• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2014 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #define LOG_TAG "OpenGLRenderer"
18 
19 // The highest z value can't be higher than (CASTER_Z_CAP_RATIO * light.z)
20 #define CASTER_Z_CAP_RATIO 0.95f
21 
22 // When there is no umbra, then just fake the umbra using
23 // centroid * (1 - FAKE_UMBRA_SIZE_RATIO) + outline * FAKE_UMBRA_SIZE_RATIO
24 #define FAKE_UMBRA_SIZE_RATIO 0.05f
25 
26 // When the polygon is about 90 vertices, the penumbra + umbra can reach 270 rays.
27 // That is consider pretty fine tessllated polygon so far.
28 // This is just to prevent using too much some memory when edge slicing is not
29 // needed any more.
30 #define FINE_TESSELLATED_POLYGON_RAY_NUMBER 270
31 /**
32  * Extra vertices for the corner for smoother corner.
33  * Only for outer loop.
34  * Note that we use such extra memory to avoid an extra loop.
35  */
36 // For half circle, we could add EXTRA_VERTEX_PER_PI vertices.
37 // Set to 1 if we don't want to have any.
38 #define SPOT_EXTRA_CORNER_VERTEX_PER_PI 18
39 
40 // For the whole polygon, the sum of all the deltas b/t normals is 2 * M_PI,
41 // therefore, the maximum number of extra vertices will be twice bigger.
42 #define SPOT_MAX_EXTRA_CORNER_VERTEX_NUMBER  (2 * SPOT_EXTRA_CORNER_VERTEX_PER_PI)
43 
44 // For each RADIANS_DIVISOR, we would allocate one more vertex b/t the normals.
45 #define SPOT_CORNER_RADIANS_DIVISOR (M_PI / SPOT_EXTRA_CORNER_VERTEX_PER_PI)
46 
47 
48 #include <math.h>
49 #include <stdlib.h>
50 #include <utils/Log.h>
51 
52 #include "ShadowTessellator.h"
53 #include "SpotShadow.h"
54 #include "Vertex.h"
55 #include "utils/MathUtils.h"
56 
57 // TODO: After we settle down the new algorithm, we can remove the old one and
58 // its utility functions.
59 // Right now, we still need to keep it for comparison purpose and future expansion.
60 namespace android {
61 namespace uirenderer {
62 
63 static const double EPSILON = 1e-7;
64 
65 /**
66  * For each polygon's vertex, the light center will project it to the receiver
67  * as one of the outline vertex.
68  * For each outline vertex, we need to store the position and normal.
69  * Normal here is defined against the edge by the current vertex and the next vertex.
70  */
71 struct OutlineData {
72     Vector2 position;
73     Vector2 normal;
74     float radius;
75 };
76 
77 /**
78  * For each vertex, we need to keep track of its angle, whether it is penumbra or
79  * umbra, and its corresponding vertex index.
80  */
81 struct SpotShadow::VertexAngleData {
82     // The angle to the vertex from the centroid.
83     float mAngle;
84     // True is the vertex comes from penumbra, otherwise it comes from umbra.
85     bool mIsPenumbra;
86     // The index of the vertex described by this data.
87     int mVertexIndex;
setandroid::uirenderer::SpotShadow::VertexAngleData88     void set(float angle, bool isPenumbra, int index) {
89         mAngle = angle;
90         mIsPenumbra = isPenumbra;
91         mVertexIndex = index;
92     }
93 };
94 
95 /**
96  * Calculate the angle between and x and a y coordinate.
97  * The atan2 range from -PI to PI.
98  */
angle(const Vector2 & point,const Vector2 & center)99 static float angle(const Vector2& point, const Vector2& center) {
100     return atan2(point.y - center.y, point.x - center.x);
101 }
102 
103 /**
104  * Calculate the intersection of a ray with the line segment defined by two points.
105  *
106  * Returns a negative value in error conditions.
107 
108  * @param rayOrigin The start of the ray
109  * @param dx The x vector of the ray
110  * @param dy The y vector of the ray
111  * @param p1 The first point defining the line segment
112  * @param p2 The second point defining the line segment
113  * @return The distance along the ray if it intersects with the line segment, negative if otherwise
114  */
rayIntersectPoints(const Vector2 & rayOrigin,float dx,float dy,const Vector2 & p1,const Vector2 & p2)115 static float rayIntersectPoints(const Vector2& rayOrigin, float dx, float dy,
116         const Vector2& p1, const Vector2& p2) {
117     // The math below is derived from solving this formula, basically the
118     // intersection point should stay on both the ray and the edge of (p1, p2).
119     // solve([p1x+t*(p2x-p1x)=dx*t2+px,p1y+t*(p2y-p1y)=dy*t2+py],[t,t2]);
120 
121     double divisor = (dx * (p1.y - p2.y) + dy * p2.x - dy * p1.x);
122     if (divisor == 0) return -1.0f; // error, invalid divisor
123 
124 #if DEBUG_SHADOW
125     double interpVal = (dx * (p1.y - rayOrigin.y) + dy * rayOrigin.x - dy * p1.x) / divisor;
126     if (interpVal < 0 || interpVal > 1) {
127         ALOGW("rayIntersectPoints is hitting outside the segment %f", interpVal);
128     }
129 #endif
130 
131     double distance = (p1.x * (rayOrigin.y - p2.y) + p2.x * (p1.y - rayOrigin.y) +
132             rayOrigin.x * (p2.y - p1.y)) / divisor;
133 
134     return distance; // may be negative in error cases
135 }
136 
137 /**
138  * Sort points by their X coordinates
139  *
140  * @param points the points as a Vector2 array.
141  * @param pointsLength the number of vertices of the polygon.
142  */
xsort(Vector2 * points,int pointsLength)143 void SpotShadow::xsort(Vector2* points, int pointsLength) {
144     quicksortX(points, 0, pointsLength - 1);
145 }
146 
147 /**
148  * compute the convex hull of a collection of Points
149  *
150  * @param points the points as a Vector2 array.
151  * @param pointsLength the number of vertices of the polygon.
152  * @param retPoly pre allocated array of floats to put the vertices
153  * @return the number of points in the polygon 0 if no intersection
154  */
hull(Vector2 * points,int pointsLength,Vector2 * retPoly)155 int SpotShadow::hull(Vector2* points, int pointsLength, Vector2* retPoly) {
156     xsort(points, pointsLength);
157     int n = pointsLength;
158     Vector2 lUpper[n];
159     lUpper[0] = points[0];
160     lUpper[1] = points[1];
161 
162     int lUpperSize = 2;
163 
164     for (int i = 2; i < n; i++) {
165         lUpper[lUpperSize] = points[i];
166         lUpperSize++;
167 
168         while (lUpperSize > 2 && !ccw(
169                 lUpper[lUpperSize - 3].x, lUpper[lUpperSize - 3].y,
170                 lUpper[lUpperSize - 2].x, lUpper[lUpperSize - 2].y,
171                 lUpper[lUpperSize - 1].x, lUpper[lUpperSize - 1].y)) {
172             // Remove the middle point of the three last
173             lUpper[lUpperSize - 2].x = lUpper[lUpperSize - 1].x;
174             lUpper[lUpperSize - 2].y = lUpper[lUpperSize - 1].y;
175             lUpperSize--;
176         }
177     }
178 
179     Vector2 lLower[n];
180     lLower[0] = points[n - 1];
181     lLower[1] = points[n - 2];
182 
183     int lLowerSize = 2;
184 
185     for (int i = n - 3; i >= 0; i--) {
186         lLower[lLowerSize] = points[i];
187         lLowerSize++;
188 
189         while (lLowerSize > 2 && !ccw(
190                 lLower[lLowerSize - 3].x, lLower[lLowerSize - 3].y,
191                 lLower[lLowerSize - 2].x, lLower[lLowerSize - 2].y,
192                 lLower[lLowerSize - 1].x, lLower[lLowerSize - 1].y)) {
193             // Remove the middle point of the three last
194             lLower[lLowerSize - 2] = lLower[lLowerSize - 1];
195             lLowerSize--;
196         }
197     }
198 
199     // output points in CW ordering
200     const int total = lUpperSize + lLowerSize - 2;
201     int outIndex = total - 1;
202     for (int i = 0; i < lUpperSize; i++) {
203         retPoly[outIndex] = lUpper[i];
204         outIndex--;
205     }
206 
207     for (int i = 1; i < lLowerSize - 1; i++) {
208         retPoly[outIndex] = lLower[i];
209         outIndex--;
210     }
211     // TODO: Add test harness which verify that all the points are inside the hull.
212     return total;
213 }
214 
215 /**
216  * Test whether the 3 points form a counter clockwise turn.
217  *
218  * @return true if a right hand turn
219  */
ccw(double ax,double ay,double bx,double by,double cx,double cy)220 bool SpotShadow::ccw(double ax, double ay, double bx, double by,
221         double cx, double cy) {
222     return (bx - ax) * (cy - ay) - (by - ay) * (cx - ax) > EPSILON;
223 }
224 
225 /**
226  * Calculates the intersection of poly1 with poly2 and put in poly2.
227  * Note that both poly1 and poly2 must be in CW order already!
228  *
229  * @param poly1 The 1st polygon, as a Vector2 array.
230  * @param poly1Length The number of vertices of 1st polygon.
231  * @param poly2 The 2nd and output polygon, as a Vector2 array.
232  * @param poly2Length The number of vertices of 2nd polygon.
233  * @return number of vertices in output polygon as poly2.
234  */
intersection(const Vector2 * poly1,int poly1Length,Vector2 * poly2,int poly2Length)235 int SpotShadow::intersection(const Vector2* poly1, int poly1Length,
236         Vector2* poly2, int poly2Length) {
237 #if DEBUG_SHADOW
238     if (!ShadowTessellator::isClockwise(poly1, poly1Length)) {
239         ALOGW("Poly1 is not clockwise! Intersection is wrong!");
240     }
241     if (!ShadowTessellator::isClockwise(poly2, poly2Length)) {
242         ALOGW("Poly2 is not clockwise! Intersection is wrong!");
243     }
244 #endif
245     Vector2 poly[poly1Length * poly2Length + 2];
246     int count = 0;
247     int pcount = 0;
248 
249     // If one vertex from one polygon sits inside another polygon, add it and
250     // count them.
251     for (int i = 0; i < poly1Length; i++) {
252         if (testPointInsidePolygon(poly1[i], poly2, poly2Length)) {
253             poly[count] = poly1[i];
254             count++;
255             pcount++;
256 
257         }
258     }
259 
260     int insidePoly2 = pcount;
261     for (int i = 0; i < poly2Length; i++) {
262         if (testPointInsidePolygon(poly2[i], poly1, poly1Length)) {
263             poly[count] = poly2[i];
264             count++;
265         }
266     }
267 
268     int insidePoly1 = count - insidePoly2;
269     // If all vertices from poly1 are inside poly2, then just return poly1.
270     if (insidePoly2 == poly1Length) {
271         memcpy(poly2, poly1, poly1Length * sizeof(Vector2));
272         return poly1Length;
273     }
274 
275     // If all vertices from poly2 are inside poly1, then just return poly2.
276     if (insidePoly1 == poly2Length) {
277         return poly2Length;
278     }
279 
280     // Since neither polygon fully contain the other one, we need to add all the
281     // intersection points.
282     Vector2 intersection = {0, 0};
283     for (int i = 0; i < poly2Length; i++) {
284         for (int j = 0; j < poly1Length; j++) {
285             int poly2LineStart = i;
286             int poly2LineEnd = ((i + 1) % poly2Length);
287             int poly1LineStart = j;
288             int poly1LineEnd = ((j + 1) % poly1Length);
289             bool found = lineIntersection(
290                     poly2[poly2LineStart].x, poly2[poly2LineStart].y,
291                     poly2[poly2LineEnd].x, poly2[poly2LineEnd].y,
292                     poly1[poly1LineStart].x, poly1[poly1LineStart].y,
293                     poly1[poly1LineEnd].x, poly1[poly1LineEnd].y,
294                     intersection);
295             if (found) {
296                 poly[count].x = intersection.x;
297                 poly[count].y = intersection.y;
298                 count++;
299             } else {
300                 Vector2 delta = poly2[i] - poly1[j];
301                 if (delta.lengthSquared() < EPSILON) {
302                     poly[count] = poly2[i];
303                     count++;
304                 }
305             }
306         }
307     }
308 
309     if (count == 0) {
310         return 0;
311     }
312 
313     // Sort the result polygon around the center.
314     Vector2 center = {0.0f, 0.0f};
315     for (int i = 0; i < count; i++) {
316         center += poly[i];
317     }
318     center /= count;
319     sort(poly, count, center);
320 
321 #if DEBUG_SHADOW
322     // Since poly2 is overwritten as the result, we need to save a copy to do
323     // our verification.
324     Vector2 oldPoly2[poly2Length];
325     int oldPoly2Length = poly2Length;
326     memcpy(oldPoly2, poly2, sizeof(Vector2) * poly2Length);
327 #endif
328 
329     // Filter the result out from poly and put it into poly2.
330     poly2[0] = poly[0];
331     int lastOutputIndex = 0;
332     for (int i = 1; i < count; i++) {
333         Vector2 delta = poly[i] - poly2[lastOutputIndex];
334         if (delta.lengthSquared() >= EPSILON) {
335             poly2[++lastOutputIndex] = poly[i];
336         } else {
337             // If the vertices are too close, pick the inner one, because the
338             // inner one is more likely to be an intersection point.
339             Vector2 delta1 = poly[i] - center;
340             Vector2 delta2 = poly2[lastOutputIndex] - center;
341             if (delta1.lengthSquared() < delta2.lengthSquared()) {
342                 poly2[lastOutputIndex] = poly[i];
343             }
344         }
345     }
346     int resultLength = lastOutputIndex + 1;
347 
348 #if DEBUG_SHADOW
349     testConvex(poly2, resultLength, "intersection");
350     testConvex(poly1, poly1Length, "input poly1");
351     testConvex(oldPoly2, oldPoly2Length, "input poly2");
352 
353     testIntersection(poly1, poly1Length, oldPoly2, oldPoly2Length, poly2, resultLength);
354 #endif
355 
356     return resultLength;
357 }
358 
359 /**
360  * Sort points about a center point
361  *
362  * @param poly The in and out polyogon as a Vector2 array.
363  * @param polyLength The number of vertices of the polygon.
364  * @param center the center ctr[0] = x , ctr[1] = y to sort around.
365  */
sort(Vector2 * poly,int polyLength,const Vector2 & center)366 void SpotShadow::sort(Vector2* poly, int polyLength, const Vector2& center) {
367     quicksortCirc(poly, 0, polyLength - 1, center);
368 }
369 
370 /**
371  * Swap points pointed to by i and j
372  */
swap(Vector2 * points,int i,int j)373 void SpotShadow::swap(Vector2* points, int i, int j) {
374     Vector2 temp = points[i];
375     points[i] = points[j];
376     points[j] = temp;
377 }
378 
379 /**
380  * quick sort implementation about the center.
381  */
quicksortCirc(Vector2 * points,int low,int high,const Vector2 & center)382 void SpotShadow::quicksortCirc(Vector2* points, int low, int high,
383         const Vector2& center) {
384     int i = low, j = high;
385     int p = low + (high - low) / 2;
386     float pivot = angle(points[p], center);
387     while (i <= j) {
388         while (angle(points[i], center) > pivot) {
389             i++;
390         }
391         while (angle(points[j], center) < pivot) {
392             j--;
393         }
394 
395         if (i <= j) {
396             swap(points, i, j);
397             i++;
398             j--;
399         }
400     }
401     if (low < j) quicksortCirc(points, low, j, center);
402     if (i < high) quicksortCirc(points, i, high, center);
403 }
404 
405 /**
406  * Sort points by x axis
407  *
408  * @param points points to sort
409  * @param low start index
410  * @param high end index
411  */
quicksortX(Vector2 * points,int low,int high)412 void SpotShadow::quicksortX(Vector2* points, int low, int high) {
413     int i = low, j = high;
414     int p = low + (high - low) / 2;
415     float pivot = points[p].x;
416     while (i <= j) {
417         while (points[i].x < pivot) {
418             i++;
419         }
420         while (points[j].x > pivot) {
421             j--;
422         }
423 
424         if (i <= j) {
425             swap(points, i, j);
426             i++;
427             j--;
428         }
429     }
430     if (low < j) quicksortX(points, low, j);
431     if (i < high) quicksortX(points, i, high);
432 }
433 
434 /**
435  * Test whether a point is inside the polygon.
436  *
437  * @param testPoint the point to test
438  * @param poly the polygon
439  * @return true if the testPoint is inside the poly.
440  */
testPointInsidePolygon(const Vector2 testPoint,const Vector2 * poly,int len)441 bool SpotShadow::testPointInsidePolygon(const Vector2 testPoint,
442         const Vector2* poly, int len) {
443     bool c = false;
444     double testx = testPoint.x;
445     double testy = testPoint.y;
446     for (int i = 0, j = len - 1; i < len; j = i++) {
447         double startX = poly[j].x;
448         double startY = poly[j].y;
449         double endX = poly[i].x;
450         double endY = poly[i].y;
451 
452         if (((endY > testy) != (startY > testy))
453             && (testx < (startX - endX) * (testy - endY)
454              / (startY - endY) + endX)) {
455             c = !c;
456         }
457     }
458     return c;
459 }
460 
461 /**
462  * Make the polygon turn clockwise.
463  *
464  * @param polygon the polygon as a Vector2 array.
465  * @param len the number of points of the polygon
466  */
makeClockwise(Vector2 * polygon,int len)467 void SpotShadow::makeClockwise(Vector2* polygon, int len) {
468     if (polygon == 0  || len == 0) {
469         return;
470     }
471     if (!ShadowTessellator::isClockwise(polygon, len)) {
472         reverse(polygon, len);
473     }
474 }
475 
476 /**
477  * Reverse the polygon
478  *
479  * @param polygon the polygon as a Vector2 array
480  * @param len the number of points of the polygon
481  */
reverse(Vector2 * polygon,int len)482 void SpotShadow::reverse(Vector2* polygon, int len) {
483     int n = len / 2;
484     for (int i = 0; i < n; i++) {
485         Vector2 tmp = polygon[i];
486         int k = len - 1 - i;
487         polygon[i] = polygon[k];
488         polygon[k] = tmp;
489     }
490 }
491 
492 /**
493  * Intersects two lines in parametric form. This function is called in a tight
494  * loop, and we need double precision to get things right.
495  *
496  * @param x1 the x coordinate point 1 of line 1
497  * @param y1 the y coordinate point 1 of line 1
498  * @param x2 the x coordinate point 2 of line 1
499  * @param y2 the y coordinate point 2 of line 1
500  * @param x3 the x coordinate point 1 of line 2
501  * @param y3 the y coordinate point 1 of line 2
502  * @param x4 the x coordinate point 2 of line 2
503  * @param y4 the y coordinate point 2 of line 2
504  * @param ret the x,y location of the intersection
505  * @return true if it found an intersection
506  */
lineIntersection(double x1,double y1,double x2,double y2,double x3,double y3,double x4,double y4,Vector2 & ret)507 inline bool SpotShadow::lineIntersection(double x1, double y1, double x2, double y2,
508         double x3, double y3, double x4, double y4, Vector2& ret) {
509     double d = (x1 - x2) * (y3 - y4) - (y1 - y2) * (x3 - x4);
510     if (d == 0.0) return false;
511 
512     double dx = (x1 * y2 - y1 * x2);
513     double dy = (x3 * y4 - y3 * x4);
514     double x = (dx * (x3 - x4) - (x1 - x2) * dy) / d;
515     double y = (dx * (y3 - y4) - (y1 - y2) * dy) / d;
516 
517     // The intersection should be in the middle of the point 1 and point 2,
518     // likewise point 3 and point 4.
519     if (((x - x1) * (x - x2) > EPSILON)
520         || ((x - x3) * (x - x4) > EPSILON)
521         || ((y - y1) * (y - y2) > EPSILON)
522         || ((y - y3) * (y - y4) > EPSILON)) {
523         // Not interesected
524         return false;
525     }
526     ret.x = x;
527     ret.y = y;
528     return true;
529 
530 }
531 
532 /**
533  * Compute a horizontal circular polygon about point (x , y , height) of radius
534  * (size)
535  *
536  * @param points number of the points of the output polygon.
537  * @param lightCenter the center of the light.
538  * @param size the light size.
539  * @param ret result polygon.
540  */
computeLightPolygon(int points,const Vector3 & lightCenter,float size,Vector3 * ret)541 void SpotShadow::computeLightPolygon(int points, const Vector3& lightCenter,
542         float size, Vector3* ret) {
543     // TODO: Caching all the sin / cos values and store them in a look up table.
544     for (int i = 0; i < points; i++) {
545         double angle = 2 * i * M_PI / points;
546         ret[i].x = cosf(angle) * size + lightCenter.x;
547         ret[i].y = sinf(angle) * size + lightCenter.y;
548         ret[i].z = lightCenter.z;
549     }
550 }
551 
552 /**
553  * From light center, project one vertex to the z=0 surface and get the outline.
554  *
555  * @param outline The result which is the outline position.
556  * @param lightCenter The center of light.
557  * @param polyVertex The input polygon's vertex.
558  *
559  * @return float The ratio of (polygon.z / light.z - polygon.z)
560  */
projectCasterToOutline(Vector2 & outline,const Vector3 & lightCenter,const Vector3 & polyVertex)561 float SpotShadow::projectCasterToOutline(Vector2& outline,
562         const Vector3& lightCenter, const Vector3& polyVertex) {
563     float lightToPolyZ = lightCenter.z - polyVertex.z;
564     float ratioZ = CASTER_Z_CAP_RATIO;
565     if (lightToPolyZ != 0) {
566         // If any caster's vertex is almost above the light, we just keep it as 95%
567         // of the height of the light.
568         ratioZ = MathUtils::clamp(polyVertex.z / lightToPolyZ, 0.0f, CASTER_Z_CAP_RATIO);
569     }
570 
571     outline.x = polyVertex.x - ratioZ * (lightCenter.x - polyVertex.x);
572     outline.y = polyVertex.y - ratioZ * (lightCenter.y - polyVertex.y);
573     return ratioZ;
574 }
575 
576 /**
577  * Generate the shadow spot light of shape lightPoly and a object poly
578  *
579  * @param isCasterOpaque whether the caster is opaque
580  * @param lightCenter the center of the light
581  * @param lightSize the radius of the light
582  * @param poly x,y,z vertexes of a convex polygon that occludes the light source
583  * @param polyLength number of vertexes of the occluding polygon
584  * @param shadowTriangleStrip return an (x,y,alpha) triangle strip representing the shadow. Return
585  *                            empty strip if error.
586  */
createSpotShadow(bool isCasterOpaque,const Vector3 & lightCenter,float lightSize,const Vector3 * poly,int polyLength,const Vector3 & polyCentroid,VertexBuffer & shadowTriangleStrip)587 void SpotShadow::createSpotShadow(bool isCasterOpaque, const Vector3& lightCenter,
588         float lightSize, const Vector3* poly, int polyLength, const Vector3& polyCentroid,
589         VertexBuffer& shadowTriangleStrip) {
590     if (CC_UNLIKELY(lightCenter.z <= 0)) {
591         ALOGW("Relative Light Z is not positive. No spot shadow!");
592         return;
593     }
594     if (CC_UNLIKELY(polyLength < 3)) {
595 #if DEBUG_SHADOW
596         ALOGW("Invalid polygon length. No spot shadow!");
597 #endif
598         return;
599     }
600     OutlineData outlineData[polyLength];
601     Vector2 outlineCentroid;
602     // Calculate the projected outline for each polygon's vertices from the light center.
603     //
604     //                       O     Light
605     //                      /
606     //                    /
607     //                   .     Polygon vertex
608     //                 /
609     //               /
610     //              O     Outline vertices
611     //
612     // Ratio = (Poly - Outline) / (Light - Poly)
613     // Outline.x = Poly.x - Ratio * (Light.x - Poly.x)
614     // Outline's radius / Light's radius = Ratio
615 
616     // Compute the last outline vertex to make sure we can get the normal and outline
617     // in one single loop.
618     projectCasterToOutline(outlineData[polyLength - 1].position, lightCenter,
619             poly[polyLength - 1]);
620 
621     // Take the outline's polygon, calculate the normal for each outline edge.
622     int currentNormalIndex = polyLength - 1;
623     int nextNormalIndex = 0;
624 
625     for (int i = 0; i < polyLength; i++) {
626         float ratioZ = projectCasterToOutline(outlineData[i].position,
627                 lightCenter, poly[i]);
628         outlineData[i].radius = ratioZ * lightSize;
629 
630         outlineData[currentNormalIndex].normal = ShadowTessellator::calculateNormal(
631                 outlineData[currentNormalIndex].position,
632                 outlineData[nextNormalIndex].position);
633         currentNormalIndex = (currentNormalIndex + 1) % polyLength;
634         nextNormalIndex++;
635     }
636 
637     projectCasterToOutline(outlineCentroid, lightCenter, polyCentroid);
638 
639     int penumbraIndex = 0;
640     // Then each polygon's vertex produce at minmal 2 penumbra vertices.
641     // Since the size can be dynamic here, we keep track of the size and update
642     // the real size at the end.
643     int allocatedPenumbraLength = 2 * polyLength + SPOT_MAX_EXTRA_CORNER_VERTEX_NUMBER;
644     Vector2 penumbra[allocatedPenumbraLength];
645     int totalExtraCornerSliceNumber = 0;
646 
647     Vector2 umbra[polyLength];
648 
649     // When centroid is covered by all circles from outline, then we consider
650     // the umbra is invalid, and we will tune down the shadow strength.
651     bool hasValidUmbra = true;
652     // We need the minimal of RaitoVI to decrease the spot shadow strength accordingly.
653     float minRaitoVI = FLT_MAX;
654 
655     for (int i = 0; i < polyLength; i++) {
656         // Generate all the penumbra's vertices only using the (outline vertex + normal * radius)
657         // There is no guarantee that the penumbra is still convex, but for
658         // each outline vertex, it will connect to all its corresponding penumbra vertices as
659         // triangle fans. And for neighber penumbra vertex, it will be a trapezoid.
660         //
661         // Penumbra Vertices marked as Pi
662         // Outline Vertices marked as Vi
663         //                                            (P3)
664         //          (P2)                               |     ' (P4)
665         //   (P1)'   |                                 |   '
666         //         ' |                                 | '
667         // (P0)  ------------------------------------------------(P5)
668         //           | (V0)                            |(V1)
669         //           |                                 |
670         //           |                                 |
671         //           |                                 |
672         //           |                                 |
673         //           |                                 |
674         //           |                                 |
675         //           |                                 |
676         //           |                                 |
677         //       (V3)-----------------------------------(V2)
678         int preNormalIndex = (i + polyLength - 1) % polyLength;
679 
680         const Vector2& previousNormal = outlineData[preNormalIndex].normal;
681         const Vector2& currentNormal = outlineData[i].normal;
682 
683         // Depending on how roundness we want for each corner, we can subdivide
684         // further here and/or introduce some heuristic to decide how much the
685         // subdivision should be.
686         int currentExtraSliceNumber = ShadowTessellator::getExtraVertexNumber(
687                 previousNormal, currentNormal, SPOT_CORNER_RADIANS_DIVISOR);
688 
689         int currentCornerSliceNumber = 1 + currentExtraSliceNumber;
690         totalExtraCornerSliceNumber += currentExtraSliceNumber;
691 #if DEBUG_SHADOW
692         ALOGD("currentExtraSliceNumber should be %d", currentExtraSliceNumber);
693         ALOGD("currentCornerSliceNumber should be %d", currentCornerSliceNumber);
694         ALOGD("totalCornerSliceNumber is %d", totalExtraCornerSliceNumber);
695 #endif
696         if (CC_UNLIKELY(totalExtraCornerSliceNumber > SPOT_MAX_EXTRA_CORNER_VERTEX_NUMBER)) {
697             currentCornerSliceNumber = 1;
698         }
699         for (int k = 0; k <= currentCornerSliceNumber; k++) {
700             Vector2 avgNormal =
701                     (previousNormal * (currentCornerSliceNumber - k) + currentNormal * k) /
702                     currentCornerSliceNumber;
703             avgNormal.normalize();
704             penumbra[penumbraIndex++] = outlineData[i].position +
705                     avgNormal * outlineData[i].radius;
706         }
707 
708 
709         // Compute the umbra by the intersection from the outline's centroid!
710         //
711         //       (V) ------------------------------------
712         //           |          '                       |
713         //           |         '                        |
714         //           |       ' (I)                      |
715         //           |    '                             |
716         //           | '             (C)                |
717         //           |                                  |
718         //           |                                  |
719         //           |                                  |
720         //           |                                  |
721         //           ------------------------------------
722         //
723         // Connect a line b/t the outline vertex (V) and the centroid (C), it will
724         // intersect with the outline vertex's circle at point (I).
725         // Now, ratioVI = VI / VC, ratioIC = IC / VC
726         // Then the intersetion point can be computed as Ixy = Vxy * ratioIC + Cxy * ratioVI;
727         //
728         // When all of the outline circles cover the the outline centroid, (like I is
729         // on the other side of C), there is no real umbra any more, so we just fake
730         // a small area around the centroid as the umbra, and tune down the spot
731         // shadow's umbra strength to simulate the effect the whole shadow will
732         // become lighter in this case.
733         // The ratio can be simulated by using the inverse of maximum of ratioVI for
734         // all (V).
735         float distOutline = (outlineData[i].position - outlineCentroid).length();
736         if (CC_UNLIKELY(distOutline == 0)) {
737             // If the outline has 0 area, then there is no spot shadow anyway.
738             ALOGW("Outline has 0 area, no spot shadow!");
739             return;
740         }
741 
742         float ratioVI = outlineData[i].radius / distOutline;
743         minRaitoVI = MathUtils::min(minRaitoVI, ratioVI);
744         if (ratioVI >= (1 - FAKE_UMBRA_SIZE_RATIO)) {
745             ratioVI = (1 - FAKE_UMBRA_SIZE_RATIO);
746         }
747         // When we know we don't have valid umbra, don't bother to compute the
748         // values below. But we can't skip the loop yet since we want to know the
749         // maximum ratio.
750         float ratioIC = 1 - ratioVI;
751         umbra[i] = outlineData[i].position * ratioIC + outlineCentroid * ratioVI;
752     }
753 
754     hasValidUmbra = (minRaitoVI <= 1.0);
755     float shadowStrengthScale = 1.0;
756     if (!hasValidUmbra) {
757 #if DEBUG_SHADOW
758         ALOGW("The object is too close to the light or too small, no real umbra!");
759 #endif
760         for (int i = 0; i < polyLength; i++) {
761             umbra[i] = outlineData[i].position * FAKE_UMBRA_SIZE_RATIO +
762                     outlineCentroid * (1 - FAKE_UMBRA_SIZE_RATIO);
763         }
764         shadowStrengthScale = 1.0 / minRaitoVI;
765     }
766 
767     int penumbraLength = penumbraIndex;
768     int umbraLength = polyLength;
769 
770 #if DEBUG_SHADOW
771     ALOGD("penumbraLength is %d , allocatedPenumbraLength %d", penumbraLength, allocatedPenumbraLength);
772     dumpPolygon(poly, polyLength, "input poly");
773     dumpPolygon(penumbra, penumbraLength, "penumbra");
774     dumpPolygon(umbra, umbraLength, "umbra");
775     ALOGD("hasValidUmbra is %d and shadowStrengthScale is %f", hasValidUmbra, shadowStrengthScale);
776 #endif
777 
778     // The penumbra and umbra needs to be in convex shape to keep consistency
779     // and quality.
780     // Since we are still shooting rays to penumbra, it needs to be convex.
781     // Umbra can be represented as a fan from the centroid, but visually umbra
782     // looks nicer when it is convex.
783     Vector2 finalUmbra[umbraLength];
784     Vector2 finalPenumbra[penumbraLength];
785     int finalUmbraLength = hull(umbra, umbraLength, finalUmbra);
786     int finalPenumbraLength = hull(penumbra, penumbraLength, finalPenumbra);
787 
788     generateTriangleStrip(isCasterOpaque, shadowStrengthScale, finalPenumbra,
789             finalPenumbraLength, finalUmbra, finalUmbraLength, poly, polyLength,
790             shadowTriangleStrip, outlineCentroid);
791 
792 }
793 
794 /**
795  * Converts a polygon specified with CW vertices into an array of distance-from-centroid values.
796  *
797  * Returns false in error conditions
798  *
799  * @param poly Array of vertices. Note that these *must* be CW.
800  * @param polyLength The number of vertices in the polygon.
801  * @param polyCentroid The centroid of the polygon, from which rays will be cast
802  * @param rayDist The output array for the calculated distances, must be SHADOW_RAY_COUNT in size
803  */
convertPolyToRayDist(const Vector2 * poly,int polyLength,const Vector2 & polyCentroid,float * rayDist)804 bool convertPolyToRayDist(const Vector2* poly, int polyLength, const Vector2& polyCentroid,
805         float* rayDist) {
806     const int rays = SHADOW_RAY_COUNT;
807     const float step = M_PI * 2 / rays;
808 
809     const Vector2* lastVertex = &(poly[polyLength - 1]);
810     float startAngle = angle(*lastVertex, polyCentroid);
811 
812     // Start with the ray that's closest to and less than startAngle
813     int rayIndex = floor((startAngle - EPSILON) / step);
814     rayIndex = (rayIndex + rays) % rays; // ensure positive
815 
816     for (int polyIndex = 0; polyIndex < polyLength; polyIndex++) {
817         /*
818          * For a given pair of vertices on the polygon, poly[i-1] and poly[i], the rays that
819          * intersect these will be those that are between the two angles from the centroid that the
820          * vertices define.
821          *
822          * Because the polygon vertices are stored clockwise, the closest ray with an angle
823          * *smaller* than that defined by angle(poly[i], centroid) will be the first ray that does
824          * not intersect with poly[i-1], poly[i].
825          */
826         float currentAngle = angle(poly[polyIndex], polyCentroid);
827 
828         // find first ray that will not intersect the line segment poly[i-1] & poly[i]
829         int firstRayIndexOnNextSegment = floor((currentAngle - EPSILON) / step);
830         firstRayIndexOnNextSegment = (firstRayIndexOnNextSegment + rays) % rays; // ensure positive
831 
832         // Iterate through all rays that intersect with poly[i-1], poly[i] line segment.
833         // This may be 0 rays.
834         while (rayIndex != firstRayIndexOnNextSegment) {
835             float distanceToIntersect = rayIntersectPoints(polyCentroid,
836                     cos(rayIndex * step),
837                     sin(rayIndex * step),
838                     *lastVertex, poly[polyIndex]);
839             if (distanceToIntersect < 0) {
840 #if DEBUG_SHADOW
841                 ALOGW("ERROR: convertPolyToRayDist failed");
842 #endif
843                 return false; // error case, abort
844             }
845 
846             rayDist[rayIndex] = distanceToIntersect;
847 
848             rayIndex = (rayIndex - 1 + rays) % rays;
849         }
850         lastVertex = &poly[polyIndex];
851     }
852 
853     return true;
854 }
855 
calculateOccludedUmbra(const Vector2 * umbra,int umbraLength,const Vector3 * poly,int polyLength,Vector2 * occludedUmbra)856 int SpotShadow::calculateOccludedUmbra(const Vector2* umbra, int umbraLength,
857         const Vector3* poly, int polyLength, Vector2* occludedUmbra) {
858     // Occluded umbra area is computed as the intersection of the projected 2D
859     // poly and umbra.
860     for (int i = 0; i < polyLength; i++) {
861         occludedUmbra[i].x = poly[i].x;
862         occludedUmbra[i].y = poly[i].y;
863     }
864 
865     // Both umbra and incoming polygon are guaranteed to be CW, so we can call
866     // intersection() directly.
867     return intersection(umbra, umbraLength,
868             occludedUmbra, polyLength);
869 }
870 
871 /**
872  * This is only for experimental purpose.
873  * After intersections are calculated, we could smooth the polygon if needed.
874  * So far, we don't think it is more appealing yet.
875  *
876  * @param level The level of smoothness.
877  * @param rays The total number of rays.
878  * @param rayDist (In and Out) The distance for each ray.
879  *
880  */
smoothPolygon(int level,int rays,float * rayDist)881 void SpotShadow::smoothPolygon(int level, int rays, float* rayDist) {
882     for (int k = 0; k < level; k++) {
883         for (int i = 0; i < rays; i++) {
884             float p1 = rayDist[(rays - 1 + i) % rays];
885             float p2 = rayDist[i];
886             float p3 = rayDist[(i + 1) % rays];
887             rayDist[i] = (p1 + p2 * 2 + p3) / 4;
888         }
889     }
890 }
891 
892 /**
893  * Generate a array of the angleData for either umbra or penumbra vertices.
894  *
895  * This array will be merged and used to guide where to shoot the rays, in clockwise order.
896  *
897  * @param angleDataList The result array of angle data.
898  *
899  * @return int The maximum angle's index in the array.
900  */
setupAngleList(VertexAngleData * angleDataList,int polyLength,const Vector2 * polygon,const Vector2 & centroid,bool isPenumbra,const char * name)901 int SpotShadow::setupAngleList(VertexAngleData* angleDataList,
902         int polyLength, const Vector2* polygon, const Vector2& centroid,
903         bool isPenumbra, const char* name) {
904     float maxAngle = FLT_MIN;
905     int maxAngleIndex = 0;
906     for (int i = 0; i < polyLength; i++) {
907         float currentAngle = angle(polygon[i], centroid);
908         if (currentAngle > maxAngle) {
909             maxAngle = currentAngle;
910             maxAngleIndex = i;
911         }
912         angleDataList[i].set(currentAngle, isPenumbra, i);
913 #if DEBUG_SHADOW
914         ALOGD("%s AngleList i %d %f", name, i, currentAngle);
915 #endif
916     }
917     return maxAngleIndex;
918 }
919 
920 /**
921  * Make sure the polygons are indeed in clockwise order.
922  *
923  * Possible reasons to return false: 1. The input polygon is not setup properly. 2. The hull
924  * algorithm is not able to generate it properly.
925  *
926  * Anyway, since the algorithm depends on the clockwise, when these kind of unexpected error
927  * situation is found, we need to detect it and early return without corrupting the memory.
928  *
929  * @return bool True if the angle list is actually from big to small.
930  */
checkClockwise(int indexOfMaxAngle,int listLength,VertexAngleData * angleList,const char * name)931 bool SpotShadow::checkClockwise(int indexOfMaxAngle, int listLength, VertexAngleData* angleList,
932         const char* name) {
933     int currentIndex = indexOfMaxAngle;
934 #if DEBUG_SHADOW
935     ALOGD("max index %d", currentIndex);
936 #endif
937     for (int i = 0; i < listLength - 1; i++) {
938         // TODO: Cache the last angle.
939         float currentAngle = angleList[currentIndex].mAngle;
940         float nextAngle = angleList[(currentIndex + 1) % listLength].mAngle;
941         if (currentAngle < nextAngle) {
942 #if DEBUG_SHADOW
943             ALOGE("%s, is not CW, at index %d", name, currentIndex);
944 #endif
945             return false;
946         }
947         currentIndex = (currentIndex + 1) % listLength;
948     }
949     return true;
950 }
951 
952 /**
953  * Check the polygon is clockwise.
954  *
955  * @return bool True is the polygon is clockwise.
956  */
checkPolyClockwise(int polyAngleLength,int maxPolyAngleIndex,const float * polyAngleList)957 bool SpotShadow::checkPolyClockwise(int polyAngleLength, int maxPolyAngleIndex,
958         const float* polyAngleList) {
959     bool isPolyCW = true;
960     // Starting from maxPolyAngleIndex , check around to make sure angle decrease.
961     for (int i = 0; i < polyAngleLength - 1; i++) {
962         float currentAngle = polyAngleList[(i + maxPolyAngleIndex) % polyAngleLength];
963         float nextAngle = polyAngleList[(i + maxPolyAngleIndex + 1) % polyAngleLength];
964         if (currentAngle < nextAngle) {
965             isPolyCW = false;
966         }
967     }
968     return isPolyCW;
969 }
970 
971 /**
972  * Given the sorted array of all the vertices angle data, calculate for each
973  * vertices, the offset value to array element which represent the start edge
974  * of the polygon we need to shoot the ray at.
975  *
976  * TODO: Calculate this for umbra and penumbra in one loop using one single array.
977  *
978  * @param distances The result of the array distance counter.
979  */
calculateDistanceCounter(bool needsOffsetToUmbra,int angleLength,const VertexAngleData * allVerticesAngleData,int * distances)980 void SpotShadow::calculateDistanceCounter(bool needsOffsetToUmbra, int angleLength,
981         const VertexAngleData* allVerticesAngleData, int* distances) {
982 
983     bool firstVertexIsPenumbra = allVerticesAngleData[0].mIsPenumbra;
984     // If we want distance to inner, then we just set to 0 when we see inner.
985     bool needsSearch = needsOffsetToUmbra ? firstVertexIsPenumbra : !firstVertexIsPenumbra;
986     int distanceCounter = 0;
987     if (needsSearch) {
988         int foundIndex = -1;
989         for (int i = (angleLength - 1); i >= 0; i--) {
990             bool currentIsOuter = allVerticesAngleData[i].mIsPenumbra;
991             // If we need distance to inner, then we need to find a inner vertex.
992             if (currentIsOuter != firstVertexIsPenumbra) {
993                 foundIndex = i;
994                 break;
995             }
996         }
997         LOG_ALWAYS_FATAL_IF(foundIndex == -1, "Wrong index found, means either"
998                 " umbra or penumbra's length is 0");
999         distanceCounter = angleLength - foundIndex;
1000     }
1001 #if DEBUG_SHADOW
1002     ALOGD("distances[0] is %d", distanceCounter);
1003 #endif
1004 
1005     distances[0] = distanceCounter; // means never see a target poly
1006 
1007     for (int i = 1; i < angleLength; i++) {
1008         bool firstVertexIsPenumbra = allVerticesAngleData[i].mIsPenumbra;
1009         // When we needs for distance for each outer vertex to inner, then we
1010         // increase the distance when seeing outer vertices. Otherwise, we clear
1011         // to 0.
1012         bool needsIncrement = needsOffsetToUmbra ? firstVertexIsPenumbra : !firstVertexIsPenumbra;
1013         // If counter is not -1, that means we have seen an other polygon's vertex.
1014         if (needsIncrement && distanceCounter != -1) {
1015             distanceCounter++;
1016         } else {
1017             distanceCounter = 0;
1018         }
1019         distances[i] = distanceCounter;
1020     }
1021 }
1022 
1023 /**
1024  * Given umbra and penumbra angle data list, merge them by sorting the angle
1025  * from the biggest to smallest.
1026  *
1027  * @param allVerticesAngleData The result array of merged angle data.
1028  */
mergeAngleList(int maxUmbraAngleIndex,int maxPenumbraAngleIndex,const VertexAngleData * umbraAngleList,int umbraLength,const VertexAngleData * penumbraAngleList,int penumbraLength,VertexAngleData * allVerticesAngleData)1029 void SpotShadow::mergeAngleList(int maxUmbraAngleIndex, int maxPenumbraAngleIndex,
1030         const VertexAngleData* umbraAngleList, int umbraLength,
1031         const VertexAngleData* penumbraAngleList, int penumbraLength,
1032         VertexAngleData* allVerticesAngleData) {
1033 
1034     int totalRayNumber = umbraLength + penumbraLength;
1035     int umbraIndex = maxUmbraAngleIndex;
1036     int penumbraIndex = maxPenumbraAngleIndex;
1037 
1038     float currentUmbraAngle = umbraAngleList[umbraIndex].mAngle;
1039     float currentPenumbraAngle = penumbraAngleList[penumbraIndex].mAngle;
1040 
1041     // TODO: Clean this up using a while loop with 2 iterators.
1042     for (int i = 0; i < totalRayNumber; i++) {
1043         if (currentUmbraAngle > currentPenumbraAngle) {
1044             allVerticesAngleData[i] = umbraAngleList[umbraIndex];
1045             umbraIndex = (umbraIndex + 1) % umbraLength;
1046 
1047             // If umbraIndex round back, that means we are running out of
1048             // umbra vertices to merge, so just copy all the penumbra leftover.
1049             // Otherwise, we update the currentUmbraAngle.
1050             if (umbraIndex != maxUmbraAngleIndex) {
1051                 currentUmbraAngle = umbraAngleList[umbraIndex].mAngle;
1052             } else {
1053                 for (int j = i + 1; j < totalRayNumber; j++) {
1054                     allVerticesAngleData[j] = penumbraAngleList[penumbraIndex];
1055                     penumbraIndex = (penumbraIndex + 1) % penumbraLength;
1056                 }
1057                 break;
1058             }
1059         } else {
1060             allVerticesAngleData[i] = penumbraAngleList[penumbraIndex];
1061             penumbraIndex = (penumbraIndex + 1) % penumbraLength;
1062             // If penumbraIndex round back, that means we are running out of
1063             // penumbra vertices to merge, so just copy all the umbra leftover.
1064             // Otherwise, we update the currentPenumbraAngle.
1065             if (penumbraIndex != maxPenumbraAngleIndex) {
1066                 currentPenumbraAngle = penumbraAngleList[penumbraIndex].mAngle;
1067             } else {
1068                 for (int j = i + 1; j < totalRayNumber; j++) {
1069                     allVerticesAngleData[j] = umbraAngleList[umbraIndex];
1070                     umbraIndex = (umbraIndex + 1) % umbraLength;
1071                 }
1072                 break;
1073             }
1074         }
1075     }
1076 }
1077 
1078 #if DEBUG_SHADOW
1079 /**
1080  * DEBUG ONLY: Verify all the offset compuation is correctly done by examining
1081  * each vertex and its neighbor.
1082  */
verifyDistanceCounter(const VertexAngleData * allVerticesAngleData,const int * distances,int angleLength,const char * name)1083 static void verifyDistanceCounter(const VertexAngleData* allVerticesAngleData,
1084         const int* distances, int angleLength, const char* name) {
1085     int currentDistance = distances[0];
1086     for (int i = 1; i < angleLength; i++) {
1087         if (distances[i] != INT_MIN) {
1088             if (!((currentDistance + 1) == distances[i]
1089                 || distances[i] == 0)) {
1090                 ALOGE("Wrong distance found at i %d name %s", i, name);
1091             }
1092             currentDistance = distances[i];
1093             if (currentDistance != 0) {
1094                 bool currentOuter = allVerticesAngleData[i].mIsPenumbra;
1095                 for (int j = 1; j <= (currentDistance - 1); j++) {
1096                     bool neigborOuter =
1097                             allVerticesAngleData[(i + angleLength - j) % angleLength].mIsPenumbra;
1098                     if (neigborOuter != currentOuter) {
1099                         ALOGE("Wrong distance found at i %d name %s", i, name);
1100                     }
1101                 }
1102                 bool oppositeOuter =
1103                     allVerticesAngleData[(i + angleLength - currentDistance) % angleLength].mIsPenumbra;
1104                 if (oppositeOuter == currentOuter) {
1105                     ALOGE("Wrong distance found at i %d name %s", i, name);
1106                 }
1107             }
1108         }
1109     }
1110 }
1111 
1112 /**
1113  * DEBUG ONLY: Verify all the angle data compuated are  is correctly done
1114  */
verifyAngleData(int totalRayNumber,const VertexAngleData * allVerticesAngleData,const int * distancesToInner,const int * distancesToOuter,const VertexAngleData * umbraAngleList,int maxUmbraAngleIndex,int umbraLength,const VertexAngleData * penumbraAngleList,int maxPenumbraAngleIndex,int penumbraLength)1115 static void verifyAngleData(int totalRayNumber, const VertexAngleData* allVerticesAngleData,
1116         const int* distancesToInner, const int* distancesToOuter,
1117         const VertexAngleData* umbraAngleList, int maxUmbraAngleIndex, int umbraLength,
1118         const VertexAngleData* penumbraAngleList, int maxPenumbraAngleIndex,
1119         int penumbraLength) {
1120     for (int i = 0; i < totalRayNumber; i++) {
1121         ALOGD("currentAngleList i %d, angle %f, isInner %d, index %d distancesToInner"
1122               " %d distancesToOuter %d", i, allVerticesAngleData[i].mAngle,
1123                 !allVerticesAngleData[i].mIsPenumbra,
1124                 allVerticesAngleData[i].mVertexIndex, distancesToInner[i], distancesToOuter[i]);
1125     }
1126 
1127     verifyDistanceCounter(allVerticesAngleData, distancesToInner, totalRayNumber, "distancesToInner");
1128     verifyDistanceCounter(allVerticesAngleData, distancesToOuter, totalRayNumber, "distancesToOuter");
1129 
1130     for (int i = 0; i < totalRayNumber; i++) {
1131         if ((distancesToInner[i] * distancesToOuter[i]) != 0) {
1132             ALOGE("distancesToInner wrong at index %d distancesToInner[i] %d,"
1133                     " distancesToOuter[i] %d", i, distancesToInner[i], distancesToOuter[i]);
1134         }
1135     }
1136     int currentUmbraVertexIndex =
1137             umbraAngleList[maxUmbraAngleIndex].mVertexIndex;
1138     int currentPenumbraVertexIndex =
1139             penumbraAngleList[maxPenumbraAngleIndex].mVertexIndex;
1140     for (int i = 0; i < totalRayNumber; i++) {
1141         if (allVerticesAngleData[i].mIsPenumbra == true) {
1142             if (allVerticesAngleData[i].mVertexIndex != currentPenumbraVertexIndex) {
1143                 ALOGW("wrong penumbra indexing i %d allVerticesAngleData[i].mVertexIndex %d "
1144                         "currentpenumbraVertexIndex %d", i,
1145                         allVerticesAngleData[i].mVertexIndex, currentPenumbraVertexIndex);
1146             }
1147             currentPenumbraVertexIndex = (currentPenumbraVertexIndex + 1) % penumbraLength;
1148         } else {
1149             if (allVerticesAngleData[i].mVertexIndex != currentUmbraVertexIndex) {
1150                 ALOGW("wrong umbra indexing i %d allVerticesAngleData[i].mVertexIndex %d "
1151                         "currentUmbraVertexIndex %d", i,
1152                         allVerticesAngleData[i].mVertexIndex, currentUmbraVertexIndex);
1153             }
1154             currentUmbraVertexIndex = (currentUmbraVertexIndex + 1) % umbraLength;
1155         }
1156     }
1157     for (int i = 0; i < totalRayNumber - 1; i++) {
1158         float currentAngle = allVerticesAngleData[i].mAngle;
1159         float nextAngle = allVerticesAngleData[(i + 1) % totalRayNumber].mAngle;
1160         if (currentAngle < nextAngle) {
1161             ALOGE("Unexpected angle values!, currentAngle nextAngle %f %f", currentAngle, nextAngle);
1162         }
1163     }
1164 }
1165 #endif
1166 
1167 /**
1168  * In order to compute the occluded umbra, we need to setup the angle data list
1169  * for the polygon data. Since we only store one poly vertex per polygon vertex,
1170  * this array only needs to be a float array which are the angles for each vertex.
1171  *
1172  * @param polyAngleList The result list
1173  *
1174  * @return int The index for the maximum angle in this array.
1175  */
setupPolyAngleList(float * polyAngleList,int polyAngleLength,const Vector2 * poly2d,const Vector2 & centroid)1176 int SpotShadow::setupPolyAngleList(float* polyAngleList, int polyAngleLength,
1177         const Vector2* poly2d, const Vector2& centroid) {
1178     int maxPolyAngleIndex = -1;
1179     float maxPolyAngle = -FLT_MAX;
1180     for (int i = 0; i < polyAngleLength; i++) {
1181         polyAngleList[i] = angle(poly2d[i], centroid);
1182         if (polyAngleList[i] > maxPolyAngle) {
1183             maxPolyAngle = polyAngleList[i];
1184             maxPolyAngleIndex = i;
1185         }
1186     }
1187     return maxPolyAngleIndex;
1188 }
1189 
1190 /**
1191  * For umbra and penumbra, given the offset info and the current ray number,
1192  * find the right edge index (the (starting vertex) for the ray to shoot at.
1193  *
1194  * @return int The index of the starting vertex of the edge.
1195  */
getEdgeStartIndex(const int * offsets,int rayIndex,int totalRayNumber,const VertexAngleData * allVerticesAngleData)1196 inline int SpotShadow::getEdgeStartIndex(const int* offsets, int rayIndex, int totalRayNumber,
1197         const VertexAngleData* allVerticesAngleData) {
1198     int tempOffset = offsets[rayIndex];
1199     int targetRayIndex = (rayIndex - tempOffset + totalRayNumber) % totalRayNumber;
1200     return allVerticesAngleData[targetRayIndex].mVertexIndex;
1201 }
1202 
1203 /**
1204  * For the occluded umbra, given the array of angles, find the index of the
1205  * starting vertex of the edge, for the ray to shoo at.
1206  *
1207  * TODO: Save the last result to shorten the search distance.
1208  *
1209  * @return int The index of the starting vertex of the edge.
1210  */
getPolyEdgeStartIndex(int maxPolyAngleIndex,int polyLength,const float * polyAngleList,float rayAngle)1211 inline int SpotShadow::getPolyEdgeStartIndex(int maxPolyAngleIndex, int polyLength,
1212         const float* polyAngleList, float rayAngle) {
1213     int minPolyAngleIndex  = (maxPolyAngleIndex + polyLength - 1) % polyLength;
1214     int resultIndex = -1;
1215     if (rayAngle > polyAngleList[maxPolyAngleIndex]
1216         || rayAngle <= polyAngleList[minPolyAngleIndex]) {
1217         resultIndex = minPolyAngleIndex;
1218     } else {
1219         for (int i = 0; i < polyLength - 1; i++) {
1220             int currentIndex = (maxPolyAngleIndex + i) % polyLength;
1221             int nextIndex = (maxPolyAngleIndex + i + 1) % polyLength;
1222             if (rayAngle <= polyAngleList[currentIndex]
1223                 && rayAngle > polyAngleList[nextIndex]) {
1224                 resultIndex = currentIndex;
1225             }
1226         }
1227     }
1228     if (CC_UNLIKELY(resultIndex == -1)) {
1229         // TODO: Add more error handling here.
1230         ALOGE("Wrong index found, means no edge can't be found for rayAngle %f", rayAngle);
1231     }
1232     return resultIndex;
1233 }
1234 
1235 /**
1236  * Convert the incoming polygons into arrays of vertices, for each ray.
1237  * Ray only shoots when there is one vertex either on penumbra on umbra.
1238  *
1239  * Finally, it will generate vertices per ray for umbra, penumbra and optionally
1240  * occludedUmbra.
1241  *
1242  * Return true (success) when all vertices are generated
1243  */
convertPolysToVerticesPerRay(bool hasOccludedUmbraArea,const Vector2 * poly2d,int polyLength,const Vector2 * umbra,int umbraLength,const Vector2 * penumbra,int penumbraLength,const Vector2 & centroid,Vector2 * umbraVerticesPerRay,Vector2 * penumbraVerticesPerRay,Vector2 * occludedUmbraVerticesPerRay)1244 int SpotShadow::convertPolysToVerticesPerRay(
1245         bool hasOccludedUmbraArea, const Vector2* poly2d, int polyLength,
1246         const Vector2* umbra, int umbraLength, const Vector2* penumbra,
1247         int penumbraLength, const Vector2& centroid,
1248         Vector2* umbraVerticesPerRay, Vector2* penumbraVerticesPerRay,
1249         Vector2* occludedUmbraVerticesPerRay) {
1250     int totalRayNumber = umbraLength + penumbraLength;
1251 
1252     // For incoming umbra / penumbra polygons, we will build an intermediate data
1253     // structure to help us sort all the vertices according to the vertices.
1254     // Using this data structure, we can tell where (the angle) to shoot the ray,
1255     // whether we shoot at penumbra edge or umbra edge, and which edge to shoot at.
1256     //
1257     // We first parse each vertices and generate a table of VertexAngleData.
1258     // Based on that, we create 2 arrays telling us which edge to shoot at.
1259     VertexAngleData allVerticesAngleData[totalRayNumber];
1260     VertexAngleData umbraAngleList[umbraLength];
1261     VertexAngleData penumbraAngleList[penumbraLength];
1262 
1263     int polyAngleLength = hasOccludedUmbraArea ? polyLength : 0;
1264     float polyAngleList[polyAngleLength];
1265 
1266     const int maxUmbraAngleIndex =
1267             setupAngleList(umbraAngleList, umbraLength, umbra, centroid, false, "umbra");
1268     const int maxPenumbraAngleIndex =
1269             setupAngleList(penumbraAngleList, penumbraLength, penumbra, centroid, true, "penumbra");
1270     const int maxPolyAngleIndex = setupPolyAngleList(polyAngleList, polyAngleLength, poly2d, centroid);
1271 
1272     // Check all the polygons here are CW.
1273     bool isPolyCW = checkPolyClockwise(polyAngleLength, maxPolyAngleIndex, polyAngleList);
1274     bool isUmbraCW = checkClockwise(maxUmbraAngleIndex, umbraLength,
1275             umbraAngleList, "umbra");
1276     bool isPenumbraCW = checkClockwise(maxPenumbraAngleIndex, penumbraLength,
1277             penumbraAngleList, "penumbra");
1278 
1279     if (!isUmbraCW || !isPenumbraCW || !isPolyCW) {
1280 #if DEBUG_SHADOW
1281         ALOGE("One polygon is not CW isUmbraCW %d isPenumbraCW %d isPolyCW %d",
1282                 isUmbraCW, isPenumbraCW, isPolyCW);
1283 #endif
1284         return false;
1285     }
1286 
1287     mergeAngleList(maxUmbraAngleIndex, maxPenumbraAngleIndex,
1288             umbraAngleList, umbraLength, penumbraAngleList, penumbraLength,
1289             allVerticesAngleData);
1290 
1291     // Calculate the offset to the left most Inner vertex for each outerVertex.
1292     // Then the offset to the left most Outer vertex for each innerVertex.
1293     int offsetToInner[totalRayNumber];
1294     int offsetToOuter[totalRayNumber];
1295     calculateDistanceCounter(true, totalRayNumber, allVerticesAngleData, offsetToInner);
1296     calculateDistanceCounter(false, totalRayNumber, allVerticesAngleData, offsetToOuter);
1297 
1298     // Generate both umbraVerticesPerRay and penumbraVerticesPerRay
1299     for (int i = 0; i < totalRayNumber; i++) {
1300         float rayAngle = allVerticesAngleData[i].mAngle;
1301         bool isUmbraVertex = !allVerticesAngleData[i].mIsPenumbra;
1302 
1303         float dx = cosf(rayAngle);
1304         float dy = sinf(rayAngle);
1305         float distanceToIntersectUmbra = -1;
1306 
1307         if (isUmbraVertex) {
1308             // We can just copy umbra easily, and calculate the distance for the
1309             // occluded umbra computation.
1310             int startUmbraIndex = allVerticesAngleData[i].mVertexIndex;
1311             umbraVerticesPerRay[i] = umbra[startUmbraIndex];
1312             if (hasOccludedUmbraArea) {
1313                 distanceToIntersectUmbra = (umbraVerticesPerRay[i] - centroid).length();
1314             }
1315 
1316             //shoot ray to penumbra only
1317             int startPenumbraIndex = getEdgeStartIndex(offsetToOuter, i, totalRayNumber,
1318                     allVerticesAngleData);
1319             float distanceToIntersectPenumbra = rayIntersectPoints(centroid, dx, dy,
1320                     penumbra[startPenumbraIndex],
1321                     penumbra[(startPenumbraIndex + 1) % penumbraLength]);
1322             if (distanceToIntersectPenumbra < 0) {
1323 #if DEBUG_SHADOW
1324                 ALOGW("convertPolyToRayDist for penumbra failed rayAngle %f dx %f dy %f",
1325                         rayAngle, dx, dy);
1326 #endif
1327                 distanceToIntersectPenumbra = 0;
1328             }
1329             penumbraVerticesPerRay[i].x = centroid.x + dx * distanceToIntersectPenumbra;
1330             penumbraVerticesPerRay[i].y = centroid.y + dy * distanceToIntersectPenumbra;
1331         } else {
1332             // We can just copy the penumbra
1333             int startPenumbraIndex = allVerticesAngleData[i].mVertexIndex;
1334             penumbraVerticesPerRay[i] = penumbra[startPenumbraIndex];
1335 
1336             // And shoot ray to umbra only
1337             int startUmbraIndex = getEdgeStartIndex(offsetToInner, i, totalRayNumber,
1338                     allVerticesAngleData);
1339 
1340             distanceToIntersectUmbra = rayIntersectPoints(centroid, dx, dy,
1341                     umbra[startUmbraIndex], umbra[(startUmbraIndex + 1) % umbraLength]);
1342             if (distanceToIntersectUmbra < 0) {
1343 #if DEBUG_SHADOW
1344                 ALOGW("convertPolyToRayDist for umbra failed rayAngle %f dx %f dy %f",
1345                         rayAngle, dx, dy);
1346 #endif
1347                 distanceToIntersectUmbra = 0;
1348             }
1349             umbraVerticesPerRay[i].x = centroid.x + dx * distanceToIntersectUmbra;
1350             umbraVerticesPerRay[i].y = centroid.y + dy * distanceToIntersectUmbra;
1351         }
1352 
1353         if (hasOccludedUmbraArea) {
1354             // Shoot the same ray to the poly2d, and get the distance.
1355             int startPolyIndex = getPolyEdgeStartIndex(maxPolyAngleIndex, polyLength,
1356                     polyAngleList, rayAngle);
1357 
1358             float distanceToIntersectPoly = rayIntersectPoints(centroid, dx, dy,
1359                     poly2d[startPolyIndex], poly2d[(startPolyIndex + 1) % polyLength]);
1360             if (distanceToIntersectPoly < 0) {
1361                 distanceToIntersectPoly = 0;
1362             }
1363             distanceToIntersectPoly = MathUtils::min(distanceToIntersectUmbra, distanceToIntersectPoly);
1364             occludedUmbraVerticesPerRay[i].x = centroid.x + dx * distanceToIntersectPoly;
1365             occludedUmbraVerticesPerRay[i].y = centroid.y + dy * distanceToIntersectPoly;
1366         }
1367     }
1368 
1369 #if DEBUG_SHADOW
1370     verifyAngleData(totalRayNumber, allVerticesAngleData, offsetToInner,
1371             offsetToOuter,  umbraAngleList, maxUmbraAngleIndex,  umbraLength,
1372             penumbraAngleList,  maxPenumbraAngleIndex, penumbraLength);
1373 #endif
1374     return true; // success
1375 
1376 }
1377 
1378 /**
1379  * Generate a triangle strip given two convex polygon
1380 **/
generateTriangleStrip(bool isCasterOpaque,float shadowStrengthScale,Vector2 * penumbra,int penumbraLength,Vector2 * umbra,int umbraLength,const Vector3 * poly,int polyLength,VertexBuffer & shadowTriangleStrip,const Vector2 & centroid)1381 void SpotShadow::generateTriangleStrip(bool isCasterOpaque, float shadowStrengthScale,
1382         Vector2* penumbra, int penumbraLength, Vector2* umbra, int umbraLength,
1383         const Vector3* poly, int polyLength, VertexBuffer& shadowTriangleStrip,
1384         const Vector2& centroid) {
1385 
1386     bool hasOccludedUmbraArea = false;
1387     Vector2 poly2d[polyLength];
1388 
1389     if (isCasterOpaque) {
1390         for (int i = 0; i < polyLength; i++) {
1391             poly2d[i].x = poly[i].x;
1392             poly2d[i].y = poly[i].y;
1393         }
1394         // Make sure the centroid is inside the umbra, otherwise, fall back to the
1395         // approach as if there is no occluded umbra area.
1396         if (testPointInsidePolygon(centroid, poly2d, polyLength)) {
1397             hasOccludedUmbraArea = true;
1398         }
1399     }
1400 
1401     int totalRayNum = umbraLength + penumbraLength;
1402     Vector2 umbraVertices[totalRayNum];
1403     Vector2 penumbraVertices[totalRayNum];
1404     Vector2 occludedUmbraVertices[totalRayNum];
1405     bool convertSuccess = convertPolysToVerticesPerRay(hasOccludedUmbraArea, poly2d,
1406             polyLength, umbra, umbraLength, penumbra, penumbraLength,
1407             centroid, umbraVertices, penumbraVertices, occludedUmbraVertices);
1408     if (!convertSuccess) {
1409         return;
1410     }
1411 
1412     // Minimal value is 1, for each vertex show up once.
1413     // The bigger this value is , the smoother the look is, but more memory
1414     // is consumed.
1415     // When the ray number is high, that means the polygon has been fine
1416     // tessellated, we don't need this extra slice, just keep it as 1.
1417     int sliceNumberPerEdge = (totalRayNum > FINE_TESSELLATED_POLYGON_RAY_NUMBER) ? 1 : 2;
1418 
1419     // For each polygon, we at most add (totalRayNum * sliceNumberPerEdge) vertices.
1420     int slicedVertexCountPerPolygon = totalRayNum * sliceNumberPerEdge;
1421     int totalVertexCount = slicedVertexCountPerPolygon * 2 + totalRayNum;
1422     int totalIndexCount = 2 * (slicedVertexCountPerPolygon * 2 + 2);
1423     AlphaVertex* shadowVertices =
1424             shadowTriangleStrip.alloc<AlphaVertex>(totalVertexCount);
1425     uint16_t* indexBuffer =
1426             shadowTriangleStrip.allocIndices<uint16_t>(totalIndexCount);
1427 
1428     int indexBufferIndex = 0;
1429     int vertexBufferIndex = 0;
1430 
1431     uint16_t slicedUmbraVertexIndex[totalRayNum * sliceNumberPerEdge];
1432     // Should be something like 0 0 0  1 1 1 2 3 3 3...
1433     int rayNumberPerSlicedUmbra[totalRayNum * sliceNumberPerEdge];
1434     int realUmbraVertexCount = 0;
1435     for (int i = 0; i < totalRayNum; i++) {
1436         Vector2 currentPenumbra = penumbraVertices[i];
1437         Vector2 currentUmbra = umbraVertices[i];
1438 
1439         Vector2 nextPenumbra = penumbraVertices[(i + 1) % totalRayNum];
1440         Vector2 nextUmbra = umbraVertices[(i + 1) % totalRayNum];
1441         // NextUmbra/Penumbra will be done in the next loop!!
1442         for (int weight = 0; weight < sliceNumberPerEdge; weight++) {
1443             const Vector2& slicedPenumbra = (currentPenumbra * (sliceNumberPerEdge - weight)
1444                 + nextPenumbra * weight) / sliceNumberPerEdge;
1445 
1446             const Vector2& slicedUmbra = (currentUmbra * (sliceNumberPerEdge - weight)
1447                 + nextUmbra * weight) / sliceNumberPerEdge;
1448 
1449             // In the vertex buffer, we fill the Penumbra first, then umbra.
1450             indexBuffer[indexBufferIndex++] = vertexBufferIndex;
1451             AlphaVertex::set(&shadowVertices[vertexBufferIndex++], slicedPenumbra.x,
1452                     slicedPenumbra.y, 0.0f);
1453 
1454             // When we add umbra vertex, we need to remember its current ray number.
1455             // And its own vertexBufferIndex. This is for occluded umbra usage.
1456             indexBuffer[indexBufferIndex++] = vertexBufferIndex;
1457             rayNumberPerSlicedUmbra[realUmbraVertexCount] = i;
1458             slicedUmbraVertexIndex[realUmbraVertexCount] = vertexBufferIndex;
1459             realUmbraVertexCount++;
1460             AlphaVertex::set(&shadowVertices[vertexBufferIndex++], slicedUmbra.x,
1461                     slicedUmbra.y, M_PI);
1462         }
1463     }
1464 
1465     indexBuffer[indexBufferIndex++] = 0;
1466     //RealUmbraVertexIndex[0] must be 1, so we connect back well at the
1467     //beginning of occluded area.
1468     indexBuffer[indexBufferIndex++] = 1;
1469 
1470     float occludedUmbraAlpha = M_PI;
1471     if (hasOccludedUmbraArea) {
1472         // Now the occludedUmbra area;
1473         int currentRayNumber = -1;
1474         int firstOccludedUmbraIndex = -1;
1475         for (int i = 0; i < realUmbraVertexCount; i++) {
1476             indexBuffer[indexBufferIndex++] = slicedUmbraVertexIndex[i];
1477 
1478             // If the occludedUmbra vertex has not been added yet, then add it.
1479             // Otherwise, just use the previously added occludedUmbra vertices.
1480             if (rayNumberPerSlicedUmbra[i] != currentRayNumber) {
1481                 currentRayNumber++;
1482                 indexBuffer[indexBufferIndex++] = vertexBufferIndex;
1483                 // We need to remember the begining of the occludedUmbra vertices
1484                 // to close this loop.
1485                 if (currentRayNumber == 0) {
1486                     firstOccludedUmbraIndex = vertexBufferIndex;
1487                 }
1488                 AlphaVertex::set(&shadowVertices[vertexBufferIndex++],
1489                         occludedUmbraVertices[currentRayNumber].x,
1490                         occludedUmbraVertices[currentRayNumber].y,
1491                         occludedUmbraAlpha);
1492             } else {
1493                 indexBuffer[indexBufferIndex++] = (vertexBufferIndex - 1);
1494             }
1495         }
1496         // Close the loop here!
1497         indexBuffer[indexBufferIndex++] = slicedUmbraVertexIndex[0];
1498         indexBuffer[indexBufferIndex++] = firstOccludedUmbraIndex;
1499     } else {
1500         int lastCentroidIndex = vertexBufferIndex;
1501         AlphaVertex::set(&shadowVertices[vertexBufferIndex++], centroid.x,
1502                 centroid.y, occludedUmbraAlpha);
1503         for (int i = 0; i < realUmbraVertexCount; i++) {
1504             indexBuffer[indexBufferIndex++] = slicedUmbraVertexIndex[i];
1505             indexBuffer[indexBufferIndex++] = lastCentroidIndex;
1506         }
1507         // Close the loop here!
1508         indexBuffer[indexBufferIndex++] = slicedUmbraVertexIndex[0];
1509         indexBuffer[indexBufferIndex++] = lastCentroidIndex;
1510     }
1511 
1512 #if DEBUG_SHADOW
1513     ALOGD("allocated IB %d allocated VB is %d", totalIndexCount, totalVertexCount);
1514     ALOGD("IB index %d VB index is %d", indexBufferIndex, vertexBufferIndex);
1515     for (int i = 0; i < vertexBufferIndex; i++) {
1516         ALOGD("vertexBuffer i %d, (%f, %f %f)", i, shadowVertices[i].x, shadowVertices[i].y,
1517                 shadowVertices[i].alpha);
1518     }
1519     for (int i = 0; i < indexBufferIndex; i++) {
1520         ALOGD("indexBuffer i %d, indexBuffer[i] %d", i, indexBuffer[i]);
1521     }
1522 #endif
1523 
1524     // At the end, update the real index and vertex buffer size.
1525     shadowTriangleStrip.updateVertexCount(vertexBufferIndex);
1526     shadowTriangleStrip.updateIndexCount(indexBufferIndex);
1527     ShadowTessellator::checkOverflow(vertexBufferIndex, totalVertexCount, "Spot Vertex Buffer");
1528     ShadowTessellator::checkOverflow(indexBufferIndex, totalIndexCount, "Spot Index Buffer");
1529 
1530     shadowTriangleStrip.setMode(VertexBuffer::kIndices);
1531     shadowTriangleStrip.computeBounds<AlphaVertex>();
1532 }
1533 
1534 #if DEBUG_SHADOW
1535 
1536 #define TEST_POINT_NUMBER 128
1537 /**
1538  * Calculate the bounds for generating random test points.
1539  */
updateBound(const Vector2 inVector,Vector2 & lowerBound,Vector2 & upperBound)1540 void SpotShadow::updateBound(const Vector2 inVector, Vector2& lowerBound,
1541         Vector2& upperBound) {
1542     if (inVector.x < lowerBound.x) {
1543         lowerBound.x = inVector.x;
1544     }
1545 
1546     if (inVector.y < lowerBound.y) {
1547         lowerBound.y = inVector.y;
1548     }
1549 
1550     if (inVector.x > upperBound.x) {
1551         upperBound.x = inVector.x;
1552     }
1553 
1554     if (inVector.y > upperBound.y) {
1555         upperBound.y = inVector.y;
1556     }
1557 }
1558 
1559 /**
1560  * For debug purpose, when things go wrong, dump the whole polygon data.
1561  */
dumpPolygon(const Vector2 * poly,int polyLength,const char * polyName)1562 void SpotShadow::dumpPolygon(const Vector2* poly, int polyLength, const char* polyName) {
1563     for (int i = 0; i < polyLength; i++) {
1564         ALOGD("polygon %s i %d x %f y %f", polyName, i, poly[i].x, poly[i].y);
1565     }
1566 }
1567 
1568 /**
1569  * For debug purpose, when things go wrong, dump the whole polygon data.
1570  */
dumpPolygon(const Vector3 * poly,int polyLength,const char * polyName)1571 void SpotShadow::dumpPolygon(const Vector3* poly, int polyLength, const char* polyName) {
1572     for (int i = 0; i < polyLength; i++) {
1573         ALOGD("polygon %s i %d x %f y %f", polyName, i, poly[i].x, poly[i].y);
1574     }
1575 }
1576 
1577 /**
1578  * Test whether the polygon is convex.
1579  */
testConvex(const Vector2 * polygon,int polygonLength,const char * name)1580 bool SpotShadow::testConvex(const Vector2* polygon, int polygonLength,
1581         const char* name) {
1582     bool isConvex = true;
1583     for (int i = 0; i < polygonLength; i++) {
1584         Vector2 start = polygon[i];
1585         Vector2 middle = polygon[(i + 1) % polygonLength];
1586         Vector2 end = polygon[(i + 2) % polygonLength];
1587 
1588         double delta = (double(middle.x) - start.x) * (double(end.y) - start.y) -
1589                 (double(middle.y) - start.y) * (double(end.x) - start.x);
1590         bool isCCWOrCoLinear = (delta >= EPSILON);
1591 
1592         if (isCCWOrCoLinear) {
1593             ALOGW("(Error Type 2): polygon (%s) is not a convex b/c start (x %f, y %f),"
1594                     "middle (x %f, y %f) and end (x %f, y %f) , delta is %f !!!",
1595                     name, start.x, start.y, middle.x, middle.y, end.x, end.y, delta);
1596             isConvex = false;
1597             break;
1598         }
1599     }
1600     return isConvex;
1601 }
1602 
1603 /**
1604  * Test whether or not the polygon (intersection) is within the 2 input polygons.
1605  * Using Marte Carlo method, we generate a random point, and if it is inside the
1606  * intersection, then it must be inside both source polygons.
1607  */
testIntersection(const Vector2 * poly1,int poly1Length,const Vector2 * poly2,int poly2Length,const Vector2 * intersection,int intersectionLength)1608 void SpotShadow::testIntersection(const Vector2* poly1, int poly1Length,
1609         const Vector2* poly2, int poly2Length,
1610         const Vector2* intersection, int intersectionLength) {
1611     // Find the min and max of x and y.
1612     Vector2 lowerBound = {FLT_MAX, FLT_MAX};
1613     Vector2 upperBound = {-FLT_MAX, -FLT_MAX};
1614     for (int i = 0; i < poly1Length; i++) {
1615         updateBound(poly1[i], lowerBound, upperBound);
1616     }
1617     for (int i = 0; i < poly2Length; i++) {
1618         updateBound(poly2[i], lowerBound, upperBound);
1619     }
1620 
1621     bool dumpPoly = false;
1622     for (int k = 0; k < TEST_POINT_NUMBER; k++) {
1623         // Generate a random point between minX, minY and maxX, maxY.
1624         double randomX = rand() / double(RAND_MAX);
1625         double randomY = rand() / double(RAND_MAX);
1626 
1627         Vector2 testPoint;
1628         testPoint.x = lowerBound.x + randomX * (upperBound.x - lowerBound.x);
1629         testPoint.y = lowerBound.y + randomY * (upperBound.y - lowerBound.y);
1630 
1631         // If the random point is in both poly 1 and 2, then it must be intersection.
1632         if (testPointInsidePolygon(testPoint, intersection, intersectionLength)) {
1633             if (!testPointInsidePolygon(testPoint, poly1, poly1Length)) {
1634                 dumpPoly = true;
1635                 ALOGW("(Error Type 1): one point (%f, %f) in the intersection is"
1636                         " not in the poly1",
1637                         testPoint.x, testPoint.y);
1638             }
1639 
1640             if (!testPointInsidePolygon(testPoint, poly2, poly2Length)) {
1641                 dumpPoly = true;
1642                 ALOGW("(Error Type 1): one point (%f, %f) in the intersection is"
1643                         " not in the poly2",
1644                         testPoint.x, testPoint.y);
1645             }
1646         }
1647     }
1648 
1649     if (dumpPoly) {
1650         dumpPolygon(intersection, intersectionLength, "intersection");
1651         for (int i = 1; i < intersectionLength; i++) {
1652             Vector2 delta = intersection[i] - intersection[i - 1];
1653             ALOGD("Intersetion i, %d Vs i-1 is delta %f", i, delta.lengthSquared());
1654         }
1655 
1656         dumpPolygon(poly1, poly1Length, "poly 1");
1657         dumpPolygon(poly2, poly2Length, "poly 2");
1658     }
1659 }
1660 #endif
1661 
1662 }; // namespace uirenderer
1663 }; // namespace android
1664