1 //===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the ASTContext interface.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/AST/ASTContext.h"
15 #include "CXXABI.h"
16 #include "clang/AST/ASTMutationListener.h"
17 #include "clang/AST/Attr.h"
18 #include "clang/AST/CharUnits.h"
19 #include "clang/AST/Comment.h"
20 #include "clang/AST/CommentCommandTraits.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclTemplate.h"
24 #include "clang/AST/Expr.h"
25 #include "clang/AST/ExprCXX.h"
26 #include "clang/AST/ExternalASTSource.h"
27 #include "clang/AST/Mangle.h"
28 #include "clang/AST/MangleNumberingContext.h"
29 #include "clang/AST/RecordLayout.h"
30 #include "clang/AST/RecursiveASTVisitor.h"
31 #include "clang/AST/TypeLoc.h"
32 #include "clang/AST/VTableBuilder.h"
33 #include "clang/Basic/Builtins.h"
34 #include "clang/Basic/SourceManager.h"
35 #include "clang/Basic/TargetInfo.h"
36 #include "llvm/ADT/SmallString.h"
37 #include "llvm/ADT/StringExtras.h"
38 #include "llvm/ADT/Triple.h"
39 #include "llvm/Support/Capacity.h"
40 #include "llvm/Support/MathExtras.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include <map>
43
44 using namespace clang;
45
46 unsigned ASTContext::NumImplicitDefaultConstructors;
47 unsigned ASTContext::NumImplicitDefaultConstructorsDeclared;
48 unsigned ASTContext::NumImplicitCopyConstructors;
49 unsigned ASTContext::NumImplicitCopyConstructorsDeclared;
50 unsigned ASTContext::NumImplicitMoveConstructors;
51 unsigned ASTContext::NumImplicitMoveConstructorsDeclared;
52 unsigned ASTContext::NumImplicitCopyAssignmentOperators;
53 unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
54 unsigned ASTContext::NumImplicitMoveAssignmentOperators;
55 unsigned ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
56 unsigned ASTContext::NumImplicitDestructors;
57 unsigned ASTContext::NumImplicitDestructorsDeclared;
58
59 enum FloatingRank {
60 HalfRank, FloatRank, DoubleRank, LongDoubleRank
61 };
62
getRawCommentForDeclNoCache(const Decl * D) const63 RawComment *ASTContext::getRawCommentForDeclNoCache(const Decl *D) const {
64 if (!CommentsLoaded && ExternalSource) {
65 ExternalSource->ReadComments();
66
67 #ifndef NDEBUG
68 ArrayRef<RawComment *> RawComments = Comments.getComments();
69 assert(std::is_sorted(RawComments.begin(), RawComments.end(),
70 BeforeThanCompare<RawComment>(SourceMgr)));
71 #endif
72
73 CommentsLoaded = true;
74 }
75
76 assert(D);
77
78 // User can not attach documentation to implicit declarations.
79 if (D->isImplicit())
80 return nullptr;
81
82 // User can not attach documentation to implicit instantiations.
83 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
84 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
85 return nullptr;
86 }
87
88 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
89 if (VD->isStaticDataMember() &&
90 VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
91 return nullptr;
92 }
93
94 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
95 if (CRD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
96 return nullptr;
97 }
98
99 if (const ClassTemplateSpecializationDecl *CTSD =
100 dyn_cast<ClassTemplateSpecializationDecl>(D)) {
101 TemplateSpecializationKind TSK = CTSD->getSpecializationKind();
102 if (TSK == TSK_ImplicitInstantiation ||
103 TSK == TSK_Undeclared)
104 return nullptr;
105 }
106
107 if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
108 if (ED->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
109 return nullptr;
110 }
111 if (const TagDecl *TD = dyn_cast<TagDecl>(D)) {
112 // When tag declaration (but not definition!) is part of the
113 // decl-specifier-seq of some other declaration, it doesn't get comment
114 if (TD->isEmbeddedInDeclarator() && !TD->isCompleteDefinition())
115 return nullptr;
116 }
117 // TODO: handle comments for function parameters properly.
118 if (isa<ParmVarDecl>(D))
119 return nullptr;
120
121 // TODO: we could look up template parameter documentation in the template
122 // documentation.
123 if (isa<TemplateTypeParmDecl>(D) ||
124 isa<NonTypeTemplateParmDecl>(D) ||
125 isa<TemplateTemplateParmDecl>(D))
126 return nullptr;
127
128 ArrayRef<RawComment *> RawComments = Comments.getComments();
129
130 // If there are no comments anywhere, we won't find anything.
131 if (RawComments.empty())
132 return nullptr;
133
134 // Find declaration location.
135 // For Objective-C declarations we generally don't expect to have multiple
136 // declarators, thus use declaration starting location as the "declaration
137 // location".
138 // For all other declarations multiple declarators are used quite frequently,
139 // so we use the location of the identifier as the "declaration location".
140 SourceLocation DeclLoc;
141 if (isa<ObjCMethodDecl>(D) || isa<ObjCContainerDecl>(D) ||
142 isa<ObjCPropertyDecl>(D) ||
143 isa<RedeclarableTemplateDecl>(D) ||
144 isa<ClassTemplateSpecializationDecl>(D))
145 DeclLoc = D->getLocStart();
146 else {
147 DeclLoc = D->getLocation();
148 if (DeclLoc.isMacroID()) {
149 if (isa<TypedefDecl>(D)) {
150 // If location of the typedef name is in a macro, it is because being
151 // declared via a macro. Try using declaration's starting location as
152 // the "declaration location".
153 DeclLoc = D->getLocStart();
154 } else if (const TagDecl *TD = dyn_cast<TagDecl>(D)) {
155 // If location of the tag decl is inside a macro, but the spelling of
156 // the tag name comes from a macro argument, it looks like a special
157 // macro like NS_ENUM is being used to define the tag decl. In that
158 // case, adjust the source location to the expansion loc so that we can
159 // attach the comment to the tag decl.
160 if (SourceMgr.isMacroArgExpansion(DeclLoc) &&
161 TD->isCompleteDefinition())
162 DeclLoc = SourceMgr.getExpansionLoc(DeclLoc);
163 }
164 }
165 }
166
167 // If the declaration doesn't map directly to a location in a file, we
168 // can't find the comment.
169 if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
170 return nullptr;
171
172 // Find the comment that occurs just after this declaration.
173 ArrayRef<RawComment *>::iterator Comment;
174 {
175 // When searching for comments during parsing, the comment we are looking
176 // for is usually among the last two comments we parsed -- check them
177 // first.
178 RawComment CommentAtDeclLoc(
179 SourceMgr, SourceRange(DeclLoc), false,
180 LangOpts.CommentOpts.ParseAllComments);
181 BeforeThanCompare<RawComment> Compare(SourceMgr);
182 ArrayRef<RawComment *>::iterator MaybeBeforeDecl = RawComments.end() - 1;
183 bool Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
184 if (!Found && RawComments.size() >= 2) {
185 MaybeBeforeDecl--;
186 Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
187 }
188
189 if (Found) {
190 Comment = MaybeBeforeDecl + 1;
191 assert(Comment == std::lower_bound(RawComments.begin(), RawComments.end(),
192 &CommentAtDeclLoc, Compare));
193 } else {
194 // Slow path.
195 Comment = std::lower_bound(RawComments.begin(), RawComments.end(),
196 &CommentAtDeclLoc, Compare);
197 }
198 }
199
200 // Decompose the location for the declaration and find the beginning of the
201 // file buffer.
202 std::pair<FileID, unsigned> DeclLocDecomp = SourceMgr.getDecomposedLoc(DeclLoc);
203
204 // First check whether we have a trailing comment.
205 if (Comment != RawComments.end() &&
206 (*Comment)->isDocumentation() && (*Comment)->isTrailingComment() &&
207 (isa<FieldDecl>(D) || isa<EnumConstantDecl>(D) || isa<VarDecl>(D) ||
208 isa<ObjCMethodDecl>(D) || isa<ObjCPropertyDecl>(D))) {
209 std::pair<FileID, unsigned> CommentBeginDecomp
210 = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getBegin());
211 // Check that Doxygen trailing comment comes after the declaration, starts
212 // on the same line and in the same file as the declaration.
213 if (DeclLocDecomp.first == CommentBeginDecomp.first &&
214 SourceMgr.getLineNumber(DeclLocDecomp.first, DeclLocDecomp.second)
215 == SourceMgr.getLineNumber(CommentBeginDecomp.first,
216 CommentBeginDecomp.second)) {
217 return *Comment;
218 }
219 }
220
221 // The comment just after the declaration was not a trailing comment.
222 // Let's look at the previous comment.
223 if (Comment == RawComments.begin())
224 return nullptr;
225 --Comment;
226
227 // Check that we actually have a non-member Doxygen comment.
228 if (!(*Comment)->isDocumentation() || (*Comment)->isTrailingComment())
229 return nullptr;
230
231 // Decompose the end of the comment.
232 std::pair<FileID, unsigned> CommentEndDecomp
233 = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getEnd());
234
235 // If the comment and the declaration aren't in the same file, then they
236 // aren't related.
237 if (DeclLocDecomp.first != CommentEndDecomp.first)
238 return nullptr;
239
240 // Get the corresponding buffer.
241 bool Invalid = false;
242 const char *Buffer = SourceMgr.getBufferData(DeclLocDecomp.first,
243 &Invalid).data();
244 if (Invalid)
245 return nullptr;
246
247 // Extract text between the comment and declaration.
248 StringRef Text(Buffer + CommentEndDecomp.second,
249 DeclLocDecomp.second - CommentEndDecomp.second);
250
251 // There should be no other declarations or preprocessor directives between
252 // comment and declaration.
253 if (Text.find_first_of(";{}#@") != StringRef::npos)
254 return nullptr;
255
256 return *Comment;
257 }
258
259 namespace {
260 /// If we have a 'templated' declaration for a template, adjust 'D' to
261 /// refer to the actual template.
262 /// If we have an implicit instantiation, adjust 'D' to refer to template.
adjustDeclToTemplate(const Decl * D)263 const Decl *adjustDeclToTemplate(const Decl *D) {
264 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
265 // Is this function declaration part of a function template?
266 if (const FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
267 return FTD;
268
269 // Nothing to do if function is not an implicit instantiation.
270 if (FD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation)
271 return D;
272
273 // Function is an implicit instantiation of a function template?
274 if (const FunctionTemplateDecl *FTD = FD->getPrimaryTemplate())
275 return FTD;
276
277 // Function is instantiated from a member definition of a class template?
278 if (const FunctionDecl *MemberDecl =
279 FD->getInstantiatedFromMemberFunction())
280 return MemberDecl;
281
282 return D;
283 }
284 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
285 // Static data member is instantiated from a member definition of a class
286 // template?
287 if (VD->isStaticDataMember())
288 if (const VarDecl *MemberDecl = VD->getInstantiatedFromStaticDataMember())
289 return MemberDecl;
290
291 return D;
292 }
293 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
294 // Is this class declaration part of a class template?
295 if (const ClassTemplateDecl *CTD = CRD->getDescribedClassTemplate())
296 return CTD;
297
298 // Class is an implicit instantiation of a class template or partial
299 // specialization?
300 if (const ClassTemplateSpecializationDecl *CTSD =
301 dyn_cast<ClassTemplateSpecializationDecl>(CRD)) {
302 if (CTSD->getSpecializationKind() != TSK_ImplicitInstantiation)
303 return D;
304 llvm::PointerUnion<ClassTemplateDecl *,
305 ClassTemplatePartialSpecializationDecl *>
306 PU = CTSD->getSpecializedTemplateOrPartial();
307 return PU.is<ClassTemplateDecl*>() ?
308 static_cast<const Decl*>(PU.get<ClassTemplateDecl *>()) :
309 static_cast<const Decl*>(
310 PU.get<ClassTemplatePartialSpecializationDecl *>());
311 }
312
313 // Class is instantiated from a member definition of a class template?
314 if (const MemberSpecializationInfo *Info =
315 CRD->getMemberSpecializationInfo())
316 return Info->getInstantiatedFrom();
317
318 return D;
319 }
320 if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
321 // Enum is instantiated from a member definition of a class template?
322 if (const EnumDecl *MemberDecl = ED->getInstantiatedFromMemberEnum())
323 return MemberDecl;
324
325 return D;
326 }
327 // FIXME: Adjust alias templates?
328 return D;
329 }
330 } // unnamed namespace
331
getRawCommentForAnyRedecl(const Decl * D,const Decl ** OriginalDecl) const332 const RawComment *ASTContext::getRawCommentForAnyRedecl(
333 const Decl *D,
334 const Decl **OriginalDecl) const {
335 D = adjustDeclToTemplate(D);
336
337 // Check whether we have cached a comment for this declaration already.
338 {
339 llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
340 RedeclComments.find(D);
341 if (Pos != RedeclComments.end()) {
342 const RawCommentAndCacheFlags &Raw = Pos->second;
343 if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
344 if (OriginalDecl)
345 *OriginalDecl = Raw.getOriginalDecl();
346 return Raw.getRaw();
347 }
348 }
349 }
350
351 // Search for comments attached to declarations in the redeclaration chain.
352 const RawComment *RC = nullptr;
353 const Decl *OriginalDeclForRC = nullptr;
354 for (auto I : D->redecls()) {
355 llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
356 RedeclComments.find(I);
357 if (Pos != RedeclComments.end()) {
358 const RawCommentAndCacheFlags &Raw = Pos->second;
359 if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
360 RC = Raw.getRaw();
361 OriginalDeclForRC = Raw.getOriginalDecl();
362 break;
363 }
364 } else {
365 RC = getRawCommentForDeclNoCache(I);
366 OriginalDeclForRC = I;
367 RawCommentAndCacheFlags Raw;
368 if (RC) {
369 Raw.setRaw(RC);
370 Raw.setKind(RawCommentAndCacheFlags::FromDecl);
371 } else
372 Raw.setKind(RawCommentAndCacheFlags::NoCommentInDecl);
373 Raw.setOriginalDecl(I);
374 RedeclComments[I] = Raw;
375 if (RC)
376 break;
377 }
378 }
379
380 // If we found a comment, it should be a documentation comment.
381 assert(!RC || RC->isDocumentation());
382
383 if (OriginalDecl)
384 *OriginalDecl = OriginalDeclForRC;
385
386 // Update cache for every declaration in the redeclaration chain.
387 RawCommentAndCacheFlags Raw;
388 Raw.setRaw(RC);
389 Raw.setKind(RawCommentAndCacheFlags::FromRedecl);
390 Raw.setOriginalDecl(OriginalDeclForRC);
391
392 for (auto I : D->redecls()) {
393 RawCommentAndCacheFlags &R = RedeclComments[I];
394 if (R.getKind() == RawCommentAndCacheFlags::NoCommentInDecl)
395 R = Raw;
396 }
397
398 return RC;
399 }
400
addRedeclaredMethods(const ObjCMethodDecl * ObjCMethod,SmallVectorImpl<const NamedDecl * > & Redeclared)401 static void addRedeclaredMethods(const ObjCMethodDecl *ObjCMethod,
402 SmallVectorImpl<const NamedDecl *> &Redeclared) {
403 const DeclContext *DC = ObjCMethod->getDeclContext();
404 if (const ObjCImplDecl *IMD = dyn_cast<ObjCImplDecl>(DC)) {
405 const ObjCInterfaceDecl *ID = IMD->getClassInterface();
406 if (!ID)
407 return;
408 // Add redeclared method here.
409 for (const auto *Ext : ID->known_extensions()) {
410 if (ObjCMethodDecl *RedeclaredMethod =
411 Ext->getMethod(ObjCMethod->getSelector(),
412 ObjCMethod->isInstanceMethod()))
413 Redeclared.push_back(RedeclaredMethod);
414 }
415 }
416 }
417
cloneFullComment(comments::FullComment * FC,const Decl * D) const418 comments::FullComment *ASTContext::cloneFullComment(comments::FullComment *FC,
419 const Decl *D) const {
420 comments::DeclInfo *ThisDeclInfo = new (*this) comments::DeclInfo;
421 ThisDeclInfo->CommentDecl = D;
422 ThisDeclInfo->IsFilled = false;
423 ThisDeclInfo->fill();
424 ThisDeclInfo->CommentDecl = FC->getDecl();
425 if (!ThisDeclInfo->TemplateParameters)
426 ThisDeclInfo->TemplateParameters = FC->getDeclInfo()->TemplateParameters;
427 comments::FullComment *CFC =
428 new (*this) comments::FullComment(FC->getBlocks(),
429 ThisDeclInfo);
430 return CFC;
431
432 }
433
getLocalCommentForDeclUncached(const Decl * D) const434 comments::FullComment *ASTContext::getLocalCommentForDeclUncached(const Decl *D) const {
435 const RawComment *RC = getRawCommentForDeclNoCache(D);
436 return RC ? RC->parse(*this, nullptr, D) : nullptr;
437 }
438
getCommentForDecl(const Decl * D,const Preprocessor * PP) const439 comments::FullComment *ASTContext::getCommentForDecl(
440 const Decl *D,
441 const Preprocessor *PP) const {
442 if (D->isInvalidDecl())
443 return nullptr;
444 D = adjustDeclToTemplate(D);
445
446 const Decl *Canonical = D->getCanonicalDecl();
447 llvm::DenseMap<const Decl *, comments::FullComment *>::iterator Pos =
448 ParsedComments.find(Canonical);
449
450 if (Pos != ParsedComments.end()) {
451 if (Canonical != D) {
452 comments::FullComment *FC = Pos->second;
453 comments::FullComment *CFC = cloneFullComment(FC, D);
454 return CFC;
455 }
456 return Pos->second;
457 }
458
459 const Decl *OriginalDecl;
460
461 const RawComment *RC = getRawCommentForAnyRedecl(D, &OriginalDecl);
462 if (!RC) {
463 if (isa<ObjCMethodDecl>(D) || isa<FunctionDecl>(D)) {
464 SmallVector<const NamedDecl*, 8> Overridden;
465 const ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(D);
466 if (OMD && OMD->isPropertyAccessor())
467 if (const ObjCPropertyDecl *PDecl = OMD->findPropertyDecl())
468 if (comments::FullComment *FC = getCommentForDecl(PDecl, PP))
469 return cloneFullComment(FC, D);
470 if (OMD)
471 addRedeclaredMethods(OMD, Overridden);
472 getOverriddenMethods(dyn_cast<NamedDecl>(D), Overridden);
473 for (unsigned i = 0, e = Overridden.size(); i < e; i++)
474 if (comments::FullComment *FC = getCommentForDecl(Overridden[i], PP))
475 return cloneFullComment(FC, D);
476 }
477 else if (const TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) {
478 // Attach any tag type's documentation to its typedef if latter
479 // does not have one of its own.
480 QualType QT = TD->getUnderlyingType();
481 if (const TagType *TT = QT->getAs<TagType>())
482 if (const Decl *TD = TT->getDecl())
483 if (comments::FullComment *FC = getCommentForDecl(TD, PP))
484 return cloneFullComment(FC, D);
485 }
486 else if (const ObjCInterfaceDecl *IC = dyn_cast<ObjCInterfaceDecl>(D)) {
487 while (IC->getSuperClass()) {
488 IC = IC->getSuperClass();
489 if (comments::FullComment *FC = getCommentForDecl(IC, PP))
490 return cloneFullComment(FC, D);
491 }
492 }
493 else if (const ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(D)) {
494 if (const ObjCInterfaceDecl *IC = CD->getClassInterface())
495 if (comments::FullComment *FC = getCommentForDecl(IC, PP))
496 return cloneFullComment(FC, D);
497 }
498 else if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
499 if (!(RD = RD->getDefinition()))
500 return nullptr;
501 // Check non-virtual bases.
502 for (const auto &I : RD->bases()) {
503 if (I.isVirtual() || (I.getAccessSpecifier() != AS_public))
504 continue;
505 QualType Ty = I.getType();
506 if (Ty.isNull())
507 continue;
508 if (const CXXRecordDecl *NonVirtualBase = Ty->getAsCXXRecordDecl()) {
509 if (!(NonVirtualBase= NonVirtualBase->getDefinition()))
510 continue;
511
512 if (comments::FullComment *FC = getCommentForDecl((NonVirtualBase), PP))
513 return cloneFullComment(FC, D);
514 }
515 }
516 // Check virtual bases.
517 for (const auto &I : RD->vbases()) {
518 if (I.getAccessSpecifier() != AS_public)
519 continue;
520 QualType Ty = I.getType();
521 if (Ty.isNull())
522 continue;
523 if (const CXXRecordDecl *VirtualBase = Ty->getAsCXXRecordDecl()) {
524 if (!(VirtualBase= VirtualBase->getDefinition()))
525 continue;
526 if (comments::FullComment *FC = getCommentForDecl((VirtualBase), PP))
527 return cloneFullComment(FC, D);
528 }
529 }
530 }
531 return nullptr;
532 }
533
534 // If the RawComment was attached to other redeclaration of this Decl, we
535 // should parse the comment in context of that other Decl. This is important
536 // because comments can contain references to parameter names which can be
537 // different across redeclarations.
538 if (D != OriginalDecl)
539 return getCommentForDecl(OriginalDecl, PP);
540
541 comments::FullComment *FC = RC->parse(*this, PP, D);
542 ParsedComments[Canonical] = FC;
543 return FC;
544 }
545
546 void
Profile(llvm::FoldingSetNodeID & ID,TemplateTemplateParmDecl * Parm)547 ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
548 TemplateTemplateParmDecl *Parm) {
549 ID.AddInteger(Parm->getDepth());
550 ID.AddInteger(Parm->getPosition());
551 ID.AddBoolean(Parm->isParameterPack());
552
553 TemplateParameterList *Params = Parm->getTemplateParameters();
554 ID.AddInteger(Params->size());
555 for (TemplateParameterList::const_iterator P = Params->begin(),
556 PEnd = Params->end();
557 P != PEnd; ++P) {
558 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
559 ID.AddInteger(0);
560 ID.AddBoolean(TTP->isParameterPack());
561 continue;
562 }
563
564 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
565 ID.AddInteger(1);
566 ID.AddBoolean(NTTP->isParameterPack());
567 ID.AddPointer(NTTP->getType().getCanonicalType().getAsOpaquePtr());
568 if (NTTP->isExpandedParameterPack()) {
569 ID.AddBoolean(true);
570 ID.AddInteger(NTTP->getNumExpansionTypes());
571 for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
572 QualType T = NTTP->getExpansionType(I);
573 ID.AddPointer(T.getCanonicalType().getAsOpaquePtr());
574 }
575 } else
576 ID.AddBoolean(false);
577 continue;
578 }
579
580 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
581 ID.AddInteger(2);
582 Profile(ID, TTP);
583 }
584 }
585
586 TemplateTemplateParmDecl *
getCanonicalTemplateTemplateParmDecl(TemplateTemplateParmDecl * TTP) const587 ASTContext::getCanonicalTemplateTemplateParmDecl(
588 TemplateTemplateParmDecl *TTP) const {
589 // Check if we already have a canonical template template parameter.
590 llvm::FoldingSetNodeID ID;
591 CanonicalTemplateTemplateParm::Profile(ID, TTP);
592 void *InsertPos = nullptr;
593 CanonicalTemplateTemplateParm *Canonical
594 = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
595 if (Canonical)
596 return Canonical->getParam();
597
598 // Build a canonical template parameter list.
599 TemplateParameterList *Params = TTP->getTemplateParameters();
600 SmallVector<NamedDecl *, 4> CanonParams;
601 CanonParams.reserve(Params->size());
602 for (TemplateParameterList::const_iterator P = Params->begin(),
603 PEnd = Params->end();
604 P != PEnd; ++P) {
605 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
606 CanonParams.push_back(
607 TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(),
608 SourceLocation(),
609 SourceLocation(),
610 TTP->getDepth(),
611 TTP->getIndex(), nullptr, false,
612 TTP->isParameterPack()));
613 else if (NonTypeTemplateParmDecl *NTTP
614 = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
615 QualType T = getCanonicalType(NTTP->getType());
616 TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
617 NonTypeTemplateParmDecl *Param;
618 if (NTTP->isExpandedParameterPack()) {
619 SmallVector<QualType, 2> ExpandedTypes;
620 SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
621 for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
622 ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
623 ExpandedTInfos.push_back(
624 getTrivialTypeSourceInfo(ExpandedTypes.back()));
625 }
626
627 Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
628 SourceLocation(),
629 SourceLocation(),
630 NTTP->getDepth(),
631 NTTP->getPosition(), nullptr,
632 T,
633 TInfo,
634 ExpandedTypes.data(),
635 ExpandedTypes.size(),
636 ExpandedTInfos.data());
637 } else {
638 Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
639 SourceLocation(),
640 SourceLocation(),
641 NTTP->getDepth(),
642 NTTP->getPosition(), nullptr,
643 T,
644 NTTP->isParameterPack(),
645 TInfo);
646 }
647 CanonParams.push_back(Param);
648
649 } else
650 CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
651 cast<TemplateTemplateParmDecl>(*P)));
652 }
653
654 TemplateTemplateParmDecl *CanonTTP
655 = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
656 SourceLocation(), TTP->getDepth(),
657 TTP->getPosition(),
658 TTP->isParameterPack(),
659 nullptr,
660 TemplateParameterList::Create(*this, SourceLocation(),
661 SourceLocation(),
662 CanonParams.data(),
663 CanonParams.size(),
664 SourceLocation()));
665
666 // Get the new insert position for the node we care about.
667 Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
668 assert(!Canonical && "Shouldn't be in the map!");
669 (void)Canonical;
670
671 // Create the canonical template template parameter entry.
672 Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
673 CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
674 return CanonTTP;
675 }
676
createCXXABI(const TargetInfo & T)677 CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
678 if (!LangOpts.CPlusPlus) return nullptr;
679
680 switch (T.getCXXABI().getKind()) {
681 case TargetCXXABI::GenericARM: // Same as Itanium at this level
682 case TargetCXXABI::iOS:
683 case TargetCXXABI::iOS64:
684 case TargetCXXABI::GenericAArch64:
685 case TargetCXXABI::GenericItanium:
686 return CreateItaniumCXXABI(*this);
687 case TargetCXXABI::Microsoft:
688 return CreateMicrosoftCXXABI(*this);
689 }
690 llvm_unreachable("Invalid CXXABI type!");
691 }
692
getAddressSpaceMap(const TargetInfo & T,const LangOptions & LOpts)693 static const LangAS::Map *getAddressSpaceMap(const TargetInfo &T,
694 const LangOptions &LOpts) {
695 if (LOpts.FakeAddressSpaceMap) {
696 // The fake address space map must have a distinct entry for each
697 // language-specific address space.
698 static const unsigned FakeAddrSpaceMap[] = {
699 1, // opencl_global
700 2, // opencl_local
701 3, // opencl_constant
702 4, // cuda_device
703 5, // cuda_constant
704 6 // cuda_shared
705 };
706 return &FakeAddrSpaceMap;
707 } else {
708 return &T.getAddressSpaceMap();
709 }
710 }
711
isAddrSpaceMapManglingEnabled(const TargetInfo & TI,const LangOptions & LangOpts)712 static bool isAddrSpaceMapManglingEnabled(const TargetInfo &TI,
713 const LangOptions &LangOpts) {
714 switch (LangOpts.getAddressSpaceMapMangling()) {
715 case LangOptions::ASMM_Target:
716 return TI.useAddressSpaceMapMangling();
717 case LangOptions::ASMM_On:
718 return true;
719 case LangOptions::ASMM_Off:
720 return false;
721 }
722 llvm_unreachable("getAddressSpaceMapMangling() doesn't cover anything.");
723 }
724
ASTContext(LangOptions & LOpts,SourceManager & SM,IdentifierTable & idents,SelectorTable & sels,Builtin::Context & builtins)725 ASTContext::ASTContext(LangOptions& LOpts, SourceManager &SM,
726 IdentifierTable &idents, SelectorTable &sels,
727 Builtin::Context &builtins)
728 : FunctionProtoTypes(this_()),
729 TemplateSpecializationTypes(this_()),
730 DependentTemplateSpecializationTypes(this_()),
731 SubstTemplateTemplateParmPacks(this_()),
732 GlobalNestedNameSpecifier(nullptr),
733 Int128Decl(nullptr), UInt128Decl(nullptr), Float128StubDecl(nullptr),
734 BuiltinVaListDecl(nullptr),
735 ObjCIdDecl(nullptr), ObjCSelDecl(nullptr), ObjCClassDecl(nullptr),
736 ObjCProtocolClassDecl(nullptr), BOOLDecl(nullptr),
737 CFConstantStringTypeDecl(nullptr), ObjCInstanceTypeDecl(nullptr),
738 FILEDecl(nullptr),
739 jmp_bufDecl(nullptr), sigjmp_bufDecl(nullptr), ucontext_tDecl(nullptr),
740 BlockDescriptorType(nullptr), BlockDescriptorExtendedType(nullptr),
741 cudaConfigureCallDecl(nullptr),
742 NullTypeSourceInfo(QualType()),
743 FirstLocalImport(), LastLocalImport(),
744 SourceMgr(SM), LangOpts(LOpts),
745 AddrSpaceMap(nullptr), Target(nullptr), PrintingPolicy(LOpts),
746 Idents(idents), Selectors(sels),
747 BuiltinInfo(builtins),
748 DeclarationNames(*this),
749 ExternalSource(nullptr), Listener(nullptr),
750 Comments(SM), CommentsLoaded(false),
751 CommentCommandTraits(BumpAlloc, LOpts.CommentOpts),
752 LastSDM(nullptr, 0)
753 {
754 TUDecl = TranslationUnitDecl::Create(*this);
755 }
756
~ASTContext()757 ASTContext::~ASTContext() {
758 ReleaseParentMapEntries();
759
760 // Release the DenseMaps associated with DeclContext objects.
761 // FIXME: Is this the ideal solution?
762 ReleaseDeclContextMaps();
763
764 // Call all of the deallocation functions on all of their targets.
765 for (DeallocationMap::const_iterator I = Deallocations.begin(),
766 E = Deallocations.end(); I != E; ++I)
767 for (unsigned J = 0, N = I->second.size(); J != N; ++J)
768 (I->first)((I->second)[J]);
769
770 // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
771 // because they can contain DenseMaps.
772 for (llvm::DenseMap<const ObjCContainerDecl*,
773 const ASTRecordLayout*>::iterator
774 I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
775 // Increment in loop to prevent using deallocated memory.
776 if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
777 R->Destroy(*this);
778
779 for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
780 I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
781 // Increment in loop to prevent using deallocated memory.
782 if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
783 R->Destroy(*this);
784 }
785
786 for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
787 AEnd = DeclAttrs.end();
788 A != AEnd; ++A)
789 A->second->~AttrVec();
790
791 llvm::DeleteContainerSeconds(MangleNumberingContexts);
792 }
793
ReleaseParentMapEntries()794 void ASTContext::ReleaseParentMapEntries() {
795 if (!AllParents) return;
796 for (const auto &Entry : *AllParents) {
797 if (Entry.second.is<ast_type_traits::DynTypedNode *>()) {
798 delete Entry.second.get<ast_type_traits::DynTypedNode *>();
799 } else {
800 assert(Entry.second.is<ParentVector *>());
801 delete Entry.second.get<ParentVector *>();
802 }
803 }
804 }
805
AddDeallocation(void (* Callback)(void *),void * Data)806 void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
807 Deallocations[Callback].push_back(Data);
808 }
809
810 void
setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source)811 ASTContext::setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source) {
812 ExternalSource = Source;
813 }
814
PrintStats() const815 void ASTContext::PrintStats() const {
816 llvm::errs() << "\n*** AST Context Stats:\n";
817 llvm::errs() << " " << Types.size() << " types total.\n";
818
819 unsigned counts[] = {
820 #define TYPE(Name, Parent) 0,
821 #define ABSTRACT_TYPE(Name, Parent)
822 #include "clang/AST/TypeNodes.def"
823 0 // Extra
824 };
825
826 for (unsigned i = 0, e = Types.size(); i != e; ++i) {
827 Type *T = Types[i];
828 counts[(unsigned)T->getTypeClass()]++;
829 }
830
831 unsigned Idx = 0;
832 unsigned TotalBytes = 0;
833 #define TYPE(Name, Parent) \
834 if (counts[Idx]) \
835 llvm::errs() << " " << counts[Idx] << " " << #Name \
836 << " types\n"; \
837 TotalBytes += counts[Idx] * sizeof(Name##Type); \
838 ++Idx;
839 #define ABSTRACT_TYPE(Name, Parent)
840 #include "clang/AST/TypeNodes.def"
841
842 llvm::errs() << "Total bytes = " << TotalBytes << "\n";
843
844 // Implicit special member functions.
845 llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
846 << NumImplicitDefaultConstructors
847 << " implicit default constructors created\n";
848 llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
849 << NumImplicitCopyConstructors
850 << " implicit copy constructors created\n";
851 if (getLangOpts().CPlusPlus)
852 llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
853 << NumImplicitMoveConstructors
854 << " implicit move constructors created\n";
855 llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
856 << NumImplicitCopyAssignmentOperators
857 << " implicit copy assignment operators created\n";
858 if (getLangOpts().CPlusPlus)
859 llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
860 << NumImplicitMoveAssignmentOperators
861 << " implicit move assignment operators created\n";
862 llvm::errs() << NumImplicitDestructorsDeclared << "/"
863 << NumImplicitDestructors
864 << " implicit destructors created\n";
865
866 if (ExternalSource) {
867 llvm::errs() << "\n";
868 ExternalSource->PrintStats();
869 }
870
871 BumpAlloc.PrintStats();
872 }
873
buildImplicitRecord(StringRef Name,RecordDecl::TagKind TK) const874 RecordDecl *ASTContext::buildImplicitRecord(StringRef Name,
875 RecordDecl::TagKind TK) const {
876 SourceLocation Loc;
877 RecordDecl *NewDecl;
878 if (getLangOpts().CPlusPlus)
879 NewDecl = CXXRecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc,
880 Loc, &Idents.get(Name));
881 else
882 NewDecl = RecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc, Loc,
883 &Idents.get(Name));
884 NewDecl->setImplicit();
885 return NewDecl;
886 }
887
buildImplicitTypedef(QualType T,StringRef Name) const888 TypedefDecl *ASTContext::buildImplicitTypedef(QualType T,
889 StringRef Name) const {
890 TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
891 TypedefDecl *NewDecl = TypedefDecl::Create(
892 const_cast<ASTContext &>(*this), getTranslationUnitDecl(),
893 SourceLocation(), SourceLocation(), &Idents.get(Name), TInfo);
894 NewDecl->setImplicit();
895 return NewDecl;
896 }
897
getInt128Decl() const898 TypedefDecl *ASTContext::getInt128Decl() const {
899 if (!Int128Decl)
900 Int128Decl = buildImplicitTypedef(Int128Ty, "__int128_t");
901 return Int128Decl;
902 }
903
getUInt128Decl() const904 TypedefDecl *ASTContext::getUInt128Decl() const {
905 if (!UInt128Decl)
906 UInt128Decl = buildImplicitTypedef(UnsignedInt128Ty, "__uint128_t");
907 return UInt128Decl;
908 }
909
getFloat128StubType() const910 TypeDecl *ASTContext::getFloat128StubType() const {
911 assert(LangOpts.CPlusPlus && "should only be called for c++");
912 if (!Float128StubDecl)
913 Float128StubDecl = buildImplicitRecord("__float128");
914
915 return Float128StubDecl;
916 }
917
InitBuiltinType(CanQualType & R,BuiltinType::Kind K)918 void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
919 BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
920 R = CanQualType::CreateUnsafe(QualType(Ty, 0));
921 Types.push_back(Ty);
922 }
923
InitBuiltinTypes(const TargetInfo & Target)924 void ASTContext::InitBuiltinTypes(const TargetInfo &Target) {
925 assert((!this->Target || this->Target == &Target) &&
926 "Incorrect target reinitialization");
927 assert(VoidTy.isNull() && "Context reinitialized?");
928
929 this->Target = &Target;
930
931 ABI.reset(createCXXABI(Target));
932 AddrSpaceMap = getAddressSpaceMap(Target, LangOpts);
933 AddrSpaceMapMangling = isAddrSpaceMapManglingEnabled(Target, LangOpts);
934
935 // C99 6.2.5p19.
936 InitBuiltinType(VoidTy, BuiltinType::Void);
937
938 // C99 6.2.5p2.
939 InitBuiltinType(BoolTy, BuiltinType::Bool);
940 // C99 6.2.5p3.
941 if (LangOpts.CharIsSigned)
942 InitBuiltinType(CharTy, BuiltinType::Char_S);
943 else
944 InitBuiltinType(CharTy, BuiltinType::Char_U);
945 // C99 6.2.5p4.
946 InitBuiltinType(SignedCharTy, BuiltinType::SChar);
947 InitBuiltinType(ShortTy, BuiltinType::Short);
948 InitBuiltinType(IntTy, BuiltinType::Int);
949 InitBuiltinType(LongTy, BuiltinType::Long);
950 InitBuiltinType(LongLongTy, BuiltinType::LongLong);
951
952 // C99 6.2.5p6.
953 InitBuiltinType(UnsignedCharTy, BuiltinType::UChar);
954 InitBuiltinType(UnsignedShortTy, BuiltinType::UShort);
955 InitBuiltinType(UnsignedIntTy, BuiltinType::UInt);
956 InitBuiltinType(UnsignedLongTy, BuiltinType::ULong);
957 InitBuiltinType(UnsignedLongLongTy, BuiltinType::ULongLong);
958
959 // C99 6.2.5p10.
960 InitBuiltinType(FloatTy, BuiltinType::Float);
961 InitBuiltinType(DoubleTy, BuiltinType::Double);
962 InitBuiltinType(LongDoubleTy, BuiltinType::LongDouble);
963
964 // GNU extension, 128-bit integers.
965 InitBuiltinType(Int128Ty, BuiltinType::Int128);
966 InitBuiltinType(UnsignedInt128Ty, BuiltinType::UInt128);
967
968 // C++ 3.9.1p5
969 if (TargetInfo::isTypeSigned(Target.getWCharType()))
970 InitBuiltinType(WCharTy, BuiltinType::WChar_S);
971 else // -fshort-wchar makes wchar_t be unsigned.
972 InitBuiltinType(WCharTy, BuiltinType::WChar_U);
973 if (LangOpts.CPlusPlus && LangOpts.WChar)
974 WideCharTy = WCharTy;
975 else {
976 // C99 (or C++ using -fno-wchar).
977 WideCharTy = getFromTargetType(Target.getWCharType());
978 }
979
980 WIntTy = getFromTargetType(Target.getWIntType());
981
982 if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
983 InitBuiltinType(Char16Ty, BuiltinType::Char16);
984 else // C99
985 Char16Ty = getFromTargetType(Target.getChar16Type());
986
987 if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
988 InitBuiltinType(Char32Ty, BuiltinType::Char32);
989 else // C99
990 Char32Ty = getFromTargetType(Target.getChar32Type());
991
992 // Placeholder type for type-dependent expressions whose type is
993 // completely unknown. No code should ever check a type against
994 // DependentTy and users should never see it; however, it is here to
995 // help diagnose failures to properly check for type-dependent
996 // expressions.
997 InitBuiltinType(DependentTy, BuiltinType::Dependent);
998
999 // Placeholder type for functions.
1000 InitBuiltinType(OverloadTy, BuiltinType::Overload);
1001
1002 // Placeholder type for bound members.
1003 InitBuiltinType(BoundMemberTy, BuiltinType::BoundMember);
1004
1005 // Placeholder type for pseudo-objects.
1006 InitBuiltinType(PseudoObjectTy, BuiltinType::PseudoObject);
1007
1008 // "any" type; useful for debugger-like clients.
1009 InitBuiltinType(UnknownAnyTy, BuiltinType::UnknownAny);
1010
1011 // Placeholder type for unbridged ARC casts.
1012 InitBuiltinType(ARCUnbridgedCastTy, BuiltinType::ARCUnbridgedCast);
1013
1014 // Placeholder type for builtin functions.
1015 InitBuiltinType(BuiltinFnTy, BuiltinType::BuiltinFn);
1016
1017 // C99 6.2.5p11.
1018 FloatComplexTy = getComplexType(FloatTy);
1019 DoubleComplexTy = getComplexType(DoubleTy);
1020 LongDoubleComplexTy = getComplexType(LongDoubleTy);
1021
1022 // Builtin types for 'id', 'Class', and 'SEL'.
1023 InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
1024 InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
1025 InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
1026
1027 if (LangOpts.OpenCL) {
1028 InitBuiltinType(OCLImage1dTy, BuiltinType::OCLImage1d);
1029 InitBuiltinType(OCLImage1dArrayTy, BuiltinType::OCLImage1dArray);
1030 InitBuiltinType(OCLImage1dBufferTy, BuiltinType::OCLImage1dBuffer);
1031 InitBuiltinType(OCLImage2dTy, BuiltinType::OCLImage2d);
1032 InitBuiltinType(OCLImage2dArrayTy, BuiltinType::OCLImage2dArray);
1033 InitBuiltinType(OCLImage3dTy, BuiltinType::OCLImage3d);
1034
1035 InitBuiltinType(OCLSamplerTy, BuiltinType::OCLSampler);
1036 InitBuiltinType(OCLEventTy, BuiltinType::OCLEvent);
1037 }
1038
1039 // Builtin type for __objc_yes and __objc_no
1040 ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ?
1041 SignedCharTy : BoolTy);
1042
1043 ObjCConstantStringType = QualType();
1044
1045 ObjCSuperType = QualType();
1046
1047 // void * type
1048 VoidPtrTy = getPointerType(VoidTy);
1049
1050 // nullptr type (C++0x 2.14.7)
1051 InitBuiltinType(NullPtrTy, BuiltinType::NullPtr);
1052
1053 // half type (OpenCL 6.1.1.1) / ARM NEON __fp16
1054 InitBuiltinType(HalfTy, BuiltinType::Half);
1055
1056 // Builtin type used to help define __builtin_va_list.
1057 VaListTagTy = QualType();
1058 }
1059
getDiagnostics() const1060 DiagnosticsEngine &ASTContext::getDiagnostics() const {
1061 return SourceMgr.getDiagnostics();
1062 }
1063
getDeclAttrs(const Decl * D)1064 AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
1065 AttrVec *&Result = DeclAttrs[D];
1066 if (!Result) {
1067 void *Mem = Allocate(sizeof(AttrVec));
1068 Result = new (Mem) AttrVec;
1069 }
1070
1071 return *Result;
1072 }
1073
1074 /// \brief Erase the attributes corresponding to the given declaration.
eraseDeclAttrs(const Decl * D)1075 void ASTContext::eraseDeclAttrs(const Decl *D) {
1076 llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
1077 if (Pos != DeclAttrs.end()) {
1078 Pos->second->~AttrVec();
1079 DeclAttrs.erase(Pos);
1080 }
1081 }
1082
1083 // FIXME: Remove ?
1084 MemberSpecializationInfo *
getInstantiatedFromStaticDataMember(const VarDecl * Var)1085 ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
1086 assert(Var->isStaticDataMember() && "Not a static data member");
1087 return getTemplateOrSpecializationInfo(Var)
1088 .dyn_cast<MemberSpecializationInfo *>();
1089 }
1090
1091 ASTContext::TemplateOrSpecializationInfo
getTemplateOrSpecializationInfo(const VarDecl * Var)1092 ASTContext::getTemplateOrSpecializationInfo(const VarDecl *Var) {
1093 llvm::DenseMap<const VarDecl *, TemplateOrSpecializationInfo>::iterator Pos =
1094 TemplateOrInstantiation.find(Var);
1095 if (Pos == TemplateOrInstantiation.end())
1096 return TemplateOrSpecializationInfo();
1097
1098 return Pos->second;
1099 }
1100
1101 void
setInstantiatedFromStaticDataMember(VarDecl * Inst,VarDecl * Tmpl,TemplateSpecializationKind TSK,SourceLocation PointOfInstantiation)1102 ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
1103 TemplateSpecializationKind TSK,
1104 SourceLocation PointOfInstantiation) {
1105 assert(Inst->isStaticDataMember() && "Not a static data member");
1106 assert(Tmpl->isStaticDataMember() && "Not a static data member");
1107 setTemplateOrSpecializationInfo(Inst, new (*this) MemberSpecializationInfo(
1108 Tmpl, TSK, PointOfInstantiation));
1109 }
1110
1111 void
setTemplateOrSpecializationInfo(VarDecl * Inst,TemplateOrSpecializationInfo TSI)1112 ASTContext::setTemplateOrSpecializationInfo(VarDecl *Inst,
1113 TemplateOrSpecializationInfo TSI) {
1114 assert(!TemplateOrInstantiation[Inst] &&
1115 "Already noted what the variable was instantiated from");
1116 TemplateOrInstantiation[Inst] = TSI;
1117 }
1118
getClassScopeSpecializationPattern(const FunctionDecl * FD)1119 FunctionDecl *ASTContext::getClassScopeSpecializationPattern(
1120 const FunctionDecl *FD){
1121 assert(FD && "Specialization is 0");
1122 llvm::DenseMap<const FunctionDecl*, FunctionDecl *>::const_iterator Pos
1123 = ClassScopeSpecializationPattern.find(FD);
1124 if (Pos == ClassScopeSpecializationPattern.end())
1125 return nullptr;
1126
1127 return Pos->second;
1128 }
1129
setClassScopeSpecializationPattern(FunctionDecl * FD,FunctionDecl * Pattern)1130 void ASTContext::setClassScopeSpecializationPattern(FunctionDecl *FD,
1131 FunctionDecl *Pattern) {
1132 assert(FD && "Specialization is 0");
1133 assert(Pattern && "Class scope specialization pattern is 0");
1134 ClassScopeSpecializationPattern[FD] = Pattern;
1135 }
1136
1137 NamedDecl *
getInstantiatedFromUsingDecl(UsingDecl * UUD)1138 ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
1139 llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
1140 = InstantiatedFromUsingDecl.find(UUD);
1141 if (Pos == InstantiatedFromUsingDecl.end())
1142 return nullptr;
1143
1144 return Pos->second;
1145 }
1146
1147 void
setInstantiatedFromUsingDecl(UsingDecl * Inst,NamedDecl * Pattern)1148 ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
1149 assert((isa<UsingDecl>(Pattern) ||
1150 isa<UnresolvedUsingValueDecl>(Pattern) ||
1151 isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
1152 "pattern decl is not a using decl");
1153 assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
1154 InstantiatedFromUsingDecl[Inst] = Pattern;
1155 }
1156
1157 UsingShadowDecl *
getInstantiatedFromUsingShadowDecl(UsingShadowDecl * Inst)1158 ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
1159 llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
1160 = InstantiatedFromUsingShadowDecl.find(Inst);
1161 if (Pos == InstantiatedFromUsingShadowDecl.end())
1162 return nullptr;
1163
1164 return Pos->second;
1165 }
1166
1167 void
setInstantiatedFromUsingShadowDecl(UsingShadowDecl * Inst,UsingShadowDecl * Pattern)1168 ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
1169 UsingShadowDecl *Pattern) {
1170 assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
1171 InstantiatedFromUsingShadowDecl[Inst] = Pattern;
1172 }
1173
getInstantiatedFromUnnamedFieldDecl(FieldDecl * Field)1174 FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
1175 llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
1176 = InstantiatedFromUnnamedFieldDecl.find(Field);
1177 if (Pos == InstantiatedFromUnnamedFieldDecl.end())
1178 return nullptr;
1179
1180 return Pos->second;
1181 }
1182
setInstantiatedFromUnnamedFieldDecl(FieldDecl * Inst,FieldDecl * Tmpl)1183 void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
1184 FieldDecl *Tmpl) {
1185 assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
1186 assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
1187 assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
1188 "Already noted what unnamed field was instantiated from");
1189
1190 InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
1191 }
1192
1193 ASTContext::overridden_cxx_method_iterator
overridden_methods_begin(const CXXMethodDecl * Method) const1194 ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
1195 llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1196 = OverriddenMethods.find(Method->getCanonicalDecl());
1197 if (Pos == OverriddenMethods.end())
1198 return nullptr;
1199
1200 return Pos->second.begin();
1201 }
1202
1203 ASTContext::overridden_cxx_method_iterator
overridden_methods_end(const CXXMethodDecl * Method) const1204 ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
1205 llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1206 = OverriddenMethods.find(Method->getCanonicalDecl());
1207 if (Pos == OverriddenMethods.end())
1208 return nullptr;
1209
1210 return Pos->second.end();
1211 }
1212
1213 unsigned
overridden_methods_size(const CXXMethodDecl * Method) const1214 ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
1215 llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1216 = OverriddenMethods.find(Method->getCanonicalDecl());
1217 if (Pos == OverriddenMethods.end())
1218 return 0;
1219
1220 return Pos->second.size();
1221 }
1222
addOverriddenMethod(const CXXMethodDecl * Method,const CXXMethodDecl * Overridden)1223 void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
1224 const CXXMethodDecl *Overridden) {
1225 assert(Method->isCanonicalDecl() && Overridden->isCanonicalDecl());
1226 OverriddenMethods[Method].push_back(Overridden);
1227 }
1228
getOverriddenMethods(const NamedDecl * D,SmallVectorImpl<const NamedDecl * > & Overridden) const1229 void ASTContext::getOverriddenMethods(
1230 const NamedDecl *D,
1231 SmallVectorImpl<const NamedDecl *> &Overridden) const {
1232 assert(D);
1233
1234 if (const CXXMethodDecl *CXXMethod = dyn_cast<CXXMethodDecl>(D)) {
1235 Overridden.append(overridden_methods_begin(CXXMethod),
1236 overridden_methods_end(CXXMethod));
1237 return;
1238 }
1239
1240 const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(D);
1241 if (!Method)
1242 return;
1243
1244 SmallVector<const ObjCMethodDecl *, 8> OverDecls;
1245 Method->getOverriddenMethods(OverDecls);
1246 Overridden.append(OverDecls.begin(), OverDecls.end());
1247 }
1248
addedLocalImportDecl(ImportDecl * Import)1249 void ASTContext::addedLocalImportDecl(ImportDecl *Import) {
1250 assert(!Import->NextLocalImport && "Import declaration already in the chain");
1251 assert(!Import->isFromASTFile() && "Non-local import declaration");
1252 if (!FirstLocalImport) {
1253 FirstLocalImport = Import;
1254 LastLocalImport = Import;
1255 return;
1256 }
1257
1258 LastLocalImport->NextLocalImport = Import;
1259 LastLocalImport = Import;
1260 }
1261
1262 //===----------------------------------------------------------------------===//
1263 // Type Sizing and Analysis
1264 //===----------------------------------------------------------------------===//
1265
1266 /// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
1267 /// scalar floating point type.
getFloatTypeSemantics(QualType T) const1268 const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
1269 const BuiltinType *BT = T->getAs<BuiltinType>();
1270 assert(BT && "Not a floating point type!");
1271 switch (BT->getKind()) {
1272 default: llvm_unreachable("Not a floating point type!");
1273 case BuiltinType::Half: return Target->getHalfFormat();
1274 case BuiltinType::Float: return Target->getFloatFormat();
1275 case BuiltinType::Double: return Target->getDoubleFormat();
1276 case BuiltinType::LongDouble: return Target->getLongDoubleFormat();
1277 }
1278 }
1279
getDeclAlign(const Decl * D,bool ForAlignof) const1280 CharUnits ASTContext::getDeclAlign(const Decl *D, bool ForAlignof) const {
1281 unsigned Align = Target->getCharWidth();
1282
1283 bool UseAlignAttrOnly = false;
1284 if (unsigned AlignFromAttr = D->getMaxAlignment()) {
1285 Align = AlignFromAttr;
1286
1287 // __attribute__((aligned)) can increase or decrease alignment
1288 // *except* on a struct or struct member, where it only increases
1289 // alignment unless 'packed' is also specified.
1290 //
1291 // It is an error for alignas to decrease alignment, so we can
1292 // ignore that possibility; Sema should diagnose it.
1293 if (isa<FieldDecl>(D)) {
1294 UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
1295 cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1296 } else {
1297 UseAlignAttrOnly = true;
1298 }
1299 }
1300 else if (isa<FieldDecl>(D))
1301 UseAlignAttrOnly =
1302 D->hasAttr<PackedAttr>() ||
1303 cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1304
1305 // If we're using the align attribute only, just ignore everything
1306 // else about the declaration and its type.
1307 if (UseAlignAttrOnly) {
1308 // do nothing
1309
1310 } else if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
1311 QualType T = VD->getType();
1312 if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
1313 if (ForAlignof)
1314 T = RT->getPointeeType();
1315 else
1316 T = getPointerType(RT->getPointeeType());
1317 }
1318 QualType BaseT = getBaseElementType(T);
1319 if (!BaseT->isIncompleteType() && !T->isFunctionType()) {
1320 // Adjust alignments of declarations with array type by the
1321 // large-array alignment on the target.
1322 if (const ArrayType *arrayType = getAsArrayType(T)) {
1323 unsigned MinWidth = Target->getLargeArrayMinWidth();
1324 if (!ForAlignof && MinWidth) {
1325 if (isa<VariableArrayType>(arrayType))
1326 Align = std::max(Align, Target->getLargeArrayAlign());
1327 else if (isa<ConstantArrayType>(arrayType) &&
1328 MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
1329 Align = std::max(Align, Target->getLargeArrayAlign());
1330 }
1331 }
1332 Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
1333 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1334 if (VD->hasGlobalStorage())
1335 Align = std::max(Align, getTargetInfo().getMinGlobalAlign());
1336 }
1337 }
1338
1339 // Fields can be subject to extra alignment constraints, like if
1340 // the field is packed, the struct is packed, or the struct has a
1341 // a max-field-alignment constraint (#pragma pack). So calculate
1342 // the actual alignment of the field within the struct, and then
1343 // (as we're expected to) constrain that by the alignment of the type.
1344 if (const FieldDecl *Field = dyn_cast<FieldDecl>(VD)) {
1345 const RecordDecl *Parent = Field->getParent();
1346 // We can only produce a sensible answer if the record is valid.
1347 if (!Parent->isInvalidDecl()) {
1348 const ASTRecordLayout &Layout = getASTRecordLayout(Parent);
1349
1350 // Start with the record's overall alignment.
1351 unsigned FieldAlign = toBits(Layout.getAlignment());
1352
1353 // Use the GCD of that and the offset within the record.
1354 uint64_t Offset = Layout.getFieldOffset(Field->getFieldIndex());
1355 if (Offset > 0) {
1356 // Alignment is always a power of 2, so the GCD will be a power of 2,
1357 // which means we get to do this crazy thing instead of Euclid's.
1358 uint64_t LowBitOfOffset = Offset & (~Offset + 1);
1359 if (LowBitOfOffset < FieldAlign)
1360 FieldAlign = static_cast<unsigned>(LowBitOfOffset);
1361 }
1362
1363 Align = std::min(Align, FieldAlign);
1364 }
1365 }
1366 }
1367
1368 return toCharUnitsFromBits(Align);
1369 }
1370
1371 // getTypeInfoDataSizeInChars - Return the size of a type, in
1372 // chars. If the type is a record, its data size is returned. This is
1373 // the size of the memcpy that's performed when assigning this type
1374 // using a trivial copy/move assignment operator.
1375 std::pair<CharUnits, CharUnits>
getTypeInfoDataSizeInChars(QualType T) const1376 ASTContext::getTypeInfoDataSizeInChars(QualType T) const {
1377 std::pair<CharUnits, CharUnits> sizeAndAlign = getTypeInfoInChars(T);
1378
1379 // In C++, objects can sometimes be allocated into the tail padding
1380 // of a base-class subobject. We decide whether that's possible
1381 // during class layout, so here we can just trust the layout results.
1382 if (getLangOpts().CPlusPlus) {
1383 if (const RecordType *RT = T->getAs<RecordType>()) {
1384 const ASTRecordLayout &layout = getASTRecordLayout(RT->getDecl());
1385 sizeAndAlign.first = layout.getDataSize();
1386 }
1387 }
1388
1389 return sizeAndAlign;
1390 }
1391
1392 /// getConstantArrayInfoInChars - Performing the computation in CharUnits
1393 /// instead of in bits prevents overflowing the uint64_t for some large arrays.
1394 std::pair<CharUnits, CharUnits>
getConstantArrayInfoInChars(const ASTContext & Context,const ConstantArrayType * CAT)1395 static getConstantArrayInfoInChars(const ASTContext &Context,
1396 const ConstantArrayType *CAT) {
1397 std::pair<CharUnits, CharUnits> EltInfo =
1398 Context.getTypeInfoInChars(CAT->getElementType());
1399 uint64_t Size = CAT->getSize().getZExtValue();
1400 assert((Size == 0 || static_cast<uint64_t>(EltInfo.first.getQuantity()) <=
1401 (uint64_t)(-1)/Size) &&
1402 "Overflow in array type char size evaluation");
1403 uint64_t Width = EltInfo.first.getQuantity() * Size;
1404 unsigned Align = EltInfo.second.getQuantity();
1405 if (!Context.getTargetInfo().getCXXABI().isMicrosoft() ||
1406 Context.getTargetInfo().getPointerWidth(0) == 64)
1407 Width = llvm::RoundUpToAlignment(Width, Align);
1408 return std::make_pair(CharUnits::fromQuantity(Width),
1409 CharUnits::fromQuantity(Align));
1410 }
1411
1412 std::pair<CharUnits, CharUnits>
getTypeInfoInChars(const Type * T) const1413 ASTContext::getTypeInfoInChars(const Type *T) const {
1414 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(T))
1415 return getConstantArrayInfoInChars(*this, CAT);
1416 std::pair<uint64_t, unsigned> Info = getTypeInfo(T);
1417 return std::make_pair(toCharUnitsFromBits(Info.first),
1418 toCharUnitsFromBits(Info.second));
1419 }
1420
1421 std::pair<CharUnits, CharUnits>
getTypeInfoInChars(QualType T) const1422 ASTContext::getTypeInfoInChars(QualType T) const {
1423 return getTypeInfoInChars(T.getTypePtr());
1424 }
1425
getTypeInfo(const Type * T) const1426 std::pair<uint64_t, unsigned> ASTContext::getTypeInfo(const Type *T) const {
1427 TypeInfoMap::iterator it = MemoizedTypeInfo.find(T);
1428 if (it != MemoizedTypeInfo.end())
1429 return it->second;
1430
1431 std::pair<uint64_t, unsigned> Info = getTypeInfoImpl(T);
1432 MemoizedTypeInfo.insert(std::make_pair(T, Info));
1433 return Info;
1434 }
1435
1436 /// getTypeInfoImpl - Return the size of the specified type, in bits. This
1437 /// method does not work on incomplete types.
1438 ///
1439 /// FIXME: Pointers into different addr spaces could have different sizes and
1440 /// alignment requirements: getPointerInfo should take an AddrSpace, this
1441 /// should take a QualType, &c.
1442 std::pair<uint64_t, unsigned>
getTypeInfoImpl(const Type * T) const1443 ASTContext::getTypeInfoImpl(const Type *T) const {
1444 uint64_t Width=0;
1445 unsigned Align=8;
1446 switch (T->getTypeClass()) {
1447 #define TYPE(Class, Base)
1448 #define ABSTRACT_TYPE(Class, Base)
1449 #define NON_CANONICAL_TYPE(Class, Base)
1450 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1451 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) \
1452 case Type::Class: \
1453 assert(!T->isDependentType() && "should not see dependent types here"); \
1454 return getTypeInfo(cast<Class##Type>(T)->desugar().getTypePtr());
1455 #include "clang/AST/TypeNodes.def"
1456 llvm_unreachable("Should not see dependent types");
1457
1458 case Type::FunctionNoProto:
1459 case Type::FunctionProto:
1460 // GCC extension: alignof(function) = 32 bits
1461 Width = 0;
1462 Align = 32;
1463 break;
1464
1465 case Type::IncompleteArray:
1466 case Type::VariableArray:
1467 Width = 0;
1468 Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
1469 break;
1470
1471 case Type::ConstantArray: {
1472 const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
1473
1474 std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
1475 uint64_t Size = CAT->getSize().getZExtValue();
1476 assert((Size == 0 || EltInfo.first <= (uint64_t)(-1)/Size) &&
1477 "Overflow in array type bit size evaluation");
1478 Width = EltInfo.first*Size;
1479 Align = EltInfo.second;
1480 if (!getTargetInfo().getCXXABI().isMicrosoft() ||
1481 getTargetInfo().getPointerWidth(0) == 64)
1482 Width = llvm::RoundUpToAlignment(Width, Align);
1483 break;
1484 }
1485 case Type::ExtVector:
1486 case Type::Vector: {
1487 const VectorType *VT = cast<VectorType>(T);
1488 std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
1489 Width = EltInfo.first*VT->getNumElements();
1490 Align = Width;
1491 // If the alignment is not a power of 2, round up to the next power of 2.
1492 // This happens for non-power-of-2 length vectors.
1493 if (Align & (Align-1)) {
1494 Align = llvm::NextPowerOf2(Align);
1495 Width = llvm::RoundUpToAlignment(Width, Align);
1496 }
1497 // Adjust the alignment based on the target max.
1498 uint64_t TargetVectorAlign = Target->getMaxVectorAlign();
1499 if (TargetVectorAlign && TargetVectorAlign < Align)
1500 Align = TargetVectorAlign;
1501 break;
1502 }
1503
1504 case Type::Builtin:
1505 switch (cast<BuiltinType>(T)->getKind()) {
1506 default: llvm_unreachable("Unknown builtin type!");
1507 case BuiltinType::Void:
1508 // GCC extension: alignof(void) = 8 bits.
1509 Width = 0;
1510 Align = 8;
1511 break;
1512
1513 case BuiltinType::Bool:
1514 Width = Target->getBoolWidth();
1515 Align = Target->getBoolAlign();
1516 break;
1517 case BuiltinType::Char_S:
1518 case BuiltinType::Char_U:
1519 case BuiltinType::UChar:
1520 case BuiltinType::SChar:
1521 Width = Target->getCharWidth();
1522 Align = Target->getCharAlign();
1523 break;
1524 case BuiltinType::WChar_S:
1525 case BuiltinType::WChar_U:
1526 Width = Target->getWCharWidth();
1527 Align = Target->getWCharAlign();
1528 break;
1529 case BuiltinType::Char16:
1530 Width = Target->getChar16Width();
1531 Align = Target->getChar16Align();
1532 break;
1533 case BuiltinType::Char32:
1534 Width = Target->getChar32Width();
1535 Align = Target->getChar32Align();
1536 break;
1537 case BuiltinType::UShort:
1538 case BuiltinType::Short:
1539 Width = Target->getShortWidth();
1540 Align = Target->getShortAlign();
1541 break;
1542 case BuiltinType::UInt:
1543 case BuiltinType::Int:
1544 Width = Target->getIntWidth();
1545 Align = Target->getIntAlign();
1546 break;
1547 case BuiltinType::ULong:
1548 case BuiltinType::Long:
1549 Width = Target->getLongWidth();
1550 Align = Target->getLongAlign();
1551 break;
1552 case BuiltinType::ULongLong:
1553 case BuiltinType::LongLong:
1554 Width = Target->getLongLongWidth();
1555 Align = Target->getLongLongAlign();
1556 break;
1557 case BuiltinType::Int128:
1558 case BuiltinType::UInt128:
1559 Width = 128;
1560 Align = 128; // int128_t is 128-bit aligned on all targets.
1561 break;
1562 case BuiltinType::Half:
1563 Width = Target->getHalfWidth();
1564 Align = Target->getHalfAlign();
1565 break;
1566 case BuiltinType::Float:
1567 Width = Target->getFloatWidth();
1568 Align = Target->getFloatAlign();
1569 break;
1570 case BuiltinType::Double:
1571 Width = Target->getDoubleWidth();
1572 Align = Target->getDoubleAlign();
1573 break;
1574 case BuiltinType::LongDouble:
1575 Width = Target->getLongDoubleWidth();
1576 Align = Target->getLongDoubleAlign();
1577 break;
1578 case BuiltinType::NullPtr:
1579 Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
1580 Align = Target->getPointerAlign(0); // == sizeof(void*)
1581 break;
1582 case BuiltinType::ObjCId:
1583 case BuiltinType::ObjCClass:
1584 case BuiltinType::ObjCSel:
1585 Width = Target->getPointerWidth(0);
1586 Align = Target->getPointerAlign(0);
1587 break;
1588 case BuiltinType::OCLSampler:
1589 // Samplers are modeled as integers.
1590 Width = Target->getIntWidth();
1591 Align = Target->getIntAlign();
1592 break;
1593 case BuiltinType::OCLEvent:
1594 case BuiltinType::OCLImage1d:
1595 case BuiltinType::OCLImage1dArray:
1596 case BuiltinType::OCLImage1dBuffer:
1597 case BuiltinType::OCLImage2d:
1598 case BuiltinType::OCLImage2dArray:
1599 case BuiltinType::OCLImage3d:
1600 // Currently these types are pointers to opaque types.
1601 Width = Target->getPointerWidth(0);
1602 Align = Target->getPointerAlign(0);
1603 break;
1604 }
1605 break;
1606 case Type::ObjCObjectPointer:
1607 Width = Target->getPointerWidth(0);
1608 Align = Target->getPointerAlign(0);
1609 break;
1610 case Type::BlockPointer: {
1611 unsigned AS = getTargetAddressSpace(
1612 cast<BlockPointerType>(T)->getPointeeType());
1613 Width = Target->getPointerWidth(AS);
1614 Align = Target->getPointerAlign(AS);
1615 break;
1616 }
1617 case Type::LValueReference:
1618 case Type::RValueReference: {
1619 // alignof and sizeof should never enter this code path here, so we go
1620 // the pointer route.
1621 unsigned AS = getTargetAddressSpace(
1622 cast<ReferenceType>(T)->getPointeeType());
1623 Width = Target->getPointerWidth(AS);
1624 Align = Target->getPointerAlign(AS);
1625 break;
1626 }
1627 case Type::Pointer: {
1628 unsigned AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
1629 Width = Target->getPointerWidth(AS);
1630 Align = Target->getPointerAlign(AS);
1631 break;
1632 }
1633 case Type::MemberPointer: {
1634 const MemberPointerType *MPT = cast<MemberPointerType>(T);
1635 std::tie(Width, Align) = ABI->getMemberPointerWidthAndAlign(MPT);
1636 break;
1637 }
1638 case Type::Complex: {
1639 // Complex types have the same alignment as their elements, but twice the
1640 // size.
1641 std::pair<uint64_t, unsigned> EltInfo =
1642 getTypeInfo(cast<ComplexType>(T)->getElementType());
1643 Width = EltInfo.first*2;
1644 Align = EltInfo.second;
1645 break;
1646 }
1647 case Type::ObjCObject:
1648 return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
1649 case Type::Adjusted:
1650 case Type::Decayed:
1651 return getTypeInfo(cast<AdjustedType>(T)->getAdjustedType().getTypePtr());
1652 case Type::ObjCInterface: {
1653 const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
1654 const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
1655 Width = toBits(Layout.getSize());
1656 Align = toBits(Layout.getAlignment());
1657 break;
1658 }
1659 case Type::Record:
1660 case Type::Enum: {
1661 const TagType *TT = cast<TagType>(T);
1662
1663 if (TT->getDecl()->isInvalidDecl()) {
1664 Width = 8;
1665 Align = 8;
1666 break;
1667 }
1668
1669 if (const EnumType *ET = dyn_cast<EnumType>(TT))
1670 return getTypeInfo(ET->getDecl()->getIntegerType());
1671
1672 const RecordType *RT = cast<RecordType>(TT);
1673 const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
1674 Width = toBits(Layout.getSize());
1675 Align = toBits(Layout.getAlignment());
1676 break;
1677 }
1678
1679 case Type::SubstTemplateTypeParm:
1680 return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
1681 getReplacementType().getTypePtr());
1682
1683 case Type::Auto: {
1684 const AutoType *A = cast<AutoType>(T);
1685 assert(!A->getDeducedType().isNull() &&
1686 "cannot request the size of an undeduced or dependent auto type");
1687 return getTypeInfo(A->getDeducedType().getTypePtr());
1688 }
1689
1690 case Type::Paren:
1691 return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
1692
1693 case Type::Typedef: {
1694 const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
1695 std::pair<uint64_t, unsigned> Info
1696 = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
1697 // If the typedef has an aligned attribute on it, it overrides any computed
1698 // alignment we have. This violates the GCC documentation (which says that
1699 // attribute(aligned) can only round up) but matches its implementation.
1700 if (unsigned AttrAlign = Typedef->getMaxAlignment())
1701 Align = AttrAlign;
1702 else
1703 Align = Info.second;
1704 Width = Info.first;
1705 break;
1706 }
1707
1708 case Type::Elaborated:
1709 return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
1710
1711 case Type::Attributed:
1712 return getTypeInfo(
1713 cast<AttributedType>(T)->getEquivalentType().getTypePtr());
1714
1715 case Type::Atomic: {
1716 // Start with the base type information.
1717 std::pair<uint64_t, unsigned> Info
1718 = getTypeInfo(cast<AtomicType>(T)->getValueType());
1719 Width = Info.first;
1720 Align = Info.second;
1721
1722 // If the size of the type doesn't exceed the platform's max
1723 // atomic promotion width, make the size and alignment more
1724 // favorable to atomic operations:
1725 if (Width != 0 && Width <= Target->getMaxAtomicPromoteWidth()) {
1726 // Round the size up to a power of 2.
1727 if (!llvm::isPowerOf2_64(Width))
1728 Width = llvm::NextPowerOf2(Width);
1729
1730 // Set the alignment equal to the size.
1731 Align = static_cast<unsigned>(Width);
1732 }
1733 }
1734
1735 }
1736
1737 assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2");
1738 return std::make_pair(Width, Align);
1739 }
1740
1741 /// toCharUnitsFromBits - Convert a size in bits to a size in characters.
toCharUnitsFromBits(int64_t BitSize) const1742 CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
1743 return CharUnits::fromQuantity(BitSize / getCharWidth());
1744 }
1745
1746 /// toBits - Convert a size in characters to a size in characters.
toBits(CharUnits CharSize) const1747 int64_t ASTContext::toBits(CharUnits CharSize) const {
1748 return CharSize.getQuantity() * getCharWidth();
1749 }
1750
1751 /// getTypeSizeInChars - Return the size of the specified type, in characters.
1752 /// This method does not work on incomplete types.
getTypeSizeInChars(QualType T) const1753 CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
1754 return getTypeInfoInChars(T).first;
1755 }
getTypeSizeInChars(const Type * T) const1756 CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
1757 return getTypeInfoInChars(T).first;
1758 }
1759
1760 /// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
1761 /// characters. This method does not work on incomplete types.
getTypeAlignInChars(QualType T) const1762 CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
1763 return toCharUnitsFromBits(getTypeAlign(T));
1764 }
getTypeAlignInChars(const Type * T) const1765 CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
1766 return toCharUnitsFromBits(getTypeAlign(T));
1767 }
1768
1769 /// getPreferredTypeAlign - Return the "preferred" alignment of the specified
1770 /// type for the current target in bits. This can be different than the ABI
1771 /// alignment in cases where it is beneficial for performance to overalign
1772 /// a data type.
getPreferredTypeAlign(const Type * T) const1773 unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
1774 unsigned ABIAlign = getTypeAlign(T);
1775
1776 if (Target->getTriple().getArch() == llvm::Triple::xcore)
1777 return ABIAlign; // Never overalign on XCore.
1778
1779 const TypedefType *TT = T->getAs<TypedefType>();
1780
1781 // Double and long long should be naturally aligned if possible.
1782 T = T->getBaseElementTypeUnsafe();
1783 if (const ComplexType *CT = T->getAs<ComplexType>())
1784 T = CT->getElementType().getTypePtr();
1785 if (T->isSpecificBuiltinType(BuiltinType::Double) ||
1786 T->isSpecificBuiltinType(BuiltinType::LongLong) ||
1787 T->isSpecificBuiltinType(BuiltinType::ULongLong))
1788 // Don't increase the alignment if an alignment attribute was specified on a
1789 // typedef declaration.
1790 if (!TT || !TT->getDecl()->getMaxAlignment())
1791 return std::max(ABIAlign, (unsigned)getTypeSize(T));
1792
1793 return ABIAlign;
1794 }
1795
1796 /// getAlignOfGlobalVar - Return the alignment in bits that should be given
1797 /// to a global variable of the specified type.
getAlignOfGlobalVar(QualType T) const1798 unsigned ASTContext::getAlignOfGlobalVar(QualType T) const {
1799 return std::max(getTypeAlign(T), getTargetInfo().getMinGlobalAlign());
1800 }
1801
1802 /// getAlignOfGlobalVarInChars - Return the alignment in characters that
1803 /// should be given to a global variable of the specified type.
getAlignOfGlobalVarInChars(QualType T) const1804 CharUnits ASTContext::getAlignOfGlobalVarInChars(QualType T) const {
1805 return toCharUnitsFromBits(getAlignOfGlobalVar(T));
1806 }
1807
1808 /// DeepCollectObjCIvars -
1809 /// This routine first collects all declared, but not synthesized, ivars in
1810 /// super class and then collects all ivars, including those synthesized for
1811 /// current class. This routine is used for implementation of current class
1812 /// when all ivars, declared and synthesized are known.
1813 ///
DeepCollectObjCIvars(const ObjCInterfaceDecl * OI,bool leafClass,SmallVectorImpl<const ObjCIvarDecl * > & Ivars) const1814 void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
1815 bool leafClass,
1816 SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
1817 if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
1818 DeepCollectObjCIvars(SuperClass, false, Ivars);
1819 if (!leafClass) {
1820 for (const auto *I : OI->ivars())
1821 Ivars.push_back(I);
1822 } else {
1823 ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
1824 for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
1825 Iv= Iv->getNextIvar())
1826 Ivars.push_back(Iv);
1827 }
1828 }
1829
1830 /// CollectInheritedProtocols - Collect all protocols in current class and
1831 /// those inherited by it.
CollectInheritedProtocols(const Decl * CDecl,llvm::SmallPtrSet<ObjCProtocolDecl *,8> & Protocols)1832 void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
1833 llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
1834 if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
1835 // We can use protocol_iterator here instead of
1836 // all_referenced_protocol_iterator since we are walking all categories.
1837 for (auto *Proto : OI->all_referenced_protocols()) {
1838 Protocols.insert(Proto->getCanonicalDecl());
1839 for (auto *P : Proto->protocols()) {
1840 Protocols.insert(P->getCanonicalDecl());
1841 CollectInheritedProtocols(P, Protocols);
1842 }
1843 }
1844
1845 // Categories of this Interface.
1846 for (const auto *Cat : OI->visible_categories())
1847 CollectInheritedProtocols(Cat, Protocols);
1848
1849 if (ObjCInterfaceDecl *SD = OI->getSuperClass())
1850 while (SD) {
1851 CollectInheritedProtocols(SD, Protocols);
1852 SD = SD->getSuperClass();
1853 }
1854 } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1855 for (auto *Proto : OC->protocols()) {
1856 Protocols.insert(Proto->getCanonicalDecl());
1857 for (const auto *P : Proto->protocols())
1858 CollectInheritedProtocols(P, Protocols);
1859 }
1860 } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
1861 for (auto *Proto : OP->protocols()) {
1862 Protocols.insert(Proto->getCanonicalDecl());
1863 for (const auto *P : Proto->protocols())
1864 CollectInheritedProtocols(P, Protocols);
1865 }
1866 }
1867 }
1868
CountNonClassIvars(const ObjCInterfaceDecl * OI) const1869 unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
1870 unsigned count = 0;
1871 // Count ivars declared in class extension.
1872 for (const auto *Ext : OI->known_extensions())
1873 count += Ext->ivar_size();
1874
1875 // Count ivar defined in this class's implementation. This
1876 // includes synthesized ivars.
1877 if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
1878 count += ImplDecl->ivar_size();
1879
1880 return count;
1881 }
1882
isSentinelNullExpr(const Expr * E)1883 bool ASTContext::isSentinelNullExpr(const Expr *E) {
1884 if (!E)
1885 return false;
1886
1887 // nullptr_t is always treated as null.
1888 if (E->getType()->isNullPtrType()) return true;
1889
1890 if (E->getType()->isAnyPointerType() &&
1891 E->IgnoreParenCasts()->isNullPointerConstant(*this,
1892 Expr::NPC_ValueDependentIsNull))
1893 return true;
1894
1895 // Unfortunately, __null has type 'int'.
1896 if (isa<GNUNullExpr>(E)) return true;
1897
1898 return false;
1899 }
1900
1901 /// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
getObjCImplementation(ObjCInterfaceDecl * D)1902 ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
1903 llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1904 I = ObjCImpls.find(D);
1905 if (I != ObjCImpls.end())
1906 return cast<ObjCImplementationDecl>(I->second);
1907 return nullptr;
1908 }
1909 /// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
getObjCImplementation(ObjCCategoryDecl * D)1910 ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
1911 llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1912 I = ObjCImpls.find(D);
1913 if (I != ObjCImpls.end())
1914 return cast<ObjCCategoryImplDecl>(I->second);
1915 return nullptr;
1916 }
1917
1918 /// \brief Set the implementation of ObjCInterfaceDecl.
setObjCImplementation(ObjCInterfaceDecl * IFaceD,ObjCImplementationDecl * ImplD)1919 void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1920 ObjCImplementationDecl *ImplD) {
1921 assert(IFaceD && ImplD && "Passed null params");
1922 ObjCImpls[IFaceD] = ImplD;
1923 }
1924 /// \brief Set the implementation of ObjCCategoryDecl.
setObjCImplementation(ObjCCategoryDecl * CatD,ObjCCategoryImplDecl * ImplD)1925 void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
1926 ObjCCategoryImplDecl *ImplD) {
1927 assert(CatD && ImplD && "Passed null params");
1928 ObjCImpls[CatD] = ImplD;
1929 }
1930
getObjContainingInterface(const NamedDecl * ND) const1931 const ObjCInterfaceDecl *ASTContext::getObjContainingInterface(
1932 const NamedDecl *ND) const {
1933 if (const ObjCInterfaceDecl *ID =
1934 dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext()))
1935 return ID;
1936 if (const ObjCCategoryDecl *CD =
1937 dyn_cast<ObjCCategoryDecl>(ND->getDeclContext()))
1938 return CD->getClassInterface();
1939 if (const ObjCImplDecl *IMD =
1940 dyn_cast<ObjCImplDecl>(ND->getDeclContext()))
1941 return IMD->getClassInterface();
1942
1943 return nullptr;
1944 }
1945
1946 /// \brief Get the copy initialization expression of VarDecl,or NULL if
1947 /// none exists.
getBlockVarCopyInits(const VarDecl * VD)1948 Expr *ASTContext::getBlockVarCopyInits(const VarDecl*VD) {
1949 assert(VD && "Passed null params");
1950 assert(VD->hasAttr<BlocksAttr>() &&
1951 "getBlockVarCopyInits - not __block var");
1952 llvm::DenseMap<const VarDecl*, Expr*>::iterator
1953 I = BlockVarCopyInits.find(VD);
1954 return (I != BlockVarCopyInits.end()) ? cast<Expr>(I->second) : nullptr;
1955 }
1956
1957 /// \brief Set the copy inialization expression of a block var decl.
setBlockVarCopyInits(VarDecl * VD,Expr * Init)1958 void ASTContext::setBlockVarCopyInits(VarDecl*VD, Expr* Init) {
1959 assert(VD && Init && "Passed null params");
1960 assert(VD->hasAttr<BlocksAttr>() &&
1961 "setBlockVarCopyInits - not __block var");
1962 BlockVarCopyInits[VD] = Init;
1963 }
1964
CreateTypeSourceInfo(QualType T,unsigned DataSize) const1965 TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
1966 unsigned DataSize) const {
1967 if (!DataSize)
1968 DataSize = TypeLoc::getFullDataSizeForType(T);
1969 else
1970 assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
1971 "incorrect data size provided to CreateTypeSourceInfo!");
1972
1973 TypeSourceInfo *TInfo =
1974 (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
1975 new (TInfo) TypeSourceInfo(T);
1976 return TInfo;
1977 }
1978
getTrivialTypeSourceInfo(QualType T,SourceLocation L) const1979 TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
1980 SourceLocation L) const {
1981 TypeSourceInfo *DI = CreateTypeSourceInfo(T);
1982 DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
1983 return DI;
1984 }
1985
1986 const ASTRecordLayout &
getASTObjCInterfaceLayout(const ObjCInterfaceDecl * D) const1987 ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
1988 return getObjCLayout(D, nullptr);
1989 }
1990
1991 const ASTRecordLayout &
getASTObjCImplementationLayout(const ObjCImplementationDecl * D) const1992 ASTContext::getASTObjCImplementationLayout(
1993 const ObjCImplementationDecl *D) const {
1994 return getObjCLayout(D->getClassInterface(), D);
1995 }
1996
1997 //===----------------------------------------------------------------------===//
1998 // Type creation/memoization methods
1999 //===----------------------------------------------------------------------===//
2000
2001 QualType
getExtQualType(const Type * baseType,Qualifiers quals) const2002 ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
2003 unsigned fastQuals = quals.getFastQualifiers();
2004 quals.removeFastQualifiers();
2005
2006 // Check if we've already instantiated this type.
2007 llvm::FoldingSetNodeID ID;
2008 ExtQuals::Profile(ID, baseType, quals);
2009 void *insertPos = nullptr;
2010 if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
2011 assert(eq->getQualifiers() == quals);
2012 return QualType(eq, fastQuals);
2013 }
2014
2015 // If the base type is not canonical, make the appropriate canonical type.
2016 QualType canon;
2017 if (!baseType->isCanonicalUnqualified()) {
2018 SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
2019 canonSplit.Quals.addConsistentQualifiers(quals);
2020 canon = getExtQualType(canonSplit.Ty, canonSplit.Quals);
2021
2022 // Re-find the insert position.
2023 (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
2024 }
2025
2026 ExtQuals *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
2027 ExtQualNodes.InsertNode(eq, insertPos);
2028 return QualType(eq, fastQuals);
2029 }
2030
2031 QualType
getAddrSpaceQualType(QualType T,unsigned AddressSpace) const2032 ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) const {
2033 QualType CanT = getCanonicalType(T);
2034 if (CanT.getAddressSpace() == AddressSpace)
2035 return T;
2036
2037 // If we are composing extended qualifiers together, merge together
2038 // into one ExtQuals node.
2039 QualifierCollector Quals;
2040 const Type *TypeNode = Quals.strip(T);
2041
2042 // If this type already has an address space specified, it cannot get
2043 // another one.
2044 assert(!Quals.hasAddressSpace() &&
2045 "Type cannot be in multiple addr spaces!");
2046 Quals.addAddressSpace(AddressSpace);
2047
2048 return getExtQualType(TypeNode, Quals);
2049 }
2050
getObjCGCQualType(QualType T,Qualifiers::GC GCAttr) const2051 QualType ASTContext::getObjCGCQualType(QualType T,
2052 Qualifiers::GC GCAttr) const {
2053 QualType CanT = getCanonicalType(T);
2054 if (CanT.getObjCGCAttr() == GCAttr)
2055 return T;
2056
2057 if (const PointerType *ptr = T->getAs<PointerType>()) {
2058 QualType Pointee = ptr->getPointeeType();
2059 if (Pointee->isAnyPointerType()) {
2060 QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
2061 return getPointerType(ResultType);
2062 }
2063 }
2064
2065 // If we are composing extended qualifiers together, merge together
2066 // into one ExtQuals node.
2067 QualifierCollector Quals;
2068 const Type *TypeNode = Quals.strip(T);
2069
2070 // If this type already has an ObjCGC specified, it cannot get
2071 // another one.
2072 assert(!Quals.hasObjCGCAttr() &&
2073 "Type cannot have multiple ObjCGCs!");
2074 Quals.addObjCGCAttr(GCAttr);
2075
2076 return getExtQualType(TypeNode, Quals);
2077 }
2078
adjustFunctionType(const FunctionType * T,FunctionType::ExtInfo Info)2079 const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
2080 FunctionType::ExtInfo Info) {
2081 if (T->getExtInfo() == Info)
2082 return T;
2083
2084 QualType Result;
2085 if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
2086 Result = getFunctionNoProtoType(FNPT->getReturnType(), Info);
2087 } else {
2088 const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
2089 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
2090 EPI.ExtInfo = Info;
2091 Result = getFunctionType(FPT->getReturnType(), FPT->getParamTypes(), EPI);
2092 }
2093
2094 return cast<FunctionType>(Result.getTypePtr());
2095 }
2096
adjustDeducedFunctionResultType(FunctionDecl * FD,QualType ResultType)2097 void ASTContext::adjustDeducedFunctionResultType(FunctionDecl *FD,
2098 QualType ResultType) {
2099 FD = FD->getMostRecentDecl();
2100 while (true) {
2101 const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>();
2102 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
2103 FD->setType(getFunctionType(ResultType, FPT->getParamTypes(), EPI));
2104 if (FunctionDecl *Next = FD->getPreviousDecl())
2105 FD = Next;
2106 else
2107 break;
2108 }
2109 if (ASTMutationListener *L = getASTMutationListener())
2110 L->DeducedReturnType(FD, ResultType);
2111 }
2112
2113 /// getComplexType - Return the uniqued reference to the type for a complex
2114 /// number with the specified element type.
getComplexType(QualType T) const2115 QualType ASTContext::getComplexType(QualType T) const {
2116 // Unique pointers, to guarantee there is only one pointer of a particular
2117 // structure.
2118 llvm::FoldingSetNodeID ID;
2119 ComplexType::Profile(ID, T);
2120
2121 void *InsertPos = nullptr;
2122 if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
2123 return QualType(CT, 0);
2124
2125 // If the pointee type isn't canonical, this won't be a canonical type either,
2126 // so fill in the canonical type field.
2127 QualType Canonical;
2128 if (!T.isCanonical()) {
2129 Canonical = getComplexType(getCanonicalType(T));
2130
2131 // Get the new insert position for the node we care about.
2132 ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
2133 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2134 }
2135 ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
2136 Types.push_back(New);
2137 ComplexTypes.InsertNode(New, InsertPos);
2138 return QualType(New, 0);
2139 }
2140
2141 /// getPointerType - Return the uniqued reference to the type for a pointer to
2142 /// the specified type.
getPointerType(QualType T) const2143 QualType ASTContext::getPointerType(QualType T) const {
2144 // Unique pointers, to guarantee there is only one pointer of a particular
2145 // structure.
2146 llvm::FoldingSetNodeID ID;
2147 PointerType::Profile(ID, T);
2148
2149 void *InsertPos = nullptr;
2150 if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2151 return QualType(PT, 0);
2152
2153 // If the pointee type isn't canonical, this won't be a canonical type either,
2154 // so fill in the canonical type field.
2155 QualType Canonical;
2156 if (!T.isCanonical()) {
2157 Canonical = getPointerType(getCanonicalType(T));
2158
2159 // Get the new insert position for the node we care about.
2160 PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2161 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2162 }
2163 PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
2164 Types.push_back(New);
2165 PointerTypes.InsertNode(New, InsertPos);
2166 return QualType(New, 0);
2167 }
2168
getAdjustedType(QualType Orig,QualType New) const2169 QualType ASTContext::getAdjustedType(QualType Orig, QualType New) const {
2170 llvm::FoldingSetNodeID ID;
2171 AdjustedType::Profile(ID, Orig, New);
2172 void *InsertPos = nullptr;
2173 AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
2174 if (AT)
2175 return QualType(AT, 0);
2176
2177 QualType Canonical = getCanonicalType(New);
2178
2179 // Get the new insert position for the node we care about.
2180 AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
2181 assert(!AT && "Shouldn't be in the map!");
2182
2183 AT = new (*this, TypeAlignment)
2184 AdjustedType(Type::Adjusted, Orig, New, Canonical);
2185 Types.push_back(AT);
2186 AdjustedTypes.InsertNode(AT, InsertPos);
2187 return QualType(AT, 0);
2188 }
2189
getDecayedType(QualType T) const2190 QualType ASTContext::getDecayedType(QualType T) const {
2191 assert((T->isArrayType() || T->isFunctionType()) && "T does not decay");
2192
2193 QualType Decayed;
2194
2195 // C99 6.7.5.3p7:
2196 // A declaration of a parameter as "array of type" shall be
2197 // adjusted to "qualified pointer to type", where the type
2198 // qualifiers (if any) are those specified within the [ and ] of
2199 // the array type derivation.
2200 if (T->isArrayType())
2201 Decayed = getArrayDecayedType(T);
2202
2203 // C99 6.7.5.3p8:
2204 // A declaration of a parameter as "function returning type"
2205 // shall be adjusted to "pointer to function returning type", as
2206 // in 6.3.2.1.
2207 if (T->isFunctionType())
2208 Decayed = getPointerType(T);
2209
2210 llvm::FoldingSetNodeID ID;
2211 AdjustedType::Profile(ID, T, Decayed);
2212 void *InsertPos = nullptr;
2213 AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
2214 if (AT)
2215 return QualType(AT, 0);
2216
2217 QualType Canonical = getCanonicalType(Decayed);
2218
2219 // Get the new insert position for the node we care about.
2220 AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
2221 assert(!AT && "Shouldn't be in the map!");
2222
2223 AT = new (*this, TypeAlignment) DecayedType(T, Decayed, Canonical);
2224 Types.push_back(AT);
2225 AdjustedTypes.InsertNode(AT, InsertPos);
2226 return QualType(AT, 0);
2227 }
2228
2229 /// getBlockPointerType - Return the uniqued reference to the type for
2230 /// a pointer to the specified block.
getBlockPointerType(QualType T) const2231 QualType ASTContext::getBlockPointerType(QualType T) const {
2232 assert(T->isFunctionType() && "block of function types only");
2233 // Unique pointers, to guarantee there is only one block of a particular
2234 // structure.
2235 llvm::FoldingSetNodeID ID;
2236 BlockPointerType::Profile(ID, T);
2237
2238 void *InsertPos = nullptr;
2239 if (BlockPointerType *PT =
2240 BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2241 return QualType(PT, 0);
2242
2243 // If the block pointee type isn't canonical, this won't be a canonical
2244 // type either so fill in the canonical type field.
2245 QualType Canonical;
2246 if (!T.isCanonical()) {
2247 Canonical = getBlockPointerType(getCanonicalType(T));
2248
2249 // Get the new insert position for the node we care about.
2250 BlockPointerType *NewIP =
2251 BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2252 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2253 }
2254 BlockPointerType *New
2255 = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
2256 Types.push_back(New);
2257 BlockPointerTypes.InsertNode(New, InsertPos);
2258 return QualType(New, 0);
2259 }
2260
2261 /// getLValueReferenceType - Return the uniqued reference to the type for an
2262 /// lvalue reference to the specified type.
2263 QualType
getLValueReferenceType(QualType T,bool SpelledAsLValue) const2264 ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
2265 assert(getCanonicalType(T) != OverloadTy &&
2266 "Unresolved overloaded function type");
2267
2268 // Unique pointers, to guarantee there is only one pointer of a particular
2269 // structure.
2270 llvm::FoldingSetNodeID ID;
2271 ReferenceType::Profile(ID, T, SpelledAsLValue);
2272
2273 void *InsertPos = nullptr;
2274 if (LValueReferenceType *RT =
2275 LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
2276 return QualType(RT, 0);
2277
2278 const ReferenceType *InnerRef = T->getAs<ReferenceType>();
2279
2280 // If the referencee type isn't canonical, this won't be a canonical type
2281 // either, so fill in the canonical type field.
2282 QualType Canonical;
2283 if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
2284 QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
2285 Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
2286
2287 // Get the new insert position for the node we care about.
2288 LValueReferenceType *NewIP =
2289 LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
2290 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2291 }
2292
2293 LValueReferenceType *New
2294 = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
2295 SpelledAsLValue);
2296 Types.push_back(New);
2297 LValueReferenceTypes.InsertNode(New, InsertPos);
2298
2299 return QualType(New, 0);
2300 }
2301
2302 /// getRValueReferenceType - Return the uniqued reference to the type for an
2303 /// rvalue reference to the specified type.
getRValueReferenceType(QualType T) const2304 QualType ASTContext::getRValueReferenceType(QualType T) const {
2305 // Unique pointers, to guarantee there is only one pointer of a particular
2306 // structure.
2307 llvm::FoldingSetNodeID ID;
2308 ReferenceType::Profile(ID, T, false);
2309
2310 void *InsertPos = nullptr;
2311 if (RValueReferenceType *RT =
2312 RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
2313 return QualType(RT, 0);
2314
2315 const ReferenceType *InnerRef = T->getAs<ReferenceType>();
2316
2317 // If the referencee type isn't canonical, this won't be a canonical type
2318 // either, so fill in the canonical type field.
2319 QualType Canonical;
2320 if (InnerRef || !T.isCanonical()) {
2321 QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
2322 Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
2323
2324 // Get the new insert position for the node we care about.
2325 RValueReferenceType *NewIP =
2326 RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
2327 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2328 }
2329
2330 RValueReferenceType *New
2331 = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
2332 Types.push_back(New);
2333 RValueReferenceTypes.InsertNode(New, InsertPos);
2334 return QualType(New, 0);
2335 }
2336
2337 /// getMemberPointerType - Return the uniqued reference to the type for a
2338 /// member pointer to the specified type, in the specified class.
getMemberPointerType(QualType T,const Type * Cls) const2339 QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
2340 // Unique pointers, to guarantee there is only one pointer of a particular
2341 // structure.
2342 llvm::FoldingSetNodeID ID;
2343 MemberPointerType::Profile(ID, T, Cls);
2344
2345 void *InsertPos = nullptr;
2346 if (MemberPointerType *PT =
2347 MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2348 return QualType(PT, 0);
2349
2350 // If the pointee or class type isn't canonical, this won't be a canonical
2351 // type either, so fill in the canonical type field.
2352 QualType Canonical;
2353 if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
2354 Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
2355
2356 // Get the new insert position for the node we care about.
2357 MemberPointerType *NewIP =
2358 MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2359 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2360 }
2361 MemberPointerType *New
2362 = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
2363 Types.push_back(New);
2364 MemberPointerTypes.InsertNode(New, InsertPos);
2365 return QualType(New, 0);
2366 }
2367
2368 /// getConstantArrayType - Return the unique reference to the type for an
2369 /// array of the specified element type.
getConstantArrayType(QualType EltTy,const llvm::APInt & ArySizeIn,ArrayType::ArraySizeModifier ASM,unsigned IndexTypeQuals) const2370 QualType ASTContext::getConstantArrayType(QualType EltTy,
2371 const llvm::APInt &ArySizeIn,
2372 ArrayType::ArraySizeModifier ASM,
2373 unsigned IndexTypeQuals) const {
2374 assert((EltTy->isDependentType() ||
2375 EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
2376 "Constant array of VLAs is illegal!");
2377
2378 // Convert the array size into a canonical width matching the pointer size for
2379 // the target.
2380 llvm::APInt ArySize(ArySizeIn);
2381 ArySize =
2382 ArySize.zextOrTrunc(Target->getPointerWidth(getTargetAddressSpace(EltTy)));
2383
2384 llvm::FoldingSetNodeID ID;
2385 ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, IndexTypeQuals);
2386
2387 void *InsertPos = nullptr;
2388 if (ConstantArrayType *ATP =
2389 ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
2390 return QualType(ATP, 0);
2391
2392 // If the element type isn't canonical or has qualifiers, this won't
2393 // be a canonical type either, so fill in the canonical type field.
2394 QualType Canon;
2395 if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
2396 SplitQualType canonSplit = getCanonicalType(EltTy).split();
2397 Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize,
2398 ASM, IndexTypeQuals);
2399 Canon = getQualifiedType(Canon, canonSplit.Quals);
2400
2401 // Get the new insert position for the node we care about.
2402 ConstantArrayType *NewIP =
2403 ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
2404 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2405 }
2406
2407 ConstantArrayType *New = new(*this,TypeAlignment)
2408 ConstantArrayType(EltTy, Canon, ArySize, ASM, IndexTypeQuals);
2409 ConstantArrayTypes.InsertNode(New, InsertPos);
2410 Types.push_back(New);
2411 return QualType(New, 0);
2412 }
2413
2414 /// getVariableArrayDecayedType - Turns the given type, which may be
2415 /// variably-modified, into the corresponding type with all the known
2416 /// sizes replaced with [*].
getVariableArrayDecayedType(QualType type) const2417 QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
2418 // Vastly most common case.
2419 if (!type->isVariablyModifiedType()) return type;
2420
2421 QualType result;
2422
2423 SplitQualType split = type.getSplitDesugaredType();
2424 const Type *ty = split.Ty;
2425 switch (ty->getTypeClass()) {
2426 #define TYPE(Class, Base)
2427 #define ABSTRACT_TYPE(Class, Base)
2428 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
2429 #include "clang/AST/TypeNodes.def"
2430 llvm_unreachable("didn't desugar past all non-canonical types?");
2431
2432 // These types should never be variably-modified.
2433 case Type::Builtin:
2434 case Type::Complex:
2435 case Type::Vector:
2436 case Type::ExtVector:
2437 case Type::DependentSizedExtVector:
2438 case Type::ObjCObject:
2439 case Type::ObjCInterface:
2440 case Type::ObjCObjectPointer:
2441 case Type::Record:
2442 case Type::Enum:
2443 case Type::UnresolvedUsing:
2444 case Type::TypeOfExpr:
2445 case Type::TypeOf:
2446 case Type::Decltype:
2447 case Type::UnaryTransform:
2448 case Type::DependentName:
2449 case Type::InjectedClassName:
2450 case Type::TemplateSpecialization:
2451 case Type::DependentTemplateSpecialization:
2452 case Type::TemplateTypeParm:
2453 case Type::SubstTemplateTypeParmPack:
2454 case Type::Auto:
2455 case Type::PackExpansion:
2456 llvm_unreachable("type should never be variably-modified");
2457
2458 // These types can be variably-modified but should never need to
2459 // further decay.
2460 case Type::FunctionNoProto:
2461 case Type::FunctionProto:
2462 case Type::BlockPointer:
2463 case Type::MemberPointer:
2464 return type;
2465
2466 // These types can be variably-modified. All these modifications
2467 // preserve structure except as noted by comments.
2468 // TODO: if we ever care about optimizing VLAs, there are no-op
2469 // optimizations available here.
2470 case Type::Pointer:
2471 result = getPointerType(getVariableArrayDecayedType(
2472 cast<PointerType>(ty)->getPointeeType()));
2473 break;
2474
2475 case Type::LValueReference: {
2476 const LValueReferenceType *lv = cast<LValueReferenceType>(ty);
2477 result = getLValueReferenceType(
2478 getVariableArrayDecayedType(lv->getPointeeType()),
2479 lv->isSpelledAsLValue());
2480 break;
2481 }
2482
2483 case Type::RValueReference: {
2484 const RValueReferenceType *lv = cast<RValueReferenceType>(ty);
2485 result = getRValueReferenceType(
2486 getVariableArrayDecayedType(lv->getPointeeType()));
2487 break;
2488 }
2489
2490 case Type::Atomic: {
2491 const AtomicType *at = cast<AtomicType>(ty);
2492 result = getAtomicType(getVariableArrayDecayedType(at->getValueType()));
2493 break;
2494 }
2495
2496 case Type::ConstantArray: {
2497 const ConstantArrayType *cat = cast<ConstantArrayType>(ty);
2498 result = getConstantArrayType(
2499 getVariableArrayDecayedType(cat->getElementType()),
2500 cat->getSize(),
2501 cat->getSizeModifier(),
2502 cat->getIndexTypeCVRQualifiers());
2503 break;
2504 }
2505
2506 case Type::DependentSizedArray: {
2507 const DependentSizedArrayType *dat = cast<DependentSizedArrayType>(ty);
2508 result = getDependentSizedArrayType(
2509 getVariableArrayDecayedType(dat->getElementType()),
2510 dat->getSizeExpr(),
2511 dat->getSizeModifier(),
2512 dat->getIndexTypeCVRQualifiers(),
2513 dat->getBracketsRange());
2514 break;
2515 }
2516
2517 // Turn incomplete types into [*] types.
2518 case Type::IncompleteArray: {
2519 const IncompleteArrayType *iat = cast<IncompleteArrayType>(ty);
2520 result = getVariableArrayType(
2521 getVariableArrayDecayedType(iat->getElementType()),
2522 /*size*/ nullptr,
2523 ArrayType::Normal,
2524 iat->getIndexTypeCVRQualifiers(),
2525 SourceRange());
2526 break;
2527 }
2528
2529 // Turn VLA types into [*] types.
2530 case Type::VariableArray: {
2531 const VariableArrayType *vat = cast<VariableArrayType>(ty);
2532 result = getVariableArrayType(
2533 getVariableArrayDecayedType(vat->getElementType()),
2534 /*size*/ nullptr,
2535 ArrayType::Star,
2536 vat->getIndexTypeCVRQualifiers(),
2537 vat->getBracketsRange());
2538 break;
2539 }
2540 }
2541
2542 // Apply the top-level qualifiers from the original.
2543 return getQualifiedType(result, split.Quals);
2544 }
2545
2546 /// getVariableArrayType - Returns a non-unique reference to the type for a
2547 /// variable array of the specified element type.
getVariableArrayType(QualType EltTy,Expr * NumElts,ArrayType::ArraySizeModifier ASM,unsigned IndexTypeQuals,SourceRange Brackets) const2548 QualType ASTContext::getVariableArrayType(QualType EltTy,
2549 Expr *NumElts,
2550 ArrayType::ArraySizeModifier ASM,
2551 unsigned IndexTypeQuals,
2552 SourceRange Brackets) const {
2553 // Since we don't unique expressions, it isn't possible to unique VLA's
2554 // that have an expression provided for their size.
2555 QualType Canon;
2556
2557 // Be sure to pull qualifiers off the element type.
2558 if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
2559 SplitQualType canonSplit = getCanonicalType(EltTy).split();
2560 Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM,
2561 IndexTypeQuals, Brackets);
2562 Canon = getQualifiedType(Canon, canonSplit.Quals);
2563 }
2564
2565 VariableArrayType *New = new(*this, TypeAlignment)
2566 VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
2567
2568 VariableArrayTypes.push_back(New);
2569 Types.push_back(New);
2570 return QualType(New, 0);
2571 }
2572
2573 /// getDependentSizedArrayType - Returns a non-unique reference to
2574 /// the type for a dependently-sized array of the specified element
2575 /// type.
getDependentSizedArrayType(QualType elementType,Expr * numElements,ArrayType::ArraySizeModifier ASM,unsigned elementTypeQuals,SourceRange brackets) const2576 QualType ASTContext::getDependentSizedArrayType(QualType elementType,
2577 Expr *numElements,
2578 ArrayType::ArraySizeModifier ASM,
2579 unsigned elementTypeQuals,
2580 SourceRange brackets) const {
2581 assert((!numElements || numElements->isTypeDependent() ||
2582 numElements->isValueDependent()) &&
2583 "Size must be type- or value-dependent!");
2584
2585 // Dependently-sized array types that do not have a specified number
2586 // of elements will have their sizes deduced from a dependent
2587 // initializer. We do no canonicalization here at all, which is okay
2588 // because they can't be used in most locations.
2589 if (!numElements) {
2590 DependentSizedArrayType *newType
2591 = new (*this, TypeAlignment)
2592 DependentSizedArrayType(*this, elementType, QualType(),
2593 numElements, ASM, elementTypeQuals,
2594 brackets);
2595 Types.push_back(newType);
2596 return QualType(newType, 0);
2597 }
2598
2599 // Otherwise, we actually build a new type every time, but we
2600 // also build a canonical type.
2601
2602 SplitQualType canonElementType = getCanonicalType(elementType).split();
2603
2604 void *insertPos = nullptr;
2605 llvm::FoldingSetNodeID ID;
2606 DependentSizedArrayType::Profile(ID, *this,
2607 QualType(canonElementType.Ty, 0),
2608 ASM, elementTypeQuals, numElements);
2609
2610 // Look for an existing type with these properties.
2611 DependentSizedArrayType *canonTy =
2612 DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
2613
2614 // If we don't have one, build one.
2615 if (!canonTy) {
2616 canonTy = new (*this, TypeAlignment)
2617 DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0),
2618 QualType(), numElements, ASM, elementTypeQuals,
2619 brackets);
2620 DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
2621 Types.push_back(canonTy);
2622 }
2623
2624 // Apply qualifiers from the element type to the array.
2625 QualType canon = getQualifiedType(QualType(canonTy,0),
2626 canonElementType.Quals);
2627
2628 // If we didn't need extra canonicalization for the element type,
2629 // then just use that as our result.
2630 if (QualType(canonElementType.Ty, 0) == elementType)
2631 return canon;
2632
2633 // Otherwise, we need to build a type which follows the spelling
2634 // of the element type.
2635 DependentSizedArrayType *sugaredType
2636 = new (*this, TypeAlignment)
2637 DependentSizedArrayType(*this, elementType, canon, numElements,
2638 ASM, elementTypeQuals, brackets);
2639 Types.push_back(sugaredType);
2640 return QualType(sugaredType, 0);
2641 }
2642
getIncompleteArrayType(QualType elementType,ArrayType::ArraySizeModifier ASM,unsigned elementTypeQuals) const2643 QualType ASTContext::getIncompleteArrayType(QualType elementType,
2644 ArrayType::ArraySizeModifier ASM,
2645 unsigned elementTypeQuals) const {
2646 llvm::FoldingSetNodeID ID;
2647 IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
2648
2649 void *insertPos = nullptr;
2650 if (IncompleteArrayType *iat =
2651 IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
2652 return QualType(iat, 0);
2653
2654 // If the element type isn't canonical, this won't be a canonical type
2655 // either, so fill in the canonical type field. We also have to pull
2656 // qualifiers off the element type.
2657 QualType canon;
2658
2659 if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
2660 SplitQualType canonSplit = getCanonicalType(elementType).split();
2661 canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0),
2662 ASM, elementTypeQuals);
2663 canon = getQualifiedType(canon, canonSplit.Quals);
2664
2665 // Get the new insert position for the node we care about.
2666 IncompleteArrayType *existing =
2667 IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
2668 assert(!existing && "Shouldn't be in the map!"); (void) existing;
2669 }
2670
2671 IncompleteArrayType *newType = new (*this, TypeAlignment)
2672 IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
2673
2674 IncompleteArrayTypes.InsertNode(newType, insertPos);
2675 Types.push_back(newType);
2676 return QualType(newType, 0);
2677 }
2678
2679 /// getVectorType - Return the unique reference to a vector type of
2680 /// the specified element type and size. VectorType must be a built-in type.
getVectorType(QualType vecType,unsigned NumElts,VectorType::VectorKind VecKind) const2681 QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
2682 VectorType::VectorKind VecKind) const {
2683 assert(vecType->isBuiltinType());
2684
2685 // Check if we've already instantiated a vector of this type.
2686 llvm::FoldingSetNodeID ID;
2687 VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
2688
2689 void *InsertPos = nullptr;
2690 if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2691 return QualType(VTP, 0);
2692
2693 // If the element type isn't canonical, this won't be a canonical type either,
2694 // so fill in the canonical type field.
2695 QualType Canonical;
2696 if (!vecType.isCanonical()) {
2697 Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
2698
2699 // Get the new insert position for the node we care about.
2700 VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2701 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2702 }
2703 VectorType *New = new (*this, TypeAlignment)
2704 VectorType(vecType, NumElts, Canonical, VecKind);
2705 VectorTypes.InsertNode(New, InsertPos);
2706 Types.push_back(New);
2707 return QualType(New, 0);
2708 }
2709
2710 /// getExtVectorType - Return the unique reference to an extended vector type of
2711 /// the specified element type and size. VectorType must be a built-in type.
2712 QualType
getExtVectorType(QualType vecType,unsigned NumElts) const2713 ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
2714 assert(vecType->isBuiltinType() || vecType->isDependentType());
2715
2716 // Check if we've already instantiated a vector of this type.
2717 llvm::FoldingSetNodeID ID;
2718 VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
2719 VectorType::GenericVector);
2720 void *InsertPos = nullptr;
2721 if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2722 return QualType(VTP, 0);
2723
2724 // If the element type isn't canonical, this won't be a canonical type either,
2725 // so fill in the canonical type field.
2726 QualType Canonical;
2727 if (!vecType.isCanonical()) {
2728 Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
2729
2730 // Get the new insert position for the node we care about.
2731 VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2732 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2733 }
2734 ExtVectorType *New = new (*this, TypeAlignment)
2735 ExtVectorType(vecType, NumElts, Canonical);
2736 VectorTypes.InsertNode(New, InsertPos);
2737 Types.push_back(New);
2738 return QualType(New, 0);
2739 }
2740
2741 QualType
getDependentSizedExtVectorType(QualType vecType,Expr * SizeExpr,SourceLocation AttrLoc) const2742 ASTContext::getDependentSizedExtVectorType(QualType vecType,
2743 Expr *SizeExpr,
2744 SourceLocation AttrLoc) const {
2745 llvm::FoldingSetNodeID ID;
2746 DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
2747 SizeExpr);
2748
2749 void *InsertPos = nullptr;
2750 DependentSizedExtVectorType *Canon
2751 = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2752 DependentSizedExtVectorType *New;
2753 if (Canon) {
2754 // We already have a canonical version of this array type; use it as
2755 // the canonical type for a newly-built type.
2756 New = new (*this, TypeAlignment)
2757 DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
2758 SizeExpr, AttrLoc);
2759 } else {
2760 QualType CanonVecTy = getCanonicalType(vecType);
2761 if (CanonVecTy == vecType) {
2762 New = new (*this, TypeAlignment)
2763 DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
2764 AttrLoc);
2765
2766 DependentSizedExtVectorType *CanonCheck
2767 = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2768 assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
2769 (void)CanonCheck;
2770 DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
2771 } else {
2772 QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
2773 SourceLocation());
2774 New = new (*this, TypeAlignment)
2775 DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
2776 }
2777 }
2778
2779 Types.push_back(New);
2780 return QualType(New, 0);
2781 }
2782
2783 /// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
2784 ///
2785 QualType
getFunctionNoProtoType(QualType ResultTy,const FunctionType::ExtInfo & Info) const2786 ASTContext::getFunctionNoProtoType(QualType ResultTy,
2787 const FunctionType::ExtInfo &Info) const {
2788 const CallingConv CallConv = Info.getCC();
2789
2790 // Unique functions, to guarantee there is only one function of a particular
2791 // structure.
2792 llvm::FoldingSetNodeID ID;
2793 FunctionNoProtoType::Profile(ID, ResultTy, Info);
2794
2795 void *InsertPos = nullptr;
2796 if (FunctionNoProtoType *FT =
2797 FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2798 return QualType(FT, 0);
2799
2800 QualType Canonical;
2801 if (!ResultTy.isCanonical()) {
2802 Canonical = getFunctionNoProtoType(getCanonicalType(ResultTy), Info);
2803
2804 // Get the new insert position for the node we care about.
2805 FunctionNoProtoType *NewIP =
2806 FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2807 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2808 }
2809
2810 FunctionProtoType::ExtInfo newInfo = Info.withCallingConv(CallConv);
2811 FunctionNoProtoType *New = new (*this, TypeAlignment)
2812 FunctionNoProtoType(ResultTy, Canonical, newInfo);
2813 Types.push_back(New);
2814 FunctionNoProtoTypes.InsertNode(New, InsertPos);
2815 return QualType(New, 0);
2816 }
2817
2818 /// \brief Determine whether \p T is canonical as the result type of a function.
isCanonicalResultType(QualType T)2819 static bool isCanonicalResultType(QualType T) {
2820 return T.isCanonical() &&
2821 (T.getObjCLifetime() == Qualifiers::OCL_None ||
2822 T.getObjCLifetime() == Qualifiers::OCL_ExplicitNone);
2823 }
2824
2825 QualType
getFunctionType(QualType ResultTy,ArrayRef<QualType> ArgArray,const FunctionProtoType::ExtProtoInfo & EPI) const2826 ASTContext::getFunctionType(QualType ResultTy, ArrayRef<QualType> ArgArray,
2827 const FunctionProtoType::ExtProtoInfo &EPI) const {
2828 size_t NumArgs = ArgArray.size();
2829
2830 // Unique functions, to guarantee there is only one function of a particular
2831 // structure.
2832 llvm::FoldingSetNodeID ID;
2833 FunctionProtoType::Profile(ID, ResultTy, ArgArray.begin(), NumArgs, EPI,
2834 *this);
2835
2836 void *InsertPos = nullptr;
2837 if (FunctionProtoType *FTP =
2838 FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2839 return QualType(FTP, 0);
2840
2841 // Determine whether the type being created is already canonical or not.
2842 bool isCanonical =
2843 EPI.ExceptionSpecType == EST_None && isCanonicalResultType(ResultTy) &&
2844 !EPI.HasTrailingReturn;
2845 for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
2846 if (!ArgArray[i].isCanonicalAsParam())
2847 isCanonical = false;
2848
2849 // If this type isn't canonical, get the canonical version of it.
2850 // The exception spec is not part of the canonical type.
2851 QualType Canonical;
2852 if (!isCanonical) {
2853 SmallVector<QualType, 16> CanonicalArgs;
2854 CanonicalArgs.reserve(NumArgs);
2855 for (unsigned i = 0; i != NumArgs; ++i)
2856 CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
2857
2858 FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
2859 CanonicalEPI.HasTrailingReturn = false;
2860 CanonicalEPI.ExceptionSpecType = EST_None;
2861 CanonicalEPI.NumExceptions = 0;
2862
2863 // Result types do not have ARC lifetime qualifiers.
2864 QualType CanResultTy = getCanonicalType(ResultTy);
2865 if (ResultTy.getQualifiers().hasObjCLifetime()) {
2866 Qualifiers Qs = CanResultTy.getQualifiers();
2867 Qs.removeObjCLifetime();
2868 CanResultTy = getQualifiedType(CanResultTy.getUnqualifiedType(), Qs);
2869 }
2870
2871 Canonical = getFunctionType(CanResultTy, CanonicalArgs, CanonicalEPI);
2872
2873 // Get the new insert position for the node we care about.
2874 FunctionProtoType *NewIP =
2875 FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2876 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2877 }
2878
2879 // FunctionProtoType objects are allocated with extra bytes after
2880 // them for three variable size arrays at the end:
2881 // - parameter types
2882 // - exception types
2883 // - consumed-arguments flags
2884 // Instead of the exception types, there could be a noexcept
2885 // expression, or information used to resolve the exception
2886 // specification.
2887 size_t Size = sizeof(FunctionProtoType) +
2888 NumArgs * sizeof(QualType);
2889 if (EPI.ExceptionSpecType == EST_Dynamic) {
2890 Size += EPI.NumExceptions * sizeof(QualType);
2891 } else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
2892 Size += sizeof(Expr*);
2893 } else if (EPI.ExceptionSpecType == EST_Uninstantiated) {
2894 Size += 2 * sizeof(FunctionDecl*);
2895 } else if (EPI.ExceptionSpecType == EST_Unevaluated) {
2896 Size += sizeof(FunctionDecl*);
2897 }
2898 if (EPI.ConsumedParameters)
2899 Size += NumArgs * sizeof(bool);
2900
2901 FunctionProtoType *FTP = (FunctionProtoType*) Allocate(Size, TypeAlignment);
2902 FunctionProtoType::ExtProtoInfo newEPI = EPI;
2903 new (FTP) FunctionProtoType(ResultTy, ArgArray, Canonical, newEPI);
2904 Types.push_back(FTP);
2905 FunctionProtoTypes.InsertNode(FTP, InsertPos);
2906 return QualType(FTP, 0);
2907 }
2908
2909 #ifndef NDEBUG
NeedsInjectedClassNameType(const RecordDecl * D)2910 static bool NeedsInjectedClassNameType(const RecordDecl *D) {
2911 if (!isa<CXXRecordDecl>(D)) return false;
2912 const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
2913 if (isa<ClassTemplatePartialSpecializationDecl>(RD))
2914 return true;
2915 if (RD->getDescribedClassTemplate() &&
2916 !isa<ClassTemplateSpecializationDecl>(RD))
2917 return true;
2918 return false;
2919 }
2920 #endif
2921
2922 /// getInjectedClassNameType - Return the unique reference to the
2923 /// injected class name type for the specified templated declaration.
getInjectedClassNameType(CXXRecordDecl * Decl,QualType TST) const2924 QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
2925 QualType TST) const {
2926 assert(NeedsInjectedClassNameType(Decl));
2927 if (Decl->TypeForDecl) {
2928 assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2929 } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) {
2930 assert(PrevDecl->TypeForDecl && "previous declaration has no type");
2931 Decl->TypeForDecl = PrevDecl->TypeForDecl;
2932 assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2933 } else {
2934 Type *newType =
2935 new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
2936 Decl->TypeForDecl = newType;
2937 Types.push_back(newType);
2938 }
2939 return QualType(Decl->TypeForDecl, 0);
2940 }
2941
2942 /// getTypeDeclType - Return the unique reference to the type for the
2943 /// specified type declaration.
getTypeDeclTypeSlow(const TypeDecl * Decl) const2944 QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
2945 assert(Decl && "Passed null for Decl param");
2946 assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
2947
2948 if (const TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Decl))
2949 return getTypedefType(Typedef);
2950
2951 assert(!isa<TemplateTypeParmDecl>(Decl) &&
2952 "Template type parameter types are always available.");
2953
2954 if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
2955 assert(Record->isFirstDecl() && "struct/union has previous declaration");
2956 assert(!NeedsInjectedClassNameType(Record));
2957 return getRecordType(Record);
2958 } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
2959 assert(Enum->isFirstDecl() && "enum has previous declaration");
2960 return getEnumType(Enum);
2961 } else if (const UnresolvedUsingTypenameDecl *Using =
2962 dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
2963 Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
2964 Decl->TypeForDecl = newType;
2965 Types.push_back(newType);
2966 } else
2967 llvm_unreachable("TypeDecl without a type?");
2968
2969 return QualType(Decl->TypeForDecl, 0);
2970 }
2971
2972 /// getTypedefType - Return the unique reference to the type for the
2973 /// specified typedef name decl.
2974 QualType
getTypedefType(const TypedefNameDecl * Decl,QualType Canonical) const2975 ASTContext::getTypedefType(const TypedefNameDecl *Decl,
2976 QualType Canonical) const {
2977 if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2978
2979 if (Canonical.isNull())
2980 Canonical = getCanonicalType(Decl->getUnderlyingType());
2981 TypedefType *newType = new(*this, TypeAlignment)
2982 TypedefType(Type::Typedef, Decl, Canonical);
2983 Decl->TypeForDecl = newType;
2984 Types.push_back(newType);
2985 return QualType(newType, 0);
2986 }
2987
getRecordType(const RecordDecl * Decl) const2988 QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
2989 if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2990
2991 if (const RecordDecl *PrevDecl = Decl->getPreviousDecl())
2992 if (PrevDecl->TypeForDecl)
2993 return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2994
2995 RecordType *newType = new (*this, TypeAlignment) RecordType(Decl);
2996 Decl->TypeForDecl = newType;
2997 Types.push_back(newType);
2998 return QualType(newType, 0);
2999 }
3000
getEnumType(const EnumDecl * Decl) const3001 QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
3002 if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
3003
3004 if (const EnumDecl *PrevDecl = Decl->getPreviousDecl())
3005 if (PrevDecl->TypeForDecl)
3006 return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
3007
3008 EnumType *newType = new (*this, TypeAlignment) EnumType(Decl);
3009 Decl->TypeForDecl = newType;
3010 Types.push_back(newType);
3011 return QualType(newType, 0);
3012 }
3013
getAttributedType(AttributedType::Kind attrKind,QualType modifiedType,QualType equivalentType)3014 QualType ASTContext::getAttributedType(AttributedType::Kind attrKind,
3015 QualType modifiedType,
3016 QualType equivalentType) {
3017 llvm::FoldingSetNodeID id;
3018 AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
3019
3020 void *insertPos = nullptr;
3021 AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
3022 if (type) return QualType(type, 0);
3023
3024 QualType canon = getCanonicalType(equivalentType);
3025 type = new (*this, TypeAlignment)
3026 AttributedType(canon, attrKind, modifiedType, equivalentType);
3027
3028 Types.push_back(type);
3029 AttributedTypes.InsertNode(type, insertPos);
3030
3031 return QualType(type, 0);
3032 }
3033
3034
3035 /// \brief Retrieve a substitution-result type.
3036 QualType
getSubstTemplateTypeParmType(const TemplateTypeParmType * Parm,QualType Replacement) const3037 ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
3038 QualType Replacement) const {
3039 assert(Replacement.isCanonical()
3040 && "replacement types must always be canonical");
3041
3042 llvm::FoldingSetNodeID ID;
3043 SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
3044 void *InsertPos = nullptr;
3045 SubstTemplateTypeParmType *SubstParm
3046 = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
3047
3048 if (!SubstParm) {
3049 SubstParm = new (*this, TypeAlignment)
3050 SubstTemplateTypeParmType(Parm, Replacement);
3051 Types.push_back(SubstParm);
3052 SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
3053 }
3054
3055 return QualType(SubstParm, 0);
3056 }
3057
3058 /// \brief Retrieve a
getSubstTemplateTypeParmPackType(const TemplateTypeParmType * Parm,const TemplateArgument & ArgPack)3059 QualType ASTContext::getSubstTemplateTypeParmPackType(
3060 const TemplateTypeParmType *Parm,
3061 const TemplateArgument &ArgPack) {
3062 #ifndef NDEBUG
3063 for (TemplateArgument::pack_iterator P = ArgPack.pack_begin(),
3064 PEnd = ArgPack.pack_end();
3065 P != PEnd; ++P) {
3066 assert(P->getKind() == TemplateArgument::Type &&"Pack contains a non-type");
3067 assert(P->getAsType().isCanonical() && "Pack contains non-canonical type");
3068 }
3069 #endif
3070
3071 llvm::FoldingSetNodeID ID;
3072 SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
3073 void *InsertPos = nullptr;
3074 if (SubstTemplateTypeParmPackType *SubstParm
3075 = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
3076 return QualType(SubstParm, 0);
3077
3078 QualType Canon;
3079 if (!Parm->isCanonicalUnqualified()) {
3080 Canon = getCanonicalType(QualType(Parm, 0));
3081 Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
3082 ArgPack);
3083 SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
3084 }
3085
3086 SubstTemplateTypeParmPackType *SubstParm
3087 = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
3088 ArgPack);
3089 Types.push_back(SubstParm);
3090 SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
3091 return QualType(SubstParm, 0);
3092 }
3093
3094 /// \brief Retrieve the template type parameter type for a template
3095 /// parameter or parameter pack with the given depth, index, and (optionally)
3096 /// name.
getTemplateTypeParmType(unsigned Depth,unsigned Index,bool ParameterPack,TemplateTypeParmDecl * TTPDecl) const3097 QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
3098 bool ParameterPack,
3099 TemplateTypeParmDecl *TTPDecl) const {
3100 llvm::FoldingSetNodeID ID;
3101 TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
3102 void *InsertPos = nullptr;
3103 TemplateTypeParmType *TypeParm
3104 = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
3105
3106 if (TypeParm)
3107 return QualType(TypeParm, 0);
3108
3109 if (TTPDecl) {
3110 QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
3111 TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
3112
3113 TemplateTypeParmType *TypeCheck
3114 = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
3115 assert(!TypeCheck && "Template type parameter canonical type broken");
3116 (void)TypeCheck;
3117 } else
3118 TypeParm = new (*this, TypeAlignment)
3119 TemplateTypeParmType(Depth, Index, ParameterPack);
3120
3121 Types.push_back(TypeParm);
3122 TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
3123
3124 return QualType(TypeParm, 0);
3125 }
3126
3127 TypeSourceInfo *
getTemplateSpecializationTypeInfo(TemplateName Name,SourceLocation NameLoc,const TemplateArgumentListInfo & Args,QualType Underlying) const3128 ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
3129 SourceLocation NameLoc,
3130 const TemplateArgumentListInfo &Args,
3131 QualType Underlying) const {
3132 assert(!Name.getAsDependentTemplateName() &&
3133 "No dependent template names here!");
3134 QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
3135
3136 TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
3137 TemplateSpecializationTypeLoc TL =
3138 DI->getTypeLoc().castAs<TemplateSpecializationTypeLoc>();
3139 TL.setTemplateKeywordLoc(SourceLocation());
3140 TL.setTemplateNameLoc(NameLoc);
3141 TL.setLAngleLoc(Args.getLAngleLoc());
3142 TL.setRAngleLoc(Args.getRAngleLoc());
3143 for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
3144 TL.setArgLocInfo(i, Args[i].getLocInfo());
3145 return DI;
3146 }
3147
3148 QualType
getTemplateSpecializationType(TemplateName Template,const TemplateArgumentListInfo & Args,QualType Underlying) const3149 ASTContext::getTemplateSpecializationType(TemplateName Template,
3150 const TemplateArgumentListInfo &Args,
3151 QualType Underlying) const {
3152 assert(!Template.getAsDependentTemplateName() &&
3153 "No dependent template names here!");
3154
3155 unsigned NumArgs = Args.size();
3156
3157 SmallVector<TemplateArgument, 4> ArgVec;
3158 ArgVec.reserve(NumArgs);
3159 for (unsigned i = 0; i != NumArgs; ++i)
3160 ArgVec.push_back(Args[i].getArgument());
3161
3162 return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
3163 Underlying);
3164 }
3165
3166 #ifndef NDEBUG
hasAnyPackExpansions(const TemplateArgument * Args,unsigned NumArgs)3167 static bool hasAnyPackExpansions(const TemplateArgument *Args,
3168 unsigned NumArgs) {
3169 for (unsigned I = 0; I != NumArgs; ++I)
3170 if (Args[I].isPackExpansion())
3171 return true;
3172
3173 return true;
3174 }
3175 #endif
3176
3177 QualType
getTemplateSpecializationType(TemplateName Template,const TemplateArgument * Args,unsigned NumArgs,QualType Underlying) const3178 ASTContext::getTemplateSpecializationType(TemplateName Template,
3179 const TemplateArgument *Args,
3180 unsigned NumArgs,
3181 QualType Underlying) const {
3182 assert(!Template.getAsDependentTemplateName() &&
3183 "No dependent template names here!");
3184 // Look through qualified template names.
3185 if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
3186 Template = TemplateName(QTN->getTemplateDecl());
3187
3188 bool IsTypeAlias =
3189 Template.getAsTemplateDecl() &&
3190 isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
3191 QualType CanonType;
3192 if (!Underlying.isNull())
3193 CanonType = getCanonicalType(Underlying);
3194 else {
3195 // We can get here with an alias template when the specialization contains
3196 // a pack expansion that does not match up with a parameter pack.
3197 assert((!IsTypeAlias || hasAnyPackExpansions(Args, NumArgs)) &&
3198 "Caller must compute aliased type");
3199 IsTypeAlias = false;
3200 CanonType = getCanonicalTemplateSpecializationType(Template, Args,
3201 NumArgs);
3202 }
3203
3204 // Allocate the (non-canonical) template specialization type, but don't
3205 // try to unique it: these types typically have location information that
3206 // we don't unique and don't want to lose.
3207 void *Mem = Allocate(sizeof(TemplateSpecializationType) +
3208 sizeof(TemplateArgument) * NumArgs +
3209 (IsTypeAlias? sizeof(QualType) : 0),
3210 TypeAlignment);
3211 TemplateSpecializationType *Spec
3212 = new (Mem) TemplateSpecializationType(Template, Args, NumArgs, CanonType,
3213 IsTypeAlias ? Underlying : QualType());
3214
3215 Types.push_back(Spec);
3216 return QualType(Spec, 0);
3217 }
3218
3219 QualType
getCanonicalTemplateSpecializationType(TemplateName Template,const TemplateArgument * Args,unsigned NumArgs) const3220 ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template,
3221 const TemplateArgument *Args,
3222 unsigned NumArgs) const {
3223 assert(!Template.getAsDependentTemplateName() &&
3224 "No dependent template names here!");
3225
3226 // Look through qualified template names.
3227 if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
3228 Template = TemplateName(QTN->getTemplateDecl());
3229
3230 // Build the canonical template specialization type.
3231 TemplateName CanonTemplate = getCanonicalTemplateName(Template);
3232 SmallVector<TemplateArgument, 4> CanonArgs;
3233 CanonArgs.reserve(NumArgs);
3234 for (unsigned I = 0; I != NumArgs; ++I)
3235 CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
3236
3237 // Determine whether this canonical template specialization type already
3238 // exists.
3239 llvm::FoldingSetNodeID ID;
3240 TemplateSpecializationType::Profile(ID, CanonTemplate,
3241 CanonArgs.data(), NumArgs, *this);
3242
3243 void *InsertPos = nullptr;
3244 TemplateSpecializationType *Spec
3245 = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3246
3247 if (!Spec) {
3248 // Allocate a new canonical template specialization type.
3249 void *Mem = Allocate((sizeof(TemplateSpecializationType) +
3250 sizeof(TemplateArgument) * NumArgs),
3251 TypeAlignment);
3252 Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
3253 CanonArgs.data(), NumArgs,
3254 QualType(), QualType());
3255 Types.push_back(Spec);
3256 TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
3257 }
3258
3259 assert(Spec->isDependentType() &&
3260 "Non-dependent template-id type must have a canonical type");
3261 return QualType(Spec, 0);
3262 }
3263
3264 QualType
getElaboratedType(ElaboratedTypeKeyword Keyword,NestedNameSpecifier * NNS,QualType NamedType) const3265 ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
3266 NestedNameSpecifier *NNS,
3267 QualType NamedType) const {
3268 llvm::FoldingSetNodeID ID;
3269 ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
3270
3271 void *InsertPos = nullptr;
3272 ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
3273 if (T)
3274 return QualType(T, 0);
3275
3276 QualType Canon = NamedType;
3277 if (!Canon.isCanonical()) {
3278 Canon = getCanonicalType(NamedType);
3279 ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
3280 assert(!CheckT && "Elaborated canonical type broken");
3281 (void)CheckT;
3282 }
3283
3284 T = new (*this) ElaboratedType(Keyword, NNS, NamedType, Canon);
3285 Types.push_back(T);
3286 ElaboratedTypes.InsertNode(T, InsertPos);
3287 return QualType(T, 0);
3288 }
3289
3290 QualType
getParenType(QualType InnerType) const3291 ASTContext::getParenType(QualType InnerType) const {
3292 llvm::FoldingSetNodeID ID;
3293 ParenType::Profile(ID, InnerType);
3294
3295 void *InsertPos = nullptr;
3296 ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
3297 if (T)
3298 return QualType(T, 0);
3299
3300 QualType Canon = InnerType;
3301 if (!Canon.isCanonical()) {
3302 Canon = getCanonicalType(InnerType);
3303 ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
3304 assert(!CheckT && "Paren canonical type broken");
3305 (void)CheckT;
3306 }
3307
3308 T = new (*this) ParenType(InnerType, Canon);
3309 Types.push_back(T);
3310 ParenTypes.InsertNode(T, InsertPos);
3311 return QualType(T, 0);
3312 }
3313
getDependentNameType(ElaboratedTypeKeyword Keyword,NestedNameSpecifier * NNS,const IdentifierInfo * Name,QualType Canon) const3314 QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
3315 NestedNameSpecifier *NNS,
3316 const IdentifierInfo *Name,
3317 QualType Canon) const {
3318 if (Canon.isNull()) {
3319 NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3320 ElaboratedTypeKeyword CanonKeyword = Keyword;
3321 if (Keyword == ETK_None)
3322 CanonKeyword = ETK_Typename;
3323
3324 if (CanonNNS != NNS || CanonKeyword != Keyword)
3325 Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
3326 }
3327
3328 llvm::FoldingSetNodeID ID;
3329 DependentNameType::Profile(ID, Keyword, NNS, Name);
3330
3331 void *InsertPos = nullptr;
3332 DependentNameType *T
3333 = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
3334 if (T)
3335 return QualType(T, 0);
3336
3337 T = new (*this) DependentNameType(Keyword, NNS, Name, Canon);
3338 Types.push_back(T);
3339 DependentNameTypes.InsertNode(T, InsertPos);
3340 return QualType(T, 0);
3341 }
3342
3343 QualType
getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,NestedNameSpecifier * NNS,const IdentifierInfo * Name,const TemplateArgumentListInfo & Args) const3344 ASTContext::getDependentTemplateSpecializationType(
3345 ElaboratedTypeKeyword Keyword,
3346 NestedNameSpecifier *NNS,
3347 const IdentifierInfo *Name,
3348 const TemplateArgumentListInfo &Args) const {
3349 // TODO: avoid this copy
3350 SmallVector<TemplateArgument, 16> ArgCopy;
3351 for (unsigned I = 0, E = Args.size(); I != E; ++I)
3352 ArgCopy.push_back(Args[I].getArgument());
3353 return getDependentTemplateSpecializationType(Keyword, NNS, Name,
3354 ArgCopy.size(),
3355 ArgCopy.data());
3356 }
3357
3358 QualType
getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,NestedNameSpecifier * NNS,const IdentifierInfo * Name,unsigned NumArgs,const TemplateArgument * Args) const3359 ASTContext::getDependentTemplateSpecializationType(
3360 ElaboratedTypeKeyword Keyword,
3361 NestedNameSpecifier *NNS,
3362 const IdentifierInfo *Name,
3363 unsigned NumArgs,
3364 const TemplateArgument *Args) const {
3365 assert((!NNS || NNS->isDependent()) &&
3366 "nested-name-specifier must be dependent");
3367
3368 llvm::FoldingSetNodeID ID;
3369 DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
3370 Name, NumArgs, Args);
3371
3372 void *InsertPos = nullptr;
3373 DependentTemplateSpecializationType *T
3374 = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3375 if (T)
3376 return QualType(T, 0);
3377
3378 NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3379
3380 ElaboratedTypeKeyword CanonKeyword = Keyword;
3381 if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
3382
3383 bool AnyNonCanonArgs = false;
3384 SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
3385 for (unsigned I = 0; I != NumArgs; ++I) {
3386 CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
3387 if (!CanonArgs[I].structurallyEquals(Args[I]))
3388 AnyNonCanonArgs = true;
3389 }
3390
3391 QualType Canon;
3392 if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
3393 Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
3394 Name, NumArgs,
3395 CanonArgs.data());
3396
3397 // Find the insert position again.
3398 DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3399 }
3400
3401 void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
3402 sizeof(TemplateArgument) * NumArgs),
3403 TypeAlignment);
3404 T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
3405 Name, NumArgs, Args, Canon);
3406 Types.push_back(T);
3407 DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
3408 return QualType(T, 0);
3409 }
3410
getPackExpansionType(QualType Pattern,Optional<unsigned> NumExpansions)3411 QualType ASTContext::getPackExpansionType(QualType Pattern,
3412 Optional<unsigned> NumExpansions) {
3413 llvm::FoldingSetNodeID ID;
3414 PackExpansionType::Profile(ID, Pattern, NumExpansions);
3415
3416 assert(Pattern->containsUnexpandedParameterPack() &&
3417 "Pack expansions must expand one or more parameter packs");
3418 void *InsertPos = nullptr;
3419 PackExpansionType *T
3420 = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
3421 if (T)
3422 return QualType(T, 0);
3423
3424 QualType Canon;
3425 if (!Pattern.isCanonical()) {
3426 Canon = getCanonicalType(Pattern);
3427 // The canonical type might not contain an unexpanded parameter pack, if it
3428 // contains an alias template specialization which ignores one of its
3429 // parameters.
3430 if (Canon->containsUnexpandedParameterPack()) {
3431 Canon = getPackExpansionType(Canon, NumExpansions);
3432
3433 // Find the insert position again, in case we inserted an element into
3434 // PackExpansionTypes and invalidated our insert position.
3435 PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
3436 }
3437 }
3438
3439 T = new (*this) PackExpansionType(Pattern, Canon, NumExpansions);
3440 Types.push_back(T);
3441 PackExpansionTypes.InsertNode(T, InsertPos);
3442 return QualType(T, 0);
3443 }
3444
3445 /// CmpProtocolNames - Comparison predicate for sorting protocols
3446 /// alphabetically.
CmpProtocolNames(const ObjCProtocolDecl * LHS,const ObjCProtocolDecl * RHS)3447 static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
3448 const ObjCProtocolDecl *RHS) {
3449 return LHS->getDeclName() < RHS->getDeclName();
3450 }
3451
areSortedAndUniqued(ObjCProtocolDecl * const * Protocols,unsigned NumProtocols)3452 static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
3453 unsigned NumProtocols) {
3454 if (NumProtocols == 0) return true;
3455
3456 if (Protocols[0]->getCanonicalDecl() != Protocols[0])
3457 return false;
3458
3459 for (unsigned i = 1; i != NumProtocols; ++i)
3460 if (!CmpProtocolNames(Protocols[i-1], Protocols[i]) ||
3461 Protocols[i]->getCanonicalDecl() != Protocols[i])
3462 return false;
3463 return true;
3464 }
3465
SortAndUniqueProtocols(ObjCProtocolDecl ** Protocols,unsigned & NumProtocols)3466 static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
3467 unsigned &NumProtocols) {
3468 ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
3469
3470 // Sort protocols, keyed by name.
3471 std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
3472
3473 // Canonicalize.
3474 for (unsigned I = 0, N = NumProtocols; I != N; ++I)
3475 Protocols[I] = Protocols[I]->getCanonicalDecl();
3476
3477 // Remove duplicates.
3478 ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
3479 NumProtocols = ProtocolsEnd-Protocols;
3480 }
3481
getObjCObjectType(QualType BaseType,ObjCProtocolDecl * const * Protocols,unsigned NumProtocols) const3482 QualType ASTContext::getObjCObjectType(QualType BaseType,
3483 ObjCProtocolDecl * const *Protocols,
3484 unsigned NumProtocols) const {
3485 // If the base type is an interface and there aren't any protocols
3486 // to add, then the interface type will do just fine.
3487 if (!NumProtocols && isa<ObjCInterfaceType>(BaseType))
3488 return BaseType;
3489
3490 // Look in the folding set for an existing type.
3491 llvm::FoldingSetNodeID ID;
3492 ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols);
3493 void *InsertPos = nullptr;
3494 if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
3495 return QualType(QT, 0);
3496
3497 // Build the canonical type, which has the canonical base type and
3498 // a sorted-and-uniqued list of protocols.
3499 QualType Canonical;
3500 bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols);
3501 if (!ProtocolsSorted || !BaseType.isCanonical()) {
3502 if (!ProtocolsSorted) {
3503 SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols,
3504 Protocols + NumProtocols);
3505 unsigned UniqueCount = NumProtocols;
3506
3507 SortAndUniqueProtocols(&Sorted[0], UniqueCount);
3508 Canonical = getObjCObjectType(getCanonicalType(BaseType),
3509 &Sorted[0], UniqueCount);
3510 } else {
3511 Canonical = getObjCObjectType(getCanonicalType(BaseType),
3512 Protocols, NumProtocols);
3513 }
3514
3515 // Regenerate InsertPos.
3516 ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
3517 }
3518
3519 unsigned Size = sizeof(ObjCObjectTypeImpl);
3520 Size += NumProtocols * sizeof(ObjCProtocolDecl *);
3521 void *Mem = Allocate(Size, TypeAlignment);
3522 ObjCObjectTypeImpl *T =
3523 new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols);
3524
3525 Types.push_back(T);
3526 ObjCObjectTypes.InsertNode(T, InsertPos);
3527 return QualType(T, 0);
3528 }
3529
3530 /// ObjCObjectAdoptsQTypeProtocols - Checks that protocols in IC's
3531 /// protocol list adopt all protocols in QT's qualified-id protocol
3532 /// list.
ObjCObjectAdoptsQTypeProtocols(QualType QT,ObjCInterfaceDecl * IC)3533 bool ASTContext::ObjCObjectAdoptsQTypeProtocols(QualType QT,
3534 ObjCInterfaceDecl *IC) {
3535 if (!QT->isObjCQualifiedIdType())
3536 return false;
3537
3538 if (const ObjCObjectPointerType *OPT = QT->getAs<ObjCObjectPointerType>()) {
3539 // If both the right and left sides have qualifiers.
3540 for (auto *Proto : OPT->quals()) {
3541 if (!IC->ClassImplementsProtocol(Proto, false))
3542 return false;
3543 }
3544 return true;
3545 }
3546 return false;
3547 }
3548
3549 /// QIdProtocolsAdoptObjCObjectProtocols - Checks that protocols in
3550 /// QT's qualified-id protocol list adopt all protocols in IDecl's list
3551 /// of protocols.
QIdProtocolsAdoptObjCObjectProtocols(QualType QT,ObjCInterfaceDecl * IDecl)3552 bool ASTContext::QIdProtocolsAdoptObjCObjectProtocols(QualType QT,
3553 ObjCInterfaceDecl *IDecl) {
3554 if (!QT->isObjCQualifiedIdType())
3555 return false;
3556 const ObjCObjectPointerType *OPT = QT->getAs<ObjCObjectPointerType>();
3557 if (!OPT)
3558 return false;
3559 if (!IDecl->hasDefinition())
3560 return false;
3561 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocols;
3562 CollectInheritedProtocols(IDecl, InheritedProtocols);
3563 if (InheritedProtocols.empty())
3564 return false;
3565 // Check that if every protocol in list of id<plist> conforms to a protcol
3566 // of IDecl's, then bridge casting is ok.
3567 bool Conforms = false;
3568 for (auto *Proto : OPT->quals()) {
3569 Conforms = false;
3570 for (auto *PI : InheritedProtocols) {
3571 if (ProtocolCompatibleWithProtocol(Proto, PI)) {
3572 Conforms = true;
3573 break;
3574 }
3575 }
3576 if (!Conforms)
3577 break;
3578 }
3579 if (Conforms)
3580 return true;
3581
3582 for (auto *PI : InheritedProtocols) {
3583 // If both the right and left sides have qualifiers.
3584 bool Adopts = false;
3585 for (auto *Proto : OPT->quals()) {
3586 // return 'true' if 'PI' is in the inheritance hierarchy of Proto
3587 if ((Adopts = ProtocolCompatibleWithProtocol(PI, Proto)))
3588 break;
3589 }
3590 if (!Adopts)
3591 return false;
3592 }
3593 return true;
3594 }
3595
3596 /// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
3597 /// the given object type.
getObjCObjectPointerType(QualType ObjectT) const3598 QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
3599 llvm::FoldingSetNodeID ID;
3600 ObjCObjectPointerType::Profile(ID, ObjectT);
3601
3602 void *InsertPos = nullptr;
3603 if (ObjCObjectPointerType *QT =
3604 ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3605 return QualType(QT, 0);
3606
3607 // Find the canonical object type.
3608 QualType Canonical;
3609 if (!ObjectT.isCanonical()) {
3610 Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
3611
3612 // Regenerate InsertPos.
3613 ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3614 }
3615
3616 // No match.
3617 void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
3618 ObjCObjectPointerType *QType =
3619 new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
3620
3621 Types.push_back(QType);
3622 ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
3623 return QualType(QType, 0);
3624 }
3625
3626 /// getObjCInterfaceType - Return the unique reference to the type for the
3627 /// specified ObjC interface decl. The list of protocols is optional.
getObjCInterfaceType(const ObjCInterfaceDecl * Decl,ObjCInterfaceDecl * PrevDecl) const3628 QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
3629 ObjCInterfaceDecl *PrevDecl) const {
3630 if (Decl->TypeForDecl)
3631 return QualType(Decl->TypeForDecl, 0);
3632
3633 if (PrevDecl) {
3634 assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
3635 Decl->TypeForDecl = PrevDecl->TypeForDecl;
3636 return QualType(PrevDecl->TypeForDecl, 0);
3637 }
3638
3639 // Prefer the definition, if there is one.
3640 if (const ObjCInterfaceDecl *Def = Decl->getDefinition())
3641 Decl = Def;
3642
3643 void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
3644 ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
3645 Decl->TypeForDecl = T;
3646 Types.push_back(T);
3647 return QualType(T, 0);
3648 }
3649
3650 /// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
3651 /// TypeOfExprType AST's (since expression's are never shared). For example,
3652 /// multiple declarations that refer to "typeof(x)" all contain different
3653 /// DeclRefExpr's. This doesn't effect the type checker, since it operates
3654 /// on canonical type's (which are always unique).
getTypeOfExprType(Expr * tofExpr) const3655 QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
3656 TypeOfExprType *toe;
3657 if (tofExpr->isTypeDependent()) {
3658 llvm::FoldingSetNodeID ID;
3659 DependentTypeOfExprType::Profile(ID, *this, tofExpr);
3660
3661 void *InsertPos = nullptr;
3662 DependentTypeOfExprType *Canon
3663 = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
3664 if (Canon) {
3665 // We already have a "canonical" version of an identical, dependent
3666 // typeof(expr) type. Use that as our canonical type.
3667 toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
3668 QualType((TypeOfExprType*)Canon, 0));
3669 } else {
3670 // Build a new, canonical typeof(expr) type.
3671 Canon
3672 = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
3673 DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
3674 toe = Canon;
3675 }
3676 } else {
3677 QualType Canonical = getCanonicalType(tofExpr->getType());
3678 toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
3679 }
3680 Types.push_back(toe);
3681 return QualType(toe, 0);
3682 }
3683
3684 /// getTypeOfType - Unlike many "get<Type>" functions, we don't unique
3685 /// TypeOfType nodes. The only motivation to unique these nodes would be
3686 /// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
3687 /// an issue. This doesn't affect the type checker, since it operates
3688 /// on canonical types (which are always unique).
getTypeOfType(QualType tofType) const3689 QualType ASTContext::getTypeOfType(QualType tofType) const {
3690 QualType Canonical = getCanonicalType(tofType);
3691 TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
3692 Types.push_back(tot);
3693 return QualType(tot, 0);
3694 }
3695
3696
3697 /// \brief Unlike many "get<Type>" functions, we don't unique DecltypeType
3698 /// nodes. This would never be helpful, since each such type has its own
3699 /// expression, and would not give a significant memory saving, since there
3700 /// is an Expr tree under each such type.
getDecltypeType(Expr * e,QualType UnderlyingType) const3701 QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const {
3702 DecltypeType *dt;
3703
3704 // C++11 [temp.type]p2:
3705 // If an expression e involves a template parameter, decltype(e) denotes a
3706 // unique dependent type. Two such decltype-specifiers refer to the same
3707 // type only if their expressions are equivalent (14.5.6.1).
3708 if (e->isInstantiationDependent()) {
3709 llvm::FoldingSetNodeID ID;
3710 DependentDecltypeType::Profile(ID, *this, e);
3711
3712 void *InsertPos = nullptr;
3713 DependentDecltypeType *Canon
3714 = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
3715 if (!Canon) {
3716 // Build a new, canonical typeof(expr) type.
3717 Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
3718 DependentDecltypeTypes.InsertNode(Canon, InsertPos);
3719 }
3720 dt = new (*this, TypeAlignment)
3721 DecltypeType(e, UnderlyingType, QualType((DecltypeType *)Canon, 0));
3722 } else {
3723 dt = new (*this, TypeAlignment)
3724 DecltypeType(e, UnderlyingType, getCanonicalType(UnderlyingType));
3725 }
3726 Types.push_back(dt);
3727 return QualType(dt, 0);
3728 }
3729
3730 /// getUnaryTransformationType - We don't unique these, since the memory
3731 /// savings are minimal and these are rare.
getUnaryTransformType(QualType BaseType,QualType UnderlyingType,UnaryTransformType::UTTKind Kind) const3732 QualType ASTContext::getUnaryTransformType(QualType BaseType,
3733 QualType UnderlyingType,
3734 UnaryTransformType::UTTKind Kind)
3735 const {
3736 UnaryTransformType *Ty =
3737 new (*this, TypeAlignment) UnaryTransformType (BaseType, UnderlyingType,
3738 Kind,
3739 UnderlyingType->isDependentType() ?
3740 QualType() : getCanonicalType(UnderlyingType));
3741 Types.push_back(Ty);
3742 return QualType(Ty, 0);
3743 }
3744
3745 /// getAutoType - Return the uniqued reference to the 'auto' type which has been
3746 /// deduced to the given type, or to the canonical undeduced 'auto' type, or the
3747 /// canonical deduced-but-dependent 'auto' type.
getAutoType(QualType DeducedType,bool IsDecltypeAuto,bool IsDependent) const3748 QualType ASTContext::getAutoType(QualType DeducedType, bool IsDecltypeAuto,
3749 bool IsDependent) const {
3750 if (DeducedType.isNull() && !IsDecltypeAuto && !IsDependent)
3751 return getAutoDeductType();
3752
3753 // Look in the folding set for an existing type.
3754 void *InsertPos = nullptr;
3755 llvm::FoldingSetNodeID ID;
3756 AutoType::Profile(ID, DeducedType, IsDecltypeAuto, IsDependent);
3757 if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
3758 return QualType(AT, 0);
3759
3760 AutoType *AT = new (*this, TypeAlignment) AutoType(DeducedType,
3761 IsDecltypeAuto,
3762 IsDependent);
3763 Types.push_back(AT);
3764 if (InsertPos)
3765 AutoTypes.InsertNode(AT, InsertPos);
3766 return QualType(AT, 0);
3767 }
3768
3769 /// getAtomicType - Return the uniqued reference to the atomic type for
3770 /// the given value type.
getAtomicType(QualType T) const3771 QualType ASTContext::getAtomicType(QualType T) const {
3772 // Unique pointers, to guarantee there is only one pointer of a particular
3773 // structure.
3774 llvm::FoldingSetNodeID ID;
3775 AtomicType::Profile(ID, T);
3776
3777 void *InsertPos = nullptr;
3778 if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos))
3779 return QualType(AT, 0);
3780
3781 // If the atomic value type isn't canonical, this won't be a canonical type
3782 // either, so fill in the canonical type field.
3783 QualType Canonical;
3784 if (!T.isCanonical()) {
3785 Canonical = getAtomicType(getCanonicalType(T));
3786
3787 // Get the new insert position for the node we care about.
3788 AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos);
3789 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3790 }
3791 AtomicType *New = new (*this, TypeAlignment) AtomicType(T, Canonical);
3792 Types.push_back(New);
3793 AtomicTypes.InsertNode(New, InsertPos);
3794 return QualType(New, 0);
3795 }
3796
3797 /// getAutoDeductType - Get type pattern for deducing against 'auto'.
getAutoDeductType() const3798 QualType ASTContext::getAutoDeductType() const {
3799 if (AutoDeductTy.isNull())
3800 AutoDeductTy = QualType(
3801 new (*this, TypeAlignment) AutoType(QualType(), /*decltype(auto)*/false,
3802 /*dependent*/false),
3803 0);
3804 return AutoDeductTy;
3805 }
3806
3807 /// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
getAutoRRefDeductType() const3808 QualType ASTContext::getAutoRRefDeductType() const {
3809 if (AutoRRefDeductTy.isNull())
3810 AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
3811 assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
3812 return AutoRRefDeductTy;
3813 }
3814
3815 /// getTagDeclType - Return the unique reference to the type for the
3816 /// specified TagDecl (struct/union/class/enum) decl.
getTagDeclType(const TagDecl * Decl) const3817 QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
3818 assert (Decl);
3819 // FIXME: What is the design on getTagDeclType when it requires casting
3820 // away const? mutable?
3821 return getTypeDeclType(const_cast<TagDecl*>(Decl));
3822 }
3823
3824 /// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
3825 /// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
3826 /// needs to agree with the definition in <stddef.h>.
getSizeType() const3827 CanQualType ASTContext::getSizeType() const {
3828 return getFromTargetType(Target->getSizeType());
3829 }
3830
3831 /// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5).
getIntMaxType() const3832 CanQualType ASTContext::getIntMaxType() const {
3833 return getFromTargetType(Target->getIntMaxType());
3834 }
3835
3836 /// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5).
getUIntMaxType() const3837 CanQualType ASTContext::getUIntMaxType() const {
3838 return getFromTargetType(Target->getUIntMaxType());
3839 }
3840
3841 /// getSignedWCharType - Return the type of "signed wchar_t".
3842 /// Used when in C++, as a GCC extension.
getSignedWCharType() const3843 QualType ASTContext::getSignedWCharType() const {
3844 // FIXME: derive from "Target" ?
3845 return WCharTy;
3846 }
3847
3848 /// getUnsignedWCharType - Return the type of "unsigned wchar_t".
3849 /// Used when in C++, as a GCC extension.
getUnsignedWCharType() const3850 QualType ASTContext::getUnsignedWCharType() const {
3851 // FIXME: derive from "Target" ?
3852 return UnsignedIntTy;
3853 }
3854
getIntPtrType() const3855 QualType ASTContext::getIntPtrType() const {
3856 return getFromTargetType(Target->getIntPtrType());
3857 }
3858
getUIntPtrType() const3859 QualType ASTContext::getUIntPtrType() const {
3860 return getCorrespondingUnsignedType(getIntPtrType());
3861 }
3862
3863 /// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17)
3864 /// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
getPointerDiffType() const3865 QualType ASTContext::getPointerDiffType() const {
3866 return getFromTargetType(Target->getPtrDiffType(0));
3867 }
3868
3869 /// \brief Return the unique type for "pid_t" defined in
3870 /// <sys/types.h>. We need this to compute the correct type for vfork().
getProcessIDType() const3871 QualType ASTContext::getProcessIDType() const {
3872 return getFromTargetType(Target->getProcessIDType());
3873 }
3874
3875 //===----------------------------------------------------------------------===//
3876 // Type Operators
3877 //===----------------------------------------------------------------------===//
3878
getCanonicalParamType(QualType T) const3879 CanQualType ASTContext::getCanonicalParamType(QualType T) const {
3880 // Push qualifiers into arrays, and then discard any remaining
3881 // qualifiers.
3882 T = getCanonicalType(T);
3883 T = getVariableArrayDecayedType(T);
3884 const Type *Ty = T.getTypePtr();
3885 QualType Result;
3886 if (isa<ArrayType>(Ty)) {
3887 Result = getArrayDecayedType(QualType(Ty,0));
3888 } else if (isa<FunctionType>(Ty)) {
3889 Result = getPointerType(QualType(Ty, 0));
3890 } else {
3891 Result = QualType(Ty, 0);
3892 }
3893
3894 return CanQualType::CreateUnsafe(Result);
3895 }
3896
getUnqualifiedArrayType(QualType type,Qualifiers & quals)3897 QualType ASTContext::getUnqualifiedArrayType(QualType type,
3898 Qualifiers &quals) {
3899 SplitQualType splitType = type.getSplitUnqualifiedType();
3900
3901 // FIXME: getSplitUnqualifiedType() actually walks all the way to
3902 // the unqualified desugared type and then drops it on the floor.
3903 // We then have to strip that sugar back off with
3904 // getUnqualifiedDesugaredType(), which is silly.
3905 const ArrayType *AT =
3906 dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType());
3907
3908 // If we don't have an array, just use the results in splitType.
3909 if (!AT) {
3910 quals = splitType.Quals;
3911 return QualType(splitType.Ty, 0);
3912 }
3913
3914 // Otherwise, recurse on the array's element type.
3915 QualType elementType = AT->getElementType();
3916 QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
3917
3918 // If that didn't change the element type, AT has no qualifiers, so we
3919 // can just use the results in splitType.
3920 if (elementType == unqualElementType) {
3921 assert(quals.empty()); // from the recursive call
3922 quals = splitType.Quals;
3923 return QualType(splitType.Ty, 0);
3924 }
3925
3926 // Otherwise, add in the qualifiers from the outermost type, then
3927 // build the type back up.
3928 quals.addConsistentQualifiers(splitType.Quals);
3929
3930 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
3931 return getConstantArrayType(unqualElementType, CAT->getSize(),
3932 CAT->getSizeModifier(), 0);
3933 }
3934
3935 if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
3936 return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
3937 }
3938
3939 if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
3940 return getVariableArrayType(unqualElementType,
3941 VAT->getSizeExpr(),
3942 VAT->getSizeModifier(),
3943 VAT->getIndexTypeCVRQualifiers(),
3944 VAT->getBracketsRange());
3945 }
3946
3947 const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
3948 return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
3949 DSAT->getSizeModifier(), 0,
3950 SourceRange());
3951 }
3952
3953 /// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types that
3954 /// may be similar (C++ 4.4), replaces T1 and T2 with the type that
3955 /// they point to and return true. If T1 and T2 aren't pointer types
3956 /// or pointer-to-member types, or if they are not similar at this
3957 /// level, returns false and leaves T1 and T2 unchanged. Top-level
3958 /// qualifiers on T1 and T2 are ignored. This function will typically
3959 /// be called in a loop that successively "unwraps" pointer and
3960 /// pointer-to-member types to compare them at each level.
UnwrapSimilarPointerTypes(QualType & T1,QualType & T2)3961 bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) {
3962 const PointerType *T1PtrType = T1->getAs<PointerType>(),
3963 *T2PtrType = T2->getAs<PointerType>();
3964 if (T1PtrType && T2PtrType) {
3965 T1 = T1PtrType->getPointeeType();
3966 T2 = T2PtrType->getPointeeType();
3967 return true;
3968 }
3969
3970 const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
3971 *T2MPType = T2->getAs<MemberPointerType>();
3972 if (T1MPType && T2MPType &&
3973 hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
3974 QualType(T2MPType->getClass(), 0))) {
3975 T1 = T1MPType->getPointeeType();
3976 T2 = T2MPType->getPointeeType();
3977 return true;
3978 }
3979
3980 if (getLangOpts().ObjC1) {
3981 const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
3982 *T2OPType = T2->getAs<ObjCObjectPointerType>();
3983 if (T1OPType && T2OPType) {
3984 T1 = T1OPType->getPointeeType();
3985 T2 = T2OPType->getPointeeType();
3986 return true;
3987 }
3988 }
3989
3990 // FIXME: Block pointers, too?
3991
3992 return false;
3993 }
3994
3995 DeclarationNameInfo
getNameForTemplate(TemplateName Name,SourceLocation NameLoc) const3996 ASTContext::getNameForTemplate(TemplateName Name,
3997 SourceLocation NameLoc) const {
3998 switch (Name.getKind()) {
3999 case TemplateName::QualifiedTemplate:
4000 case TemplateName::Template:
4001 // DNInfo work in progress: CHECKME: what about DNLoc?
4002 return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
4003 NameLoc);
4004
4005 case TemplateName::OverloadedTemplate: {
4006 OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
4007 // DNInfo work in progress: CHECKME: what about DNLoc?
4008 return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
4009 }
4010
4011 case TemplateName::DependentTemplate: {
4012 DependentTemplateName *DTN = Name.getAsDependentTemplateName();
4013 DeclarationName DName;
4014 if (DTN->isIdentifier()) {
4015 DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
4016 return DeclarationNameInfo(DName, NameLoc);
4017 } else {
4018 DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
4019 // DNInfo work in progress: FIXME: source locations?
4020 DeclarationNameLoc DNLoc;
4021 DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
4022 DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
4023 return DeclarationNameInfo(DName, NameLoc, DNLoc);
4024 }
4025 }
4026
4027 case TemplateName::SubstTemplateTemplateParm: {
4028 SubstTemplateTemplateParmStorage *subst
4029 = Name.getAsSubstTemplateTemplateParm();
4030 return DeclarationNameInfo(subst->getParameter()->getDeclName(),
4031 NameLoc);
4032 }
4033
4034 case TemplateName::SubstTemplateTemplateParmPack: {
4035 SubstTemplateTemplateParmPackStorage *subst
4036 = Name.getAsSubstTemplateTemplateParmPack();
4037 return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
4038 NameLoc);
4039 }
4040 }
4041
4042 llvm_unreachable("bad template name kind!");
4043 }
4044
getCanonicalTemplateName(TemplateName Name) const4045 TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
4046 switch (Name.getKind()) {
4047 case TemplateName::QualifiedTemplate:
4048 case TemplateName::Template: {
4049 TemplateDecl *Template = Name.getAsTemplateDecl();
4050 if (TemplateTemplateParmDecl *TTP
4051 = dyn_cast<TemplateTemplateParmDecl>(Template))
4052 Template = getCanonicalTemplateTemplateParmDecl(TTP);
4053
4054 // The canonical template name is the canonical template declaration.
4055 return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
4056 }
4057
4058 case TemplateName::OverloadedTemplate:
4059 llvm_unreachable("cannot canonicalize overloaded template");
4060
4061 case TemplateName::DependentTemplate: {
4062 DependentTemplateName *DTN = Name.getAsDependentTemplateName();
4063 assert(DTN && "Non-dependent template names must refer to template decls.");
4064 return DTN->CanonicalTemplateName;
4065 }
4066
4067 case TemplateName::SubstTemplateTemplateParm: {
4068 SubstTemplateTemplateParmStorage *subst
4069 = Name.getAsSubstTemplateTemplateParm();
4070 return getCanonicalTemplateName(subst->getReplacement());
4071 }
4072
4073 case TemplateName::SubstTemplateTemplateParmPack: {
4074 SubstTemplateTemplateParmPackStorage *subst
4075 = Name.getAsSubstTemplateTemplateParmPack();
4076 TemplateTemplateParmDecl *canonParameter
4077 = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack());
4078 TemplateArgument canonArgPack
4079 = getCanonicalTemplateArgument(subst->getArgumentPack());
4080 return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack);
4081 }
4082 }
4083
4084 llvm_unreachable("bad template name!");
4085 }
4086
hasSameTemplateName(TemplateName X,TemplateName Y)4087 bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
4088 X = getCanonicalTemplateName(X);
4089 Y = getCanonicalTemplateName(Y);
4090 return X.getAsVoidPointer() == Y.getAsVoidPointer();
4091 }
4092
4093 TemplateArgument
getCanonicalTemplateArgument(const TemplateArgument & Arg) const4094 ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
4095 switch (Arg.getKind()) {
4096 case TemplateArgument::Null:
4097 return Arg;
4098
4099 case TemplateArgument::Expression:
4100 return Arg;
4101
4102 case TemplateArgument::Declaration: {
4103 ValueDecl *D = cast<ValueDecl>(Arg.getAsDecl()->getCanonicalDecl());
4104 return TemplateArgument(D, Arg.isDeclForReferenceParam());
4105 }
4106
4107 case TemplateArgument::NullPtr:
4108 return TemplateArgument(getCanonicalType(Arg.getNullPtrType()),
4109 /*isNullPtr*/true);
4110
4111 case TemplateArgument::Template:
4112 return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
4113
4114 case TemplateArgument::TemplateExpansion:
4115 return TemplateArgument(getCanonicalTemplateName(
4116 Arg.getAsTemplateOrTemplatePattern()),
4117 Arg.getNumTemplateExpansions());
4118
4119 case TemplateArgument::Integral:
4120 return TemplateArgument(Arg, getCanonicalType(Arg.getIntegralType()));
4121
4122 case TemplateArgument::Type:
4123 return TemplateArgument(getCanonicalType(Arg.getAsType()));
4124
4125 case TemplateArgument::Pack: {
4126 if (Arg.pack_size() == 0)
4127 return Arg;
4128
4129 TemplateArgument *CanonArgs
4130 = new (*this) TemplateArgument[Arg.pack_size()];
4131 unsigned Idx = 0;
4132 for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
4133 AEnd = Arg.pack_end();
4134 A != AEnd; (void)++A, ++Idx)
4135 CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
4136
4137 return TemplateArgument(CanonArgs, Arg.pack_size());
4138 }
4139 }
4140
4141 // Silence GCC warning
4142 llvm_unreachable("Unhandled template argument kind");
4143 }
4144
4145 NestedNameSpecifier *
getCanonicalNestedNameSpecifier(NestedNameSpecifier * NNS) const4146 ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
4147 if (!NNS)
4148 return nullptr;
4149
4150 switch (NNS->getKind()) {
4151 case NestedNameSpecifier::Identifier:
4152 // Canonicalize the prefix but keep the identifier the same.
4153 return NestedNameSpecifier::Create(*this,
4154 getCanonicalNestedNameSpecifier(NNS->getPrefix()),
4155 NNS->getAsIdentifier());
4156
4157 case NestedNameSpecifier::Namespace:
4158 // A namespace is canonical; build a nested-name-specifier with
4159 // this namespace and no prefix.
4160 return NestedNameSpecifier::Create(*this, nullptr,
4161 NNS->getAsNamespace()->getOriginalNamespace());
4162
4163 case NestedNameSpecifier::NamespaceAlias:
4164 // A namespace is canonical; build a nested-name-specifier with
4165 // this namespace and no prefix.
4166 return NestedNameSpecifier::Create(*this, nullptr,
4167 NNS->getAsNamespaceAlias()->getNamespace()
4168 ->getOriginalNamespace());
4169
4170 case NestedNameSpecifier::TypeSpec:
4171 case NestedNameSpecifier::TypeSpecWithTemplate: {
4172 QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
4173
4174 // If we have some kind of dependent-named type (e.g., "typename T::type"),
4175 // break it apart into its prefix and identifier, then reconsititute those
4176 // as the canonical nested-name-specifier. This is required to canonicalize
4177 // a dependent nested-name-specifier involving typedefs of dependent-name
4178 // types, e.g.,
4179 // typedef typename T::type T1;
4180 // typedef typename T1::type T2;
4181 if (const DependentNameType *DNT = T->getAs<DependentNameType>())
4182 return NestedNameSpecifier::Create(*this, DNT->getQualifier(),
4183 const_cast<IdentifierInfo *>(DNT->getIdentifier()));
4184
4185 // Otherwise, just canonicalize the type, and force it to be a TypeSpec.
4186 // FIXME: Why are TypeSpec and TypeSpecWithTemplate distinct in the
4187 // first place?
4188 return NestedNameSpecifier::Create(*this, nullptr, false,
4189 const_cast<Type *>(T.getTypePtr()));
4190 }
4191
4192 case NestedNameSpecifier::Global:
4193 // The global specifier is canonical and unique.
4194 return NNS;
4195 }
4196
4197 llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
4198 }
4199
4200
getAsArrayType(QualType T) const4201 const ArrayType *ASTContext::getAsArrayType(QualType T) const {
4202 // Handle the non-qualified case efficiently.
4203 if (!T.hasLocalQualifiers()) {
4204 // Handle the common positive case fast.
4205 if (const ArrayType *AT = dyn_cast<ArrayType>(T))
4206 return AT;
4207 }
4208
4209 // Handle the common negative case fast.
4210 if (!isa<ArrayType>(T.getCanonicalType()))
4211 return nullptr;
4212
4213 // Apply any qualifiers from the array type to the element type. This
4214 // implements C99 6.7.3p8: "If the specification of an array type includes
4215 // any type qualifiers, the element type is so qualified, not the array type."
4216
4217 // If we get here, we either have type qualifiers on the type, or we have
4218 // sugar such as a typedef in the way. If we have type qualifiers on the type
4219 // we must propagate them down into the element type.
4220
4221 SplitQualType split = T.getSplitDesugaredType();
4222 Qualifiers qs = split.Quals;
4223
4224 // If we have a simple case, just return now.
4225 const ArrayType *ATy = dyn_cast<ArrayType>(split.Ty);
4226 if (!ATy || qs.empty())
4227 return ATy;
4228
4229 // Otherwise, we have an array and we have qualifiers on it. Push the
4230 // qualifiers into the array element type and return a new array type.
4231 QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
4232
4233 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
4234 return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
4235 CAT->getSizeModifier(),
4236 CAT->getIndexTypeCVRQualifiers()));
4237 if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
4238 return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
4239 IAT->getSizeModifier(),
4240 IAT->getIndexTypeCVRQualifiers()));
4241
4242 if (const DependentSizedArrayType *DSAT
4243 = dyn_cast<DependentSizedArrayType>(ATy))
4244 return cast<ArrayType>(
4245 getDependentSizedArrayType(NewEltTy,
4246 DSAT->getSizeExpr(),
4247 DSAT->getSizeModifier(),
4248 DSAT->getIndexTypeCVRQualifiers(),
4249 DSAT->getBracketsRange()));
4250
4251 const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
4252 return cast<ArrayType>(getVariableArrayType(NewEltTy,
4253 VAT->getSizeExpr(),
4254 VAT->getSizeModifier(),
4255 VAT->getIndexTypeCVRQualifiers(),
4256 VAT->getBracketsRange()));
4257 }
4258
getAdjustedParameterType(QualType T) const4259 QualType ASTContext::getAdjustedParameterType(QualType T) const {
4260 if (T->isArrayType() || T->isFunctionType())
4261 return getDecayedType(T);
4262 return T;
4263 }
4264
getSignatureParameterType(QualType T) const4265 QualType ASTContext::getSignatureParameterType(QualType T) const {
4266 T = getVariableArrayDecayedType(T);
4267 T = getAdjustedParameterType(T);
4268 return T.getUnqualifiedType();
4269 }
4270
4271 /// getArrayDecayedType - Return the properly qualified result of decaying the
4272 /// specified array type to a pointer. This operation is non-trivial when
4273 /// handling typedefs etc. The canonical type of "T" must be an array type,
4274 /// this returns a pointer to a properly qualified element of the array.
4275 ///
4276 /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
getArrayDecayedType(QualType Ty) const4277 QualType ASTContext::getArrayDecayedType(QualType Ty) const {
4278 // Get the element type with 'getAsArrayType' so that we don't lose any
4279 // typedefs in the element type of the array. This also handles propagation
4280 // of type qualifiers from the array type into the element type if present
4281 // (C99 6.7.3p8).
4282 const ArrayType *PrettyArrayType = getAsArrayType(Ty);
4283 assert(PrettyArrayType && "Not an array type!");
4284
4285 QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
4286
4287 // int x[restrict 4] -> int *restrict
4288 return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
4289 }
4290
getBaseElementType(const ArrayType * array) const4291 QualType ASTContext::getBaseElementType(const ArrayType *array) const {
4292 return getBaseElementType(array->getElementType());
4293 }
4294
getBaseElementType(QualType type) const4295 QualType ASTContext::getBaseElementType(QualType type) const {
4296 Qualifiers qs;
4297 while (true) {
4298 SplitQualType split = type.getSplitDesugaredType();
4299 const ArrayType *array = split.Ty->getAsArrayTypeUnsafe();
4300 if (!array) break;
4301
4302 type = array->getElementType();
4303 qs.addConsistentQualifiers(split.Quals);
4304 }
4305
4306 return getQualifiedType(type, qs);
4307 }
4308
4309 /// getConstantArrayElementCount - Returns number of constant array elements.
4310 uint64_t
getConstantArrayElementCount(const ConstantArrayType * CA) const4311 ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA) const {
4312 uint64_t ElementCount = 1;
4313 do {
4314 ElementCount *= CA->getSize().getZExtValue();
4315 CA = dyn_cast_or_null<ConstantArrayType>(
4316 CA->getElementType()->getAsArrayTypeUnsafe());
4317 } while (CA);
4318 return ElementCount;
4319 }
4320
4321 /// getFloatingRank - Return a relative rank for floating point types.
4322 /// This routine will assert if passed a built-in type that isn't a float.
getFloatingRank(QualType T)4323 static FloatingRank getFloatingRank(QualType T) {
4324 if (const ComplexType *CT = T->getAs<ComplexType>())
4325 return getFloatingRank(CT->getElementType());
4326
4327 assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
4328 switch (T->getAs<BuiltinType>()->getKind()) {
4329 default: llvm_unreachable("getFloatingRank(): not a floating type");
4330 case BuiltinType::Half: return HalfRank;
4331 case BuiltinType::Float: return FloatRank;
4332 case BuiltinType::Double: return DoubleRank;
4333 case BuiltinType::LongDouble: return LongDoubleRank;
4334 }
4335 }
4336
4337 /// getFloatingTypeOfSizeWithinDomain - Returns a real floating
4338 /// point or a complex type (based on typeDomain/typeSize).
4339 /// 'typeDomain' is a real floating point or complex type.
4340 /// 'typeSize' is a real floating point or complex type.
getFloatingTypeOfSizeWithinDomain(QualType Size,QualType Domain) const4341 QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
4342 QualType Domain) const {
4343 FloatingRank EltRank = getFloatingRank(Size);
4344 if (Domain->isComplexType()) {
4345 switch (EltRank) {
4346 case HalfRank: llvm_unreachable("Complex half is not supported");
4347 case FloatRank: return FloatComplexTy;
4348 case DoubleRank: return DoubleComplexTy;
4349 case LongDoubleRank: return LongDoubleComplexTy;
4350 }
4351 }
4352
4353 assert(Domain->isRealFloatingType() && "Unknown domain!");
4354 switch (EltRank) {
4355 case HalfRank: return HalfTy;
4356 case FloatRank: return FloatTy;
4357 case DoubleRank: return DoubleTy;
4358 case LongDoubleRank: return LongDoubleTy;
4359 }
4360 llvm_unreachable("getFloatingRank(): illegal value for rank");
4361 }
4362
4363 /// getFloatingTypeOrder - Compare the rank of the two specified floating
4364 /// point types, ignoring the domain of the type (i.e. 'double' ==
4365 /// '_Complex double'). If LHS > RHS, return 1. If LHS == RHS, return 0. If
4366 /// LHS < RHS, return -1.
getFloatingTypeOrder(QualType LHS,QualType RHS) const4367 int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
4368 FloatingRank LHSR = getFloatingRank(LHS);
4369 FloatingRank RHSR = getFloatingRank(RHS);
4370
4371 if (LHSR == RHSR)
4372 return 0;
4373 if (LHSR > RHSR)
4374 return 1;
4375 return -1;
4376 }
4377
4378 /// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
4379 /// routine will assert if passed a built-in type that isn't an integer or enum,
4380 /// or if it is not canonicalized.
getIntegerRank(const Type * T) const4381 unsigned ASTContext::getIntegerRank(const Type *T) const {
4382 assert(T->isCanonicalUnqualified() && "T should be canonicalized");
4383
4384 switch (cast<BuiltinType>(T)->getKind()) {
4385 default: llvm_unreachable("getIntegerRank(): not a built-in integer");
4386 case BuiltinType::Bool:
4387 return 1 + (getIntWidth(BoolTy) << 3);
4388 case BuiltinType::Char_S:
4389 case BuiltinType::Char_U:
4390 case BuiltinType::SChar:
4391 case BuiltinType::UChar:
4392 return 2 + (getIntWidth(CharTy) << 3);
4393 case BuiltinType::Short:
4394 case BuiltinType::UShort:
4395 return 3 + (getIntWidth(ShortTy) << 3);
4396 case BuiltinType::Int:
4397 case BuiltinType::UInt:
4398 return 4 + (getIntWidth(IntTy) << 3);
4399 case BuiltinType::Long:
4400 case BuiltinType::ULong:
4401 return 5 + (getIntWidth(LongTy) << 3);
4402 case BuiltinType::LongLong:
4403 case BuiltinType::ULongLong:
4404 return 6 + (getIntWidth(LongLongTy) << 3);
4405 case BuiltinType::Int128:
4406 case BuiltinType::UInt128:
4407 return 7 + (getIntWidth(Int128Ty) << 3);
4408 }
4409 }
4410
4411 /// \brief Whether this is a promotable bitfield reference according
4412 /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
4413 ///
4414 /// \returns the type this bit-field will promote to, or NULL if no
4415 /// promotion occurs.
isPromotableBitField(Expr * E) const4416 QualType ASTContext::isPromotableBitField(Expr *E) const {
4417 if (E->isTypeDependent() || E->isValueDependent())
4418 return QualType();
4419
4420 FieldDecl *Field = E->getSourceBitField(); // FIXME: conditional bit-fields?
4421 if (!Field)
4422 return QualType();
4423
4424 QualType FT = Field->getType();
4425
4426 uint64_t BitWidth = Field->getBitWidthValue(*this);
4427 uint64_t IntSize = getTypeSize(IntTy);
4428 // GCC extension compatibility: if the bit-field size is less than or equal
4429 // to the size of int, it gets promoted no matter what its type is.
4430 // For instance, unsigned long bf : 4 gets promoted to signed int.
4431 if (BitWidth < IntSize)
4432 return IntTy;
4433
4434 if (BitWidth == IntSize)
4435 return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
4436
4437 // Types bigger than int are not subject to promotions, and therefore act
4438 // like the base type.
4439 // FIXME: This doesn't quite match what gcc does, but what gcc does here
4440 // is ridiculous.
4441 return QualType();
4442 }
4443
4444 /// getPromotedIntegerType - Returns the type that Promotable will
4445 /// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
4446 /// integer type.
getPromotedIntegerType(QualType Promotable) const4447 QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
4448 assert(!Promotable.isNull());
4449 assert(Promotable->isPromotableIntegerType());
4450 if (const EnumType *ET = Promotable->getAs<EnumType>())
4451 return ET->getDecl()->getPromotionType();
4452
4453 if (const BuiltinType *BT = Promotable->getAs<BuiltinType>()) {
4454 // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t
4455 // (3.9.1) can be converted to a prvalue of the first of the following
4456 // types that can represent all the values of its underlying type:
4457 // int, unsigned int, long int, unsigned long int, long long int, or
4458 // unsigned long long int [...]
4459 // FIXME: Is there some better way to compute this?
4460 if (BT->getKind() == BuiltinType::WChar_S ||
4461 BT->getKind() == BuiltinType::WChar_U ||
4462 BT->getKind() == BuiltinType::Char16 ||
4463 BT->getKind() == BuiltinType::Char32) {
4464 bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S;
4465 uint64_t FromSize = getTypeSize(BT);
4466 QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy,
4467 LongLongTy, UnsignedLongLongTy };
4468 for (size_t Idx = 0; Idx < llvm::array_lengthof(PromoteTypes); ++Idx) {
4469 uint64_t ToSize = getTypeSize(PromoteTypes[Idx]);
4470 if (FromSize < ToSize ||
4471 (FromSize == ToSize &&
4472 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType()))
4473 return PromoteTypes[Idx];
4474 }
4475 llvm_unreachable("char type should fit into long long");
4476 }
4477 }
4478
4479 // At this point, we should have a signed or unsigned integer type.
4480 if (Promotable->isSignedIntegerType())
4481 return IntTy;
4482 uint64_t PromotableSize = getIntWidth(Promotable);
4483 uint64_t IntSize = getIntWidth(IntTy);
4484 assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
4485 return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
4486 }
4487
4488 /// \brief Recurses in pointer/array types until it finds an objc retainable
4489 /// type and returns its ownership.
getInnerObjCOwnership(QualType T) const4490 Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const {
4491 while (!T.isNull()) {
4492 if (T.getObjCLifetime() != Qualifiers::OCL_None)
4493 return T.getObjCLifetime();
4494 if (T->isArrayType())
4495 T = getBaseElementType(T);
4496 else if (const PointerType *PT = T->getAs<PointerType>())
4497 T = PT->getPointeeType();
4498 else if (const ReferenceType *RT = T->getAs<ReferenceType>())
4499 T = RT->getPointeeType();
4500 else
4501 break;
4502 }
4503
4504 return Qualifiers::OCL_None;
4505 }
4506
getIntegerTypeForEnum(const EnumType * ET)4507 static const Type *getIntegerTypeForEnum(const EnumType *ET) {
4508 // Incomplete enum types are not treated as integer types.
4509 // FIXME: In C++, enum types are never integer types.
4510 if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped())
4511 return ET->getDecl()->getIntegerType().getTypePtr();
4512 return nullptr;
4513 }
4514
4515 /// getIntegerTypeOrder - Returns the highest ranked integer type:
4516 /// C99 6.3.1.8p1. If LHS > RHS, return 1. If LHS == RHS, return 0. If
4517 /// LHS < RHS, return -1.
getIntegerTypeOrder(QualType LHS,QualType RHS) const4518 int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
4519 const Type *LHSC = getCanonicalType(LHS).getTypePtr();
4520 const Type *RHSC = getCanonicalType(RHS).getTypePtr();
4521
4522 // Unwrap enums to their underlying type.
4523 if (const EnumType *ET = dyn_cast<EnumType>(LHSC))
4524 LHSC = getIntegerTypeForEnum(ET);
4525 if (const EnumType *ET = dyn_cast<EnumType>(RHSC))
4526 RHSC = getIntegerTypeForEnum(ET);
4527
4528 if (LHSC == RHSC) return 0;
4529
4530 bool LHSUnsigned = LHSC->isUnsignedIntegerType();
4531 bool RHSUnsigned = RHSC->isUnsignedIntegerType();
4532
4533 unsigned LHSRank = getIntegerRank(LHSC);
4534 unsigned RHSRank = getIntegerRank(RHSC);
4535
4536 if (LHSUnsigned == RHSUnsigned) { // Both signed or both unsigned.
4537 if (LHSRank == RHSRank) return 0;
4538 return LHSRank > RHSRank ? 1 : -1;
4539 }
4540
4541 // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
4542 if (LHSUnsigned) {
4543 // If the unsigned [LHS] type is larger, return it.
4544 if (LHSRank >= RHSRank)
4545 return 1;
4546
4547 // If the signed type can represent all values of the unsigned type, it
4548 // wins. Because we are dealing with 2's complement and types that are
4549 // powers of two larger than each other, this is always safe.
4550 return -1;
4551 }
4552
4553 // If the unsigned [RHS] type is larger, return it.
4554 if (RHSRank >= LHSRank)
4555 return -1;
4556
4557 // If the signed type can represent all values of the unsigned type, it
4558 // wins. Because we are dealing with 2's complement and types that are
4559 // powers of two larger than each other, this is always safe.
4560 return 1;
4561 }
4562
4563 // getCFConstantStringType - Return the type used for constant CFStrings.
getCFConstantStringType() const4564 QualType ASTContext::getCFConstantStringType() const {
4565 if (!CFConstantStringTypeDecl) {
4566 CFConstantStringTypeDecl = buildImplicitRecord("NSConstantString");
4567 CFConstantStringTypeDecl->startDefinition();
4568
4569 QualType FieldTypes[4];
4570
4571 // const int *isa;
4572 FieldTypes[0] = getPointerType(IntTy.withConst());
4573 // int flags;
4574 FieldTypes[1] = IntTy;
4575 // const char *str;
4576 FieldTypes[2] = getPointerType(CharTy.withConst());
4577 // long length;
4578 FieldTypes[3] = LongTy;
4579
4580 // Create fields
4581 for (unsigned i = 0; i < 4; ++i) {
4582 FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
4583 SourceLocation(),
4584 SourceLocation(), nullptr,
4585 FieldTypes[i], /*TInfo=*/nullptr,
4586 /*BitWidth=*/nullptr,
4587 /*Mutable=*/false,
4588 ICIS_NoInit);
4589 Field->setAccess(AS_public);
4590 CFConstantStringTypeDecl->addDecl(Field);
4591 }
4592
4593 CFConstantStringTypeDecl->completeDefinition();
4594 }
4595
4596 return getTagDeclType(CFConstantStringTypeDecl);
4597 }
4598
getObjCSuperType() const4599 QualType ASTContext::getObjCSuperType() const {
4600 if (ObjCSuperType.isNull()) {
4601 RecordDecl *ObjCSuperTypeDecl = buildImplicitRecord("objc_super");
4602 TUDecl->addDecl(ObjCSuperTypeDecl);
4603 ObjCSuperType = getTagDeclType(ObjCSuperTypeDecl);
4604 }
4605 return ObjCSuperType;
4606 }
4607
setCFConstantStringType(QualType T)4608 void ASTContext::setCFConstantStringType(QualType T) {
4609 const RecordType *Rec = T->getAs<RecordType>();
4610 assert(Rec && "Invalid CFConstantStringType");
4611 CFConstantStringTypeDecl = Rec->getDecl();
4612 }
4613
getBlockDescriptorType() const4614 QualType ASTContext::getBlockDescriptorType() const {
4615 if (BlockDescriptorType)
4616 return getTagDeclType(BlockDescriptorType);
4617
4618 RecordDecl *RD;
4619 // FIXME: Needs the FlagAppleBlock bit.
4620 RD = buildImplicitRecord("__block_descriptor");
4621 RD->startDefinition();
4622
4623 QualType FieldTypes[] = {
4624 UnsignedLongTy,
4625 UnsignedLongTy,
4626 };
4627
4628 static const char *const FieldNames[] = {
4629 "reserved",
4630 "Size"
4631 };
4632
4633 for (size_t i = 0; i < 2; ++i) {
4634 FieldDecl *Field = FieldDecl::Create(
4635 *this, RD, SourceLocation(), SourceLocation(),
4636 &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr,
4637 /*BitWidth=*/nullptr, /*Mutable=*/false, ICIS_NoInit);
4638 Field->setAccess(AS_public);
4639 RD->addDecl(Field);
4640 }
4641
4642 RD->completeDefinition();
4643
4644 BlockDescriptorType = RD;
4645
4646 return getTagDeclType(BlockDescriptorType);
4647 }
4648
getBlockDescriptorExtendedType() const4649 QualType ASTContext::getBlockDescriptorExtendedType() const {
4650 if (BlockDescriptorExtendedType)
4651 return getTagDeclType(BlockDescriptorExtendedType);
4652
4653 RecordDecl *RD;
4654 // FIXME: Needs the FlagAppleBlock bit.
4655 RD = buildImplicitRecord("__block_descriptor_withcopydispose");
4656 RD->startDefinition();
4657
4658 QualType FieldTypes[] = {
4659 UnsignedLongTy,
4660 UnsignedLongTy,
4661 getPointerType(VoidPtrTy),
4662 getPointerType(VoidPtrTy)
4663 };
4664
4665 static const char *const FieldNames[] = {
4666 "reserved",
4667 "Size",
4668 "CopyFuncPtr",
4669 "DestroyFuncPtr"
4670 };
4671
4672 for (size_t i = 0; i < 4; ++i) {
4673 FieldDecl *Field = FieldDecl::Create(
4674 *this, RD, SourceLocation(), SourceLocation(),
4675 &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr,
4676 /*BitWidth=*/nullptr,
4677 /*Mutable=*/false, ICIS_NoInit);
4678 Field->setAccess(AS_public);
4679 RD->addDecl(Field);
4680 }
4681
4682 RD->completeDefinition();
4683
4684 BlockDescriptorExtendedType = RD;
4685 return getTagDeclType(BlockDescriptorExtendedType);
4686 }
4687
4688 /// BlockRequiresCopying - Returns true if byref variable "D" of type "Ty"
4689 /// requires copy/dispose. Note that this must match the logic
4690 /// in buildByrefHelpers.
BlockRequiresCopying(QualType Ty,const VarDecl * D)4691 bool ASTContext::BlockRequiresCopying(QualType Ty,
4692 const VarDecl *D) {
4693 if (const CXXRecordDecl *record = Ty->getAsCXXRecordDecl()) {
4694 const Expr *copyExpr = getBlockVarCopyInits(D);
4695 if (!copyExpr && record->hasTrivialDestructor()) return false;
4696
4697 return true;
4698 }
4699
4700 if (!Ty->isObjCRetainableType()) return false;
4701
4702 Qualifiers qs = Ty.getQualifiers();
4703
4704 // If we have lifetime, that dominates.
4705 if (Qualifiers::ObjCLifetime lifetime = qs.getObjCLifetime()) {
4706 assert(getLangOpts().ObjCAutoRefCount);
4707
4708 switch (lifetime) {
4709 case Qualifiers::OCL_None: llvm_unreachable("impossible");
4710
4711 // These are just bits as far as the runtime is concerned.
4712 case Qualifiers::OCL_ExplicitNone:
4713 case Qualifiers::OCL_Autoreleasing:
4714 return false;
4715
4716 // Tell the runtime that this is ARC __weak, called by the
4717 // byref routines.
4718 case Qualifiers::OCL_Weak:
4719 // ARC __strong __block variables need to be retained.
4720 case Qualifiers::OCL_Strong:
4721 return true;
4722 }
4723 llvm_unreachable("fell out of lifetime switch!");
4724 }
4725 return (Ty->isBlockPointerType() || isObjCNSObjectType(Ty) ||
4726 Ty->isObjCObjectPointerType());
4727 }
4728
getByrefLifetime(QualType Ty,Qualifiers::ObjCLifetime & LifeTime,bool & HasByrefExtendedLayout) const4729 bool ASTContext::getByrefLifetime(QualType Ty,
4730 Qualifiers::ObjCLifetime &LifeTime,
4731 bool &HasByrefExtendedLayout) const {
4732
4733 if (!getLangOpts().ObjC1 ||
4734 getLangOpts().getGC() != LangOptions::NonGC)
4735 return false;
4736
4737 HasByrefExtendedLayout = false;
4738 if (Ty->isRecordType()) {
4739 HasByrefExtendedLayout = true;
4740 LifeTime = Qualifiers::OCL_None;
4741 }
4742 else if (getLangOpts().ObjCAutoRefCount)
4743 LifeTime = Ty.getObjCLifetime();
4744 // MRR.
4745 else if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
4746 LifeTime = Qualifiers::OCL_ExplicitNone;
4747 else
4748 LifeTime = Qualifiers::OCL_None;
4749 return true;
4750 }
4751
getObjCInstanceTypeDecl()4752 TypedefDecl *ASTContext::getObjCInstanceTypeDecl() {
4753 if (!ObjCInstanceTypeDecl)
4754 ObjCInstanceTypeDecl =
4755 buildImplicitTypedef(getObjCIdType(), "instancetype");
4756 return ObjCInstanceTypeDecl;
4757 }
4758
4759 // This returns true if a type has been typedefed to BOOL:
4760 // typedef <type> BOOL;
isTypeTypedefedAsBOOL(QualType T)4761 static bool isTypeTypedefedAsBOOL(QualType T) {
4762 if (const TypedefType *TT = dyn_cast<TypedefType>(T))
4763 if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
4764 return II->isStr("BOOL");
4765
4766 return false;
4767 }
4768
4769 /// getObjCEncodingTypeSize returns size of type for objective-c encoding
4770 /// purpose.
getObjCEncodingTypeSize(QualType type) const4771 CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
4772 if (!type->isIncompleteArrayType() && type->isIncompleteType())
4773 return CharUnits::Zero();
4774
4775 CharUnits sz = getTypeSizeInChars(type);
4776
4777 // Make all integer and enum types at least as large as an int
4778 if (sz.isPositive() && type->isIntegralOrEnumerationType())
4779 sz = std::max(sz, getTypeSizeInChars(IntTy));
4780 // Treat arrays as pointers, since that's how they're passed in.
4781 else if (type->isArrayType())
4782 sz = getTypeSizeInChars(VoidPtrTy);
4783 return sz;
4784 }
4785
4786 static inline
charUnitsToString(const CharUnits & CU)4787 std::string charUnitsToString(const CharUnits &CU) {
4788 return llvm::itostr(CU.getQuantity());
4789 }
4790
4791 /// getObjCEncodingForBlock - Return the encoded type for this block
4792 /// declaration.
getObjCEncodingForBlock(const BlockExpr * Expr) const4793 std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
4794 std::string S;
4795
4796 const BlockDecl *Decl = Expr->getBlockDecl();
4797 QualType BlockTy =
4798 Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
4799 // Encode result type.
4800 if (getLangOpts().EncodeExtendedBlockSig)
4801 getObjCEncodingForMethodParameter(
4802 Decl::OBJC_TQ_None, BlockTy->getAs<FunctionType>()->getReturnType(), S,
4803 true /*Extended*/);
4804 else
4805 getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getReturnType(), S);
4806 // Compute size of all parameters.
4807 // Start with computing size of a pointer in number of bytes.
4808 // FIXME: There might(should) be a better way of doing this computation!
4809 SourceLocation Loc;
4810 CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4811 CharUnits ParmOffset = PtrSize;
4812 for (auto PI : Decl->params()) {
4813 QualType PType = PI->getType();
4814 CharUnits sz = getObjCEncodingTypeSize(PType);
4815 if (sz.isZero())
4816 continue;
4817 assert (sz.isPositive() && "BlockExpr - Incomplete param type");
4818 ParmOffset += sz;
4819 }
4820 // Size of the argument frame
4821 S += charUnitsToString(ParmOffset);
4822 // Block pointer and offset.
4823 S += "@?0";
4824
4825 // Argument types.
4826 ParmOffset = PtrSize;
4827 for (auto PVDecl : Decl->params()) {
4828 QualType PType = PVDecl->getOriginalType();
4829 if (const ArrayType *AT =
4830 dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4831 // Use array's original type only if it has known number of
4832 // elements.
4833 if (!isa<ConstantArrayType>(AT))
4834 PType = PVDecl->getType();
4835 } else if (PType->isFunctionType())
4836 PType = PVDecl->getType();
4837 if (getLangOpts().EncodeExtendedBlockSig)
4838 getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, PType,
4839 S, true /*Extended*/);
4840 else
4841 getObjCEncodingForType(PType, S);
4842 S += charUnitsToString(ParmOffset);
4843 ParmOffset += getObjCEncodingTypeSize(PType);
4844 }
4845
4846 return S;
4847 }
4848
getObjCEncodingForFunctionDecl(const FunctionDecl * Decl,std::string & S)4849 bool ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl,
4850 std::string& S) {
4851 // Encode result type.
4852 getObjCEncodingForType(Decl->getReturnType(), S);
4853 CharUnits ParmOffset;
4854 // Compute size of all parameters.
4855 for (auto PI : Decl->params()) {
4856 QualType PType = PI->getType();
4857 CharUnits sz = getObjCEncodingTypeSize(PType);
4858 if (sz.isZero())
4859 continue;
4860
4861 assert (sz.isPositive() &&
4862 "getObjCEncodingForFunctionDecl - Incomplete param type");
4863 ParmOffset += sz;
4864 }
4865 S += charUnitsToString(ParmOffset);
4866 ParmOffset = CharUnits::Zero();
4867
4868 // Argument types.
4869 for (auto PVDecl : Decl->params()) {
4870 QualType PType = PVDecl->getOriginalType();
4871 if (const ArrayType *AT =
4872 dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4873 // Use array's original type only if it has known number of
4874 // elements.
4875 if (!isa<ConstantArrayType>(AT))
4876 PType = PVDecl->getType();
4877 } else if (PType->isFunctionType())
4878 PType = PVDecl->getType();
4879 getObjCEncodingForType(PType, S);
4880 S += charUnitsToString(ParmOffset);
4881 ParmOffset += getObjCEncodingTypeSize(PType);
4882 }
4883
4884 return false;
4885 }
4886
4887 /// getObjCEncodingForMethodParameter - Return the encoded type for a single
4888 /// method parameter or return type. If Extended, include class names and
4889 /// block object types.
getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,QualType T,std::string & S,bool Extended) const4890 void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
4891 QualType T, std::string& S,
4892 bool Extended) const {
4893 // Encode type qualifer, 'in', 'inout', etc. for the parameter.
4894 getObjCEncodingForTypeQualifier(QT, S);
4895 // Encode parameter type.
4896 getObjCEncodingForTypeImpl(T, S, true, true, nullptr,
4897 true /*OutermostType*/,
4898 false /*EncodingProperty*/,
4899 false /*StructField*/,
4900 Extended /*EncodeBlockParameters*/,
4901 Extended /*EncodeClassNames*/);
4902 }
4903
4904 /// getObjCEncodingForMethodDecl - Return the encoded type for this method
4905 /// declaration.
getObjCEncodingForMethodDecl(const ObjCMethodDecl * Decl,std::string & S,bool Extended) const4906 bool ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
4907 std::string& S,
4908 bool Extended) const {
4909 // FIXME: This is not very efficient.
4910 // Encode return type.
4911 getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(),
4912 Decl->getReturnType(), S, Extended);
4913 // Compute size of all parameters.
4914 // Start with computing size of a pointer in number of bytes.
4915 // FIXME: There might(should) be a better way of doing this computation!
4916 SourceLocation Loc;
4917 CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4918 // The first two arguments (self and _cmd) are pointers; account for
4919 // their size.
4920 CharUnits ParmOffset = 2 * PtrSize;
4921 for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4922 E = Decl->sel_param_end(); PI != E; ++PI) {
4923 QualType PType = (*PI)->getType();
4924 CharUnits sz = getObjCEncodingTypeSize(PType);
4925 if (sz.isZero())
4926 continue;
4927
4928 assert (sz.isPositive() &&
4929 "getObjCEncodingForMethodDecl - Incomplete param type");
4930 ParmOffset += sz;
4931 }
4932 S += charUnitsToString(ParmOffset);
4933 S += "@0:";
4934 S += charUnitsToString(PtrSize);
4935
4936 // Argument types.
4937 ParmOffset = 2 * PtrSize;
4938 for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4939 E = Decl->sel_param_end(); PI != E; ++PI) {
4940 const ParmVarDecl *PVDecl = *PI;
4941 QualType PType = PVDecl->getOriginalType();
4942 if (const ArrayType *AT =
4943 dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4944 // Use array's original type only if it has known number of
4945 // elements.
4946 if (!isa<ConstantArrayType>(AT))
4947 PType = PVDecl->getType();
4948 } else if (PType->isFunctionType())
4949 PType = PVDecl->getType();
4950 getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(),
4951 PType, S, Extended);
4952 S += charUnitsToString(ParmOffset);
4953 ParmOffset += getObjCEncodingTypeSize(PType);
4954 }
4955
4956 return false;
4957 }
4958
4959 ObjCPropertyImplDecl *
getObjCPropertyImplDeclForPropertyDecl(const ObjCPropertyDecl * PD,const Decl * Container) const4960 ASTContext::getObjCPropertyImplDeclForPropertyDecl(
4961 const ObjCPropertyDecl *PD,
4962 const Decl *Container) const {
4963 if (!Container)
4964 return nullptr;
4965 if (const ObjCCategoryImplDecl *CID =
4966 dyn_cast<ObjCCategoryImplDecl>(Container)) {
4967 for (auto *PID : CID->property_impls())
4968 if (PID->getPropertyDecl() == PD)
4969 return PID;
4970 } else {
4971 const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
4972 for (auto *PID : OID->property_impls())
4973 if (PID->getPropertyDecl() == PD)
4974 return PID;
4975 }
4976 return nullptr;
4977 }
4978
4979 /// getObjCEncodingForPropertyDecl - Return the encoded type for this
4980 /// property declaration. If non-NULL, Container must be either an
4981 /// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
4982 /// NULL when getting encodings for protocol properties.
4983 /// Property attributes are stored as a comma-delimited C string. The simple
4984 /// attributes readonly and bycopy are encoded as single characters. The
4985 /// parametrized attributes, getter=name, setter=name, and ivar=name, are
4986 /// encoded as single characters, followed by an identifier. Property types
4987 /// are also encoded as a parametrized attribute. The characters used to encode
4988 /// these attributes are defined by the following enumeration:
4989 /// @code
4990 /// enum PropertyAttributes {
4991 /// kPropertyReadOnly = 'R', // property is read-only.
4992 /// kPropertyBycopy = 'C', // property is a copy of the value last assigned
4993 /// kPropertyByref = '&', // property is a reference to the value last assigned
4994 /// kPropertyDynamic = 'D', // property is dynamic
4995 /// kPropertyGetter = 'G', // followed by getter selector name
4996 /// kPropertySetter = 'S', // followed by setter selector name
4997 /// kPropertyInstanceVariable = 'V' // followed by instance variable name
4998 /// kPropertyType = 'T' // followed by old-style type encoding.
4999 /// kPropertyWeak = 'W' // 'weak' property
5000 /// kPropertyStrong = 'P' // property GC'able
5001 /// kPropertyNonAtomic = 'N' // property non-atomic
5002 /// };
5003 /// @endcode
getObjCEncodingForPropertyDecl(const ObjCPropertyDecl * PD,const Decl * Container,std::string & S) const5004 void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
5005 const Decl *Container,
5006 std::string& S) const {
5007 // Collect information from the property implementation decl(s).
5008 bool Dynamic = false;
5009 ObjCPropertyImplDecl *SynthesizePID = nullptr;
5010
5011 if (ObjCPropertyImplDecl *PropertyImpDecl =
5012 getObjCPropertyImplDeclForPropertyDecl(PD, Container)) {
5013 if (PropertyImpDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic)
5014 Dynamic = true;
5015 else
5016 SynthesizePID = PropertyImpDecl;
5017 }
5018
5019 // FIXME: This is not very efficient.
5020 S = "T";
5021
5022 // Encode result type.
5023 // GCC has some special rules regarding encoding of properties which
5024 // closely resembles encoding of ivars.
5025 getObjCEncodingForPropertyType(PD->getType(), S);
5026
5027 if (PD->isReadOnly()) {
5028 S += ",R";
5029 if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_copy)
5030 S += ",C";
5031 if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_retain)
5032 S += ",&";
5033 if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_weak)
5034 S += ",W";
5035 } else {
5036 switch (PD->getSetterKind()) {
5037 case ObjCPropertyDecl::Assign: break;
5038 case ObjCPropertyDecl::Copy: S += ",C"; break;
5039 case ObjCPropertyDecl::Retain: S += ",&"; break;
5040 case ObjCPropertyDecl::Weak: S += ",W"; break;
5041 }
5042 }
5043
5044 // It really isn't clear at all what this means, since properties
5045 // are "dynamic by default".
5046 if (Dynamic)
5047 S += ",D";
5048
5049 if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
5050 S += ",N";
5051
5052 if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
5053 S += ",G";
5054 S += PD->getGetterName().getAsString();
5055 }
5056
5057 if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
5058 S += ",S";
5059 S += PD->getSetterName().getAsString();
5060 }
5061
5062 if (SynthesizePID) {
5063 const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
5064 S += ",V";
5065 S += OID->getNameAsString();
5066 }
5067
5068 // FIXME: OBJCGC: weak & strong
5069 }
5070
5071 /// getLegacyIntegralTypeEncoding -
5072 /// Another legacy compatibility encoding: 32-bit longs are encoded as
5073 /// 'l' or 'L' , but not always. For typedefs, we need to use
5074 /// 'i' or 'I' instead if encoding a struct field, or a pointer!
5075 ///
getLegacyIntegralTypeEncoding(QualType & PointeeTy) const5076 void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
5077 if (isa<TypedefType>(PointeeTy.getTypePtr())) {
5078 if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
5079 if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
5080 PointeeTy = UnsignedIntTy;
5081 else
5082 if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
5083 PointeeTy = IntTy;
5084 }
5085 }
5086 }
5087
getObjCEncodingForType(QualType T,std::string & S,const FieldDecl * Field) const5088 void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
5089 const FieldDecl *Field) const {
5090 // We follow the behavior of gcc, expanding structures which are
5091 // directly pointed to, and expanding embedded structures. Note that
5092 // these rules are sufficient to prevent recursive encoding of the
5093 // same type.
5094 getObjCEncodingForTypeImpl(T, S, true, true, Field,
5095 true /* outermost type */);
5096 }
5097
getObjCEncodingForPropertyType(QualType T,std::string & S) const5098 void ASTContext::getObjCEncodingForPropertyType(QualType T,
5099 std::string& S) const {
5100 // Encode result type.
5101 // GCC has some special rules regarding encoding of properties which
5102 // closely resembles encoding of ivars.
5103 getObjCEncodingForTypeImpl(T, S, true, true, nullptr,
5104 true /* outermost type */,
5105 true /* encoding property */);
5106 }
5107
getObjCEncodingForPrimitiveKind(const ASTContext * C,BuiltinType::Kind kind)5108 static char getObjCEncodingForPrimitiveKind(const ASTContext *C,
5109 BuiltinType::Kind kind) {
5110 switch (kind) {
5111 case BuiltinType::Void: return 'v';
5112 case BuiltinType::Bool: return 'B';
5113 case BuiltinType::Char_U:
5114 case BuiltinType::UChar: return 'C';
5115 case BuiltinType::Char16:
5116 case BuiltinType::UShort: return 'S';
5117 case BuiltinType::Char32:
5118 case BuiltinType::UInt: return 'I';
5119 case BuiltinType::ULong:
5120 return C->getTargetInfo().getLongWidth() == 32 ? 'L' : 'Q';
5121 case BuiltinType::UInt128: return 'T';
5122 case BuiltinType::ULongLong: return 'Q';
5123 case BuiltinType::Char_S:
5124 case BuiltinType::SChar: return 'c';
5125 case BuiltinType::Short: return 's';
5126 case BuiltinType::WChar_S:
5127 case BuiltinType::WChar_U:
5128 case BuiltinType::Int: return 'i';
5129 case BuiltinType::Long:
5130 return C->getTargetInfo().getLongWidth() == 32 ? 'l' : 'q';
5131 case BuiltinType::LongLong: return 'q';
5132 case BuiltinType::Int128: return 't';
5133 case BuiltinType::Float: return 'f';
5134 case BuiltinType::Double: return 'd';
5135 case BuiltinType::LongDouble: return 'D';
5136 case BuiltinType::NullPtr: return '*'; // like char*
5137
5138 case BuiltinType::Half:
5139 // FIXME: potentially need @encodes for these!
5140 return ' ';
5141
5142 case BuiltinType::ObjCId:
5143 case BuiltinType::ObjCClass:
5144 case BuiltinType::ObjCSel:
5145 llvm_unreachable("@encoding ObjC primitive type");
5146
5147 // OpenCL and placeholder types don't need @encodings.
5148 case BuiltinType::OCLImage1d:
5149 case BuiltinType::OCLImage1dArray:
5150 case BuiltinType::OCLImage1dBuffer:
5151 case BuiltinType::OCLImage2d:
5152 case BuiltinType::OCLImage2dArray:
5153 case BuiltinType::OCLImage3d:
5154 case BuiltinType::OCLEvent:
5155 case BuiltinType::OCLSampler:
5156 case BuiltinType::Dependent:
5157 #define BUILTIN_TYPE(KIND, ID)
5158 #define PLACEHOLDER_TYPE(KIND, ID) \
5159 case BuiltinType::KIND:
5160 #include "clang/AST/BuiltinTypes.def"
5161 llvm_unreachable("invalid builtin type for @encode");
5162 }
5163 llvm_unreachable("invalid BuiltinType::Kind value");
5164 }
5165
ObjCEncodingForEnumType(const ASTContext * C,const EnumType * ET)5166 static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) {
5167 EnumDecl *Enum = ET->getDecl();
5168
5169 // The encoding of an non-fixed enum type is always 'i', regardless of size.
5170 if (!Enum->isFixed())
5171 return 'i';
5172
5173 // The encoding of a fixed enum type matches its fixed underlying type.
5174 const BuiltinType *BT = Enum->getIntegerType()->castAs<BuiltinType>();
5175 return getObjCEncodingForPrimitiveKind(C, BT->getKind());
5176 }
5177
EncodeBitField(const ASTContext * Ctx,std::string & S,QualType T,const FieldDecl * FD)5178 static void EncodeBitField(const ASTContext *Ctx, std::string& S,
5179 QualType T, const FieldDecl *FD) {
5180 assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl");
5181 S += 'b';
5182 // The NeXT runtime encodes bit fields as b followed by the number of bits.
5183 // The GNU runtime requires more information; bitfields are encoded as b,
5184 // then the offset (in bits) of the first element, then the type of the
5185 // bitfield, then the size in bits. For example, in this structure:
5186 //
5187 // struct
5188 // {
5189 // int integer;
5190 // int flags:2;
5191 // };
5192 // On a 32-bit system, the encoding for flags would be b2 for the NeXT
5193 // runtime, but b32i2 for the GNU runtime. The reason for this extra
5194 // information is not especially sensible, but we're stuck with it for
5195 // compatibility with GCC, although providing it breaks anything that
5196 // actually uses runtime introspection and wants to work on both runtimes...
5197 if (Ctx->getLangOpts().ObjCRuntime.isGNUFamily()) {
5198 const RecordDecl *RD = FD->getParent();
5199 const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
5200 S += llvm::utostr(RL.getFieldOffset(FD->getFieldIndex()));
5201 if (const EnumType *ET = T->getAs<EnumType>())
5202 S += ObjCEncodingForEnumType(Ctx, ET);
5203 else {
5204 const BuiltinType *BT = T->castAs<BuiltinType>();
5205 S += getObjCEncodingForPrimitiveKind(Ctx, BT->getKind());
5206 }
5207 }
5208 S += llvm::utostr(FD->getBitWidthValue(*Ctx));
5209 }
5210
5211 // FIXME: Use SmallString for accumulating string.
getObjCEncodingForTypeImpl(QualType T,std::string & S,bool ExpandPointedToStructures,bool ExpandStructures,const FieldDecl * FD,bool OutermostType,bool EncodingProperty,bool StructField,bool EncodeBlockParameters,bool EncodeClassNames,bool EncodePointerToObjCTypedef) const5212 void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
5213 bool ExpandPointedToStructures,
5214 bool ExpandStructures,
5215 const FieldDecl *FD,
5216 bool OutermostType,
5217 bool EncodingProperty,
5218 bool StructField,
5219 bool EncodeBlockParameters,
5220 bool EncodeClassNames,
5221 bool EncodePointerToObjCTypedef) const {
5222 CanQualType CT = getCanonicalType(T);
5223 switch (CT->getTypeClass()) {
5224 case Type::Builtin:
5225 case Type::Enum:
5226 if (FD && FD->isBitField())
5227 return EncodeBitField(this, S, T, FD);
5228 if (const BuiltinType *BT = dyn_cast<BuiltinType>(CT))
5229 S += getObjCEncodingForPrimitiveKind(this, BT->getKind());
5230 else
5231 S += ObjCEncodingForEnumType(this, cast<EnumType>(CT));
5232 return;
5233
5234 case Type::Complex: {
5235 const ComplexType *CT = T->castAs<ComplexType>();
5236 S += 'j';
5237 getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, nullptr,
5238 false, false);
5239 return;
5240 }
5241
5242 case Type::Atomic: {
5243 const AtomicType *AT = T->castAs<AtomicType>();
5244 S += 'A';
5245 getObjCEncodingForTypeImpl(AT->getValueType(), S, false, false, nullptr,
5246 false, false);
5247 return;
5248 }
5249
5250 // encoding for pointer or reference types.
5251 case Type::Pointer:
5252 case Type::LValueReference:
5253 case Type::RValueReference: {
5254 QualType PointeeTy;
5255 if (isa<PointerType>(CT)) {
5256 const PointerType *PT = T->castAs<PointerType>();
5257 if (PT->isObjCSelType()) {
5258 S += ':';
5259 return;
5260 }
5261 PointeeTy = PT->getPointeeType();
5262 } else {
5263 PointeeTy = T->castAs<ReferenceType>()->getPointeeType();
5264 }
5265
5266 bool isReadOnly = false;
5267 // For historical/compatibility reasons, the read-only qualifier of the
5268 // pointee gets emitted _before_ the '^'. The read-only qualifier of
5269 // the pointer itself gets ignored, _unless_ we are looking at a typedef!
5270 // Also, do not emit the 'r' for anything but the outermost type!
5271 if (isa<TypedefType>(T.getTypePtr())) {
5272 if (OutermostType && T.isConstQualified()) {
5273 isReadOnly = true;
5274 S += 'r';
5275 }
5276 } else if (OutermostType) {
5277 QualType P = PointeeTy;
5278 while (P->getAs<PointerType>())
5279 P = P->getAs<PointerType>()->getPointeeType();
5280 if (P.isConstQualified()) {
5281 isReadOnly = true;
5282 S += 'r';
5283 }
5284 }
5285 if (isReadOnly) {
5286 // Another legacy compatibility encoding. Some ObjC qualifier and type
5287 // combinations need to be rearranged.
5288 // Rewrite "in const" from "nr" to "rn"
5289 if (StringRef(S).endswith("nr"))
5290 S.replace(S.end()-2, S.end(), "rn");
5291 }
5292
5293 if (PointeeTy->isCharType()) {
5294 // char pointer types should be encoded as '*' unless it is a
5295 // type that has been typedef'd to 'BOOL'.
5296 if (!isTypeTypedefedAsBOOL(PointeeTy)) {
5297 S += '*';
5298 return;
5299 }
5300 } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
5301 // GCC binary compat: Need to convert "struct objc_class *" to "#".
5302 if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
5303 S += '#';
5304 return;
5305 }
5306 // GCC binary compat: Need to convert "struct objc_object *" to "@".
5307 if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
5308 S += '@';
5309 return;
5310 }
5311 // fall through...
5312 }
5313 S += '^';
5314 getLegacyIntegralTypeEncoding(PointeeTy);
5315
5316 getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
5317 nullptr);
5318 return;
5319 }
5320
5321 case Type::ConstantArray:
5322 case Type::IncompleteArray:
5323 case Type::VariableArray: {
5324 const ArrayType *AT = cast<ArrayType>(CT);
5325
5326 if (isa<IncompleteArrayType>(AT) && !StructField) {
5327 // Incomplete arrays are encoded as a pointer to the array element.
5328 S += '^';
5329
5330 getObjCEncodingForTypeImpl(AT->getElementType(), S,
5331 false, ExpandStructures, FD);
5332 } else {
5333 S += '[';
5334
5335 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
5336 S += llvm::utostr(CAT->getSize().getZExtValue());
5337 else {
5338 //Variable length arrays are encoded as a regular array with 0 elements.
5339 assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
5340 "Unknown array type!");
5341 S += '0';
5342 }
5343
5344 getObjCEncodingForTypeImpl(AT->getElementType(), S,
5345 false, ExpandStructures, FD);
5346 S += ']';
5347 }
5348 return;
5349 }
5350
5351 case Type::FunctionNoProto:
5352 case Type::FunctionProto:
5353 S += '?';
5354 return;
5355
5356 case Type::Record: {
5357 RecordDecl *RDecl = cast<RecordType>(CT)->getDecl();
5358 S += RDecl->isUnion() ? '(' : '{';
5359 // Anonymous structures print as '?'
5360 if (const IdentifierInfo *II = RDecl->getIdentifier()) {
5361 S += II->getName();
5362 if (ClassTemplateSpecializationDecl *Spec
5363 = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
5364 const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
5365 llvm::raw_string_ostream OS(S);
5366 TemplateSpecializationType::PrintTemplateArgumentList(OS,
5367 TemplateArgs.data(),
5368 TemplateArgs.size(),
5369 (*this).getPrintingPolicy());
5370 }
5371 } else {
5372 S += '?';
5373 }
5374 if (ExpandStructures) {
5375 S += '=';
5376 if (!RDecl->isUnion()) {
5377 getObjCEncodingForStructureImpl(RDecl, S, FD);
5378 } else {
5379 for (const auto *Field : RDecl->fields()) {
5380 if (FD) {
5381 S += '"';
5382 S += Field->getNameAsString();
5383 S += '"';
5384 }
5385
5386 // Special case bit-fields.
5387 if (Field->isBitField()) {
5388 getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
5389 Field);
5390 } else {
5391 QualType qt = Field->getType();
5392 getLegacyIntegralTypeEncoding(qt);
5393 getObjCEncodingForTypeImpl(qt, S, false, true,
5394 FD, /*OutermostType*/false,
5395 /*EncodingProperty*/false,
5396 /*StructField*/true);
5397 }
5398 }
5399 }
5400 }
5401 S += RDecl->isUnion() ? ')' : '}';
5402 return;
5403 }
5404
5405 case Type::BlockPointer: {
5406 const BlockPointerType *BT = T->castAs<BlockPointerType>();
5407 S += "@?"; // Unlike a pointer-to-function, which is "^?".
5408 if (EncodeBlockParameters) {
5409 const FunctionType *FT = BT->getPointeeType()->castAs<FunctionType>();
5410
5411 S += '<';
5412 // Block return type
5413 getObjCEncodingForTypeImpl(
5414 FT->getReturnType(), S, ExpandPointedToStructures, ExpandStructures,
5415 FD, false /* OutermostType */, EncodingProperty,
5416 false /* StructField */, EncodeBlockParameters, EncodeClassNames);
5417 // Block self
5418 S += "@?";
5419 // Block parameters
5420 if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
5421 for (const auto &I : FPT->param_types())
5422 getObjCEncodingForTypeImpl(
5423 I, S, ExpandPointedToStructures, ExpandStructures, FD,
5424 false /* OutermostType */, EncodingProperty,
5425 false /* StructField */, EncodeBlockParameters, EncodeClassNames);
5426 }
5427 S += '>';
5428 }
5429 return;
5430 }
5431
5432 case Type::ObjCObject: {
5433 // hack to match legacy encoding of *id and *Class
5434 QualType Ty = getObjCObjectPointerType(CT);
5435 if (Ty->isObjCIdType()) {
5436 S += "{objc_object=}";
5437 return;
5438 }
5439 else if (Ty->isObjCClassType()) {
5440 S += "{objc_class=}";
5441 return;
5442 }
5443 }
5444
5445 case Type::ObjCInterface: {
5446 // Ignore protocol qualifiers when mangling at this level.
5447 T = T->castAs<ObjCObjectType>()->getBaseType();
5448
5449 // The assumption seems to be that this assert will succeed
5450 // because nested levels will have filtered out 'id' and 'Class'.
5451 const ObjCInterfaceType *OIT = T->castAs<ObjCInterfaceType>();
5452 // @encode(class_name)
5453 ObjCInterfaceDecl *OI = OIT->getDecl();
5454 S += '{';
5455 const IdentifierInfo *II = OI->getIdentifier();
5456 S += II->getName();
5457 S += '=';
5458 SmallVector<const ObjCIvarDecl*, 32> Ivars;
5459 DeepCollectObjCIvars(OI, true, Ivars);
5460 for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
5461 const FieldDecl *Field = cast<FieldDecl>(Ivars[i]);
5462 if (Field->isBitField())
5463 getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field);
5464 else
5465 getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD,
5466 false, false, false, false, false,
5467 EncodePointerToObjCTypedef);
5468 }
5469 S += '}';
5470 return;
5471 }
5472
5473 case Type::ObjCObjectPointer: {
5474 const ObjCObjectPointerType *OPT = T->castAs<ObjCObjectPointerType>();
5475 if (OPT->isObjCIdType()) {
5476 S += '@';
5477 return;
5478 }
5479
5480 if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
5481 // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
5482 // Since this is a binary compatibility issue, need to consult with runtime
5483 // folks. Fortunately, this is a *very* obsure construct.
5484 S += '#';
5485 return;
5486 }
5487
5488 if (OPT->isObjCQualifiedIdType()) {
5489 getObjCEncodingForTypeImpl(getObjCIdType(), S,
5490 ExpandPointedToStructures,
5491 ExpandStructures, FD);
5492 if (FD || EncodingProperty || EncodeClassNames) {
5493 // Note that we do extended encoding of protocol qualifer list
5494 // Only when doing ivar or property encoding.
5495 S += '"';
5496 for (const auto *I : OPT->quals()) {
5497 S += '<';
5498 S += I->getNameAsString();
5499 S += '>';
5500 }
5501 S += '"';
5502 }
5503 return;
5504 }
5505
5506 QualType PointeeTy = OPT->getPointeeType();
5507 if (!EncodingProperty &&
5508 isa<TypedefType>(PointeeTy.getTypePtr()) &&
5509 !EncodePointerToObjCTypedef) {
5510 // Another historical/compatibility reason.
5511 // We encode the underlying type which comes out as
5512 // {...};
5513 S += '^';
5514 if (FD && OPT->getInterfaceDecl()) {
5515 // Prevent recursive encoding of fields in some rare cases.
5516 ObjCInterfaceDecl *OI = OPT->getInterfaceDecl();
5517 SmallVector<const ObjCIvarDecl*, 32> Ivars;
5518 DeepCollectObjCIvars(OI, true, Ivars);
5519 for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
5520 if (cast<FieldDecl>(Ivars[i]) == FD) {
5521 S += '{';
5522 S += OI->getIdentifier()->getName();
5523 S += '}';
5524 return;
5525 }
5526 }
5527 }
5528 getObjCEncodingForTypeImpl(PointeeTy, S,
5529 false, ExpandPointedToStructures,
5530 nullptr,
5531 false, false, false, false, false,
5532 /*EncodePointerToObjCTypedef*/true);
5533 return;
5534 }
5535
5536 S += '@';
5537 if (OPT->getInterfaceDecl() &&
5538 (FD || EncodingProperty || EncodeClassNames)) {
5539 S += '"';
5540 S += OPT->getInterfaceDecl()->getIdentifier()->getName();
5541 for (const auto *I : OPT->quals()) {
5542 S += '<';
5543 S += I->getNameAsString();
5544 S += '>';
5545 }
5546 S += '"';
5547 }
5548 return;
5549 }
5550
5551 // gcc just blithely ignores member pointers.
5552 // FIXME: we shoul do better than that. 'M' is available.
5553 case Type::MemberPointer:
5554 return;
5555
5556 case Type::Vector:
5557 case Type::ExtVector:
5558 // This matches gcc's encoding, even though technically it is
5559 // insufficient.
5560 // FIXME. We should do a better job than gcc.
5561 return;
5562
5563 case Type::Auto:
5564 // We could see an undeduced auto type here during error recovery.
5565 // Just ignore it.
5566 return;
5567
5568 #define ABSTRACT_TYPE(KIND, BASE)
5569 #define TYPE(KIND, BASE)
5570 #define DEPENDENT_TYPE(KIND, BASE) \
5571 case Type::KIND:
5572 #define NON_CANONICAL_TYPE(KIND, BASE) \
5573 case Type::KIND:
5574 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(KIND, BASE) \
5575 case Type::KIND:
5576 #include "clang/AST/TypeNodes.def"
5577 llvm_unreachable("@encode for dependent type!");
5578 }
5579 llvm_unreachable("bad type kind!");
5580 }
5581
getObjCEncodingForStructureImpl(RecordDecl * RDecl,std::string & S,const FieldDecl * FD,bool includeVBases) const5582 void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
5583 std::string &S,
5584 const FieldDecl *FD,
5585 bool includeVBases) const {
5586 assert(RDecl && "Expected non-null RecordDecl");
5587 assert(!RDecl->isUnion() && "Should not be called for unions");
5588 if (!RDecl->getDefinition())
5589 return;
5590
5591 CXXRecordDecl *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
5592 std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
5593 const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
5594
5595 if (CXXRec) {
5596 for (const auto &BI : CXXRec->bases()) {
5597 if (!BI.isVirtual()) {
5598 CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl();
5599 if (base->isEmpty())
5600 continue;
5601 uint64_t offs = toBits(layout.getBaseClassOffset(base));
5602 FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5603 std::make_pair(offs, base));
5604 }
5605 }
5606 }
5607
5608 unsigned i = 0;
5609 for (RecordDecl::field_iterator Field = RDecl->field_begin(),
5610 FieldEnd = RDecl->field_end();
5611 Field != FieldEnd; ++Field, ++i) {
5612 uint64_t offs = layout.getFieldOffset(i);
5613 FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5614 std::make_pair(offs, *Field));
5615 }
5616
5617 if (CXXRec && includeVBases) {
5618 for (const auto &BI : CXXRec->vbases()) {
5619 CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl();
5620 if (base->isEmpty())
5621 continue;
5622 uint64_t offs = toBits(layout.getVBaseClassOffset(base));
5623 if (offs >= uint64_t(toBits(layout.getNonVirtualSize())) &&
5624 FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end())
5625 FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(),
5626 std::make_pair(offs, base));
5627 }
5628 }
5629
5630 CharUnits size;
5631 if (CXXRec) {
5632 size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
5633 } else {
5634 size = layout.getSize();
5635 }
5636
5637 #ifndef NDEBUG
5638 uint64_t CurOffs = 0;
5639 #endif
5640 std::multimap<uint64_t, NamedDecl *>::iterator
5641 CurLayObj = FieldOrBaseOffsets.begin();
5642
5643 if (CXXRec && CXXRec->isDynamicClass() &&
5644 (CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) {
5645 if (FD) {
5646 S += "\"_vptr$";
5647 std::string recname = CXXRec->getNameAsString();
5648 if (recname.empty()) recname = "?";
5649 S += recname;
5650 S += '"';
5651 }
5652 S += "^^?";
5653 #ifndef NDEBUG
5654 CurOffs += getTypeSize(VoidPtrTy);
5655 #endif
5656 }
5657
5658 if (!RDecl->hasFlexibleArrayMember()) {
5659 // Mark the end of the structure.
5660 uint64_t offs = toBits(size);
5661 FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5662 std::make_pair(offs, nullptr));
5663 }
5664
5665 for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
5666 #ifndef NDEBUG
5667 assert(CurOffs <= CurLayObj->first);
5668 if (CurOffs < CurLayObj->first) {
5669 uint64_t padding = CurLayObj->first - CurOffs;
5670 // FIXME: There doesn't seem to be a way to indicate in the encoding that
5671 // packing/alignment of members is different that normal, in which case
5672 // the encoding will be out-of-sync with the real layout.
5673 // If the runtime switches to just consider the size of types without
5674 // taking into account alignment, we could make padding explicit in the
5675 // encoding (e.g. using arrays of chars). The encoding strings would be
5676 // longer then though.
5677 CurOffs += padding;
5678 }
5679 #endif
5680
5681 NamedDecl *dcl = CurLayObj->second;
5682 if (!dcl)
5683 break; // reached end of structure.
5684
5685 if (CXXRecordDecl *base = dyn_cast<CXXRecordDecl>(dcl)) {
5686 // We expand the bases without their virtual bases since those are going
5687 // in the initial structure. Note that this differs from gcc which
5688 // expands virtual bases each time one is encountered in the hierarchy,
5689 // making the encoding type bigger than it really is.
5690 getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false);
5691 assert(!base->isEmpty());
5692 #ifndef NDEBUG
5693 CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
5694 #endif
5695 } else {
5696 FieldDecl *field = cast<FieldDecl>(dcl);
5697 if (FD) {
5698 S += '"';
5699 S += field->getNameAsString();
5700 S += '"';
5701 }
5702
5703 if (field->isBitField()) {
5704 EncodeBitField(this, S, field->getType(), field);
5705 #ifndef NDEBUG
5706 CurOffs += field->getBitWidthValue(*this);
5707 #endif
5708 } else {
5709 QualType qt = field->getType();
5710 getLegacyIntegralTypeEncoding(qt);
5711 getObjCEncodingForTypeImpl(qt, S, false, true, FD,
5712 /*OutermostType*/false,
5713 /*EncodingProperty*/false,
5714 /*StructField*/true);
5715 #ifndef NDEBUG
5716 CurOffs += getTypeSize(field->getType());
5717 #endif
5718 }
5719 }
5720 }
5721 }
5722
getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,std::string & S) const5723 void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
5724 std::string& S) const {
5725 if (QT & Decl::OBJC_TQ_In)
5726 S += 'n';
5727 if (QT & Decl::OBJC_TQ_Inout)
5728 S += 'N';
5729 if (QT & Decl::OBJC_TQ_Out)
5730 S += 'o';
5731 if (QT & Decl::OBJC_TQ_Bycopy)
5732 S += 'O';
5733 if (QT & Decl::OBJC_TQ_Byref)
5734 S += 'R';
5735 if (QT & Decl::OBJC_TQ_Oneway)
5736 S += 'V';
5737 }
5738
getObjCIdDecl() const5739 TypedefDecl *ASTContext::getObjCIdDecl() const {
5740 if (!ObjCIdDecl) {
5741 QualType T = getObjCObjectType(ObjCBuiltinIdTy, nullptr, 0);
5742 T = getObjCObjectPointerType(T);
5743 ObjCIdDecl = buildImplicitTypedef(T, "id");
5744 }
5745 return ObjCIdDecl;
5746 }
5747
getObjCSelDecl() const5748 TypedefDecl *ASTContext::getObjCSelDecl() const {
5749 if (!ObjCSelDecl) {
5750 QualType T = getPointerType(ObjCBuiltinSelTy);
5751 ObjCSelDecl = buildImplicitTypedef(T, "SEL");
5752 }
5753 return ObjCSelDecl;
5754 }
5755
getObjCClassDecl() const5756 TypedefDecl *ASTContext::getObjCClassDecl() const {
5757 if (!ObjCClassDecl) {
5758 QualType T = getObjCObjectType(ObjCBuiltinClassTy, nullptr, 0);
5759 T = getObjCObjectPointerType(T);
5760 ObjCClassDecl = buildImplicitTypedef(T, "Class");
5761 }
5762 return ObjCClassDecl;
5763 }
5764
getObjCProtocolDecl() const5765 ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const {
5766 if (!ObjCProtocolClassDecl) {
5767 ObjCProtocolClassDecl
5768 = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(),
5769 SourceLocation(),
5770 &Idents.get("Protocol"),
5771 /*PrevDecl=*/nullptr,
5772 SourceLocation(), true);
5773 }
5774
5775 return ObjCProtocolClassDecl;
5776 }
5777
5778 //===----------------------------------------------------------------------===//
5779 // __builtin_va_list Construction Functions
5780 //===----------------------------------------------------------------------===//
5781
CreateCharPtrBuiltinVaListDecl(const ASTContext * Context)5782 static TypedefDecl *CreateCharPtrBuiltinVaListDecl(const ASTContext *Context) {
5783 // typedef char* __builtin_va_list;
5784 QualType T = Context->getPointerType(Context->CharTy);
5785 return Context->buildImplicitTypedef(T, "__builtin_va_list");
5786 }
5787
CreateVoidPtrBuiltinVaListDecl(const ASTContext * Context)5788 static TypedefDecl *CreateVoidPtrBuiltinVaListDecl(const ASTContext *Context) {
5789 // typedef void* __builtin_va_list;
5790 QualType T = Context->getPointerType(Context->VoidTy);
5791 return Context->buildImplicitTypedef(T, "__builtin_va_list");
5792 }
5793
5794 static TypedefDecl *
CreateAArch64ABIBuiltinVaListDecl(const ASTContext * Context)5795 CreateAArch64ABIBuiltinVaListDecl(const ASTContext *Context) {
5796 // struct __va_list
5797 RecordDecl *VaListTagDecl = Context->buildImplicitRecord("__va_list");
5798 if (Context->getLangOpts().CPlusPlus) {
5799 // namespace std { struct __va_list {
5800 NamespaceDecl *NS;
5801 NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
5802 Context->getTranslationUnitDecl(),
5803 /*Inline*/ false, SourceLocation(),
5804 SourceLocation(), &Context->Idents.get("std"),
5805 /*PrevDecl*/ nullptr);
5806 NS->setImplicit();
5807 VaListTagDecl->setDeclContext(NS);
5808 }
5809
5810 VaListTagDecl->startDefinition();
5811
5812 const size_t NumFields = 5;
5813 QualType FieldTypes[NumFields];
5814 const char *FieldNames[NumFields];
5815
5816 // void *__stack;
5817 FieldTypes[0] = Context->getPointerType(Context->VoidTy);
5818 FieldNames[0] = "__stack";
5819
5820 // void *__gr_top;
5821 FieldTypes[1] = Context->getPointerType(Context->VoidTy);
5822 FieldNames[1] = "__gr_top";
5823
5824 // void *__vr_top;
5825 FieldTypes[2] = Context->getPointerType(Context->VoidTy);
5826 FieldNames[2] = "__vr_top";
5827
5828 // int __gr_offs;
5829 FieldTypes[3] = Context->IntTy;
5830 FieldNames[3] = "__gr_offs";
5831
5832 // int __vr_offs;
5833 FieldTypes[4] = Context->IntTy;
5834 FieldNames[4] = "__vr_offs";
5835
5836 // Create fields
5837 for (unsigned i = 0; i < NumFields; ++i) {
5838 FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
5839 VaListTagDecl,
5840 SourceLocation(),
5841 SourceLocation(),
5842 &Context->Idents.get(FieldNames[i]),
5843 FieldTypes[i], /*TInfo=*/nullptr,
5844 /*BitWidth=*/nullptr,
5845 /*Mutable=*/false,
5846 ICIS_NoInit);
5847 Field->setAccess(AS_public);
5848 VaListTagDecl->addDecl(Field);
5849 }
5850 VaListTagDecl->completeDefinition();
5851 QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5852 Context->VaListTagTy = VaListTagType;
5853
5854 // } __builtin_va_list;
5855 return Context->buildImplicitTypedef(VaListTagType, "__builtin_va_list");
5856 }
5857
CreatePowerABIBuiltinVaListDecl(const ASTContext * Context)5858 static TypedefDecl *CreatePowerABIBuiltinVaListDecl(const ASTContext *Context) {
5859 // typedef struct __va_list_tag {
5860 RecordDecl *VaListTagDecl;
5861
5862 VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
5863 VaListTagDecl->startDefinition();
5864
5865 const size_t NumFields = 5;
5866 QualType FieldTypes[NumFields];
5867 const char *FieldNames[NumFields];
5868
5869 // unsigned char gpr;
5870 FieldTypes[0] = Context->UnsignedCharTy;
5871 FieldNames[0] = "gpr";
5872
5873 // unsigned char fpr;
5874 FieldTypes[1] = Context->UnsignedCharTy;
5875 FieldNames[1] = "fpr";
5876
5877 // unsigned short reserved;
5878 FieldTypes[2] = Context->UnsignedShortTy;
5879 FieldNames[2] = "reserved";
5880
5881 // void* overflow_arg_area;
5882 FieldTypes[3] = Context->getPointerType(Context->VoidTy);
5883 FieldNames[3] = "overflow_arg_area";
5884
5885 // void* reg_save_area;
5886 FieldTypes[4] = Context->getPointerType(Context->VoidTy);
5887 FieldNames[4] = "reg_save_area";
5888
5889 // Create fields
5890 for (unsigned i = 0; i < NumFields; ++i) {
5891 FieldDecl *Field = FieldDecl::Create(*Context, VaListTagDecl,
5892 SourceLocation(),
5893 SourceLocation(),
5894 &Context->Idents.get(FieldNames[i]),
5895 FieldTypes[i], /*TInfo=*/nullptr,
5896 /*BitWidth=*/nullptr,
5897 /*Mutable=*/false,
5898 ICIS_NoInit);
5899 Field->setAccess(AS_public);
5900 VaListTagDecl->addDecl(Field);
5901 }
5902 VaListTagDecl->completeDefinition();
5903 QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5904 Context->VaListTagTy = VaListTagType;
5905
5906 // } __va_list_tag;
5907 TypedefDecl *VaListTagTypedefDecl =
5908 Context->buildImplicitTypedef(VaListTagType, "__va_list_tag");
5909
5910 QualType VaListTagTypedefType =
5911 Context->getTypedefType(VaListTagTypedefDecl);
5912
5913 // typedef __va_list_tag __builtin_va_list[1];
5914 llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
5915 QualType VaListTagArrayType
5916 = Context->getConstantArrayType(VaListTagTypedefType,
5917 Size, ArrayType::Normal, 0);
5918 return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
5919 }
5920
5921 static TypedefDecl *
CreateX86_64ABIBuiltinVaListDecl(const ASTContext * Context)5922 CreateX86_64ABIBuiltinVaListDecl(const ASTContext *Context) {
5923 // typedef struct __va_list_tag {
5924 RecordDecl *VaListTagDecl;
5925 VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
5926 VaListTagDecl->startDefinition();
5927
5928 const size_t NumFields = 4;
5929 QualType FieldTypes[NumFields];
5930 const char *FieldNames[NumFields];
5931
5932 // unsigned gp_offset;
5933 FieldTypes[0] = Context->UnsignedIntTy;
5934 FieldNames[0] = "gp_offset";
5935
5936 // unsigned fp_offset;
5937 FieldTypes[1] = Context->UnsignedIntTy;
5938 FieldNames[1] = "fp_offset";
5939
5940 // void* overflow_arg_area;
5941 FieldTypes[2] = Context->getPointerType(Context->VoidTy);
5942 FieldNames[2] = "overflow_arg_area";
5943
5944 // void* reg_save_area;
5945 FieldTypes[3] = Context->getPointerType(Context->VoidTy);
5946 FieldNames[3] = "reg_save_area";
5947
5948 // Create fields
5949 for (unsigned i = 0; i < NumFields; ++i) {
5950 FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
5951 VaListTagDecl,
5952 SourceLocation(),
5953 SourceLocation(),
5954 &Context->Idents.get(FieldNames[i]),
5955 FieldTypes[i], /*TInfo=*/nullptr,
5956 /*BitWidth=*/nullptr,
5957 /*Mutable=*/false,
5958 ICIS_NoInit);
5959 Field->setAccess(AS_public);
5960 VaListTagDecl->addDecl(Field);
5961 }
5962 VaListTagDecl->completeDefinition();
5963 QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5964 Context->VaListTagTy = VaListTagType;
5965
5966 // } __va_list_tag;
5967 TypedefDecl *VaListTagTypedefDecl =
5968 Context->buildImplicitTypedef(VaListTagType, "__va_list_tag");
5969
5970 QualType VaListTagTypedefType =
5971 Context->getTypedefType(VaListTagTypedefDecl);
5972
5973 // typedef __va_list_tag __builtin_va_list[1];
5974 llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
5975 QualType VaListTagArrayType
5976 = Context->getConstantArrayType(VaListTagTypedefType,
5977 Size, ArrayType::Normal,0);
5978 return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
5979 }
5980
CreatePNaClABIBuiltinVaListDecl(const ASTContext * Context)5981 static TypedefDecl *CreatePNaClABIBuiltinVaListDecl(const ASTContext *Context) {
5982 // typedef int __builtin_va_list[4];
5983 llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 4);
5984 QualType IntArrayType
5985 = Context->getConstantArrayType(Context->IntTy,
5986 Size, ArrayType::Normal, 0);
5987 return Context->buildImplicitTypedef(IntArrayType, "__builtin_va_list");
5988 }
5989
5990 static TypedefDecl *
CreateAAPCSABIBuiltinVaListDecl(const ASTContext * Context)5991 CreateAAPCSABIBuiltinVaListDecl(const ASTContext *Context) {
5992 // struct __va_list
5993 RecordDecl *VaListDecl = Context->buildImplicitRecord("__va_list");
5994 if (Context->getLangOpts().CPlusPlus) {
5995 // namespace std { struct __va_list {
5996 NamespaceDecl *NS;
5997 NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
5998 Context->getTranslationUnitDecl(),
5999 /*Inline*/false, SourceLocation(),
6000 SourceLocation(), &Context->Idents.get("std"),
6001 /*PrevDecl*/ nullptr);
6002 NS->setImplicit();
6003 VaListDecl->setDeclContext(NS);
6004 }
6005
6006 VaListDecl->startDefinition();
6007
6008 // void * __ap;
6009 FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
6010 VaListDecl,
6011 SourceLocation(),
6012 SourceLocation(),
6013 &Context->Idents.get("__ap"),
6014 Context->getPointerType(Context->VoidTy),
6015 /*TInfo=*/nullptr,
6016 /*BitWidth=*/nullptr,
6017 /*Mutable=*/false,
6018 ICIS_NoInit);
6019 Field->setAccess(AS_public);
6020 VaListDecl->addDecl(Field);
6021
6022 // };
6023 VaListDecl->completeDefinition();
6024
6025 // typedef struct __va_list __builtin_va_list;
6026 QualType T = Context->getRecordType(VaListDecl);
6027 return Context->buildImplicitTypedef(T, "__builtin_va_list");
6028 }
6029
6030 static TypedefDecl *
CreateSystemZBuiltinVaListDecl(const ASTContext * Context)6031 CreateSystemZBuiltinVaListDecl(const ASTContext *Context) {
6032 // typedef struct __va_list_tag {
6033 RecordDecl *VaListTagDecl;
6034 VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
6035 VaListTagDecl->startDefinition();
6036
6037 const size_t NumFields = 4;
6038 QualType FieldTypes[NumFields];
6039 const char *FieldNames[NumFields];
6040
6041 // long __gpr;
6042 FieldTypes[0] = Context->LongTy;
6043 FieldNames[0] = "__gpr";
6044
6045 // long __fpr;
6046 FieldTypes[1] = Context->LongTy;
6047 FieldNames[1] = "__fpr";
6048
6049 // void *__overflow_arg_area;
6050 FieldTypes[2] = Context->getPointerType(Context->VoidTy);
6051 FieldNames[2] = "__overflow_arg_area";
6052
6053 // void *__reg_save_area;
6054 FieldTypes[3] = Context->getPointerType(Context->VoidTy);
6055 FieldNames[3] = "__reg_save_area";
6056
6057 // Create fields
6058 for (unsigned i = 0; i < NumFields; ++i) {
6059 FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
6060 VaListTagDecl,
6061 SourceLocation(),
6062 SourceLocation(),
6063 &Context->Idents.get(FieldNames[i]),
6064 FieldTypes[i], /*TInfo=*/nullptr,
6065 /*BitWidth=*/nullptr,
6066 /*Mutable=*/false,
6067 ICIS_NoInit);
6068 Field->setAccess(AS_public);
6069 VaListTagDecl->addDecl(Field);
6070 }
6071 VaListTagDecl->completeDefinition();
6072 QualType VaListTagType = Context->getRecordType(VaListTagDecl);
6073 Context->VaListTagTy = VaListTagType;
6074
6075 // } __va_list_tag;
6076 TypedefDecl *VaListTagTypedefDecl =
6077 Context->buildImplicitTypedef(VaListTagType, "__va_list_tag");
6078 QualType VaListTagTypedefType =
6079 Context->getTypedefType(VaListTagTypedefDecl);
6080
6081 // typedef __va_list_tag __builtin_va_list[1];
6082 llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
6083 QualType VaListTagArrayType
6084 = Context->getConstantArrayType(VaListTagTypedefType,
6085 Size, ArrayType::Normal,0);
6086
6087 return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
6088 }
6089
CreateVaListDecl(const ASTContext * Context,TargetInfo::BuiltinVaListKind Kind)6090 static TypedefDecl *CreateVaListDecl(const ASTContext *Context,
6091 TargetInfo::BuiltinVaListKind Kind) {
6092 switch (Kind) {
6093 case TargetInfo::CharPtrBuiltinVaList:
6094 return CreateCharPtrBuiltinVaListDecl(Context);
6095 case TargetInfo::VoidPtrBuiltinVaList:
6096 return CreateVoidPtrBuiltinVaListDecl(Context);
6097 case TargetInfo::AArch64ABIBuiltinVaList:
6098 return CreateAArch64ABIBuiltinVaListDecl(Context);
6099 case TargetInfo::PowerABIBuiltinVaList:
6100 return CreatePowerABIBuiltinVaListDecl(Context);
6101 case TargetInfo::X86_64ABIBuiltinVaList:
6102 return CreateX86_64ABIBuiltinVaListDecl(Context);
6103 case TargetInfo::PNaClABIBuiltinVaList:
6104 return CreatePNaClABIBuiltinVaListDecl(Context);
6105 case TargetInfo::AAPCSABIBuiltinVaList:
6106 return CreateAAPCSABIBuiltinVaListDecl(Context);
6107 case TargetInfo::SystemZBuiltinVaList:
6108 return CreateSystemZBuiltinVaListDecl(Context);
6109 }
6110
6111 llvm_unreachable("Unhandled __builtin_va_list type kind");
6112 }
6113
getBuiltinVaListDecl() const6114 TypedefDecl *ASTContext::getBuiltinVaListDecl() const {
6115 if (!BuiltinVaListDecl) {
6116 BuiltinVaListDecl = CreateVaListDecl(this, Target->getBuiltinVaListKind());
6117 assert(BuiltinVaListDecl->isImplicit());
6118 }
6119
6120 return BuiltinVaListDecl;
6121 }
6122
getVaListTagType() const6123 QualType ASTContext::getVaListTagType() const {
6124 // Force the creation of VaListTagTy by building the __builtin_va_list
6125 // declaration.
6126 if (VaListTagTy.isNull())
6127 (void) getBuiltinVaListDecl();
6128
6129 return VaListTagTy;
6130 }
6131
setObjCConstantStringInterface(ObjCInterfaceDecl * Decl)6132 void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
6133 assert(ObjCConstantStringType.isNull() &&
6134 "'NSConstantString' type already set!");
6135
6136 ObjCConstantStringType = getObjCInterfaceType(Decl);
6137 }
6138
6139 /// \brief Retrieve the template name that corresponds to a non-empty
6140 /// lookup.
6141 TemplateName
getOverloadedTemplateName(UnresolvedSetIterator Begin,UnresolvedSetIterator End) const6142 ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
6143 UnresolvedSetIterator End) const {
6144 unsigned size = End - Begin;
6145 assert(size > 1 && "set is not overloaded!");
6146
6147 void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
6148 size * sizeof(FunctionTemplateDecl*));
6149 OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
6150
6151 NamedDecl **Storage = OT->getStorage();
6152 for (UnresolvedSetIterator I = Begin; I != End; ++I) {
6153 NamedDecl *D = *I;
6154 assert(isa<FunctionTemplateDecl>(D) ||
6155 (isa<UsingShadowDecl>(D) &&
6156 isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
6157 *Storage++ = D;
6158 }
6159
6160 return TemplateName(OT);
6161 }
6162
6163 /// \brief Retrieve the template name that represents a qualified
6164 /// template name such as \c std::vector.
6165 TemplateName
getQualifiedTemplateName(NestedNameSpecifier * NNS,bool TemplateKeyword,TemplateDecl * Template) const6166 ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
6167 bool TemplateKeyword,
6168 TemplateDecl *Template) const {
6169 assert(NNS && "Missing nested-name-specifier in qualified template name");
6170
6171 // FIXME: Canonicalization?
6172 llvm::FoldingSetNodeID ID;
6173 QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
6174
6175 void *InsertPos = nullptr;
6176 QualifiedTemplateName *QTN =
6177 QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6178 if (!QTN) {
6179 QTN = new (*this, llvm::alignOf<QualifiedTemplateName>())
6180 QualifiedTemplateName(NNS, TemplateKeyword, Template);
6181 QualifiedTemplateNames.InsertNode(QTN, InsertPos);
6182 }
6183
6184 return TemplateName(QTN);
6185 }
6186
6187 /// \brief Retrieve the template name that represents a dependent
6188 /// template name such as \c MetaFun::template apply.
6189 TemplateName
getDependentTemplateName(NestedNameSpecifier * NNS,const IdentifierInfo * Name) const6190 ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
6191 const IdentifierInfo *Name) const {
6192 assert((!NNS || NNS->isDependent()) &&
6193 "Nested name specifier must be dependent");
6194
6195 llvm::FoldingSetNodeID ID;
6196 DependentTemplateName::Profile(ID, NNS, Name);
6197
6198 void *InsertPos = nullptr;
6199 DependentTemplateName *QTN =
6200 DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6201
6202 if (QTN)
6203 return TemplateName(QTN);
6204
6205 NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
6206 if (CanonNNS == NNS) {
6207 QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6208 DependentTemplateName(NNS, Name);
6209 } else {
6210 TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
6211 QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6212 DependentTemplateName(NNS, Name, Canon);
6213 DependentTemplateName *CheckQTN =
6214 DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6215 assert(!CheckQTN && "Dependent type name canonicalization broken");
6216 (void)CheckQTN;
6217 }
6218
6219 DependentTemplateNames.InsertNode(QTN, InsertPos);
6220 return TemplateName(QTN);
6221 }
6222
6223 /// \brief Retrieve the template name that represents a dependent
6224 /// template name such as \c MetaFun::template operator+.
6225 TemplateName
getDependentTemplateName(NestedNameSpecifier * NNS,OverloadedOperatorKind Operator) const6226 ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
6227 OverloadedOperatorKind Operator) const {
6228 assert((!NNS || NNS->isDependent()) &&
6229 "Nested name specifier must be dependent");
6230
6231 llvm::FoldingSetNodeID ID;
6232 DependentTemplateName::Profile(ID, NNS, Operator);
6233
6234 void *InsertPos = nullptr;
6235 DependentTemplateName *QTN
6236 = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6237
6238 if (QTN)
6239 return TemplateName(QTN);
6240
6241 NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
6242 if (CanonNNS == NNS) {
6243 QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6244 DependentTemplateName(NNS, Operator);
6245 } else {
6246 TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
6247 QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6248 DependentTemplateName(NNS, Operator, Canon);
6249
6250 DependentTemplateName *CheckQTN
6251 = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6252 assert(!CheckQTN && "Dependent template name canonicalization broken");
6253 (void)CheckQTN;
6254 }
6255
6256 DependentTemplateNames.InsertNode(QTN, InsertPos);
6257 return TemplateName(QTN);
6258 }
6259
6260 TemplateName
getSubstTemplateTemplateParm(TemplateTemplateParmDecl * param,TemplateName replacement) const6261 ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
6262 TemplateName replacement) const {
6263 llvm::FoldingSetNodeID ID;
6264 SubstTemplateTemplateParmStorage::Profile(ID, param, replacement);
6265
6266 void *insertPos = nullptr;
6267 SubstTemplateTemplateParmStorage *subst
6268 = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);
6269
6270 if (!subst) {
6271 subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement);
6272 SubstTemplateTemplateParms.InsertNode(subst, insertPos);
6273 }
6274
6275 return TemplateName(subst);
6276 }
6277
6278 TemplateName
getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl * Param,const TemplateArgument & ArgPack) const6279 ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
6280 const TemplateArgument &ArgPack) const {
6281 ASTContext &Self = const_cast<ASTContext &>(*this);
6282 llvm::FoldingSetNodeID ID;
6283 SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
6284
6285 void *InsertPos = nullptr;
6286 SubstTemplateTemplateParmPackStorage *Subst
6287 = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
6288
6289 if (!Subst) {
6290 Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param,
6291 ArgPack.pack_size(),
6292 ArgPack.pack_begin());
6293 SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
6294 }
6295
6296 return TemplateName(Subst);
6297 }
6298
6299 /// getFromTargetType - Given one of the integer types provided by
6300 /// TargetInfo, produce the corresponding type. The unsigned @p Type
6301 /// is actually a value of type @c TargetInfo::IntType.
getFromTargetType(unsigned Type) const6302 CanQualType ASTContext::getFromTargetType(unsigned Type) const {
6303 switch (Type) {
6304 case TargetInfo::NoInt: return CanQualType();
6305 case TargetInfo::SignedChar: return SignedCharTy;
6306 case TargetInfo::UnsignedChar: return UnsignedCharTy;
6307 case TargetInfo::SignedShort: return ShortTy;
6308 case TargetInfo::UnsignedShort: return UnsignedShortTy;
6309 case TargetInfo::SignedInt: return IntTy;
6310 case TargetInfo::UnsignedInt: return UnsignedIntTy;
6311 case TargetInfo::SignedLong: return LongTy;
6312 case TargetInfo::UnsignedLong: return UnsignedLongTy;
6313 case TargetInfo::SignedLongLong: return LongLongTy;
6314 case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
6315 }
6316
6317 llvm_unreachable("Unhandled TargetInfo::IntType value");
6318 }
6319
6320 //===----------------------------------------------------------------------===//
6321 // Type Predicates.
6322 //===----------------------------------------------------------------------===//
6323
6324 /// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
6325 /// garbage collection attribute.
6326 ///
getObjCGCAttrKind(QualType Ty) const6327 Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
6328 if (getLangOpts().getGC() == LangOptions::NonGC)
6329 return Qualifiers::GCNone;
6330
6331 assert(getLangOpts().ObjC1);
6332 Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
6333
6334 // Default behaviour under objective-C's gc is for ObjC pointers
6335 // (or pointers to them) be treated as though they were declared
6336 // as __strong.
6337 if (GCAttrs == Qualifiers::GCNone) {
6338 if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
6339 return Qualifiers::Strong;
6340 else if (Ty->isPointerType())
6341 return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
6342 } else {
6343 // It's not valid to set GC attributes on anything that isn't a
6344 // pointer.
6345 #ifndef NDEBUG
6346 QualType CT = Ty->getCanonicalTypeInternal();
6347 while (const ArrayType *AT = dyn_cast<ArrayType>(CT))
6348 CT = AT->getElementType();
6349 assert(CT->isAnyPointerType() || CT->isBlockPointerType());
6350 #endif
6351 }
6352 return GCAttrs;
6353 }
6354
6355 //===----------------------------------------------------------------------===//
6356 // Type Compatibility Testing
6357 //===----------------------------------------------------------------------===//
6358
6359 /// areCompatVectorTypes - Return true if the two specified vector types are
6360 /// compatible.
areCompatVectorTypes(const VectorType * LHS,const VectorType * RHS)6361 static bool areCompatVectorTypes(const VectorType *LHS,
6362 const VectorType *RHS) {
6363 assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
6364 return LHS->getElementType() == RHS->getElementType() &&
6365 LHS->getNumElements() == RHS->getNumElements();
6366 }
6367
areCompatibleVectorTypes(QualType FirstVec,QualType SecondVec)6368 bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
6369 QualType SecondVec) {
6370 assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
6371 assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
6372
6373 if (hasSameUnqualifiedType(FirstVec, SecondVec))
6374 return true;
6375
6376 // Treat Neon vector types and most AltiVec vector types as if they are the
6377 // equivalent GCC vector types.
6378 const VectorType *First = FirstVec->getAs<VectorType>();
6379 const VectorType *Second = SecondVec->getAs<VectorType>();
6380 if (First->getNumElements() == Second->getNumElements() &&
6381 hasSameType(First->getElementType(), Second->getElementType()) &&
6382 First->getVectorKind() != VectorType::AltiVecPixel &&
6383 First->getVectorKind() != VectorType::AltiVecBool &&
6384 Second->getVectorKind() != VectorType::AltiVecPixel &&
6385 Second->getVectorKind() != VectorType::AltiVecBool)
6386 return true;
6387
6388 return false;
6389 }
6390
6391 //===----------------------------------------------------------------------===//
6392 // ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
6393 //===----------------------------------------------------------------------===//
6394
6395 /// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
6396 /// inheritance hierarchy of 'rProto'.
6397 bool
ProtocolCompatibleWithProtocol(ObjCProtocolDecl * lProto,ObjCProtocolDecl * rProto) const6398 ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
6399 ObjCProtocolDecl *rProto) const {
6400 if (declaresSameEntity(lProto, rProto))
6401 return true;
6402 for (auto *PI : rProto->protocols())
6403 if (ProtocolCompatibleWithProtocol(lProto, PI))
6404 return true;
6405 return false;
6406 }
6407
6408 /// ObjCQualifiedClassTypesAreCompatible - compare Class<pr,...> and
6409 /// Class<pr1, ...>.
ObjCQualifiedClassTypesAreCompatible(QualType lhs,QualType rhs)6410 bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs,
6411 QualType rhs) {
6412 const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>();
6413 const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
6414 assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible");
6415
6416 for (auto *lhsProto : lhsQID->quals()) {
6417 bool match = false;
6418 for (auto *rhsProto : rhsOPT->quals()) {
6419 if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
6420 match = true;
6421 break;
6422 }
6423 }
6424 if (!match)
6425 return false;
6426 }
6427 return true;
6428 }
6429
6430 /// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
6431 /// ObjCQualifiedIDType.
ObjCQualifiedIdTypesAreCompatible(QualType lhs,QualType rhs,bool compare)6432 bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
6433 bool compare) {
6434 // Allow id<P..> and an 'id' or void* type in all cases.
6435 if (lhs->isVoidPointerType() ||
6436 lhs->isObjCIdType() || lhs->isObjCClassType())
6437 return true;
6438 else if (rhs->isVoidPointerType() ||
6439 rhs->isObjCIdType() || rhs->isObjCClassType())
6440 return true;
6441
6442 if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
6443 const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
6444
6445 if (!rhsOPT) return false;
6446
6447 if (rhsOPT->qual_empty()) {
6448 // If the RHS is a unqualified interface pointer "NSString*",
6449 // make sure we check the class hierarchy.
6450 if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
6451 for (auto *I : lhsQID->quals()) {
6452 // when comparing an id<P> on lhs with a static type on rhs,
6453 // see if static class implements all of id's protocols, directly or
6454 // through its super class and categories.
6455 if (!rhsID->ClassImplementsProtocol(I, true))
6456 return false;
6457 }
6458 }
6459 // If there are no qualifiers and no interface, we have an 'id'.
6460 return true;
6461 }
6462 // Both the right and left sides have qualifiers.
6463 for (auto *lhsProto : lhsQID->quals()) {
6464 bool match = false;
6465
6466 // when comparing an id<P> on lhs with a static type on rhs,
6467 // see if static class implements all of id's protocols, directly or
6468 // through its super class and categories.
6469 for (auto *rhsProto : rhsOPT->quals()) {
6470 if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6471 (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6472 match = true;
6473 break;
6474 }
6475 }
6476 // If the RHS is a qualified interface pointer "NSString<P>*",
6477 // make sure we check the class hierarchy.
6478 if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
6479 for (auto *I : lhsQID->quals()) {
6480 // when comparing an id<P> on lhs with a static type on rhs,
6481 // see if static class implements all of id's protocols, directly or
6482 // through its super class and categories.
6483 if (rhsID->ClassImplementsProtocol(I, true)) {
6484 match = true;
6485 break;
6486 }
6487 }
6488 }
6489 if (!match)
6490 return false;
6491 }
6492
6493 return true;
6494 }
6495
6496 const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
6497 assert(rhsQID && "One of the LHS/RHS should be id<x>");
6498
6499 if (const ObjCObjectPointerType *lhsOPT =
6500 lhs->getAsObjCInterfacePointerType()) {
6501 // If both the right and left sides have qualifiers.
6502 for (auto *lhsProto : lhsOPT->quals()) {
6503 bool match = false;
6504
6505 // when comparing an id<P> on rhs with a static type on lhs,
6506 // see if static class implements all of id's protocols, directly or
6507 // through its super class and categories.
6508 // First, lhs protocols in the qualifier list must be found, direct
6509 // or indirect in rhs's qualifier list or it is a mismatch.
6510 for (auto *rhsProto : rhsQID->quals()) {
6511 if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6512 (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6513 match = true;
6514 break;
6515 }
6516 }
6517 if (!match)
6518 return false;
6519 }
6520
6521 // Static class's protocols, or its super class or category protocols
6522 // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
6523 if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
6524 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
6525 CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
6526 // This is rather dubious but matches gcc's behavior. If lhs has
6527 // no type qualifier and its class has no static protocol(s)
6528 // assume that it is mismatch.
6529 if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty())
6530 return false;
6531 for (auto *lhsProto : LHSInheritedProtocols) {
6532 bool match = false;
6533 for (auto *rhsProto : rhsQID->quals()) {
6534 if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6535 (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6536 match = true;
6537 break;
6538 }
6539 }
6540 if (!match)
6541 return false;
6542 }
6543 }
6544 return true;
6545 }
6546 return false;
6547 }
6548
6549 /// canAssignObjCInterfaces - Return true if the two interface types are
6550 /// compatible for assignment from RHS to LHS. This handles validation of any
6551 /// protocol qualifiers on the LHS or RHS.
6552 ///
canAssignObjCInterfaces(const ObjCObjectPointerType * LHSOPT,const ObjCObjectPointerType * RHSOPT)6553 bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
6554 const ObjCObjectPointerType *RHSOPT) {
6555 const ObjCObjectType* LHS = LHSOPT->getObjectType();
6556 const ObjCObjectType* RHS = RHSOPT->getObjectType();
6557
6558 // If either type represents the built-in 'id' or 'Class' types, return true.
6559 if (LHS->isObjCUnqualifiedIdOrClass() ||
6560 RHS->isObjCUnqualifiedIdOrClass())
6561 return true;
6562
6563 if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId())
6564 return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
6565 QualType(RHSOPT,0),
6566 false);
6567
6568 if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass())
6569 return ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0),
6570 QualType(RHSOPT,0));
6571
6572 // If we have 2 user-defined types, fall into that path.
6573 if (LHS->getInterface() && RHS->getInterface())
6574 return canAssignObjCInterfaces(LHS, RHS);
6575
6576 return false;
6577 }
6578
6579 /// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
6580 /// for providing type-safety for objective-c pointers used to pass/return
6581 /// arguments in block literals. When passed as arguments, passing 'A*' where
6582 /// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
6583 /// not OK. For the return type, the opposite is not OK.
canAssignObjCInterfacesInBlockPointer(const ObjCObjectPointerType * LHSOPT,const ObjCObjectPointerType * RHSOPT,bool BlockReturnType)6584 bool ASTContext::canAssignObjCInterfacesInBlockPointer(
6585 const ObjCObjectPointerType *LHSOPT,
6586 const ObjCObjectPointerType *RHSOPT,
6587 bool BlockReturnType) {
6588 if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
6589 return true;
6590
6591 if (LHSOPT->isObjCBuiltinType()) {
6592 return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType();
6593 }
6594
6595 if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
6596 return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
6597 QualType(RHSOPT,0),
6598 false);
6599
6600 const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
6601 const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
6602 if (LHS && RHS) { // We have 2 user-defined types.
6603 if (LHS != RHS) {
6604 if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
6605 return BlockReturnType;
6606 if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
6607 return !BlockReturnType;
6608 }
6609 else
6610 return true;
6611 }
6612 return false;
6613 }
6614
6615 /// getIntersectionOfProtocols - This routine finds the intersection of set
6616 /// of protocols inherited from two distinct objective-c pointer objects.
6617 /// It is used to build composite qualifier list of the composite type of
6618 /// the conditional expression involving two objective-c pointer objects.
6619 static
getIntersectionOfProtocols(ASTContext & Context,const ObjCObjectPointerType * LHSOPT,const ObjCObjectPointerType * RHSOPT,SmallVectorImpl<ObjCProtocolDecl * > & IntersectionOfProtocols)6620 void getIntersectionOfProtocols(ASTContext &Context,
6621 const ObjCObjectPointerType *LHSOPT,
6622 const ObjCObjectPointerType *RHSOPT,
6623 SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
6624
6625 const ObjCObjectType* LHS = LHSOPT->getObjectType();
6626 const ObjCObjectType* RHS = RHSOPT->getObjectType();
6627 assert(LHS->getInterface() && "LHS must have an interface base");
6628 assert(RHS->getInterface() && "RHS must have an interface base");
6629
6630 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
6631 unsigned LHSNumProtocols = LHS->getNumProtocols();
6632 if (LHSNumProtocols > 0)
6633 InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
6634 else {
6635 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
6636 Context.CollectInheritedProtocols(LHS->getInterface(),
6637 LHSInheritedProtocols);
6638 InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
6639 LHSInheritedProtocols.end());
6640 }
6641
6642 unsigned RHSNumProtocols = RHS->getNumProtocols();
6643 if (RHSNumProtocols > 0) {
6644 ObjCProtocolDecl **RHSProtocols =
6645 const_cast<ObjCProtocolDecl **>(RHS->qual_begin());
6646 for (unsigned i = 0; i < RHSNumProtocols; ++i)
6647 if (InheritedProtocolSet.count(RHSProtocols[i]))
6648 IntersectionOfProtocols.push_back(RHSProtocols[i]);
6649 } else {
6650 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
6651 Context.CollectInheritedProtocols(RHS->getInterface(),
6652 RHSInheritedProtocols);
6653 for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
6654 RHSInheritedProtocols.begin(),
6655 E = RHSInheritedProtocols.end(); I != E; ++I)
6656 if (InheritedProtocolSet.count((*I)))
6657 IntersectionOfProtocols.push_back((*I));
6658 }
6659 }
6660
6661 /// areCommonBaseCompatible - Returns common base class of the two classes if
6662 /// one found. Note that this is O'2 algorithm. But it will be called as the
6663 /// last type comparison in a ?-exp of ObjC pointer types before a
6664 /// warning is issued. So, its invokation is extremely rare.
areCommonBaseCompatible(const ObjCObjectPointerType * Lptr,const ObjCObjectPointerType * Rptr)6665 QualType ASTContext::areCommonBaseCompatible(
6666 const ObjCObjectPointerType *Lptr,
6667 const ObjCObjectPointerType *Rptr) {
6668 const ObjCObjectType *LHS = Lptr->getObjectType();
6669 const ObjCObjectType *RHS = Rptr->getObjectType();
6670 const ObjCInterfaceDecl* LDecl = LHS->getInterface();
6671 const ObjCInterfaceDecl* RDecl = RHS->getInterface();
6672 if (!LDecl || !RDecl || (declaresSameEntity(LDecl, RDecl)))
6673 return QualType();
6674
6675 do {
6676 LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl));
6677 if (canAssignObjCInterfaces(LHS, RHS)) {
6678 SmallVector<ObjCProtocolDecl *, 8> Protocols;
6679 getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols);
6680
6681 QualType Result = QualType(LHS, 0);
6682 if (!Protocols.empty())
6683 Result = getObjCObjectType(Result, Protocols.data(), Protocols.size());
6684 Result = getObjCObjectPointerType(Result);
6685 return Result;
6686 }
6687 } while ((LDecl = LDecl->getSuperClass()));
6688
6689 return QualType();
6690 }
6691
canAssignObjCInterfaces(const ObjCObjectType * LHS,const ObjCObjectType * RHS)6692 bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
6693 const ObjCObjectType *RHS) {
6694 assert(LHS->getInterface() && "LHS is not an interface type");
6695 assert(RHS->getInterface() && "RHS is not an interface type");
6696
6697 // Verify that the base decls are compatible: the RHS must be a subclass of
6698 // the LHS.
6699 if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface()))
6700 return false;
6701
6702 // RHS must have a superset of the protocols in the LHS. If the LHS is not
6703 // protocol qualified at all, then we are good.
6704 if (LHS->getNumProtocols() == 0)
6705 return true;
6706
6707 // Okay, we know the LHS has protocol qualifiers. If the RHS doesn't,
6708 // more detailed analysis is required.
6709 if (RHS->getNumProtocols() == 0) {
6710 // OK, if LHS is a superclass of RHS *and*
6711 // this superclass is assignment compatible with LHS.
6712 // false otherwise.
6713 bool IsSuperClass =
6714 LHS->getInterface()->isSuperClassOf(RHS->getInterface());
6715 if (IsSuperClass) {
6716 // OK if conversion of LHS to SuperClass results in narrowing of types
6717 // ; i.e., SuperClass may implement at least one of the protocols
6718 // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
6719 // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
6720 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
6721 CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
6722 // If super class has no protocols, it is not a match.
6723 if (SuperClassInheritedProtocols.empty())
6724 return false;
6725
6726 for (const auto *LHSProto : LHS->quals()) {
6727 bool SuperImplementsProtocol = false;
6728 for (auto *SuperClassProto : SuperClassInheritedProtocols) {
6729 if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
6730 SuperImplementsProtocol = true;
6731 break;
6732 }
6733 }
6734 if (!SuperImplementsProtocol)
6735 return false;
6736 }
6737 return true;
6738 }
6739 return false;
6740 }
6741
6742 for (const auto *LHSPI : LHS->quals()) {
6743 bool RHSImplementsProtocol = false;
6744
6745 // If the RHS doesn't implement the protocol on the left, the types
6746 // are incompatible.
6747 for (auto *RHSPI : RHS->quals()) {
6748 if (RHSPI->lookupProtocolNamed(LHSPI->getIdentifier())) {
6749 RHSImplementsProtocol = true;
6750 break;
6751 }
6752 }
6753 // FIXME: For better diagnostics, consider passing back the protocol name.
6754 if (!RHSImplementsProtocol)
6755 return false;
6756 }
6757 // The RHS implements all protocols listed on the LHS.
6758 return true;
6759 }
6760
areComparableObjCPointerTypes(QualType LHS,QualType RHS)6761 bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
6762 // get the "pointed to" types
6763 const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
6764 const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
6765
6766 if (!LHSOPT || !RHSOPT)
6767 return false;
6768
6769 return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
6770 canAssignObjCInterfaces(RHSOPT, LHSOPT);
6771 }
6772
canBindObjCObjectType(QualType To,QualType From)6773 bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
6774 return canAssignObjCInterfaces(
6775 getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
6776 getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
6777 }
6778
6779 /// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
6780 /// both shall have the identically qualified version of a compatible type.
6781 /// C99 6.2.7p1: Two types have compatible types if their types are the
6782 /// same. See 6.7.[2,3,5] for additional rules.
typesAreCompatible(QualType LHS,QualType RHS,bool CompareUnqualified)6783 bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
6784 bool CompareUnqualified) {
6785 if (getLangOpts().CPlusPlus)
6786 return hasSameType(LHS, RHS);
6787
6788 return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
6789 }
6790
propertyTypesAreCompatible(QualType LHS,QualType RHS)6791 bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) {
6792 return typesAreCompatible(LHS, RHS);
6793 }
6794
typesAreBlockPointerCompatible(QualType LHS,QualType RHS)6795 bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
6796 return !mergeTypes(LHS, RHS, true).isNull();
6797 }
6798
6799 /// mergeTransparentUnionType - if T is a transparent union type and a member
6800 /// of T is compatible with SubType, return the merged type, else return
6801 /// QualType()
mergeTransparentUnionType(QualType T,QualType SubType,bool OfBlockPointer,bool Unqualified)6802 QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
6803 bool OfBlockPointer,
6804 bool Unqualified) {
6805 if (const RecordType *UT = T->getAsUnionType()) {
6806 RecordDecl *UD = UT->getDecl();
6807 if (UD->hasAttr<TransparentUnionAttr>()) {
6808 for (const auto *I : UD->fields()) {
6809 QualType ET = I->getType().getUnqualifiedType();
6810 QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
6811 if (!MT.isNull())
6812 return MT;
6813 }
6814 }
6815 }
6816
6817 return QualType();
6818 }
6819
6820 /// mergeFunctionParameterTypes - merge two types which appear as function
6821 /// parameter types
mergeFunctionParameterTypes(QualType lhs,QualType rhs,bool OfBlockPointer,bool Unqualified)6822 QualType ASTContext::mergeFunctionParameterTypes(QualType lhs, QualType rhs,
6823 bool OfBlockPointer,
6824 bool Unqualified) {
6825 // GNU extension: two types are compatible if they appear as a function
6826 // argument, one of the types is a transparent union type and the other
6827 // type is compatible with a union member
6828 QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
6829 Unqualified);
6830 if (!lmerge.isNull())
6831 return lmerge;
6832
6833 QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
6834 Unqualified);
6835 if (!rmerge.isNull())
6836 return rmerge;
6837
6838 return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
6839 }
6840
mergeFunctionTypes(QualType lhs,QualType rhs,bool OfBlockPointer,bool Unqualified)6841 QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
6842 bool OfBlockPointer,
6843 bool Unqualified) {
6844 const FunctionType *lbase = lhs->getAs<FunctionType>();
6845 const FunctionType *rbase = rhs->getAs<FunctionType>();
6846 const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
6847 const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
6848 bool allLTypes = true;
6849 bool allRTypes = true;
6850
6851 // Check return type
6852 QualType retType;
6853 if (OfBlockPointer) {
6854 QualType RHS = rbase->getReturnType();
6855 QualType LHS = lbase->getReturnType();
6856 bool UnqualifiedResult = Unqualified;
6857 if (!UnqualifiedResult)
6858 UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
6859 retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
6860 }
6861 else
6862 retType = mergeTypes(lbase->getReturnType(), rbase->getReturnType(), false,
6863 Unqualified);
6864 if (retType.isNull()) return QualType();
6865
6866 if (Unqualified)
6867 retType = retType.getUnqualifiedType();
6868
6869 CanQualType LRetType = getCanonicalType(lbase->getReturnType());
6870 CanQualType RRetType = getCanonicalType(rbase->getReturnType());
6871 if (Unqualified) {
6872 LRetType = LRetType.getUnqualifiedType();
6873 RRetType = RRetType.getUnqualifiedType();
6874 }
6875
6876 if (getCanonicalType(retType) != LRetType)
6877 allLTypes = false;
6878 if (getCanonicalType(retType) != RRetType)
6879 allRTypes = false;
6880
6881 // FIXME: double check this
6882 // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
6883 // rbase->getRegParmAttr() != 0 &&
6884 // lbase->getRegParmAttr() != rbase->getRegParmAttr()?
6885 FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
6886 FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
6887
6888 // Compatible functions must have compatible calling conventions
6889 if (lbaseInfo.getCC() != rbaseInfo.getCC())
6890 return QualType();
6891
6892 // Regparm is part of the calling convention.
6893 if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
6894 return QualType();
6895 if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
6896 return QualType();
6897
6898 if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
6899 return QualType();
6900
6901 // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
6902 bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
6903
6904 if (lbaseInfo.getNoReturn() != NoReturn)
6905 allLTypes = false;
6906 if (rbaseInfo.getNoReturn() != NoReturn)
6907 allRTypes = false;
6908
6909 FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);
6910
6911 if (lproto && rproto) { // two C99 style function prototypes
6912 assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
6913 "C++ shouldn't be here");
6914 // Compatible functions must have the same number of parameters
6915 if (lproto->getNumParams() != rproto->getNumParams())
6916 return QualType();
6917
6918 // Variadic and non-variadic functions aren't compatible
6919 if (lproto->isVariadic() != rproto->isVariadic())
6920 return QualType();
6921
6922 if (lproto->getTypeQuals() != rproto->getTypeQuals())
6923 return QualType();
6924
6925 if (LangOpts.ObjCAutoRefCount &&
6926 !FunctionTypesMatchOnNSConsumedAttrs(rproto, lproto))
6927 return QualType();
6928
6929 // Check parameter type compatibility
6930 SmallVector<QualType, 10> types;
6931 for (unsigned i = 0, n = lproto->getNumParams(); i < n; i++) {
6932 QualType lParamType = lproto->getParamType(i).getUnqualifiedType();
6933 QualType rParamType = rproto->getParamType(i).getUnqualifiedType();
6934 QualType paramType = mergeFunctionParameterTypes(
6935 lParamType, rParamType, OfBlockPointer, Unqualified);
6936 if (paramType.isNull())
6937 return QualType();
6938
6939 if (Unqualified)
6940 paramType = paramType.getUnqualifiedType();
6941
6942 types.push_back(paramType);
6943 if (Unqualified) {
6944 lParamType = lParamType.getUnqualifiedType();
6945 rParamType = rParamType.getUnqualifiedType();
6946 }
6947
6948 if (getCanonicalType(paramType) != getCanonicalType(lParamType))
6949 allLTypes = false;
6950 if (getCanonicalType(paramType) != getCanonicalType(rParamType))
6951 allRTypes = false;
6952 }
6953
6954 if (allLTypes) return lhs;
6955 if (allRTypes) return rhs;
6956
6957 FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
6958 EPI.ExtInfo = einfo;
6959 return getFunctionType(retType, types, EPI);
6960 }
6961
6962 if (lproto) allRTypes = false;
6963 if (rproto) allLTypes = false;
6964
6965 const FunctionProtoType *proto = lproto ? lproto : rproto;
6966 if (proto) {
6967 assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
6968 if (proto->isVariadic()) return QualType();
6969 // Check that the types are compatible with the types that
6970 // would result from default argument promotions (C99 6.7.5.3p15).
6971 // The only types actually affected are promotable integer
6972 // types and floats, which would be passed as a different
6973 // type depending on whether the prototype is visible.
6974 for (unsigned i = 0, n = proto->getNumParams(); i < n; ++i) {
6975 QualType paramTy = proto->getParamType(i);
6976
6977 // Look at the converted type of enum types, since that is the type used
6978 // to pass enum values.
6979 if (const EnumType *Enum = paramTy->getAs<EnumType>()) {
6980 paramTy = Enum->getDecl()->getIntegerType();
6981 if (paramTy.isNull())
6982 return QualType();
6983 }
6984
6985 if (paramTy->isPromotableIntegerType() ||
6986 getCanonicalType(paramTy).getUnqualifiedType() == FloatTy)
6987 return QualType();
6988 }
6989
6990 if (allLTypes) return lhs;
6991 if (allRTypes) return rhs;
6992
6993 FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
6994 EPI.ExtInfo = einfo;
6995 return getFunctionType(retType, proto->getParamTypes(), EPI);
6996 }
6997
6998 if (allLTypes) return lhs;
6999 if (allRTypes) return rhs;
7000 return getFunctionNoProtoType(retType, einfo);
7001 }
7002
7003 /// Given that we have an enum type and a non-enum type, try to merge them.
mergeEnumWithInteger(ASTContext & Context,const EnumType * ET,QualType other,bool isBlockReturnType)7004 static QualType mergeEnumWithInteger(ASTContext &Context, const EnumType *ET,
7005 QualType other, bool isBlockReturnType) {
7006 // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
7007 // a signed integer type, or an unsigned integer type.
7008 // Compatibility is based on the underlying type, not the promotion
7009 // type.
7010 QualType underlyingType = ET->getDecl()->getIntegerType();
7011 if (underlyingType.isNull()) return QualType();
7012 if (Context.hasSameType(underlyingType, other))
7013 return other;
7014
7015 // In block return types, we're more permissive and accept any
7016 // integral type of the same size.
7017 if (isBlockReturnType && other->isIntegerType() &&
7018 Context.getTypeSize(underlyingType) == Context.getTypeSize(other))
7019 return other;
7020
7021 return QualType();
7022 }
7023
mergeTypes(QualType LHS,QualType RHS,bool OfBlockPointer,bool Unqualified,bool BlockReturnType)7024 QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
7025 bool OfBlockPointer,
7026 bool Unqualified, bool BlockReturnType) {
7027 // C++ [expr]: If an expression initially has the type "reference to T", the
7028 // type is adjusted to "T" prior to any further analysis, the expression
7029 // designates the object or function denoted by the reference, and the
7030 // expression is an lvalue unless the reference is an rvalue reference and
7031 // the expression is a function call (possibly inside parentheses).
7032 assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
7033 assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
7034
7035 if (Unqualified) {
7036 LHS = LHS.getUnqualifiedType();
7037 RHS = RHS.getUnqualifiedType();
7038 }
7039
7040 QualType LHSCan = getCanonicalType(LHS),
7041 RHSCan = getCanonicalType(RHS);
7042
7043 // If two types are identical, they are compatible.
7044 if (LHSCan == RHSCan)
7045 return LHS;
7046
7047 // If the qualifiers are different, the types aren't compatible... mostly.
7048 Qualifiers LQuals = LHSCan.getLocalQualifiers();
7049 Qualifiers RQuals = RHSCan.getLocalQualifiers();
7050 if (LQuals != RQuals) {
7051 // If any of these qualifiers are different, we have a type
7052 // mismatch.
7053 if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
7054 LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
7055 LQuals.getObjCLifetime() != RQuals.getObjCLifetime())
7056 return QualType();
7057
7058 // Exactly one GC qualifier difference is allowed: __strong is
7059 // okay if the other type has no GC qualifier but is an Objective
7060 // C object pointer (i.e. implicitly strong by default). We fix
7061 // this by pretending that the unqualified type was actually
7062 // qualified __strong.
7063 Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
7064 Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
7065 assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
7066
7067 if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
7068 return QualType();
7069
7070 if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
7071 return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
7072 }
7073 if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
7074 return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
7075 }
7076 return QualType();
7077 }
7078
7079 // Okay, qualifiers are equal.
7080
7081 Type::TypeClass LHSClass = LHSCan->getTypeClass();
7082 Type::TypeClass RHSClass = RHSCan->getTypeClass();
7083
7084 // We want to consider the two function types to be the same for these
7085 // comparisons, just force one to the other.
7086 if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
7087 if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
7088
7089 // Same as above for arrays
7090 if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
7091 LHSClass = Type::ConstantArray;
7092 if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
7093 RHSClass = Type::ConstantArray;
7094
7095 // ObjCInterfaces are just specialized ObjCObjects.
7096 if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
7097 if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
7098
7099 // Canonicalize ExtVector -> Vector.
7100 if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
7101 if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
7102
7103 // If the canonical type classes don't match.
7104 if (LHSClass != RHSClass) {
7105 // Note that we only have special rules for turning block enum
7106 // returns into block int returns, not vice-versa.
7107 if (const EnumType* ETy = LHS->getAs<EnumType>()) {
7108 return mergeEnumWithInteger(*this, ETy, RHS, false);
7109 }
7110 if (const EnumType* ETy = RHS->getAs<EnumType>()) {
7111 return mergeEnumWithInteger(*this, ETy, LHS, BlockReturnType);
7112 }
7113 // allow block pointer type to match an 'id' type.
7114 if (OfBlockPointer && !BlockReturnType) {
7115 if (LHS->isObjCIdType() && RHS->isBlockPointerType())
7116 return LHS;
7117 if (RHS->isObjCIdType() && LHS->isBlockPointerType())
7118 return RHS;
7119 }
7120
7121 return QualType();
7122 }
7123
7124 // The canonical type classes match.
7125 switch (LHSClass) {
7126 #define TYPE(Class, Base)
7127 #define ABSTRACT_TYPE(Class, Base)
7128 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
7129 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
7130 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
7131 #include "clang/AST/TypeNodes.def"
7132 llvm_unreachable("Non-canonical and dependent types shouldn't get here");
7133
7134 case Type::Auto:
7135 case Type::LValueReference:
7136 case Type::RValueReference:
7137 case Type::MemberPointer:
7138 llvm_unreachable("C++ should never be in mergeTypes");
7139
7140 case Type::ObjCInterface:
7141 case Type::IncompleteArray:
7142 case Type::VariableArray:
7143 case Type::FunctionProto:
7144 case Type::ExtVector:
7145 llvm_unreachable("Types are eliminated above");
7146
7147 case Type::Pointer:
7148 {
7149 // Merge two pointer types, while trying to preserve typedef info
7150 QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
7151 QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
7152 if (Unqualified) {
7153 LHSPointee = LHSPointee.getUnqualifiedType();
7154 RHSPointee = RHSPointee.getUnqualifiedType();
7155 }
7156 QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
7157 Unqualified);
7158 if (ResultType.isNull()) return QualType();
7159 if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
7160 return LHS;
7161 if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
7162 return RHS;
7163 return getPointerType(ResultType);
7164 }
7165 case Type::BlockPointer:
7166 {
7167 // Merge two block pointer types, while trying to preserve typedef info
7168 QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
7169 QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
7170 if (Unqualified) {
7171 LHSPointee = LHSPointee.getUnqualifiedType();
7172 RHSPointee = RHSPointee.getUnqualifiedType();
7173 }
7174 QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
7175 Unqualified);
7176 if (ResultType.isNull()) return QualType();
7177 if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
7178 return LHS;
7179 if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
7180 return RHS;
7181 return getBlockPointerType(ResultType);
7182 }
7183 case Type::Atomic:
7184 {
7185 // Merge two pointer types, while trying to preserve typedef info
7186 QualType LHSValue = LHS->getAs<AtomicType>()->getValueType();
7187 QualType RHSValue = RHS->getAs<AtomicType>()->getValueType();
7188 if (Unqualified) {
7189 LHSValue = LHSValue.getUnqualifiedType();
7190 RHSValue = RHSValue.getUnqualifiedType();
7191 }
7192 QualType ResultType = mergeTypes(LHSValue, RHSValue, false,
7193 Unqualified);
7194 if (ResultType.isNull()) return QualType();
7195 if (getCanonicalType(LHSValue) == getCanonicalType(ResultType))
7196 return LHS;
7197 if (getCanonicalType(RHSValue) == getCanonicalType(ResultType))
7198 return RHS;
7199 return getAtomicType(ResultType);
7200 }
7201 case Type::ConstantArray:
7202 {
7203 const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
7204 const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
7205 if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
7206 return QualType();
7207
7208 QualType LHSElem = getAsArrayType(LHS)->getElementType();
7209 QualType RHSElem = getAsArrayType(RHS)->getElementType();
7210 if (Unqualified) {
7211 LHSElem = LHSElem.getUnqualifiedType();
7212 RHSElem = RHSElem.getUnqualifiedType();
7213 }
7214
7215 QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
7216 if (ResultType.isNull()) return QualType();
7217 if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
7218 return LHS;
7219 if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
7220 return RHS;
7221 if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
7222 ArrayType::ArraySizeModifier(), 0);
7223 if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
7224 ArrayType::ArraySizeModifier(), 0);
7225 const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
7226 const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
7227 if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
7228 return LHS;
7229 if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
7230 return RHS;
7231 if (LVAT) {
7232 // FIXME: This isn't correct! But tricky to implement because
7233 // the array's size has to be the size of LHS, but the type
7234 // has to be different.
7235 return LHS;
7236 }
7237 if (RVAT) {
7238 // FIXME: This isn't correct! But tricky to implement because
7239 // the array's size has to be the size of RHS, but the type
7240 // has to be different.
7241 return RHS;
7242 }
7243 if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
7244 if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
7245 return getIncompleteArrayType(ResultType,
7246 ArrayType::ArraySizeModifier(), 0);
7247 }
7248 case Type::FunctionNoProto:
7249 return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
7250 case Type::Record:
7251 case Type::Enum:
7252 return QualType();
7253 case Type::Builtin:
7254 // Only exactly equal builtin types are compatible, which is tested above.
7255 return QualType();
7256 case Type::Complex:
7257 // Distinct complex types are incompatible.
7258 return QualType();
7259 case Type::Vector:
7260 // FIXME: The merged type should be an ExtVector!
7261 if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
7262 RHSCan->getAs<VectorType>()))
7263 return LHS;
7264 return QualType();
7265 case Type::ObjCObject: {
7266 // Check if the types are assignment compatible.
7267 // FIXME: This should be type compatibility, e.g. whether
7268 // "LHS x; RHS x;" at global scope is legal.
7269 const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>();
7270 const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>();
7271 if (canAssignObjCInterfaces(LHSIface, RHSIface))
7272 return LHS;
7273
7274 return QualType();
7275 }
7276 case Type::ObjCObjectPointer: {
7277 if (OfBlockPointer) {
7278 if (canAssignObjCInterfacesInBlockPointer(
7279 LHS->getAs<ObjCObjectPointerType>(),
7280 RHS->getAs<ObjCObjectPointerType>(),
7281 BlockReturnType))
7282 return LHS;
7283 return QualType();
7284 }
7285 if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
7286 RHS->getAs<ObjCObjectPointerType>()))
7287 return LHS;
7288
7289 return QualType();
7290 }
7291 }
7292
7293 llvm_unreachable("Invalid Type::Class!");
7294 }
7295
FunctionTypesMatchOnNSConsumedAttrs(const FunctionProtoType * FromFunctionType,const FunctionProtoType * ToFunctionType)7296 bool ASTContext::FunctionTypesMatchOnNSConsumedAttrs(
7297 const FunctionProtoType *FromFunctionType,
7298 const FunctionProtoType *ToFunctionType) {
7299 if (FromFunctionType->hasAnyConsumedParams() !=
7300 ToFunctionType->hasAnyConsumedParams())
7301 return false;
7302 FunctionProtoType::ExtProtoInfo FromEPI =
7303 FromFunctionType->getExtProtoInfo();
7304 FunctionProtoType::ExtProtoInfo ToEPI =
7305 ToFunctionType->getExtProtoInfo();
7306 if (FromEPI.ConsumedParameters && ToEPI.ConsumedParameters)
7307 for (unsigned i = 0, n = FromFunctionType->getNumParams(); i != n; ++i) {
7308 if (FromEPI.ConsumedParameters[i] != ToEPI.ConsumedParameters[i])
7309 return false;
7310 }
7311 return true;
7312 }
7313
7314 /// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
7315 /// 'RHS' attributes and returns the merged version; including for function
7316 /// return types.
mergeObjCGCQualifiers(QualType LHS,QualType RHS)7317 QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
7318 QualType LHSCan = getCanonicalType(LHS),
7319 RHSCan = getCanonicalType(RHS);
7320 // If two types are identical, they are compatible.
7321 if (LHSCan == RHSCan)
7322 return LHS;
7323 if (RHSCan->isFunctionType()) {
7324 if (!LHSCan->isFunctionType())
7325 return QualType();
7326 QualType OldReturnType =
7327 cast<FunctionType>(RHSCan.getTypePtr())->getReturnType();
7328 QualType NewReturnType =
7329 cast<FunctionType>(LHSCan.getTypePtr())->getReturnType();
7330 QualType ResReturnType =
7331 mergeObjCGCQualifiers(NewReturnType, OldReturnType);
7332 if (ResReturnType.isNull())
7333 return QualType();
7334 if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
7335 // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
7336 // In either case, use OldReturnType to build the new function type.
7337 const FunctionType *F = LHS->getAs<FunctionType>();
7338 if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) {
7339 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
7340 EPI.ExtInfo = getFunctionExtInfo(LHS);
7341 QualType ResultType =
7342 getFunctionType(OldReturnType, FPT->getParamTypes(), EPI);
7343 return ResultType;
7344 }
7345 }
7346 return QualType();
7347 }
7348
7349 // If the qualifiers are different, the types can still be merged.
7350 Qualifiers LQuals = LHSCan.getLocalQualifiers();
7351 Qualifiers RQuals = RHSCan.getLocalQualifiers();
7352 if (LQuals != RQuals) {
7353 // If any of these qualifiers are different, we have a type mismatch.
7354 if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
7355 LQuals.getAddressSpace() != RQuals.getAddressSpace())
7356 return QualType();
7357
7358 // Exactly one GC qualifier difference is allowed: __strong is
7359 // okay if the other type has no GC qualifier but is an Objective
7360 // C object pointer (i.e. implicitly strong by default). We fix
7361 // this by pretending that the unqualified type was actually
7362 // qualified __strong.
7363 Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
7364 Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
7365 assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
7366
7367 if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
7368 return QualType();
7369
7370 if (GC_L == Qualifiers::Strong)
7371 return LHS;
7372 if (GC_R == Qualifiers::Strong)
7373 return RHS;
7374 return QualType();
7375 }
7376
7377 if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
7378 QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
7379 QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
7380 QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
7381 if (ResQT == LHSBaseQT)
7382 return LHS;
7383 if (ResQT == RHSBaseQT)
7384 return RHS;
7385 }
7386 return QualType();
7387 }
7388
7389 //===----------------------------------------------------------------------===//
7390 // Integer Predicates
7391 //===----------------------------------------------------------------------===//
7392
getIntWidth(QualType T) const7393 unsigned ASTContext::getIntWidth(QualType T) const {
7394 if (const EnumType *ET = T->getAs<EnumType>())
7395 T = ET->getDecl()->getIntegerType();
7396 if (T->isBooleanType())
7397 return 1;
7398 // For builtin types, just use the standard type sizing method
7399 return (unsigned)getTypeSize(T);
7400 }
7401
getCorrespondingUnsignedType(QualType T) const7402 QualType ASTContext::getCorrespondingUnsignedType(QualType T) const {
7403 assert(T->hasSignedIntegerRepresentation() && "Unexpected type");
7404
7405 // Turn <4 x signed int> -> <4 x unsigned int>
7406 if (const VectorType *VTy = T->getAs<VectorType>())
7407 return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
7408 VTy->getNumElements(), VTy->getVectorKind());
7409
7410 // For enums, we return the unsigned version of the base type.
7411 if (const EnumType *ETy = T->getAs<EnumType>())
7412 T = ETy->getDecl()->getIntegerType();
7413
7414 const BuiltinType *BTy = T->getAs<BuiltinType>();
7415 assert(BTy && "Unexpected signed integer type");
7416 switch (BTy->getKind()) {
7417 case BuiltinType::Char_S:
7418 case BuiltinType::SChar:
7419 return UnsignedCharTy;
7420 case BuiltinType::Short:
7421 return UnsignedShortTy;
7422 case BuiltinType::Int:
7423 return UnsignedIntTy;
7424 case BuiltinType::Long:
7425 return UnsignedLongTy;
7426 case BuiltinType::LongLong:
7427 return UnsignedLongLongTy;
7428 case BuiltinType::Int128:
7429 return UnsignedInt128Ty;
7430 default:
7431 llvm_unreachable("Unexpected signed integer type");
7432 }
7433 }
7434
~ASTMutationListener()7435 ASTMutationListener::~ASTMutationListener() { }
7436
DeducedReturnType(const FunctionDecl * FD,QualType ReturnType)7437 void ASTMutationListener::DeducedReturnType(const FunctionDecl *FD,
7438 QualType ReturnType) {}
7439
7440 //===----------------------------------------------------------------------===//
7441 // Builtin Type Computation
7442 //===----------------------------------------------------------------------===//
7443
7444 /// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
7445 /// pointer over the consumed characters. This returns the resultant type. If
7446 /// AllowTypeModifiers is false then modifier like * are not parsed, just basic
7447 /// types. This allows "v2i*" to be parsed as a pointer to a v2i instead of
7448 /// a vector of "i*".
7449 ///
7450 /// RequiresICE is filled in on return to indicate whether the value is required
7451 /// to be an Integer Constant Expression.
DecodeTypeFromStr(const char * & Str,const ASTContext & Context,ASTContext::GetBuiltinTypeError & Error,bool & RequiresICE,bool AllowTypeModifiers)7452 static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
7453 ASTContext::GetBuiltinTypeError &Error,
7454 bool &RequiresICE,
7455 bool AllowTypeModifiers) {
7456 // Modifiers.
7457 int HowLong = 0;
7458 bool Signed = false, Unsigned = false;
7459 RequiresICE = false;
7460
7461 // Read the prefixed modifiers first.
7462 bool Done = false;
7463 while (!Done) {
7464 switch (*Str++) {
7465 default: Done = true; --Str; break;
7466 case 'I':
7467 RequiresICE = true;
7468 break;
7469 case 'S':
7470 assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
7471 assert(!Signed && "Can't use 'S' modifier multiple times!");
7472 Signed = true;
7473 break;
7474 case 'U':
7475 assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
7476 assert(!Unsigned && "Can't use 'S' modifier multiple times!");
7477 Unsigned = true;
7478 break;
7479 case 'L':
7480 assert(HowLong <= 2 && "Can't have LLLL modifier");
7481 ++HowLong;
7482 break;
7483 case 'W':
7484 // This modifier represents int64 type.
7485 assert(HowLong == 0 && "Can't use both 'L' and 'W' modifiers!");
7486 switch (Context.getTargetInfo().getInt64Type()) {
7487 default:
7488 llvm_unreachable("Unexpected integer type");
7489 case TargetInfo::SignedLong:
7490 HowLong = 1;
7491 break;
7492 case TargetInfo::SignedLongLong:
7493 HowLong = 2;
7494 break;
7495 }
7496 }
7497 }
7498
7499 QualType Type;
7500
7501 // Read the base type.
7502 switch (*Str++) {
7503 default: llvm_unreachable("Unknown builtin type letter!");
7504 case 'v':
7505 assert(HowLong == 0 && !Signed && !Unsigned &&
7506 "Bad modifiers used with 'v'!");
7507 Type = Context.VoidTy;
7508 break;
7509 case 'h':
7510 assert(HowLong == 0 && !Signed && !Unsigned &&
7511 "Bad modifiers used with 'f'!");
7512 Type = Context.HalfTy;
7513 break;
7514 case 'f':
7515 assert(HowLong == 0 && !Signed && !Unsigned &&
7516 "Bad modifiers used with 'f'!");
7517 Type = Context.FloatTy;
7518 break;
7519 case 'd':
7520 assert(HowLong < 2 && !Signed && !Unsigned &&
7521 "Bad modifiers used with 'd'!");
7522 if (HowLong)
7523 Type = Context.LongDoubleTy;
7524 else
7525 Type = Context.DoubleTy;
7526 break;
7527 case 's':
7528 assert(HowLong == 0 && "Bad modifiers used with 's'!");
7529 if (Unsigned)
7530 Type = Context.UnsignedShortTy;
7531 else
7532 Type = Context.ShortTy;
7533 break;
7534 case 'i':
7535 if (HowLong == 3)
7536 Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
7537 else if (HowLong == 2)
7538 Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
7539 else if (HowLong == 1)
7540 Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
7541 else
7542 Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
7543 break;
7544 case 'c':
7545 assert(HowLong == 0 && "Bad modifiers used with 'c'!");
7546 if (Signed)
7547 Type = Context.SignedCharTy;
7548 else if (Unsigned)
7549 Type = Context.UnsignedCharTy;
7550 else
7551 Type = Context.CharTy;
7552 break;
7553 case 'b': // boolean
7554 assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
7555 Type = Context.BoolTy;
7556 break;
7557 case 'z': // size_t.
7558 assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
7559 Type = Context.getSizeType();
7560 break;
7561 case 'F':
7562 Type = Context.getCFConstantStringType();
7563 break;
7564 case 'G':
7565 Type = Context.getObjCIdType();
7566 break;
7567 case 'H':
7568 Type = Context.getObjCSelType();
7569 break;
7570 case 'M':
7571 Type = Context.getObjCSuperType();
7572 break;
7573 case 'a':
7574 Type = Context.getBuiltinVaListType();
7575 assert(!Type.isNull() && "builtin va list type not initialized!");
7576 break;
7577 case 'A':
7578 // This is a "reference" to a va_list; however, what exactly
7579 // this means depends on how va_list is defined. There are two
7580 // different kinds of va_list: ones passed by value, and ones
7581 // passed by reference. An example of a by-value va_list is
7582 // x86, where va_list is a char*. An example of by-ref va_list
7583 // is x86-64, where va_list is a __va_list_tag[1]. For x86,
7584 // we want this argument to be a char*&; for x86-64, we want
7585 // it to be a __va_list_tag*.
7586 Type = Context.getBuiltinVaListType();
7587 assert(!Type.isNull() && "builtin va list type not initialized!");
7588 if (Type->isArrayType())
7589 Type = Context.getArrayDecayedType(Type);
7590 else
7591 Type = Context.getLValueReferenceType(Type);
7592 break;
7593 case 'V': {
7594 char *End;
7595 unsigned NumElements = strtoul(Str, &End, 10);
7596 assert(End != Str && "Missing vector size");
7597 Str = End;
7598
7599 QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
7600 RequiresICE, false);
7601 assert(!RequiresICE && "Can't require vector ICE");
7602
7603 // TODO: No way to make AltiVec vectors in builtins yet.
7604 Type = Context.getVectorType(ElementType, NumElements,
7605 VectorType::GenericVector);
7606 break;
7607 }
7608 case 'E': {
7609 char *End;
7610
7611 unsigned NumElements = strtoul(Str, &End, 10);
7612 assert(End != Str && "Missing vector size");
7613
7614 Str = End;
7615
7616 QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
7617 false);
7618 Type = Context.getExtVectorType(ElementType, NumElements);
7619 break;
7620 }
7621 case 'X': {
7622 QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
7623 false);
7624 assert(!RequiresICE && "Can't require complex ICE");
7625 Type = Context.getComplexType(ElementType);
7626 break;
7627 }
7628 case 'Y' : {
7629 Type = Context.getPointerDiffType();
7630 break;
7631 }
7632 case 'P':
7633 Type = Context.getFILEType();
7634 if (Type.isNull()) {
7635 Error = ASTContext::GE_Missing_stdio;
7636 return QualType();
7637 }
7638 break;
7639 case 'J':
7640 if (Signed)
7641 Type = Context.getsigjmp_bufType();
7642 else
7643 Type = Context.getjmp_bufType();
7644
7645 if (Type.isNull()) {
7646 Error = ASTContext::GE_Missing_setjmp;
7647 return QualType();
7648 }
7649 break;
7650 case 'K':
7651 assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!");
7652 Type = Context.getucontext_tType();
7653
7654 if (Type.isNull()) {
7655 Error = ASTContext::GE_Missing_ucontext;
7656 return QualType();
7657 }
7658 break;
7659 case 'p':
7660 Type = Context.getProcessIDType();
7661 break;
7662 }
7663
7664 // If there are modifiers and if we're allowed to parse them, go for it.
7665 Done = !AllowTypeModifiers;
7666 while (!Done) {
7667 switch (char c = *Str++) {
7668 default: Done = true; --Str; break;
7669 case '*':
7670 case '&': {
7671 // Both pointers and references can have their pointee types
7672 // qualified with an address space.
7673 char *End;
7674 unsigned AddrSpace = strtoul(Str, &End, 10);
7675 if (End != Str && AddrSpace != 0) {
7676 Type = Context.getAddrSpaceQualType(Type, AddrSpace);
7677 Str = End;
7678 }
7679 if (c == '*')
7680 Type = Context.getPointerType(Type);
7681 else
7682 Type = Context.getLValueReferenceType(Type);
7683 break;
7684 }
7685 // FIXME: There's no way to have a built-in with an rvalue ref arg.
7686 case 'C':
7687 Type = Type.withConst();
7688 break;
7689 case 'D':
7690 Type = Context.getVolatileType(Type);
7691 break;
7692 case 'R':
7693 Type = Type.withRestrict();
7694 break;
7695 }
7696 }
7697
7698 assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
7699 "Integer constant 'I' type must be an integer");
7700
7701 return Type;
7702 }
7703
7704 /// GetBuiltinType - Return the type for the specified builtin.
GetBuiltinType(unsigned Id,GetBuiltinTypeError & Error,unsigned * IntegerConstantArgs) const7705 QualType ASTContext::GetBuiltinType(unsigned Id,
7706 GetBuiltinTypeError &Error,
7707 unsigned *IntegerConstantArgs) const {
7708 const char *TypeStr = BuiltinInfo.GetTypeString(Id);
7709
7710 SmallVector<QualType, 8> ArgTypes;
7711
7712 bool RequiresICE = false;
7713 Error = GE_None;
7714 QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
7715 RequiresICE, true);
7716 if (Error != GE_None)
7717 return QualType();
7718
7719 assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
7720
7721 while (TypeStr[0] && TypeStr[0] != '.') {
7722 QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
7723 if (Error != GE_None)
7724 return QualType();
7725
7726 // If this argument is required to be an IntegerConstantExpression and the
7727 // caller cares, fill in the bitmask we return.
7728 if (RequiresICE && IntegerConstantArgs)
7729 *IntegerConstantArgs |= 1 << ArgTypes.size();
7730
7731 // Do array -> pointer decay. The builtin should use the decayed type.
7732 if (Ty->isArrayType())
7733 Ty = getArrayDecayedType(Ty);
7734
7735 ArgTypes.push_back(Ty);
7736 }
7737
7738 assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
7739 "'.' should only occur at end of builtin type list!");
7740
7741 FunctionType::ExtInfo EI(CC_C);
7742 if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
7743
7744 bool Variadic = (TypeStr[0] == '.');
7745
7746 // We really shouldn't be making a no-proto type here, especially in C++.
7747 if (ArgTypes.empty() && Variadic)
7748 return getFunctionNoProtoType(ResType, EI);
7749
7750 FunctionProtoType::ExtProtoInfo EPI;
7751 EPI.ExtInfo = EI;
7752 EPI.Variadic = Variadic;
7753
7754 return getFunctionType(ResType, ArgTypes, EPI);
7755 }
7756
basicGVALinkageForFunction(const ASTContext & Context,const FunctionDecl * FD)7757 static GVALinkage basicGVALinkageForFunction(const ASTContext &Context,
7758 const FunctionDecl *FD) {
7759 if (!FD->isExternallyVisible())
7760 return GVA_Internal;
7761
7762 GVALinkage External = GVA_StrongExternal;
7763 switch (FD->getTemplateSpecializationKind()) {
7764 case TSK_Undeclared:
7765 case TSK_ExplicitSpecialization:
7766 External = GVA_StrongExternal;
7767 break;
7768
7769 case TSK_ExplicitInstantiationDefinition:
7770 return GVA_StrongODR;
7771
7772 // C++11 [temp.explicit]p10:
7773 // [ Note: The intent is that an inline function that is the subject of
7774 // an explicit instantiation declaration will still be implicitly
7775 // instantiated when used so that the body can be considered for
7776 // inlining, but that no out-of-line copy of the inline function would be
7777 // generated in the translation unit. -- end note ]
7778 case TSK_ExplicitInstantiationDeclaration:
7779 return GVA_AvailableExternally;
7780
7781 case TSK_ImplicitInstantiation:
7782 External = GVA_DiscardableODR;
7783 break;
7784 }
7785
7786 if (!FD->isInlined())
7787 return External;
7788
7789 if ((!Context.getLangOpts().CPlusPlus && !Context.getLangOpts().MSVCCompat &&
7790 !FD->hasAttr<DLLExportAttr>()) ||
7791 FD->hasAttr<GNUInlineAttr>()) {
7792 // FIXME: This doesn't match gcc's behavior for dllexport inline functions.
7793
7794 // GNU or C99 inline semantics. Determine whether this symbol should be
7795 // externally visible.
7796 if (FD->isInlineDefinitionExternallyVisible())
7797 return External;
7798
7799 // C99 inline semantics, where the symbol is not externally visible.
7800 return GVA_AvailableExternally;
7801 }
7802
7803 // Functions specified with extern and inline in -fms-compatibility mode
7804 // forcibly get emitted. While the body of the function cannot be later
7805 // replaced, the function definition cannot be discarded.
7806 if (FD->getMostRecentDecl()->isMSExternInline())
7807 return GVA_StrongODR;
7808
7809 return GVA_DiscardableODR;
7810 }
7811
adjustGVALinkageForDLLAttribute(GVALinkage L,const Decl * D)7812 static GVALinkage adjustGVALinkageForDLLAttribute(GVALinkage L, const Decl *D) {
7813 // See http://msdn.microsoft.com/en-us/library/xa0d9ste.aspx
7814 // dllexport/dllimport on inline functions.
7815 if (D->hasAttr<DLLImportAttr>()) {
7816 if (L == GVA_DiscardableODR || L == GVA_StrongODR)
7817 return GVA_AvailableExternally;
7818 } else if (D->hasAttr<DLLExportAttr>()) {
7819 if (L == GVA_DiscardableODR)
7820 return GVA_StrongODR;
7821 }
7822 return L;
7823 }
7824
GetGVALinkageForFunction(const FunctionDecl * FD) const7825 GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) const {
7826 return adjustGVALinkageForDLLAttribute(basicGVALinkageForFunction(*this, FD),
7827 FD);
7828 }
7829
basicGVALinkageForVariable(const ASTContext & Context,const VarDecl * VD)7830 static GVALinkage basicGVALinkageForVariable(const ASTContext &Context,
7831 const VarDecl *VD) {
7832 if (!VD->isExternallyVisible())
7833 return GVA_Internal;
7834
7835 if (VD->isStaticLocal()) {
7836 GVALinkage StaticLocalLinkage = GVA_DiscardableODR;
7837 const DeclContext *LexicalContext = VD->getParentFunctionOrMethod();
7838 while (LexicalContext && !isa<FunctionDecl>(LexicalContext))
7839 LexicalContext = LexicalContext->getLexicalParent();
7840
7841 // Let the static local variable inherit it's linkage from the nearest
7842 // enclosing function.
7843 if (LexicalContext)
7844 StaticLocalLinkage =
7845 Context.GetGVALinkageForFunction(cast<FunctionDecl>(LexicalContext));
7846
7847 // GVA_StrongODR function linkage is stronger than what we need,
7848 // downgrade to GVA_DiscardableODR.
7849 // This allows us to discard the variable if we never end up needing it.
7850 return StaticLocalLinkage == GVA_StrongODR ? GVA_DiscardableODR
7851 : StaticLocalLinkage;
7852 }
7853
7854 switch (VD->getTemplateSpecializationKind()) {
7855 case TSK_Undeclared:
7856 case TSK_ExplicitSpecialization:
7857 return GVA_StrongExternal;
7858
7859 case TSK_ExplicitInstantiationDefinition:
7860 return GVA_StrongODR;
7861
7862 case TSK_ExplicitInstantiationDeclaration:
7863 return GVA_AvailableExternally;
7864
7865 case TSK_ImplicitInstantiation:
7866 return GVA_DiscardableODR;
7867 }
7868
7869 llvm_unreachable("Invalid Linkage!");
7870 }
7871
GetGVALinkageForVariable(const VarDecl * VD)7872 GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
7873 return adjustGVALinkageForDLLAttribute(basicGVALinkageForVariable(*this, VD),
7874 VD);
7875 }
7876
DeclMustBeEmitted(const Decl * D)7877 bool ASTContext::DeclMustBeEmitted(const Decl *D) {
7878 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
7879 if (!VD->isFileVarDecl())
7880 return false;
7881 // Global named register variables (GNU extension) are never emitted.
7882 if (VD->getStorageClass() == SC_Register)
7883 return false;
7884 } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
7885 // We never need to emit an uninstantiated function template.
7886 if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
7887 return false;
7888 } else
7889 return false;
7890
7891 // If this is a member of a class template, we do not need to emit it.
7892 if (D->getDeclContext()->isDependentContext())
7893 return false;
7894
7895 // Weak references don't produce any output by themselves.
7896 if (D->hasAttr<WeakRefAttr>())
7897 return false;
7898
7899 // Aliases and used decls are required.
7900 if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
7901 return true;
7902
7903 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
7904 // Forward declarations aren't required.
7905 if (!FD->doesThisDeclarationHaveABody())
7906 return FD->doesDeclarationForceExternallyVisibleDefinition();
7907
7908 // Constructors and destructors are required.
7909 if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
7910 return true;
7911
7912 // The key function for a class is required. This rule only comes
7913 // into play when inline functions can be key functions, though.
7914 if (getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
7915 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
7916 const CXXRecordDecl *RD = MD->getParent();
7917 if (MD->isOutOfLine() && RD->isDynamicClass()) {
7918 const CXXMethodDecl *KeyFunc = getCurrentKeyFunction(RD);
7919 if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
7920 return true;
7921 }
7922 }
7923 }
7924
7925 GVALinkage Linkage = GetGVALinkageForFunction(FD);
7926
7927 // static, static inline, always_inline, and extern inline functions can
7928 // always be deferred. Normal inline functions can be deferred in C99/C++.
7929 // Implicit template instantiations can also be deferred in C++.
7930 if (Linkage == GVA_Internal || Linkage == GVA_AvailableExternally ||
7931 Linkage == GVA_DiscardableODR)
7932 return false;
7933 return true;
7934 }
7935
7936 const VarDecl *VD = cast<VarDecl>(D);
7937 assert(VD->isFileVarDecl() && "Expected file scoped var");
7938
7939 if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly)
7940 return false;
7941
7942 // Variables that can be needed in other TUs are required.
7943 GVALinkage L = GetGVALinkageForVariable(VD);
7944 if (L != GVA_Internal && L != GVA_AvailableExternally &&
7945 L != GVA_DiscardableODR)
7946 return true;
7947
7948 // Variables that have destruction with side-effects are required.
7949 if (VD->getType().isDestructedType())
7950 return true;
7951
7952 // Variables that have initialization with side-effects are required.
7953 if (VD->getInit() && VD->getInit()->HasSideEffects(*this))
7954 return true;
7955
7956 return false;
7957 }
7958
getDefaultCallingConvention(bool IsVariadic,bool IsCXXMethod) const7959 CallingConv ASTContext::getDefaultCallingConvention(bool IsVariadic,
7960 bool IsCXXMethod) const {
7961 // Pass through to the C++ ABI object
7962 if (IsCXXMethod)
7963 return ABI->getDefaultMethodCallConv(IsVariadic);
7964
7965 return (LangOpts.MRTD && !IsVariadic) ? CC_X86StdCall : CC_C;
7966 }
7967
isNearlyEmpty(const CXXRecordDecl * RD) const7968 bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
7969 // Pass through to the C++ ABI object
7970 return ABI->isNearlyEmpty(RD);
7971 }
7972
getVTableContext()7973 VTableContextBase *ASTContext::getVTableContext() {
7974 if (!VTContext.get()) {
7975 if (Target->getCXXABI().isMicrosoft())
7976 VTContext.reset(new MicrosoftVTableContext(*this));
7977 else
7978 VTContext.reset(new ItaniumVTableContext(*this));
7979 }
7980 return VTContext.get();
7981 }
7982
createMangleContext()7983 MangleContext *ASTContext::createMangleContext() {
7984 switch (Target->getCXXABI().getKind()) {
7985 case TargetCXXABI::GenericAArch64:
7986 case TargetCXXABI::GenericItanium:
7987 case TargetCXXABI::GenericARM:
7988 case TargetCXXABI::iOS:
7989 case TargetCXXABI::iOS64:
7990 return ItaniumMangleContext::create(*this, getDiagnostics());
7991 case TargetCXXABI::Microsoft:
7992 return MicrosoftMangleContext::create(*this, getDiagnostics());
7993 }
7994 llvm_unreachable("Unsupported ABI");
7995 }
7996
~CXXABI()7997 CXXABI::~CXXABI() {}
7998
getSideTableAllocatedMemory() const7999 size_t ASTContext::getSideTableAllocatedMemory() const {
8000 return ASTRecordLayouts.getMemorySize() +
8001 llvm::capacity_in_bytes(ObjCLayouts) +
8002 llvm::capacity_in_bytes(KeyFunctions) +
8003 llvm::capacity_in_bytes(ObjCImpls) +
8004 llvm::capacity_in_bytes(BlockVarCopyInits) +
8005 llvm::capacity_in_bytes(DeclAttrs) +
8006 llvm::capacity_in_bytes(TemplateOrInstantiation) +
8007 llvm::capacity_in_bytes(InstantiatedFromUsingDecl) +
8008 llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl) +
8009 llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl) +
8010 llvm::capacity_in_bytes(OverriddenMethods) +
8011 llvm::capacity_in_bytes(Types) +
8012 llvm::capacity_in_bytes(VariableArrayTypes) +
8013 llvm::capacity_in_bytes(ClassScopeSpecializationPattern);
8014 }
8015
8016 /// getIntTypeForBitwidth -
8017 /// sets integer QualTy according to specified details:
8018 /// bitwidth, signed/unsigned.
8019 /// Returns empty type if there is no appropriate target types.
getIntTypeForBitwidth(unsigned DestWidth,unsigned Signed) const8020 QualType ASTContext::getIntTypeForBitwidth(unsigned DestWidth,
8021 unsigned Signed) const {
8022 TargetInfo::IntType Ty = getTargetInfo().getIntTypeByWidth(DestWidth, Signed);
8023 CanQualType QualTy = getFromTargetType(Ty);
8024 if (!QualTy && DestWidth == 128)
8025 return Signed ? Int128Ty : UnsignedInt128Ty;
8026 return QualTy;
8027 }
8028
8029 /// getRealTypeForBitwidth -
8030 /// sets floating point QualTy according to specified bitwidth.
8031 /// Returns empty type if there is no appropriate target types.
getRealTypeForBitwidth(unsigned DestWidth) const8032 QualType ASTContext::getRealTypeForBitwidth(unsigned DestWidth) const {
8033 TargetInfo::RealType Ty = getTargetInfo().getRealTypeByWidth(DestWidth);
8034 switch (Ty) {
8035 case TargetInfo::Float:
8036 return FloatTy;
8037 case TargetInfo::Double:
8038 return DoubleTy;
8039 case TargetInfo::LongDouble:
8040 return LongDoubleTy;
8041 case TargetInfo::NoFloat:
8042 return QualType();
8043 }
8044
8045 llvm_unreachable("Unhandled TargetInfo::RealType value");
8046 }
8047
setManglingNumber(const NamedDecl * ND,unsigned Number)8048 void ASTContext::setManglingNumber(const NamedDecl *ND, unsigned Number) {
8049 if (Number > 1)
8050 MangleNumbers[ND] = Number;
8051 }
8052
getManglingNumber(const NamedDecl * ND) const8053 unsigned ASTContext::getManglingNumber(const NamedDecl *ND) const {
8054 llvm::DenseMap<const NamedDecl *, unsigned>::const_iterator I =
8055 MangleNumbers.find(ND);
8056 return I != MangleNumbers.end() ? I->second : 1;
8057 }
8058
setStaticLocalNumber(const VarDecl * VD,unsigned Number)8059 void ASTContext::setStaticLocalNumber(const VarDecl *VD, unsigned Number) {
8060 if (Number > 1)
8061 StaticLocalNumbers[VD] = Number;
8062 }
8063
getStaticLocalNumber(const VarDecl * VD) const8064 unsigned ASTContext::getStaticLocalNumber(const VarDecl *VD) const {
8065 llvm::DenseMap<const VarDecl *, unsigned>::const_iterator I =
8066 StaticLocalNumbers.find(VD);
8067 return I != StaticLocalNumbers.end() ? I->second : 1;
8068 }
8069
8070 MangleNumberingContext &
getManglingNumberContext(const DeclContext * DC)8071 ASTContext::getManglingNumberContext(const DeclContext *DC) {
8072 assert(LangOpts.CPlusPlus); // We don't need mangling numbers for plain C.
8073 MangleNumberingContext *&MCtx = MangleNumberingContexts[DC];
8074 if (!MCtx)
8075 MCtx = createMangleNumberingContext();
8076 return *MCtx;
8077 }
8078
createMangleNumberingContext() const8079 MangleNumberingContext *ASTContext::createMangleNumberingContext() const {
8080 return ABI->createMangleNumberingContext();
8081 }
8082
setParameterIndex(const ParmVarDecl * D,unsigned int index)8083 void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) {
8084 ParamIndices[D] = index;
8085 }
8086
getParameterIndex(const ParmVarDecl * D) const8087 unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const {
8088 ParameterIndexTable::const_iterator I = ParamIndices.find(D);
8089 assert(I != ParamIndices.end() &&
8090 "ParmIndices lacks entry set by ParmVarDecl");
8091 return I->second;
8092 }
8093
8094 APValue *
getMaterializedTemporaryValue(const MaterializeTemporaryExpr * E,bool MayCreate)8095 ASTContext::getMaterializedTemporaryValue(const MaterializeTemporaryExpr *E,
8096 bool MayCreate) {
8097 assert(E && E->getStorageDuration() == SD_Static &&
8098 "don't need to cache the computed value for this temporary");
8099 if (MayCreate)
8100 return &MaterializedTemporaryValues[E];
8101
8102 llvm::DenseMap<const MaterializeTemporaryExpr *, APValue>::iterator I =
8103 MaterializedTemporaryValues.find(E);
8104 return I == MaterializedTemporaryValues.end() ? nullptr : &I->second;
8105 }
8106
AtomicUsesUnsupportedLibcall(const AtomicExpr * E) const8107 bool ASTContext::AtomicUsesUnsupportedLibcall(const AtomicExpr *E) const {
8108 const llvm::Triple &T = getTargetInfo().getTriple();
8109 if (!T.isOSDarwin())
8110 return false;
8111
8112 if (!(T.isiOS() && T.isOSVersionLT(7)) &&
8113 !(T.isMacOSX() && T.isOSVersionLT(10, 9)))
8114 return false;
8115
8116 QualType AtomicTy = E->getPtr()->getType()->getPointeeType();
8117 CharUnits sizeChars = getTypeSizeInChars(AtomicTy);
8118 uint64_t Size = sizeChars.getQuantity();
8119 CharUnits alignChars = getTypeAlignInChars(AtomicTy);
8120 unsigned Align = alignChars.getQuantity();
8121 unsigned MaxInlineWidthInBits = getTargetInfo().getMaxAtomicInlineWidth();
8122 return (Size != Align || toBits(sizeChars) > MaxInlineWidthInBits);
8123 }
8124
8125 namespace {
8126
8127 /// \brief A \c RecursiveASTVisitor that builds a map from nodes to their
8128 /// parents as defined by the \c RecursiveASTVisitor.
8129 ///
8130 /// Note that the relationship described here is purely in terms of AST
8131 /// traversal - there are other relationships (for example declaration context)
8132 /// in the AST that are better modeled by special matchers.
8133 ///
8134 /// FIXME: Currently only builds up the map using \c Stmt and \c Decl nodes.
8135 class ParentMapASTVisitor : public RecursiveASTVisitor<ParentMapASTVisitor> {
8136
8137 public:
8138 /// \brief Builds and returns the translation unit's parent map.
8139 ///
8140 /// The caller takes ownership of the returned \c ParentMap.
buildMap(TranslationUnitDecl & TU)8141 static ASTContext::ParentMap *buildMap(TranslationUnitDecl &TU) {
8142 ParentMapASTVisitor Visitor(new ASTContext::ParentMap);
8143 Visitor.TraverseDecl(&TU);
8144 return Visitor.Parents;
8145 }
8146
8147 private:
8148 typedef RecursiveASTVisitor<ParentMapASTVisitor> VisitorBase;
8149
ParentMapASTVisitor(ASTContext::ParentMap * Parents)8150 ParentMapASTVisitor(ASTContext::ParentMap *Parents) : Parents(Parents) {
8151 }
8152
shouldVisitTemplateInstantiations() const8153 bool shouldVisitTemplateInstantiations() const {
8154 return true;
8155 }
shouldVisitImplicitCode() const8156 bool shouldVisitImplicitCode() const {
8157 return true;
8158 }
8159 // Disables data recursion. We intercept Traverse* methods in the RAV, which
8160 // are not triggered during data recursion.
shouldUseDataRecursionFor(clang::Stmt * S) const8161 bool shouldUseDataRecursionFor(clang::Stmt *S) const {
8162 return false;
8163 }
8164
8165 template <typename T>
TraverseNode(T * Node,bool (VisitorBase::* traverse)(T *))8166 bool TraverseNode(T *Node, bool(VisitorBase:: *traverse) (T *)) {
8167 if (!Node)
8168 return true;
8169 if (ParentStack.size() > 0) {
8170 // FIXME: Currently we add the same parent multiple times, but only
8171 // when no memoization data is available for the type.
8172 // For example when we visit all subexpressions of template
8173 // instantiations; this is suboptimal, but benign: the only way to
8174 // visit those is with hasAncestor / hasParent, and those do not create
8175 // new matches.
8176 // The plan is to enable DynTypedNode to be storable in a map or hash
8177 // map. The main problem there is to implement hash functions /
8178 // comparison operators for all types that DynTypedNode supports that
8179 // do not have pointer identity.
8180 auto &NodeOrVector = (*Parents)[Node];
8181 if (NodeOrVector.isNull()) {
8182 NodeOrVector = new ast_type_traits::DynTypedNode(ParentStack.back());
8183 } else {
8184 if (NodeOrVector.template is<ast_type_traits::DynTypedNode *>()) {
8185 auto *Node =
8186 NodeOrVector.template get<ast_type_traits::DynTypedNode *>();
8187 auto *Vector = new ASTContext::ParentVector(1, *Node);
8188 NodeOrVector = Vector;
8189 delete Node;
8190 }
8191 assert(NodeOrVector.template is<ASTContext::ParentVector *>());
8192
8193 auto *Vector =
8194 NodeOrVector.template get<ASTContext::ParentVector *>();
8195 // Skip duplicates for types that have memoization data.
8196 // We must check that the type has memoization data before calling
8197 // std::find() because DynTypedNode::operator== can't compare all
8198 // types.
8199 bool Found = ParentStack.back().getMemoizationData() &&
8200 std::find(Vector->begin(), Vector->end(),
8201 ParentStack.back()) != Vector->end();
8202 if (!Found)
8203 Vector->push_back(ParentStack.back());
8204 }
8205 }
8206 ParentStack.push_back(ast_type_traits::DynTypedNode::create(*Node));
8207 bool Result = (this ->* traverse) (Node);
8208 ParentStack.pop_back();
8209 return Result;
8210 }
8211
TraverseDecl(Decl * DeclNode)8212 bool TraverseDecl(Decl *DeclNode) {
8213 return TraverseNode(DeclNode, &VisitorBase::TraverseDecl);
8214 }
8215
TraverseStmt(Stmt * StmtNode)8216 bool TraverseStmt(Stmt *StmtNode) {
8217 return TraverseNode(StmtNode, &VisitorBase::TraverseStmt);
8218 }
8219
8220 ASTContext::ParentMap *Parents;
8221 llvm::SmallVector<ast_type_traits::DynTypedNode, 16> ParentStack;
8222
8223 friend class RecursiveASTVisitor<ParentMapASTVisitor>;
8224 };
8225
8226 } // end namespace
8227
8228 ASTContext::ParentVector
getParents(const ast_type_traits::DynTypedNode & Node)8229 ASTContext::getParents(const ast_type_traits::DynTypedNode &Node) {
8230 assert(Node.getMemoizationData() &&
8231 "Invariant broken: only nodes that support memoization may be "
8232 "used in the parent map.");
8233 if (!AllParents) {
8234 // We always need to run over the whole translation unit, as
8235 // hasAncestor can escape any subtree.
8236 AllParents.reset(
8237 ParentMapASTVisitor::buildMap(*getTranslationUnitDecl()));
8238 }
8239 ParentMap::const_iterator I = AllParents->find(Node.getMemoizationData());
8240 if (I == AllParents->end()) {
8241 return ParentVector();
8242 }
8243 if (I->second.is<ast_type_traits::DynTypedNode *>()) {
8244 return ParentVector(1, *I->second.get<ast_type_traits::DynTypedNode *>());
8245 }
8246 const auto &Parents = *I->second.get<ParentVector *>();
8247 return ParentVector(Parents.begin(), Parents.end());
8248 }
8249
8250 bool
ObjCMethodsAreEqual(const ObjCMethodDecl * MethodDecl,const ObjCMethodDecl * MethodImpl)8251 ASTContext::ObjCMethodsAreEqual(const ObjCMethodDecl *MethodDecl,
8252 const ObjCMethodDecl *MethodImpl) {
8253 // No point trying to match an unavailable/deprecated mothod.
8254 if (MethodDecl->hasAttr<UnavailableAttr>()
8255 || MethodDecl->hasAttr<DeprecatedAttr>())
8256 return false;
8257 if (MethodDecl->getObjCDeclQualifier() !=
8258 MethodImpl->getObjCDeclQualifier())
8259 return false;
8260 if (!hasSameType(MethodDecl->getReturnType(), MethodImpl->getReturnType()))
8261 return false;
8262
8263 if (MethodDecl->param_size() != MethodImpl->param_size())
8264 return false;
8265
8266 for (ObjCMethodDecl::param_const_iterator IM = MethodImpl->param_begin(),
8267 IF = MethodDecl->param_begin(), EM = MethodImpl->param_end(),
8268 EF = MethodDecl->param_end();
8269 IM != EM && IF != EF; ++IM, ++IF) {
8270 const ParmVarDecl *DeclVar = (*IF);
8271 const ParmVarDecl *ImplVar = (*IM);
8272 if (ImplVar->getObjCDeclQualifier() != DeclVar->getObjCDeclQualifier())
8273 return false;
8274 if (!hasSameType(DeclVar->getType(), ImplVar->getType()))
8275 return false;
8276 }
8277 return (MethodDecl->isVariadic() == MethodImpl->isVariadic());
8278
8279 }
8280
8281 // Explicitly instantiate this in case a Redeclarable<T> is used from a TU that
8282 // doesn't include ASTContext.h
8283 template
8284 clang::LazyGenerationalUpdatePtr<
8285 const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::ValueType
8286 clang::LazyGenerationalUpdatePtr<
8287 const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::makeValue(
8288 const clang::ASTContext &Ctx, Decl *Value);
8289