• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2011 Apple Inc. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  *
13  * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
14  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
16  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE COMPUTER, INC. OR
17  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
18  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
19  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
20  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
21  * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
23  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24  */
25 
26 #include "config.h"
27 #include "core/rendering/RenderGrid.h"
28 
29 #include "core/rendering/FastTextAutosizer.h"
30 #include "core/rendering/LayoutRepainter.h"
31 #include "core/rendering/RenderLayer.h"
32 #include "core/rendering/RenderView.h"
33 #include "core/rendering/style/GridCoordinate.h"
34 #include "platform/LengthFunctions.h"
35 
36 namespace WebCore {
37 
38 static const int infinity = -1;
39 
40 class GridTrack {
41 public:
GridTrack()42     GridTrack()
43         : m_usedBreadth(0)
44         , m_maxBreadth(0)
45     {
46     }
47 
growUsedBreadth(LayoutUnit growth)48     void growUsedBreadth(LayoutUnit growth)
49     {
50         ASSERT(growth >= 0);
51         m_usedBreadth += growth;
52     }
usedBreadth() const53     LayoutUnit usedBreadth() const { return m_usedBreadth; }
54 
growMaxBreadth(LayoutUnit growth)55     void growMaxBreadth(LayoutUnit growth)
56     {
57         if (m_maxBreadth == infinity)
58             m_maxBreadth = m_usedBreadth + growth;
59         else
60             m_maxBreadth += growth;
61     }
maxBreadthIfNotInfinite() const62     LayoutUnit maxBreadthIfNotInfinite() const
63     {
64         return (m_maxBreadth == infinity) ? m_usedBreadth : m_maxBreadth;
65     }
66 
67     LayoutUnit m_usedBreadth;
68     LayoutUnit m_maxBreadth;
69 };
70 
71 struct GridTrackForNormalization {
GridTrackForNormalizationWebCore::GridTrackForNormalization72     GridTrackForNormalization(const GridTrack& track, double flex)
73         : m_track(&track)
74         , m_flex(flex)
75         , m_normalizedFlexValue(track.m_usedBreadth / flex)
76     {
77     }
78 
79     // Required by std::sort.
operator =WebCore::GridTrackForNormalization80     GridTrackForNormalization& operator=(const GridTrackForNormalization& o)
81     {
82         m_track = o.m_track;
83         m_flex = o.m_flex;
84         m_normalizedFlexValue = o.m_normalizedFlexValue;
85         return *this;
86     }
87 
88     const GridTrack* m_track;
89     double m_flex;
90     LayoutUnit m_normalizedFlexValue;
91 };
92 
93 class RenderGrid::GridIterator {
94     WTF_MAKE_NONCOPYABLE(GridIterator);
95 public:
96     // |direction| is the direction that is fixed to |fixedTrackIndex| so e.g
97     // GridIterator(m_grid, ForColumns, 1) will walk over the rows of the 2nd column.
GridIterator(const GridRepresentation & grid,GridTrackSizingDirection direction,size_t fixedTrackIndex)98     GridIterator(const GridRepresentation& grid, GridTrackSizingDirection direction, size_t fixedTrackIndex)
99         : m_grid(grid)
100         , m_direction(direction)
101         , m_rowIndex((direction == ForColumns) ? 0 : fixedTrackIndex)
102         , m_columnIndex((direction == ForColumns) ? fixedTrackIndex : 0)
103         , m_childIndex(0)
104     {
105         ASSERT(m_rowIndex < m_grid.size());
106         ASSERT(m_columnIndex < m_grid[0].size());
107     }
108 
nextGridItem()109     RenderBox* nextGridItem()
110     {
111         ASSERT(!m_grid.isEmpty());
112 
113         size_t& varyingTrackIndex = (m_direction == ForColumns) ? m_rowIndex : m_columnIndex;
114         const size_t endOfVaryingTrackIndex = (m_direction == ForColumns) ? m_grid.size() : m_grid[0].size();
115         for (; varyingTrackIndex < endOfVaryingTrackIndex; ++varyingTrackIndex) {
116             const GridCell& children = m_grid[m_rowIndex][m_columnIndex];
117             if (m_childIndex < children.size())
118                 return children[m_childIndex++];
119 
120             m_childIndex = 0;
121         }
122         return 0;
123     }
124 
checkEmptyCells(size_t rowSpan,size_t columnSpan) const125     bool checkEmptyCells(size_t rowSpan, size_t columnSpan) const
126     {
127         // Ignore cells outside current grid as we will grow it later if needed.
128         size_t maxRows = std::min(m_rowIndex + rowSpan, m_grid.size());
129         size_t maxColumns = std::min(m_columnIndex + columnSpan, m_grid[0].size());
130 
131         // This adds a O(N^2) behavior that shouldn't be a big deal as we expect spanning areas to be small.
132         for (size_t row = m_rowIndex; row < maxRows; ++row) {
133             for (size_t column = m_columnIndex; column < maxColumns; ++column) {
134                 const GridCell& children = m_grid[row][column];
135                 if (!children.isEmpty())
136                     return false;
137             }
138         }
139 
140         return true;
141     }
142 
nextEmptyGridArea(size_t fixedTrackSpan,size_t varyingTrackSpan)143     PassOwnPtr<GridCoordinate> nextEmptyGridArea(size_t fixedTrackSpan, size_t varyingTrackSpan)
144     {
145         ASSERT(!m_grid.isEmpty());
146         ASSERT(fixedTrackSpan >= 1 && varyingTrackSpan >= 1);
147 
148         size_t rowSpan = (m_direction == ForColumns) ? varyingTrackSpan : fixedTrackSpan;
149         size_t columnSpan = (m_direction == ForColumns) ? fixedTrackSpan : varyingTrackSpan;
150 
151         size_t& varyingTrackIndex = (m_direction == ForColumns) ? m_rowIndex : m_columnIndex;
152         const size_t endOfVaryingTrackIndex = (m_direction == ForColumns) ? m_grid.size() : m_grid[0].size();
153         for (; varyingTrackIndex < endOfVaryingTrackIndex; ++varyingTrackIndex) {
154             if (checkEmptyCells(rowSpan, columnSpan)) {
155                 OwnPtr<GridCoordinate> result = adoptPtr(new GridCoordinate(GridSpan(m_rowIndex, m_rowIndex + rowSpan - 1), GridSpan(m_columnIndex, m_columnIndex + columnSpan - 1)));
156                 // Advance the iterator to avoid an infinite loop where we would return the same grid area over and over.
157                 ++varyingTrackIndex;
158                 return result.release();
159             }
160         }
161         return nullptr;
162     }
163 
164 private:
165     const GridRepresentation& m_grid;
166     GridTrackSizingDirection m_direction;
167     size_t m_rowIndex;
168     size_t m_columnIndex;
169     size_t m_childIndex;
170 };
171 
172 struct RenderGrid::GridSizingData {
173     WTF_MAKE_NONCOPYABLE(GridSizingData);
174 public:
GridSizingDataWebCore::RenderGrid::GridSizingData175     GridSizingData(size_t gridColumnCount, size_t gridRowCount)
176         : columnTracks(gridColumnCount)
177         , rowTracks(gridRowCount)
178     {
179     }
180 
181     Vector<GridTrack> columnTracks;
182     Vector<GridTrack> rowTracks;
183     Vector<size_t> contentSizedTracksIndex;
184 
185     // Performance optimization: hold onto these Vectors until the end of Layout to avoid repeated malloc / free.
186     Vector<LayoutUnit> distributeTrackVector;
187     Vector<GridTrack*> filteredTracks;
188 };
189 
RenderGrid(Element * element)190 RenderGrid::RenderGrid(Element* element)
191     : RenderBlock(element)
192     , m_gridIsDirty(true)
193     , m_orderIterator(this)
194 {
195     // All of our children must be block level.
196     setChildrenInline(false);
197 }
198 
~RenderGrid()199 RenderGrid::~RenderGrid()
200 {
201 }
202 
addChild(RenderObject * newChild,RenderObject * beforeChild)203 void RenderGrid::addChild(RenderObject* newChild, RenderObject* beforeChild)
204 {
205     RenderBlock::addChild(newChild, beforeChild);
206 
207     if (gridIsDirty())
208         return;
209 
210     if (!newChild->isBox()) {
211         dirtyGrid();
212         return;
213     }
214 
215     if (style()->gridAutoFlow() != AutoFlowNone) {
216         // The grid needs to be recomputed as it might contain auto-placed items that will change their position.
217         dirtyGrid();
218         return;
219     }
220 
221     RenderBox* newChildBox = toRenderBox(newChild);
222     OwnPtr<GridSpan> rowPositions = GridResolvedPosition::resolveGridPositionsFromStyle(*style(), *newChildBox, ForRows);
223     OwnPtr<GridSpan> columnPositions = GridResolvedPosition::resolveGridPositionsFromStyle(*style(), *newChildBox, ForColumns);
224     if (!rowPositions || !columnPositions) {
225         // The new child requires the auto-placement algorithm to run so we need to recompute the grid fully.
226         dirtyGrid();
227         return;
228     } else {
229         insertItemIntoGrid(newChildBox, GridCoordinate(*rowPositions, *columnPositions));
230         addChildToIndexesMap(newChildBox);
231     }
232 }
233 
addChildToIndexesMap(RenderBox * child)234 void RenderGrid::addChildToIndexesMap(RenderBox* child)
235 {
236     ASSERT(!m_gridItemsIndexesMap.contains(child));
237     RenderBox* sibling = child->nextSiblingBox();
238     bool lastSibling = !sibling;
239 
240     if (lastSibling)
241         sibling = child->previousSiblingBox();
242 
243     size_t index = 0;
244     if (sibling)
245         index = lastSibling ? m_gridItemsIndexesMap.get(sibling) + 1 : m_gridItemsIndexesMap.get(sibling);
246 
247     if (sibling && !lastSibling) {
248         for (; sibling; sibling = sibling->nextSiblingBox())
249             m_gridItemsIndexesMap.set(sibling, m_gridItemsIndexesMap.get(sibling) + 1);
250     }
251 
252     m_gridItemsIndexesMap.set(child, index);
253 }
254 
removeChild(RenderObject * child)255 void RenderGrid::removeChild(RenderObject* child)
256 {
257     RenderBlock::removeChild(child);
258 
259     if (gridIsDirty())
260         return;
261 
262     ASSERT(child->isBox());
263 
264     if (style()->gridAutoFlow() != AutoFlowNone) {
265         // The grid needs to be recomputed as it might contain auto-placed items that will change their position.
266         dirtyGrid();
267         return;
268     }
269 
270     const RenderBox* childBox = toRenderBox(child);
271     GridCoordinate coordinate = m_gridItemCoordinate.take(childBox);
272 
273     for (GridSpan::iterator row = coordinate.rows.begin(); row != coordinate.rows.end(); ++row) {
274         for (GridSpan::iterator column = coordinate.columns.begin(); column != coordinate.columns.end(); ++column) {
275             GridCell& cell = m_grid[row.toInt()][column.toInt()];
276             cell.remove(cell.find(childBox));
277         }
278     }
279 
280     m_gridItemsIndexesMap.remove(childBox);
281 }
282 
styleDidChange(StyleDifference diff,const RenderStyle * oldStyle)283 void RenderGrid::styleDidChange(StyleDifference diff, const RenderStyle* oldStyle)
284 {
285     RenderBlock::styleDidChange(diff, oldStyle);
286     if (!oldStyle)
287         return;
288 
289     // FIXME: The following checks could be narrowed down if we kept track of which type of grid items we have:
290     // - explicit grid size changes impact negative explicitely positioned and auto-placed grid items.
291     // - named grid lines only impact grid items with named grid lines.
292     // - auto-flow changes only impacts auto-placed children.
293 
294     if (explicitGridDidResize(oldStyle)
295         || namedGridLinesDefinitionDidChange(oldStyle)
296         || oldStyle->gridAutoFlow() != style()->gridAutoFlow())
297         dirtyGrid();
298 }
299 
explicitGridDidResize(const RenderStyle * oldStyle) const300 bool RenderGrid::explicitGridDidResize(const RenderStyle* oldStyle) const
301 {
302     return oldStyle->gridTemplateColumns().size() != style()->gridTemplateColumns().size()
303         || oldStyle->gridTemplateRows().size() != style()->gridTemplateRows().size();
304 }
305 
namedGridLinesDefinitionDidChange(const RenderStyle * oldStyle) const306 bool RenderGrid::namedGridLinesDefinitionDidChange(const RenderStyle* oldStyle) const
307 {
308     return oldStyle->namedGridRowLines() != style()->namedGridRowLines()
309         || oldStyle->namedGridColumnLines() != style()->namedGridColumnLines();
310 }
311 
layoutBlock(bool relayoutChildren)312 void RenderGrid::layoutBlock(bool relayoutChildren)
313 {
314     ASSERT(needsLayout());
315 
316     if (!relayoutChildren && simplifiedLayout())
317         return;
318 
319     // FIXME: Much of this method is boiler plate that matches RenderBox::layoutBlock and Render*FlexibleBox::layoutBlock.
320     // It would be nice to refactor some of the duplicate code.
321     LayoutRepainter repainter(*this, checkForPaintInvalidationDuringLayout());
322     LayoutState state(*this, locationOffset());
323 
324     LayoutSize previousSize = size();
325 
326     setLogicalHeight(0);
327     updateLogicalWidth();
328 
329     FastTextAutosizer::LayoutScope fastTextAutosizerLayoutScope(this);
330 
331     layoutGridItems();
332 
333     LayoutUnit oldClientAfterEdge = clientLogicalBottom();
334     updateLogicalHeight();
335 
336     if (size() != previousSize)
337         relayoutChildren = true;
338 
339     layoutPositionedObjects(relayoutChildren || isDocumentElement());
340 
341     computeRegionRangeForBlock(flowThreadContainingBlock());
342 
343     computeOverflow(oldClientAfterEdge);
344 
345     updateLayerTransformAfterLayout();
346 
347     // Update our scroll information if we're overflow:auto/scroll/hidden now that we know if
348     // we overflow or not.
349     if (hasOverflowClip())
350         layer()->scrollableArea()->updateAfterLayout();
351 
352     repainter.repaintAfterLayout();
353 
354     clearNeedsLayout();
355 }
356 
computeIntrinsicLogicalWidths(LayoutUnit & minLogicalWidth,LayoutUnit & maxLogicalWidth) const357 void RenderGrid::computeIntrinsicLogicalWidths(LayoutUnit& minLogicalWidth, LayoutUnit& maxLogicalWidth) const
358 {
359     const_cast<RenderGrid*>(this)->placeItemsOnGrid();
360 
361     GridSizingData sizingData(gridColumnCount(), gridRowCount());
362     LayoutUnit availableLogicalSpace = 0;
363     const_cast<RenderGrid*>(this)->computeUsedBreadthOfGridTracks(ForColumns, sizingData, availableLogicalSpace);
364 
365     for (size_t i = 0; i < sizingData.columnTracks.size(); ++i) {
366         LayoutUnit minTrackBreadth = sizingData.columnTracks[i].m_usedBreadth;
367         LayoutUnit maxTrackBreadth = sizingData.columnTracks[i].m_maxBreadth;
368         maxTrackBreadth = std::max(maxTrackBreadth, minTrackBreadth);
369 
370         minLogicalWidth += minTrackBreadth;
371         maxLogicalWidth += maxTrackBreadth;
372 
373         // FIXME: This should add in the scrollbarWidth (e.g. see RenderFlexibleBox).
374     }
375 }
376 
computePreferredLogicalWidths()377 void RenderGrid::computePreferredLogicalWidths()
378 {
379     ASSERT(preferredLogicalWidthsDirty());
380 
381     m_minPreferredLogicalWidth = 0;
382     m_maxPreferredLogicalWidth = 0;
383 
384     // FIXME: We don't take our own logical width into account. Once we do, we need to make sure
385     // we apply (and test the interaction with) min-width / max-width.
386 
387     computeIntrinsicLogicalWidths(m_minPreferredLogicalWidth, m_maxPreferredLogicalWidth);
388 
389     LayoutUnit borderAndPaddingInInlineDirection = borderAndPaddingLogicalWidth();
390     m_minPreferredLogicalWidth += borderAndPaddingInInlineDirection;
391     m_maxPreferredLogicalWidth += borderAndPaddingInInlineDirection;
392 
393     clearPreferredLogicalWidthsDirty();
394 }
395 
computeUsedBreadthOfGridTracks(GridTrackSizingDirection direction,GridSizingData & sizingData)396 void RenderGrid::computeUsedBreadthOfGridTracks(GridTrackSizingDirection direction, GridSizingData& sizingData)
397 {
398     LayoutUnit availableLogicalSpace = (direction == ForColumns) ? availableLogicalWidth() : availableLogicalHeight(IncludeMarginBorderPadding);
399     computeUsedBreadthOfGridTracks(direction, sizingData, availableLogicalSpace);
400 }
401 
gridElementIsShrinkToFit()402 bool RenderGrid::gridElementIsShrinkToFit()
403 {
404     return isFloatingOrOutOfFlowPositioned();
405 }
406 
computeUsedBreadthOfGridTracks(GridTrackSizingDirection direction,GridSizingData & sizingData,LayoutUnit & availableLogicalSpace)407 void RenderGrid::computeUsedBreadthOfGridTracks(GridTrackSizingDirection direction, GridSizingData& sizingData, LayoutUnit& availableLogicalSpace)
408 {
409     Vector<GridTrack>& tracks = (direction == ForColumns) ? sizingData.columnTracks : sizingData.rowTracks;
410     Vector<size_t> flexibleSizedTracksIndex;
411     sizingData.contentSizedTracksIndex.shrink(0);
412 
413     // 1. Initialize per Grid track variables.
414     for (size_t i = 0; i < tracks.size(); ++i) {
415         GridTrack& track = tracks[i];
416         const GridTrackSize& trackSize = gridTrackSize(direction, i);
417         const GridLength& minTrackBreadth = trackSize.minTrackBreadth();
418         const GridLength& maxTrackBreadth = trackSize.maxTrackBreadth();
419 
420         track.m_usedBreadth = computeUsedBreadthOfMinLength(direction, minTrackBreadth);
421         track.m_maxBreadth = computeUsedBreadthOfMaxLength(direction, maxTrackBreadth, track.m_usedBreadth);
422 
423         track.m_maxBreadth = std::max(track.m_maxBreadth, track.m_usedBreadth);
424 
425         if (trackSize.isContentSized())
426             sizingData.contentSizedTracksIndex.append(i);
427         if (trackSize.maxTrackBreadth().isFlex())
428             flexibleSizedTracksIndex.append(i);
429     }
430 
431     // 2. Resolve content-based TrackSizingFunctions.
432     if (!sizingData.contentSizedTracksIndex.isEmpty())
433         resolveContentBasedTrackSizingFunctions(direction, sizingData, availableLogicalSpace);
434 
435     for (size_t i = 0; i < tracks.size(); ++i) {
436         ASSERT(tracks[i].m_maxBreadth != infinity);
437         availableLogicalSpace -= tracks[i].m_usedBreadth;
438     }
439 
440     const bool hasUndefinedRemainingSpace = (direction == ForRows) ? style()->logicalHeight().isAuto() : gridElementIsShrinkToFit();
441 
442     if (!hasUndefinedRemainingSpace && availableLogicalSpace <= 0)
443         return;
444 
445     // 3. Grow all Grid tracks in GridTracks from their UsedBreadth up to their MaxBreadth value until
446     // availableLogicalSpace (RemainingSpace in the specs) is exhausted.
447     const size_t tracksSize = tracks.size();
448     if (!hasUndefinedRemainingSpace) {
449         Vector<GridTrack*> tracksForDistribution(tracksSize);
450         for (size_t i = 0; i < tracksSize; ++i)
451             tracksForDistribution[i] = tracks.data() + i;
452 
453         distributeSpaceToTracks(tracksForDistribution, 0, &GridTrack::usedBreadth, &GridTrack::growUsedBreadth, sizingData, availableLogicalSpace);
454     } else {
455         for (size_t i = 0; i < tracksSize; ++i)
456             tracks[i].m_usedBreadth = tracks[i].m_maxBreadth;
457     }
458 
459     if (flexibleSizedTracksIndex.isEmpty())
460         return;
461 
462     // 4. Grow all Grid tracks having a fraction as the MaxTrackSizingFunction.
463     double normalizedFractionBreadth = 0;
464     if (!hasUndefinedRemainingSpace) {
465         normalizedFractionBreadth = computeNormalizedFractionBreadth(tracks, GridSpan(0, tracks.size() - 1), direction, availableLogicalSpace);
466     } else {
467         for (size_t i = 0; i < flexibleSizedTracksIndex.size(); ++i) {
468             const size_t trackIndex = flexibleSizedTracksIndex[i];
469             const GridTrackSize& trackSize = gridTrackSize(direction, trackIndex);
470             normalizedFractionBreadth = std::max(normalizedFractionBreadth, tracks[trackIndex].m_usedBreadth / trackSize.maxTrackBreadth().flex());
471         }
472 
473         for (size_t i = 0; i < flexibleSizedTracksIndex.size(); ++i) {
474             GridIterator iterator(m_grid, direction, flexibleSizedTracksIndex[i]);
475             while (RenderBox* gridItem = iterator.nextGridItem()) {
476                 const GridCoordinate coordinate = cachedGridCoordinate(gridItem);
477                 const GridSpan span = (direction == ForColumns) ? coordinate.columns : coordinate.rows;
478 
479                 // Do not include already processed items.
480                 if (i > 0 && span.resolvedInitialPosition.toInt() <= flexibleSizedTracksIndex[i - 1])
481                     continue;
482 
483                 double itemNormalizedFlexBreadth = computeNormalizedFractionBreadth(tracks, span, direction, maxContentForChild(gridItem, direction, sizingData.columnTracks));
484                 normalizedFractionBreadth = std::max(normalizedFractionBreadth, itemNormalizedFlexBreadth);
485             }
486         }
487     }
488 
489     for (size_t i = 0; i < flexibleSizedTracksIndex.size(); ++i) {
490         const size_t trackIndex = flexibleSizedTracksIndex[i];
491         const GridTrackSize& trackSize = gridTrackSize(direction, trackIndex);
492 
493         tracks[trackIndex].m_usedBreadth = std::max<LayoutUnit>(tracks[trackIndex].m_usedBreadth, normalizedFractionBreadth * trackSize.maxTrackBreadth().flex());
494     }
495 }
496 
computeUsedBreadthOfMinLength(GridTrackSizingDirection direction,const GridLength & gridLength) const497 LayoutUnit RenderGrid::computeUsedBreadthOfMinLength(GridTrackSizingDirection direction, const GridLength& gridLength) const
498 {
499     if (gridLength.isFlex())
500         return 0;
501 
502     const Length& trackLength = gridLength.length();
503     ASSERT(!trackLength.isAuto());
504     if (trackLength.isSpecified())
505         return computeUsedBreadthOfSpecifiedLength(direction, trackLength);
506 
507     ASSERT(trackLength.isMinContent() || trackLength.isMaxContent());
508     return 0;
509 }
510 
computeUsedBreadthOfMaxLength(GridTrackSizingDirection direction,const GridLength & gridLength,LayoutUnit usedBreadth) const511 LayoutUnit RenderGrid::computeUsedBreadthOfMaxLength(GridTrackSizingDirection direction, const GridLength& gridLength, LayoutUnit usedBreadth) const
512 {
513     if (gridLength.isFlex())
514         return usedBreadth;
515 
516     const Length& trackLength = gridLength.length();
517     ASSERT(!trackLength.isAuto());
518     if (trackLength.isSpecified()) {
519         LayoutUnit computedBreadth = computeUsedBreadthOfSpecifiedLength(direction, trackLength);
520         ASSERT(computedBreadth != infinity);
521         return computedBreadth;
522     }
523 
524     ASSERT(trackLength.isMinContent() || trackLength.isMaxContent());
525     return infinity;
526 }
527 
computeUsedBreadthOfSpecifiedLength(GridTrackSizingDirection direction,const Length & trackLength) const528 LayoutUnit RenderGrid::computeUsedBreadthOfSpecifiedLength(GridTrackSizingDirection direction, const Length& trackLength) const
529 {
530     ASSERT(trackLength.isSpecified());
531     // FIXME: The -1 here should be replaced by whatever the intrinsic height of the grid is.
532     return valueForLength(trackLength, direction == ForColumns ? logicalWidth() : computeContentLogicalHeight(style()->logicalHeight(), -1));
533 }
534 
sortByGridNormalizedFlexValue(const GridTrackForNormalization & track1,const GridTrackForNormalization & track2)535 static bool sortByGridNormalizedFlexValue(const GridTrackForNormalization& track1, const GridTrackForNormalization& track2)
536 {
537     return track1.m_normalizedFlexValue < track2.m_normalizedFlexValue;
538 }
539 
computeNormalizedFractionBreadth(Vector<GridTrack> & tracks,const GridSpan & tracksSpan,GridTrackSizingDirection direction,LayoutUnit availableLogicalSpace) const540 double RenderGrid::computeNormalizedFractionBreadth(Vector<GridTrack>& tracks, const GridSpan& tracksSpan, GridTrackSizingDirection direction, LayoutUnit availableLogicalSpace) const
541 {
542     // |availableLogicalSpace| already accounts for the used breadths so no need to remove it here.
543 
544     Vector<GridTrackForNormalization> tracksForNormalization;
545     for (GridSpan::iterator resolvedPosition = tracksSpan.begin(); resolvedPosition != tracksSpan.end(); ++resolvedPosition) {
546         const GridTrackSize& trackSize = gridTrackSize(direction, resolvedPosition.toInt());
547         if (!trackSize.maxTrackBreadth().isFlex())
548             continue;
549 
550         tracksForNormalization.append(GridTrackForNormalization(tracks[resolvedPosition.toInt()], trackSize.maxTrackBreadth().flex()));
551     }
552 
553     // The function is not called if we don't have <flex> grid tracks
554     ASSERT(!tracksForNormalization.isEmpty());
555 
556     std::sort(tracksForNormalization.begin(), tracksForNormalization.end(), sortByGridNormalizedFlexValue);
557 
558     // These values work together: as we walk over our grid tracks, we increase fractionValueBasedOnGridItemsRatio
559     // to match a grid track's usedBreadth to <flex> ratio until the total fractions sized grid tracks wouldn't
560     // fit into availableLogicalSpaceIgnoringFractionTracks.
561     double accumulatedFractions = 0;
562     LayoutUnit fractionValueBasedOnGridItemsRatio = 0;
563     LayoutUnit availableLogicalSpaceIgnoringFractionTracks = availableLogicalSpace;
564 
565     for (size_t i = 0; i < tracksForNormalization.size(); ++i) {
566         const GridTrackForNormalization& track = tracksForNormalization[i];
567         if (track.m_normalizedFlexValue > fractionValueBasedOnGridItemsRatio) {
568             // If the normalized flex value (we ordered |tracksForNormalization| by increasing normalized flex value)
569             // will make us overflow our container, then stop. We have the previous step's ratio is the best fit.
570             if (track.m_normalizedFlexValue * accumulatedFractions > availableLogicalSpaceIgnoringFractionTracks)
571                 break;
572 
573             fractionValueBasedOnGridItemsRatio = track.m_normalizedFlexValue;
574         }
575 
576         accumulatedFractions += track.m_flex;
577         // This item was processed so we re-add its used breadth to the available space to accurately count the remaining space.
578         availableLogicalSpaceIgnoringFractionTracks += track.m_track->m_usedBreadth;
579     }
580 
581     return availableLogicalSpaceIgnoringFractionTracks / accumulatedFractions;
582 }
583 
gridTrackSize(GridTrackSizingDirection direction,size_t i) const584 const GridTrackSize& RenderGrid::gridTrackSize(GridTrackSizingDirection direction, size_t i) const
585 {
586     const Vector<GridTrackSize>& trackStyles = (direction == ForColumns) ? style()->gridTemplateColumns() : style()->gridTemplateRows();
587     if (i >= trackStyles.size())
588         return (direction == ForColumns) ? style()->gridAutoColumns() : style()->gridAutoRows();
589 
590     const GridTrackSize& trackSize = trackStyles[i];
591     // If the logical width/height of the grid container is indefinite, percentage values are treated as <auto>.
592     if (trackSize.isPercentage()) {
593         Length logicalSize = direction == ForColumns ? style()->logicalWidth() : style()->logicalHeight();
594         if (logicalSize.isIntrinsicOrAuto()) {
595             DEFINE_STATIC_LOCAL(GridTrackSize, autoTrackSize, (Length(Auto)));
596             return autoTrackSize;
597         }
598     }
599 
600     return trackSize;
601 }
602 
logicalHeightForChild(RenderBox * child,Vector<GridTrack> & columnTracks)603 LayoutUnit RenderGrid::logicalHeightForChild(RenderBox* child, Vector<GridTrack>& columnTracks)
604 {
605     SubtreeLayoutScope layoutScope(*child);
606     LayoutUnit oldOverrideContainingBlockContentLogicalWidth = child->hasOverrideContainingBlockLogicalWidth() ? child->overrideContainingBlockContentLogicalWidth() : LayoutUnit();
607     LayoutUnit overrideContainingBlockContentLogicalWidth = gridAreaBreadthForChild(child, ForColumns, columnTracks);
608     if (child->style()->logicalHeight().isPercent() || oldOverrideContainingBlockContentLogicalWidth != overrideContainingBlockContentLogicalWidth)
609         layoutScope.setNeedsLayout(child);
610 
611     child->setOverrideContainingBlockContentLogicalWidth(overrideContainingBlockContentLogicalWidth);
612     // If |child| has a percentage logical height, we shouldn't let it override its intrinsic height, which is
613     // what we are interested in here. Thus we need to set the override logical height to -1 (no possible resolution).
614     child->setOverrideContainingBlockContentLogicalHeight(-1);
615     child->layoutIfNeeded();
616     return child->logicalHeight() + child->marginLogicalHeight();
617 }
618 
minContentForChild(RenderBox * child,GridTrackSizingDirection direction,Vector<GridTrack> & columnTracks)619 LayoutUnit RenderGrid::minContentForChild(RenderBox* child, GridTrackSizingDirection direction, Vector<GridTrack>& columnTracks)
620 {
621     bool hasOrthogonalWritingMode = child->isHorizontalWritingMode() != isHorizontalWritingMode();
622     // FIXME: Properly support orthogonal writing mode.
623     if (hasOrthogonalWritingMode)
624         return 0;
625 
626     if (direction == ForColumns) {
627         // FIXME: It's unclear if we should return the intrinsic width or the preferred width.
628         // See http://lists.w3.org/Archives/Public/www-style/2013Jan/0245.html
629         return child->minPreferredLogicalWidth() + marginIntrinsicLogicalWidthForChild(child);
630     }
631 
632     return logicalHeightForChild(child, columnTracks);
633 }
634 
maxContentForChild(RenderBox * child,GridTrackSizingDirection direction,Vector<GridTrack> & columnTracks)635 LayoutUnit RenderGrid::maxContentForChild(RenderBox* child, GridTrackSizingDirection direction, Vector<GridTrack>& columnTracks)
636 {
637     bool hasOrthogonalWritingMode = child->isHorizontalWritingMode() != isHorizontalWritingMode();
638     // FIXME: Properly support orthogonal writing mode.
639     if (hasOrthogonalWritingMode)
640         return LayoutUnit();
641 
642     if (direction == ForColumns) {
643         // FIXME: It's unclear if we should return the intrinsic width or the preferred width.
644         // See http://lists.w3.org/Archives/Public/www-style/2013Jan/0245.html
645         return child->maxPreferredLogicalWidth() + marginIntrinsicLogicalWidthForChild(child);
646     }
647 
648     return logicalHeightForChild(child, columnTracks);
649 }
650 
resolveContentBasedTrackSizingFunctions(GridTrackSizingDirection direction,GridSizingData & sizingData,LayoutUnit & availableLogicalSpace)651 void RenderGrid::resolveContentBasedTrackSizingFunctions(GridTrackSizingDirection direction, GridSizingData& sizingData, LayoutUnit& availableLogicalSpace)
652 {
653     // FIXME: Split the grid tracks into groups that doesn't overlap a <flex> grid track (crbug.com/235258).
654 
655     // FIXME: Per step 2 of the specification, we should order the grid items by increasing span.
656 
657     for (size_t i = 0; i < sizingData.contentSizedTracksIndex.size(); ++i) {
658         GridIterator iterator(m_grid, direction, sizingData.contentSizedTracksIndex[i]);
659         while (RenderBox* gridItem = iterator.nextGridItem()) {
660             resolveContentBasedTrackSizingFunctionsForItems(direction, sizingData, gridItem, &GridTrackSize::hasMinOrMaxContentMinTrackBreadth, &RenderGrid::minContentForChild, &GridTrack::usedBreadth, &GridTrack::growUsedBreadth);
661             resolveContentBasedTrackSizingFunctionsForItems(direction, sizingData, gridItem, &GridTrackSize::hasMaxContentMinTrackBreadth, &RenderGrid::maxContentForChild, &GridTrack::usedBreadth, &GridTrack::growUsedBreadth);
662             resolveContentBasedTrackSizingFunctionsForItems(direction, sizingData, gridItem, &GridTrackSize::hasMinOrMaxContentMaxTrackBreadth, &RenderGrid::minContentForChild, &GridTrack::maxBreadthIfNotInfinite, &GridTrack::growMaxBreadth);
663             resolveContentBasedTrackSizingFunctionsForItems(direction, sizingData, gridItem, &GridTrackSize::hasMaxContentMaxTrackBreadth, &RenderGrid::maxContentForChild, &GridTrack::maxBreadthIfNotInfinite, &GridTrack::growMaxBreadth);
664         }
665 
666         GridTrack& track = (direction == ForColumns) ? sizingData.columnTracks[i] : sizingData.rowTracks[i];
667         if (track.m_maxBreadth == infinity)
668             track.m_maxBreadth = track.m_usedBreadth;
669     }
670 }
671 
resolveContentBasedTrackSizingFunctionsForItems(GridTrackSizingDirection direction,GridSizingData & sizingData,RenderBox * gridItem,FilterFunction filterFunction,SizingFunction sizingFunction,AccumulatorGetter trackGetter,AccumulatorGrowFunction trackGrowthFunction)672 void RenderGrid::resolveContentBasedTrackSizingFunctionsForItems(GridTrackSizingDirection direction, GridSizingData& sizingData, RenderBox* gridItem, FilterFunction filterFunction, SizingFunction sizingFunction, AccumulatorGetter trackGetter, AccumulatorGrowFunction trackGrowthFunction)
673 {
674     const GridCoordinate coordinate = cachedGridCoordinate(gridItem);
675     const GridResolvedPosition initialTrackPosition = (direction == ForColumns) ? coordinate.columns.resolvedInitialPosition : coordinate.rows.resolvedInitialPosition;
676     const GridResolvedPosition finalTrackPosition = (direction == ForColumns) ? coordinate.columns.resolvedFinalPosition : coordinate.rows.resolvedFinalPosition;
677 
678     sizingData.filteredTracks.shrink(0);
679     for (GridResolvedPosition trackPosition = initialTrackPosition; trackPosition <= finalTrackPosition; ++trackPosition) {
680         const GridTrackSize& trackSize = gridTrackSize(direction, trackPosition.toInt());
681         if (!(trackSize.*filterFunction)())
682             continue;
683 
684         GridTrack& track = (direction == ForColumns) ? sizingData.columnTracks[trackPosition.toInt()] : sizingData.rowTracks[trackPosition.toInt()];
685         sizingData.filteredTracks.append(&track);
686     }
687 
688     if (sizingData.filteredTracks.isEmpty())
689         return;
690 
691     LayoutUnit additionalBreadthSpace = (this->*sizingFunction)(gridItem, direction, sizingData.columnTracks);
692     for (GridResolvedPosition trackIndexForSpace = initialTrackPosition; trackIndexForSpace <= finalTrackPosition; ++trackIndexForSpace) {
693         GridTrack& track = (direction == ForColumns) ? sizingData.columnTracks[trackIndexForSpace.toInt()] : sizingData.rowTracks[trackIndexForSpace.toInt()];
694         additionalBreadthSpace -= (track.*trackGetter)();
695     }
696 
697     // FIXME: We should pass different values for |tracksForGrowthAboveMaxBreadth|.
698     distributeSpaceToTracks(sizingData.filteredTracks, &sizingData.filteredTracks, trackGetter, trackGrowthFunction, sizingData, additionalBreadthSpace);
699 }
700 
sortByGridTrackGrowthPotential(const GridTrack * track1,const GridTrack * track2)701 static bool sortByGridTrackGrowthPotential(const GridTrack* track1, const GridTrack* track2)
702 {
703     return (track1->m_maxBreadth - track1->m_usedBreadth) < (track2->m_maxBreadth - track2->m_usedBreadth);
704 }
705 
distributeSpaceToTracks(Vector<GridTrack * > & tracks,Vector<GridTrack * > * tracksForGrowthAboveMaxBreadth,AccumulatorGetter trackGetter,AccumulatorGrowFunction trackGrowthFunction,GridSizingData & sizingData,LayoutUnit & availableLogicalSpace)706 void RenderGrid::distributeSpaceToTracks(Vector<GridTrack*>& tracks, Vector<GridTrack*>* tracksForGrowthAboveMaxBreadth, AccumulatorGetter trackGetter, AccumulatorGrowFunction trackGrowthFunction, GridSizingData& sizingData, LayoutUnit& availableLogicalSpace)
707 {
708     std::sort(tracks.begin(), tracks.end(), sortByGridTrackGrowthPotential);
709 
710     size_t tracksSize = tracks.size();
711     sizingData.distributeTrackVector.resize(tracksSize);
712 
713     for (size_t i = 0; i < tracksSize; ++i) {
714         GridTrack& track = *tracks[i];
715         LayoutUnit availableLogicalSpaceShare = availableLogicalSpace / (tracksSize - i);
716         LayoutUnit trackBreadth = (tracks[i]->*trackGetter)();
717         LayoutUnit growthShare = std::min(availableLogicalSpaceShare, track.m_maxBreadth - trackBreadth);
718         sizingData.distributeTrackVector[i] = trackBreadth;
719         // We should never shrink any grid track or else we can't guarantee we abide by our min-sizing function.
720         if (growthShare > 0) {
721             sizingData.distributeTrackVector[i] += growthShare;
722             availableLogicalSpace -= growthShare;
723         }
724     }
725 
726     if (availableLogicalSpace > 0 && tracksForGrowthAboveMaxBreadth) {
727         tracksSize = tracksForGrowthAboveMaxBreadth->size();
728         for (size_t i = 0; i < tracksSize; ++i) {
729             LayoutUnit growthShare = availableLogicalSpace / (tracksSize - i);
730             sizingData.distributeTrackVector[i] += growthShare;
731             availableLogicalSpace -= growthShare;
732         }
733     }
734 
735     for (size_t i = 0; i < tracksSize; ++i) {
736         LayoutUnit growth = sizingData.distributeTrackVector[i] - (tracks[i]->*trackGetter)();
737         if (growth >= 0)
738             (tracks[i]->*trackGrowthFunction)(growth);
739     }
740 }
741 
742 #ifndef NDEBUG
tracksAreWiderThanMinTrackBreadth(GridTrackSizingDirection direction,const Vector<GridTrack> & tracks)743 bool RenderGrid::tracksAreWiderThanMinTrackBreadth(GridTrackSizingDirection direction, const Vector<GridTrack>& tracks)
744 {
745     for (size_t i = 0; i < tracks.size(); ++i) {
746         const GridTrackSize& trackSize = gridTrackSize(direction, i);
747         const GridLength& minTrackBreadth = trackSize.minTrackBreadth();
748         if (computeUsedBreadthOfMinLength(direction, minTrackBreadth) > tracks[i].m_usedBreadth)
749             return false;
750     }
751     return true;
752 }
753 #endif
754 
ensureGridSize(size_t maximumRowIndex,size_t maximumColumnIndex)755 void RenderGrid::ensureGridSize(size_t maximumRowIndex, size_t maximumColumnIndex)
756 {
757     const size_t oldRowSize = gridRowCount();
758     if (maximumRowIndex >= oldRowSize) {
759         m_grid.grow(maximumRowIndex + 1);
760         for (size_t row = oldRowSize; row < gridRowCount(); ++row)
761             m_grid[row].grow(gridColumnCount());
762     }
763 
764     if (maximumColumnIndex >= gridColumnCount()) {
765         for (size_t row = 0; row < gridRowCount(); ++row)
766             m_grid[row].grow(maximumColumnIndex + 1);
767     }
768 }
769 
insertItemIntoGrid(RenderBox * child,const GridCoordinate & coordinate)770 void RenderGrid::insertItemIntoGrid(RenderBox* child, const GridCoordinate& coordinate)
771 {
772     ensureGridSize(coordinate.rows.resolvedFinalPosition.toInt(), coordinate.columns.resolvedFinalPosition.toInt());
773 
774     for (GridSpan::iterator row = coordinate.rows.begin(); row != coordinate.rows.end(); ++row) {
775         for (GridSpan::iterator column = coordinate.columns.begin(); column != coordinate.columns.end(); ++column)
776             m_grid[row.toInt()][column.toInt()].append(child);
777     }
778 
779     m_gridItemCoordinate.set(child, coordinate);
780 }
781 
placeItemsOnGrid()782 void RenderGrid::placeItemsOnGrid()
783 {
784     if (!gridIsDirty())
785         return;
786 
787     ASSERT(m_gridItemCoordinate.isEmpty());
788 
789     populateExplicitGridAndOrderIterator();
790 
791     // We clear the dirty bit here as the grid sizes have been updated, this means
792     // that we can safely call gridRowCount() / gridColumnCount().
793     m_gridIsDirty = false;
794 
795     Vector<RenderBox*> autoMajorAxisAutoGridItems;
796     Vector<RenderBox*> specifiedMajorAxisAutoGridItems;
797     GridAutoFlow autoFlow = style()->gridAutoFlow();
798     for (RenderBox* child = m_orderIterator.first(); child; child = m_orderIterator.next()) {
799         // FIXME: We never re-resolve positions if the grid is grown during auto-placement which may lead auto / <integer>
800         // positions to not match the author's intent. The specification is unclear on what should be done in this case.
801         OwnPtr<GridSpan> rowPositions = GridResolvedPosition::resolveGridPositionsFromStyle(*style(), *child, ForRows);
802         OwnPtr<GridSpan> columnPositions = GridResolvedPosition::resolveGridPositionsFromStyle(*style(), *child, ForColumns);
803         if (!rowPositions || !columnPositions) {
804             GridSpan* majorAxisPositions = (autoPlacementMajorAxisDirection() == ForColumns) ? columnPositions.get() : rowPositions.get();
805             if (!majorAxisPositions)
806                 autoMajorAxisAutoGridItems.append(child);
807             else
808                 specifiedMajorAxisAutoGridItems.append(child);
809             continue;
810         }
811         insertItemIntoGrid(child, GridCoordinate(*rowPositions, *columnPositions));
812     }
813 
814     ASSERT(gridRowCount() >= style()->gridTemplateRows().size());
815     ASSERT(gridColumnCount() >= style()->gridTemplateColumns().size());
816 
817     if (autoFlow == AutoFlowNone) {
818         // If we did collect some grid items, they won't be placed thus never laid out.
819         ASSERT(!autoMajorAxisAutoGridItems.size());
820         ASSERT(!specifiedMajorAxisAutoGridItems.size());
821         return;
822     }
823 
824     placeSpecifiedMajorAxisItemsOnGrid(specifiedMajorAxisAutoGridItems);
825     placeAutoMajorAxisItemsOnGrid(autoMajorAxisAutoGridItems);
826 
827     m_grid.shrinkToFit();
828 }
829 
populateExplicitGridAndOrderIterator()830 void RenderGrid::populateExplicitGridAndOrderIterator()
831 {
832     OrderIteratorPopulator populator(m_orderIterator);
833 
834     size_t maximumRowIndex = std::max<size_t>(1, GridResolvedPosition::explicitGridRowCount(*style()));
835     size_t maximumColumnIndex = std::max<size_t>(1, GridResolvedPosition::explicitGridColumnCount(*style()));
836 
837     ASSERT(m_gridItemsIndexesMap.isEmpty());
838     size_t childIndex = 0;
839     for (RenderBox* child = firstChildBox(); child; child = child->nextSiblingBox()) {
840         populator.collectChild(child);
841         m_gridItemsIndexesMap.set(child, childIndex++);
842 
843         // This function bypasses the cache (cachedGridCoordinate()) as it is used to build it.
844         OwnPtr<GridSpan> rowPositions = GridResolvedPosition::resolveGridPositionsFromStyle(*style(), *child, ForRows);
845         OwnPtr<GridSpan> columnPositions = GridResolvedPosition::resolveGridPositionsFromStyle(*style(), *child, ForColumns);
846 
847         // |positions| is 0 if we need to run the auto-placement algorithm.
848         if (rowPositions) {
849             maximumRowIndex = std::max<size_t>(maximumRowIndex, rowPositions->resolvedFinalPosition.next().toInt());
850         } else {
851             // Grow the grid for items with a definite row span, getting the largest such span.
852             GridSpan positions = GridResolvedPosition::resolveGridPositionsFromAutoPlacementPosition(*style(), *child, ForRows, GridResolvedPosition(0));
853             maximumRowIndex = std::max<size_t>(maximumRowIndex, positions.resolvedFinalPosition.next().toInt());
854         }
855 
856         if (columnPositions) {
857             maximumColumnIndex = std::max<size_t>(maximumColumnIndex, columnPositions->resolvedFinalPosition.next().toInt());
858         } else {
859             // Grow the grid for items with a definite column span, getting the largest such span.
860             GridSpan positions = GridResolvedPosition::resolveGridPositionsFromAutoPlacementPosition(*style(), *child, ForColumns, GridResolvedPosition(0));
861             maximumColumnIndex = std::max<size_t>(maximumColumnIndex, positions.resolvedFinalPosition.next().toInt());
862         }
863     }
864 
865     m_grid.grow(maximumRowIndex);
866     for (size_t i = 0; i < m_grid.size(); ++i)
867         m_grid[i].grow(maximumColumnIndex);
868 }
869 
createEmptyGridAreaAtSpecifiedPositionsOutsideGrid(const RenderBox * gridItem,GridTrackSizingDirection specifiedDirection,const GridSpan & specifiedPositions) const870 PassOwnPtr<GridCoordinate> RenderGrid::createEmptyGridAreaAtSpecifiedPositionsOutsideGrid(const RenderBox* gridItem, GridTrackSizingDirection specifiedDirection, const GridSpan& specifiedPositions) const
871 {
872     GridTrackSizingDirection crossDirection = specifiedDirection == ForColumns ? ForRows : ForColumns;
873     const size_t endOfCrossDirection = crossDirection == ForColumns ? gridColumnCount() : gridRowCount();
874     GridSpan crossDirectionPositions = GridResolvedPosition::resolveGridPositionsFromAutoPlacementPosition(*style(), *gridItem, crossDirection, GridResolvedPosition(endOfCrossDirection));
875     return adoptPtr(new GridCoordinate(specifiedDirection == ForColumns ? crossDirectionPositions : specifiedPositions, specifiedDirection == ForColumns ? specifiedPositions : crossDirectionPositions));
876 }
877 
placeSpecifiedMajorAxisItemsOnGrid(const Vector<RenderBox * > & autoGridItems)878 void RenderGrid::placeSpecifiedMajorAxisItemsOnGrid(const Vector<RenderBox*>& autoGridItems)
879 {
880     for (size_t i = 0; i < autoGridItems.size(); ++i) {
881         OwnPtr<GridSpan> majorAxisPositions = GridResolvedPosition::resolveGridPositionsFromStyle(*style(), *autoGridItems[i], autoPlacementMajorAxisDirection());
882         GridSpan minorAxisPositions = GridResolvedPosition::resolveGridPositionsFromAutoPlacementPosition(*style(), *autoGridItems[i], autoPlacementMinorAxisDirection(), GridResolvedPosition(0));
883 
884         GridIterator iterator(m_grid, autoPlacementMajorAxisDirection(), majorAxisPositions->resolvedInitialPosition.toInt());
885         OwnPtr<GridCoordinate> emptyGridArea = iterator.nextEmptyGridArea(majorAxisPositions->integerSpan(), minorAxisPositions.integerSpan());
886         if (!emptyGridArea)
887             emptyGridArea = createEmptyGridAreaAtSpecifiedPositionsOutsideGrid(autoGridItems[i], autoPlacementMajorAxisDirection(), *majorAxisPositions);
888         insertItemIntoGrid(autoGridItems[i], *emptyGridArea);
889     }
890 }
891 
placeAutoMajorAxisItemsOnGrid(const Vector<RenderBox * > & autoGridItems)892 void RenderGrid::placeAutoMajorAxisItemsOnGrid(const Vector<RenderBox*>& autoGridItems)
893 {
894     for (size_t i = 0; i < autoGridItems.size(); ++i)
895         placeAutoMajorAxisItemOnGrid(autoGridItems[i]);
896 }
897 
placeAutoMajorAxisItemOnGrid(RenderBox * gridItem)898 void RenderGrid::placeAutoMajorAxisItemOnGrid(RenderBox* gridItem)
899 {
900     OwnPtr<GridSpan> minorAxisPositions = GridResolvedPosition::resolveGridPositionsFromStyle(*style(), *gridItem, autoPlacementMinorAxisDirection());
901     ASSERT(!GridResolvedPosition::resolveGridPositionsFromStyle(*style(), *gridItem, autoPlacementMajorAxisDirection()));
902     GridSpan majorAxisPositions = GridResolvedPosition::resolveGridPositionsFromAutoPlacementPosition(*style(), *gridItem, autoPlacementMajorAxisDirection(), GridResolvedPosition(0));
903     OwnPtr<GridCoordinate> emptyGridArea;
904     if (minorAxisPositions) {
905         GridIterator iterator(m_grid, autoPlacementMinorAxisDirection(), minorAxisPositions->resolvedInitialPosition.toInt());
906         emptyGridArea = iterator.nextEmptyGridArea(minorAxisPositions->integerSpan(), majorAxisPositions.integerSpan());
907         if (!emptyGridArea)
908             emptyGridArea = createEmptyGridAreaAtSpecifiedPositionsOutsideGrid(gridItem, autoPlacementMinorAxisDirection(), *minorAxisPositions);
909     } else {
910         GridSpan minorAxisPositions = GridResolvedPosition::resolveGridPositionsFromAutoPlacementPosition(*style(), *gridItem, autoPlacementMinorAxisDirection(), GridResolvedPosition(0));
911 
912         const size_t endOfMajorAxis = (autoPlacementMajorAxisDirection() == ForColumns) ? gridColumnCount() : gridRowCount();
913         for (size_t majorAxisIndex = 0; majorAxisIndex < endOfMajorAxis; ++majorAxisIndex) {
914             GridIterator iterator(m_grid, autoPlacementMajorAxisDirection(), majorAxisIndex);
915             emptyGridArea = iterator.nextEmptyGridArea(majorAxisPositions.integerSpan(), minorAxisPositions.integerSpan());
916 
917             if (emptyGridArea) {
918                 // Check that it fits in the minor axis direction, as we shouldn't grow in that direction here (it was already managed in populateExplicitGridAndOrderIterator()).
919                 GridResolvedPosition minorAxisFinalPositionIndex = autoPlacementMinorAxisDirection() == ForColumns ? emptyGridArea->columns.resolvedFinalPosition : emptyGridArea->rows.resolvedFinalPosition;
920                 const size_t endOfMinorAxis = autoPlacementMinorAxisDirection() == ForColumns ? gridColumnCount() : gridRowCount();
921                 if (minorAxisFinalPositionIndex.toInt() < endOfMinorAxis)
922                     break;
923 
924                 // Discard empty grid area as it does not fit in the minor axis direction.
925                 // We don't need to create a new empty grid area yet as we might find a valid one in the next iteration.
926                 emptyGridArea = nullptr;
927             }
928         }
929 
930         if (!emptyGridArea)
931             emptyGridArea = createEmptyGridAreaAtSpecifiedPositionsOutsideGrid(gridItem, autoPlacementMinorAxisDirection(), minorAxisPositions);
932     }
933 
934     insertItemIntoGrid(gridItem, *emptyGridArea);
935 }
936 
autoPlacementMajorAxisDirection() const937 GridTrackSizingDirection RenderGrid::autoPlacementMajorAxisDirection() const
938 {
939     GridAutoFlow flow = style()->gridAutoFlow();
940     ASSERT(flow != AutoFlowNone);
941     return (flow == AutoFlowColumn) ? ForColumns : ForRows;
942 }
943 
autoPlacementMinorAxisDirection() const944 GridTrackSizingDirection RenderGrid::autoPlacementMinorAxisDirection() const
945 {
946     GridAutoFlow flow = style()->gridAutoFlow();
947     ASSERT(flow != AutoFlowNone);
948     return (flow == AutoFlowColumn) ? ForRows : ForColumns;
949 }
950 
dirtyGrid()951 void RenderGrid::dirtyGrid()
952 {
953     m_grid.resize(0);
954     m_gridItemCoordinate.clear();
955     m_gridIsDirty = true;
956     m_gridItemsOverflowingGridArea.resize(0);
957     m_gridItemsIndexesMap.clear();
958 }
959 
layoutGridItems()960 void RenderGrid::layoutGridItems()
961 {
962     placeItemsOnGrid();
963 
964     GridSizingData sizingData(gridColumnCount(), gridRowCount());
965     computeUsedBreadthOfGridTracks(ForColumns, sizingData);
966     ASSERT(tracksAreWiderThanMinTrackBreadth(ForColumns, sizingData.columnTracks));
967     computeUsedBreadthOfGridTracks(ForRows, sizingData);
968     ASSERT(tracksAreWiderThanMinTrackBreadth(ForRows, sizingData.rowTracks));
969 
970     populateGridPositions(sizingData);
971     m_gridItemsOverflowingGridArea.resize(0);
972 
973     for (RenderBox* child = firstChildBox(); child; child = child->nextSiblingBox()) {
974         // Because the grid area cannot be styled, we don't need to adjust
975         // the grid breadth to account for 'box-sizing'.
976         LayoutUnit oldOverrideContainingBlockContentLogicalWidth = child->hasOverrideContainingBlockLogicalWidth() ? child->overrideContainingBlockContentLogicalWidth() : LayoutUnit();
977         LayoutUnit oldOverrideContainingBlockContentLogicalHeight = child->hasOverrideContainingBlockLogicalHeight() ? child->overrideContainingBlockContentLogicalHeight() : LayoutUnit();
978 
979         LayoutUnit overrideContainingBlockContentLogicalWidth = gridAreaBreadthForChild(child, ForColumns, sizingData.columnTracks);
980         LayoutUnit overrideContainingBlockContentLogicalHeight = gridAreaBreadthForChild(child, ForRows, sizingData.rowTracks);
981 
982         SubtreeLayoutScope layoutScope(*child);
983         if (oldOverrideContainingBlockContentLogicalWidth != overrideContainingBlockContentLogicalWidth || (oldOverrideContainingBlockContentLogicalHeight != overrideContainingBlockContentLogicalHeight && child->hasRelativeLogicalHeight()))
984             layoutScope.setNeedsLayout(child);
985 
986         child->setOverrideContainingBlockContentLogicalWidth(overrideContainingBlockContentLogicalWidth);
987         child->setOverrideContainingBlockContentLogicalHeight(overrideContainingBlockContentLogicalHeight);
988 
989         LayoutRect oldChildRect = child->frameRect();
990 
991         // FIXME: Grid items should stretch to fill their cells. Once we
992         // implement grid-{column,row}-align, we can also shrink to fit. For
993         // now, just size as if we were a regular child.
994         child->layoutIfNeeded();
995 
996 #ifndef NDEBUG
997         const GridCoordinate& coordinate = cachedGridCoordinate(child);
998         ASSERT(coordinate.columns.resolvedInitialPosition.toInt() < sizingData.columnTracks.size());
999         ASSERT(coordinate.rows.resolvedInitialPosition.toInt() < sizingData.rowTracks.size());
1000 #endif
1001         child->setLogicalLocation(findChildLogicalPosition(child));
1002 
1003         // Keep track of children overflowing their grid area as we might need to paint them even if the grid-area is
1004         // not visible
1005         if (child->logicalHeight() > overrideContainingBlockContentLogicalHeight
1006             || child->logicalWidth() > overrideContainingBlockContentLogicalWidth)
1007             m_gridItemsOverflowingGridArea.append(child);
1008 
1009         // If the child moved, we have to repaint it as well as any floating/positioned
1010         // descendants. An exception is if we need a layout. In this case, we know we're going to
1011         // repaint ourselves (and the child) anyway.
1012         if (!selfNeedsLayout() && child->checkForPaintInvalidationDuringLayout())
1013             child->repaintDuringLayoutIfMoved(oldChildRect);
1014     }
1015 
1016     for (size_t i = 0; i < sizingData.rowTracks.size(); ++i)
1017         setLogicalHeight(logicalHeight() + sizingData.rowTracks[i].m_usedBreadth);
1018 
1019     // Min / max logical height is handled by the call to updateLogicalHeight in layoutBlock.
1020 
1021     setLogicalHeight(logicalHeight() + borderAndPaddingLogicalHeight());
1022 }
1023 
cachedGridCoordinate(const RenderBox * gridItem) const1024 GridCoordinate RenderGrid::cachedGridCoordinate(const RenderBox* gridItem) const
1025 {
1026     ASSERT(m_gridItemCoordinate.contains(gridItem));
1027     return m_gridItemCoordinate.get(gridItem);
1028 }
1029 
gridAreaBreadthForChild(const RenderBox * child,GridTrackSizingDirection direction,const Vector<GridTrack> & tracks) const1030 LayoutUnit RenderGrid::gridAreaBreadthForChild(const RenderBox* child, GridTrackSizingDirection direction, const Vector<GridTrack>& tracks) const
1031 {
1032     const GridCoordinate& coordinate = cachedGridCoordinate(child);
1033     const GridSpan& span = (direction == ForColumns) ? coordinate.columns : coordinate.rows;
1034     LayoutUnit gridAreaBreadth = 0;
1035     for (GridSpan::iterator trackPosition = span.begin(); trackPosition != span.end(); ++trackPosition)
1036         gridAreaBreadth += tracks[trackPosition.toInt()].m_usedBreadth;
1037     return gridAreaBreadth;
1038 }
1039 
populateGridPositions(const GridSizingData & sizingData)1040 void RenderGrid::populateGridPositions(const GridSizingData& sizingData)
1041 {
1042     m_columnPositions.resize(sizingData.columnTracks.size() + 1);
1043     m_columnPositions[0] = borderAndPaddingStart();
1044     for (size_t i = 0; i < m_columnPositions.size() - 1; ++i)
1045         m_columnPositions[i + 1] = m_columnPositions[i] + sizingData.columnTracks[i].m_usedBreadth;
1046 
1047     m_rowPositions.resize(sizingData.rowTracks.size() + 1);
1048     m_rowPositions[0] = borderAndPaddingBefore();
1049     for (size_t i = 0; i < m_rowPositions.size() - 1; ++i)
1050         m_rowPositions[i + 1] = m_rowPositions[i] + sizingData.rowTracks[i].m_usedBreadth;
1051 }
1052 
startOfColumnForChild(const RenderBox * child) const1053 LayoutUnit RenderGrid::startOfColumnForChild(const RenderBox* child) const
1054 {
1055     const GridCoordinate& coordinate = cachedGridCoordinate(child);
1056     LayoutUnit startOfColumn = m_columnPositions[coordinate.columns.resolvedInitialPosition.toInt()];
1057     // The grid items should be inside the grid container's border box, that's why they need to be shifted.
1058     // FIXME: This should account for the grid item's <overflow-position>.
1059     return startOfColumn + marginStartForChild(child);
1060 }
1061 
endOfColumnForChild(const RenderBox * child) const1062 LayoutUnit RenderGrid::endOfColumnForChild(const RenderBox* child) const
1063 {
1064     const GridCoordinate& coordinate = cachedGridCoordinate(child);
1065     LayoutUnit startOfColumn = m_columnPositions[coordinate.columns.resolvedInitialPosition.toInt()];
1066     // The grid items should be inside the grid container's border box, that's why they need to be shifted.
1067     LayoutUnit columnPosition = startOfColumn + marginStartForChild(child);
1068 
1069     LayoutUnit endOfColumn = m_columnPositions[coordinate.columns.resolvedFinalPosition.next().toInt()];
1070     // FIXME: This should account for the grid item's <overflow-position>.
1071     return columnPosition + std::max<LayoutUnit>(0, endOfColumn - m_columnPositions[coordinate.columns.resolvedInitialPosition.toInt()] - child->logicalWidth());
1072 }
1073 
columnPositionAlignedWithGridContainerStart(const RenderBox * child) const1074 LayoutUnit RenderGrid::columnPositionAlignedWithGridContainerStart(const RenderBox* child) const
1075 {
1076     if (style()->isLeftToRightDirection())
1077         return startOfColumnForChild(child);
1078 
1079     return endOfColumnForChild(child);
1080 }
1081 
columnPositionAlignedWithGridContainerEnd(const RenderBox * child) const1082 LayoutUnit RenderGrid::columnPositionAlignedWithGridContainerEnd(const RenderBox* child) const
1083 {
1084     if (!style()->isLeftToRightDirection())
1085         return startOfColumnForChild(child);
1086 
1087     return endOfColumnForChild(child);
1088 }
1089 
centeredColumnPositionForChild(const RenderBox * child) const1090 LayoutUnit RenderGrid::centeredColumnPositionForChild(const RenderBox* child) const
1091 {
1092     const GridCoordinate& coordinate = cachedGridCoordinate(child);
1093     LayoutUnit startOfColumn = m_columnPositions[coordinate.columns.resolvedInitialPosition.toInt()];
1094     LayoutUnit endOfColumn = m_columnPositions[coordinate.columns.resolvedFinalPosition.next().toInt()];
1095     LayoutUnit columnPosition = startOfColumn + marginStartForChild(child);
1096     return columnPosition + std::max<LayoutUnit>(0, endOfColumn - startOfColumn - child->logicalWidth()) / 2;
1097 }
1098 
columnPositionForChild(const RenderBox * child) const1099 LayoutUnit RenderGrid::columnPositionForChild(const RenderBox* child) const
1100 {
1101     ItemPosition childJustifySelf = child->style()->justifySelf();
1102     switch (childJustifySelf) {
1103     case ItemPositionSelfStart:
1104         // self-start is based on the child's direction. That's why we need to check against the grid container's direction.
1105         if (child->style()->direction() != style()->direction())
1106             return columnPositionAlignedWithGridContainerEnd(child);
1107 
1108         return columnPositionAlignedWithGridContainerStart(child);
1109     case ItemPositionSelfEnd:
1110         // self-end is based on the child's direction. That's why we need to check against the grid container's direction.
1111         if (child->style()->direction() != style()->direction())
1112             return columnPositionAlignedWithGridContainerStart(child);
1113 
1114         return columnPositionAlignedWithGridContainerEnd(child);
1115 
1116     case ItemPositionFlexStart:
1117     case ItemPositionFlexEnd:
1118         // Only used in flex layout, for other layout, it's equivalent to 'start'.
1119         return columnPositionAlignedWithGridContainerStart(child);
1120 
1121     case ItemPositionLeft:
1122         // If the property's axis is not parallel with the inline axis, this is equivalent to ‘start’.
1123         if (!isHorizontalWritingMode())
1124             return columnPositionAlignedWithGridContainerStart(child);
1125 
1126         if (style()->isLeftToRightDirection())
1127             return columnPositionAlignedWithGridContainerStart(child);
1128 
1129         return columnPositionAlignedWithGridContainerEnd(child);
1130     case ItemPositionRight:
1131         // If the property's axis is not parallel with the inline axis, this is equivalent to ‘start’.
1132         if (!isHorizontalWritingMode())
1133             return columnPositionAlignedWithGridContainerStart(child);
1134 
1135         if (style()->isLeftToRightDirection())
1136             return columnPositionAlignedWithGridContainerEnd(child);
1137 
1138         return columnPositionAlignedWithGridContainerStart(child);
1139 
1140     case ItemPositionCenter:
1141         return centeredColumnPositionForChild(child);
1142     case ItemPositionStart:
1143         return columnPositionAlignedWithGridContainerStart(child);
1144     case ItemPositionEnd:
1145         return columnPositionAlignedWithGridContainerEnd(child);
1146 
1147     case ItemPositionAuto:
1148     case ItemPositionStretch:
1149     case ItemPositionBaseline:
1150         // FIXME: Implement the previous values. For now, we always start align the child.
1151         return startOfColumnForChild(child);
1152     }
1153 
1154     ASSERT_NOT_REACHED();
1155     return 0;
1156 }
1157 
rowPositionForChild(const RenderBox * child) const1158 LayoutUnit RenderGrid::rowPositionForChild(const RenderBox* child) const
1159 {
1160     const GridCoordinate& coordinate = cachedGridCoordinate(child);
1161 
1162     // The grid items should be inside the grid container's border box, that's why they need to be shifted.
1163     LayoutUnit startOfRow = m_rowPositions[coordinate.rows.resolvedInitialPosition.toInt()];
1164     LayoutUnit rowPosition = startOfRow + marginBeforeForChild(child);
1165 
1166     // FIXME: This function should account for 'align-self'.
1167 
1168     return rowPosition;
1169 }
1170 
findChildLogicalPosition(const RenderBox * child) const1171 LayoutPoint RenderGrid::findChildLogicalPosition(const RenderBox* child) const
1172 {
1173     return LayoutPoint(columnPositionForChild(child), rowPositionForChild(child));
1174 }
1175 
dirtiedGridAreas(const Vector<LayoutUnit> & coordinates,LayoutUnit start,LayoutUnit end)1176 static GridSpan dirtiedGridAreas(const Vector<LayoutUnit>& coordinates, LayoutUnit start, LayoutUnit end)
1177 {
1178     // This function does a binary search over the coordinates.
1179     // This doesn't work with grid items overflowing their grid areas, but that is managed with m_gridItemsOverflowingGridArea.
1180 
1181     size_t startGridAreaIndex = std::upper_bound(coordinates.begin(), coordinates.end() - 1, start) - coordinates.begin();
1182     if (startGridAreaIndex > 0)
1183         --startGridAreaIndex;
1184 
1185     size_t endGridAreaIndex = std::upper_bound(coordinates.begin() + startGridAreaIndex, coordinates.end() - 1, end) - coordinates.begin();
1186     if (endGridAreaIndex > 0)
1187         --endGridAreaIndex;
1188 
1189     return GridSpan(startGridAreaIndex, endGridAreaIndex);
1190 }
1191 
1192 class GridItemsSorter {
1193 public:
operator ()(const std::pair<RenderBox *,size_t> firstChild,const std::pair<RenderBox *,size_t> secondChild) const1194     bool operator()(const std::pair<RenderBox*, size_t> firstChild, const std::pair<RenderBox*, size_t> secondChild) const
1195     {
1196         if (firstChild.first->style()->order() != secondChild.first->style()->order())
1197             return firstChild.first->style()->order() < secondChild.first->style()->order();
1198 
1199         return firstChild.second < secondChild.second;
1200     }
1201 };
1202 
paintChildren(PaintInfo & paintInfo,const LayoutPoint & paintOffset)1203 void RenderGrid::paintChildren(PaintInfo& paintInfo, const LayoutPoint& paintOffset)
1204 {
1205     ASSERT_WITH_SECURITY_IMPLICATION(!gridIsDirty());
1206 
1207     LayoutRect localRepaintRect = paintInfo.rect;
1208     localRepaintRect.moveBy(-paintOffset);
1209 
1210     GridSpan dirtiedColumns = dirtiedGridAreas(m_columnPositions, localRepaintRect.x(), localRepaintRect.maxX());
1211     GridSpan dirtiedRows = dirtiedGridAreas(m_rowPositions, localRepaintRect.y(), localRepaintRect.maxY());
1212 
1213     Vector<std::pair<RenderBox*, size_t> > gridItemsToBePainted;
1214 
1215     for (GridSpan::iterator row = dirtiedRows.begin(); row != dirtiedRows.end(); ++row) {
1216         for (GridSpan::iterator column = dirtiedColumns.begin(); column != dirtiedColumns.end(); ++column) {
1217             const Vector<RenderBox*, 1>& children = m_grid[row.toInt()][column.toInt()];
1218             for (size_t j = 0; j < children.size(); ++j)
1219                 gridItemsToBePainted.append(std::make_pair(children[j], m_gridItemsIndexesMap.get(children[j])));
1220         }
1221     }
1222 
1223     for (Vector<RenderBox*>::const_iterator it = m_gridItemsOverflowingGridArea.begin(); it != m_gridItemsOverflowingGridArea.end(); ++it) {
1224         if ((*it)->frameRect().intersects(localRepaintRect))
1225             gridItemsToBePainted.append(std::make_pair(*it, m_gridItemsIndexesMap.get(*it)));
1226     }
1227 
1228     // Sort grid items following order-modified document order.
1229     // See http://www.w3.org/TR/css-flexbox/#order-modified-document-order
1230     std::stable_sort(gridItemsToBePainted.begin(), gridItemsToBePainted.end(), GridItemsSorter());
1231 
1232     RenderBox* previous = 0;
1233     for (Vector<std::pair<RenderBox*, size_t> >::const_iterator it = gridItemsToBePainted.begin(); it != gridItemsToBePainted.end(); ++it) {
1234         // We might have duplicates because of spanning children are included in all cells they span.
1235         // Skip them here to avoid painting items several times.
1236         RenderBox* current = (*it).first;
1237         if (current == previous)
1238             continue;
1239 
1240         paintChild(current, paintInfo, paintOffset);
1241         previous = current;
1242     }
1243 }
1244 
renderName() const1245 const char* RenderGrid::renderName() const
1246 {
1247     if (isFloating())
1248         return "RenderGrid (floating)";
1249     if (isOutOfFlowPositioned())
1250         return "RenderGrid (positioned)";
1251     if (isAnonymous())
1252         return "RenderGrid (generated)";
1253     if (isRelPositioned())
1254         return "RenderGrid (relative positioned)";
1255     return "RenderGrid";
1256 }
1257 
1258 } // namespace WebCore
1259