_t sequence_number) {
992   if (nack_mode_ == kNoNack) {
993     return true;
994   }
995   // Make sure we don't add packets which are already too old to be decoded.
996   if (!last_decoded_state_.in_initial_state()) {
997     latest_received_sequence_number_ = LatestSequenceNumber(
998         latest_received_sequence_number_,
999         last_decoded_state_.sequence_num());
1000   }
1001   if (IsNewerSequenceNumber(sequence_number,
1002                             latest_received_sequence_number_)) {
1003     // Push any missing sequence numbers to the NACK list.
1004     for (uint16_t i = latest_received_sequence_number_ + 1;
1005          IsNewerSequenceNumber(sequence_number, i); ++i) {
1006       missing_sequence_numbers_.insert(missing_sequence_numbers_.end(), i);
1007       TRACE_EVENT_INSTANT1("webrtc", "AddNack", "seqnum", i);
1008     }
1009     if (TooLargeNackList() && !HandleTooLargeNackList()) {
1010       LOG(LS_WARNING) << "Requesting key frame due to too large NACK list.";
1011       return false;
1012     }
1013     if (MissingTooOldPacket(sequence_number) &&
1014         !HandleTooOldPackets(sequence_number)) {
1015       LOG(LS_WARNING) << "Requesting key frame due to missing too old packets";
1016       return false;
1017     }
1018   } else {
1019     missing_sequence_numbers_.erase(sequence_number);
1020     TRACE_EVENT_INSTANT1("webrtc", "RemoveNack", "seqnum", sequence_number);
1021   }
1022   return true;
1023 }
1024 
TooLargeNackList() const1025 bool VCMJitterBuffer::TooLargeNackList() const {
1026   return missing_sequence_numbers_.size() > max_nack_list_size_;
1027 }
1028 
HandleTooLargeNackList()1029 bool VCMJitterBuffer::HandleTooLargeNackList() {
1030   // Recycle frames until the NACK list is small enough. It is likely cheaper to
1031   // request a key frame than to retransmit this many missing packets.
1032   LOG_F(LS_WARNING) << "NACK list has grown too large: "
1033                     << missing_sequence_numbers_.size() << " > "
1034                     << max_nack_list_size_;
1035   bool key_frame_found = false;
1036   while (TooLargeNackList()) {
1037     key_frame_found = RecycleFramesUntilKeyFrame();
1038   }
1039   return key_frame_found;
1040 }
1041 
MissingTooOldPacket(uint16_t latest_sequence_number) const1042 bool VCMJitterBuffer::MissingTooOldPacket(
1043     uint16_t latest_sequence_number) const {
1044   if (missing_sequence_numbers_.empty()) {
1045     return false;
1046   }
1047   const uint16_t age_of_oldest_missing_packet = latest_sequence_number -
1048       *missing_sequence_numbers_.begin();
1049   // Recycle frames if the NACK list contains too old sequence numbers as
1050   // the packets may have already been dropped by the sender.
1051   return age_of_oldest_missing_packet > max_packet_age_to_nack_;
1052 }
1053 
HandleTooOldPackets(uint16_t latest_sequence_number)1054 bool VCMJitterBuffer::HandleTooOldPackets(uint16_t latest_sequence_number) {
1055   bool key_frame_found = false;
1056   const uint16_t age_of_oldest_missing_packet = latest_sequence_number -
1057       *missing_sequence_numbers_.begin();
1058   LOG_F(LS_WARNING) << "NACK list contains too old sequence numbers: "
1059                     << age_of_oldest_missing_packet << " > "
1060                     << max_packet_age_to_nack_;
1061   while (MissingTooOldPacket(latest_sequence_number)) {
1062     key_frame_found = RecycleFramesUntilKeyFrame();
1063   }
1064   return key_frame_found;
1065 }
1066 
DropPacketsFromNackList(uint16_t last_decoded_sequence_number)1067 void VCMJitterBuffer::DropPacketsFromNackList(
1068     uint16_t last_decoded_sequence_number) {
1069   // Erase all sequence numbers from the NACK list which we won't need any
1070   // longer.
1071   missing_sequence_numbers_.erase(missing_sequence_numbers_.begin(),
1072                                   missing_sequence_numbers_.upper_bound(
1073                                       last_decoded_sequence_number));
1074 }
1075 
LastDecodedTimestamp() const1076 int64_t VCMJitterBuffer::LastDecodedTimestamp() const {
1077   CriticalSectionScoped cs(crit_sect_);
1078   return last_decoded_state_.time_stamp();
1079 }
1080 
RenderBufferSize(uint32_t * timestamp_start,uint32_t * timestamp_end)1081 void VCMJitterBuffer::RenderBufferSize(uint32_t* timestamp_start,
1082                                        uint32_t* timestamp_end) {
1083   CriticalSectionScoped cs(crit_sect_);
1084   CleanUpOldOrEmptyFrames();
1085   *timestamp_start = 0;
1086   *timestamp_end = 0;
1087   if (decodable_frames_.empty()) {
1088     return;
1089   }
1090   *timestamp_start = decodable_frames_.Front()->TimeStamp();
1091   *timestamp_end = decodable_frames_.Back()->TimeStamp();
1092 }
1093 
GetEmptyFrame()1094 VCMFrameBuffer* VCMJitterBuffer::GetEmptyFrame() {
1095   if (free_frames_.empty()) {
1096     if (!TryToIncreaseJitterBufferSize()) {
1097       return NULL;
1098     }
1099   }
1100   VCMFrameBuffer* frame = free_frames_.front();
1101   free_frames_.pop_front();
1102   return frame;
1103 }
1104 
TryToIncreaseJitterBufferSize()1105 bool VCMJitterBuffer::TryToIncreaseJitterBufferSize() {
1106   if (max_number_of_frames_ >= kMaxNumberOfFrames)
1107     return false;
1108   VCMFrameBuffer* new_frame = new VCMFrameBuffer();
1109   frame_buffers_[max_number_of_frames_] = new_frame;
1110   free_frames_.push_back(new_frame);
1111   ++max_number_of_frames_;
1112   TRACE_COUNTER1("webrtc", "JBMaxFrames", max_number_of_frames_);
1113   return true;
1114 }
1115 
1116 // Recycle oldest frames up to a key frame, used if jitter buffer is completely
1117 // full.
RecycleFramesUntilKeyFrame()1118 bool VCMJitterBuffer::RecycleFramesUntilKeyFrame() {
1119   // First release incomplete frames, and only release decodable frames if there
1120   // are no incomplete ones.
1121   FrameList::iterator key_frame_it;
1122   bool key_frame_found = false;
1123   int dropped_frames = 0;
1124   dropped_frames += incomplete_frames_.RecycleFramesUntilKeyFrame(
1125       &key_frame_it, &free_frames_);
1126   key_frame_found = key_frame_it != incomplete_frames_.end();
1127   if (dropped_frames == 0) {
1128     dropped_frames += decodable_frames_.RecycleFramesUntilKeyFrame(
1129         &key_frame_it, &free_frames_);
1130     key_frame_found = key_frame_it != decodable_frames_.end();
1131   }
1132   drop_count_ += dropped_frames;
1133   TRACE_EVENT_INSTANT0("webrtc", "JB::RecycleFramesUntilKeyFrame");
1134   if (key_frame_found) {
1135     LOG(LS_INFO) << "Found key frame while dropping frames.";
1136     // Reset last decoded state to make sure the next frame decoded is a key
1137     // frame, and start NACKing from here.
1138     last_decoded_state_.Reset();
1139     DropPacketsFromNackList(EstimatedLowSequenceNumber(*key_frame_it->second));
1140   } else if (decodable_frames_.empty()) {
1141     // All frames dropped. Reset the decoding state and clear missing sequence
1142     // numbers as we're starting fresh.
1143     last_decoded_state_.Reset();
1144     missing_sequence_numbers_.clear();
1145   }
1146   return key_frame_found;
1147 }
1148 
1149 // Must be called under the critical section |crit_sect_|.
CountFrame(const VCMFrameBuffer & frame)1150 void VCMJitterBuffer::CountFrame(const VCMFrameBuffer& frame) {
1151   if (!frame.GetCountedFrame()) {
1152     // Ignore ACK frames.
1153     incoming_frame_count_++;
1154   }
1155 
1156   if (frame.FrameType() == kVideoFrameKey) {
1157     TRACE_EVENT_ASYNC_STEP0("webrtc", "Video",
1158                             frame.TimeStamp(), "KeyComplete");
1159   } else {
1160     TRACE_EVENT_ASYNC_STEP0("webrtc", "Video",
1161                             frame.TimeStamp(), "DeltaComplete");
1162   }
1163 
1164   // Update receive statistics. We count all layers, thus when you use layers
1165   // adding all key and delta frames might differ from frame count.
1166   if (frame.IsSessionComplete()) {
1167     ++receive_statistics_[frame.FrameType()];
1168   }
1169 }
1170 
UpdateAveragePacketsPerFrame(int current_number_packets)1171 void VCMJitterBuffer::UpdateAveragePacketsPerFrame(int current_number_packets) {
1172   if (frame_counter_ > kFastConvergeThreshold) {
1173     average_packets_per_frame_ = average_packets_per_frame_
1174               * (1 - kNormalConvergeMultiplier)
1175             + current_number_packets * kNormalConvergeMultiplier;
1176   } else if (frame_counter_ > 0) {
1177     average_packets_per_frame_ = average_packets_per_frame_
1178               * (1 - kFastConvergeMultiplier)
1179             + current_number_packets * kFastConvergeMultiplier;
1180     frame_counter_++;
1181   } else {
1182     average_packets_per_frame_ = current_number_packets;
1183     frame_counter_++;
1184   }
1185 }
1186 
1187 // Must be called under the critical section |crit_sect_|.
CleanUpOldOrEmptyFrames()1188 void VCMJitterBuffer::CleanUpOldOrEmptyFrames() {
1189   drop_count_ +=
1190       decodable_frames_.CleanUpOldOrEmptyFrames(&last_decoded_state_,
1191           &free_frames_);
1192   drop_count_ +=
1193       incomplete_frames_.CleanUpOldOrEmptyFrames(&last_decoded_state_,
1194           &free_frames_);
1195   if (!last_decoded_state_.in_initial_state()) {
1196     DropPacketsFromNackList(last_decoded_state_.sequence_num());
1197   }
1198 }
1199 
1200 // Must be called from within |crit_sect_|.
IsPacketRetransmitted(const VCMPacket & packet) const1201 bool VCMJitterBuffer::IsPacketRetransmitted(const VCMPacket& packet) const {
1202   return missing_sequence_numbers_.find(packet.seqNum) !=
1203       missing_sequence_numbers_.end();
1204 }
1205 
1206 // Must be called under the critical section |crit_sect_|. Should never be
1207 // called with retransmitted frames, they must be filtered out before this
1208 // function is called.
UpdateJitterEstimate(const VCMJitterSample & sample,bool incomplete_frame)1209 void VCMJitterBuffer::UpdateJitterEstimate(const VCMJitterSample& sample,
1210                                            bool incomplete_frame) {
1211   if (sample.latest_packet_time == -1) {
1212     return;
1213   }
1214   UpdateJitterEstimate(sample.latest_packet_time, sample.timestamp,
1215                        sample.frame_size, incomplete_frame);
1216 }
1217 
1218 // Must be called under the critical section crit_sect_. Should never be
1219 // called with retransmitted frames, they must be filtered out before this
1220 // function is called.
UpdateJitterEstimate(const VCMFrameBuffer & frame,bool incomplete_frame)1221 void VCMJitterBuffer::UpdateJitterEstimate(const VCMFrameBuffer& frame,
1222                                            bool incomplete_frame) {
1223   if (frame.LatestPacketTimeMs() == -1) {
1224     return;
1225   }
1226   // No retransmitted frames should be a part of the jitter
1227   // estimate.
1228   UpdateJitterEstimate(frame.LatestPacketTimeMs(), frame.TimeStamp(),
1229                        frame.Length(), incomplete_frame);
1230 }
1231 
1232 // Must be called under the critical section |crit_sect_|. Should never be
1233 // called with retransmitted frames, they must be filtered out before this
1234 // function is called.
UpdateJitterEstimate(int64_t latest_packet_time_ms,uint32_t timestamp,unsigned int frame_size,bool incomplete_frame)1235 void VCMJitterBuffer::UpdateJitterEstimate(
1236     int64_t latest_packet_time_ms,
1237     uint32_t timestamp,
1238     unsigned int frame_size,
1239     bool incomplete_frame) {
1240   if (latest_packet_time_ms == -1) {
1241     return;
1242   }
1243   int64_t frame_delay;
1244   bool not_reordered = inter_frame_delay_.CalculateDelay(timestamp,
1245                                                       &frame_delay,
1246                                                       latest_packet_time_ms);
1247   // Filter out frames which have been reordered in time by the network
1248   if (not_reordered) {
1249     // Update the jitter estimate with the new samples
1250     jitter_estimate_.UpdateEstimate(frame_delay, frame_size, incomplete_frame);
1251   }
1252 }
1253 
WaitForRetransmissions()1254 bool VCMJitterBuffer::WaitForRetransmissions() {
1255   if (nack_mode_ == kNoNack) {
1256     // NACK disabled -> don't wait for retransmissions.
1257     return false;
1258   }
1259   // Evaluate if the RTT is higher than |high_rtt_nack_threshold_ms_|, and in
1260   // that case we don't wait for retransmissions.
1261   if (high_rtt_nack_threshold_ms_ >= 0 &&
1262       rtt_ms_ >= static_cast<unsigned int>(high_rtt_nack_threshold_ms_)) {
1263     return false;
1264   }
1265   return true;
1266 }
1267 }  // namespace webrtc
1268