• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2014 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 // Provides an implementation the parts of the RTree data structure that don't
6 // require knowledge of the generic key type. Don't use these objects directly,
7 // rather specialize the RTree<> object in r_tree.h. This file defines the
8 // internal objects of an RTree, namely Nodes (internal nodes of the tree) and
9 // Records, which hold (key, rectangle) pairs.
10 
11 #ifndef UI_GFX_GEOMETRY_R_TREE_BASE_H_
12 #define UI_GFX_GEOMETRY_R_TREE_BASE_H_
13 
14 #include <list>
15 #include <vector>
16 
17 #include "base/containers/hash_tables.h"
18 #include "base/macros.h"
19 #include "base/memory/scoped_ptr.h"
20 #include "base/memory/scoped_vector.h"
21 #include "ui/gfx/geometry/rect.h"
22 #include "ui/gfx/gfx_export.h"
23 
24 namespace gfx {
25 
26 class GFX_EXPORT RTreeBase {
27  protected:
28   class NodeBase;
29   class RecordBase;
30 
31   typedef std::vector<const RecordBase*> Records;
32   typedef ScopedVector<NodeBase> Nodes;
33 
34   RTreeBase(size_t min_children, size_t max_children);
35   ~RTreeBase();
36 
37   // Protected data structure class for storing internal Nodes or leaves with
38   // Records.
39   class GFX_EXPORT NodeBase {
40    public:
41     virtual ~NodeBase();
42 
43     // Appends to |records_out| the set of Records in this subtree with rects
44     // that intersect |query_rect|.  Avoids clearing |records_out| so that it
45     // can be called recursively.
46     virtual void AppendIntersectingRecords(const Rect& query_rect,
47                                            Records* records_out) const = 0;
48 
49     // Returns all records stored in the subtree rooted at this node. Appends to
50     // |matches_out| without clearing.
51     virtual void AppendAllRecords(Records* records_out) const = 0;
52 
53     // Returns NULL if no children. Does not recompute bounds.
54     virtual scoped_ptr<NodeBase> RemoveAndReturnLastChild() = 0;
55 
56     // Returns -1 for Records, or the height of this subtree for Nodes.  The
57     // height of a leaf Node (a Node containing only Records) is 0, a leaf's
58     // parent is 1, etc. Note that in an R*-Tree, all branches from the root
59     // Node will be the same height.
60     virtual int Level() const = 0;
61 
62     // Recomputes our bounds by taking the union of all child rects, then calls
63     // recursively on our parent so that ultimately all nodes up to the root
64     // recompute their bounds.
65     void RecomputeBoundsUpToRoot();
66 
parent()67     NodeBase* parent() { return parent_; }
parent()68     const NodeBase* parent() const { return parent_; }
set_parent(NodeBase * parent)69     void set_parent(NodeBase* parent) { parent_ = parent; }
rect()70     const Rect& rect() const { return rect_; }
set_rect(const Rect & rect)71     void set_rect(const Rect& rect) { rect_ = rect; }
72 
73    protected:
74     NodeBase(const Rect& rect, NodeBase* parent);
75 
76     // Bounds recomputation without calling parents to do the same.
77     virtual void RecomputeLocalBounds();
78 
79    private:
80     friend class RTreeTest;
81     friend class RTreeNodeTest;
82 
83     // This Node's bounding rectangle.
84     Rect rect_;
85 
86     // A weak pointer to our parent Node in the RTree. The root node will have a
87     // NULL value for |parent_|.
88     NodeBase* parent_;
89 
90     DISALLOW_COPY_AND_ASSIGN(NodeBase);
91   };
92 
93   class GFX_EXPORT RecordBase : public NodeBase {
94    public:
95     explicit RecordBase(const Rect& rect);
96     virtual ~RecordBase();
97 
98     virtual void AppendIntersectingRecords(const Rect& query_rect,
99                                            Records* records_out) const OVERRIDE;
100     virtual void AppendAllRecords(Records* records_out) const OVERRIDE;
101     virtual scoped_ptr<NodeBase> RemoveAndReturnLastChild() OVERRIDE;
102     virtual int Level() const OVERRIDE;
103 
104    private:
105     friend class RTreeTest;
106     friend class RTreeNodeTest;
107 
108     DISALLOW_COPY_AND_ASSIGN(RecordBase);
109   };
110 
111   class GFX_EXPORT Node : public NodeBase {
112    public:
113     // Constructs an empty Node with |level_| of 0.
114     Node();
115     virtual ~Node();
116 
117     virtual void AppendIntersectingRecords(const Rect& query_rect,
118                                            Records* records_out) const OVERRIDE;
119     virtual scoped_ptr<NodeBase> RemoveAndReturnLastChild() OVERRIDE;
120     virtual int Level() const OVERRIDE;
121     virtual void AppendAllRecords(Records* matches_out) const OVERRIDE;
122 
123     // Constructs a new Node that is the parent of this Node and already has
124     // this Node as its sole child. Valid to call only on root Nodes, meaning
125     // Nodes with |parent_| NULL. Note that ownership of this Node is
126     // transferred to the parent returned by this function.
127     scoped_ptr<Node> ConstructParent();
128 
129     // Removes |number_to_remove| children from this Node, and appends them to
130     // the supplied list. Does not repair bounds upon completion. Nodes are
131     // selected in the manner suggested in the Beckmann et al. paper, which
132     // suggests that the children should be sorted by the distance from the
133     // center of their bounding rectangle to their parent's bounding rectangle,
134     // and then the n closest children should be removed for re-insertion. This
135     // removal occurs at most once on each level of the tree when overflowing
136     // nodes that have exceeded the maximum number of children during an Insert.
137     void RemoveNodesForReinsert(size_t number_to_remove, Nodes* nodes);
138 
139     // Given a pointer to a child node within this Node, removes it from our
140     // list. If that child had any children, appends them to the supplied orphan
141     // list. Returns the removed child. Does not recompute bounds, as the caller
142     // might subsequently remove this node as well, meaning the recomputation
143     // would be wasted work.
144     scoped_ptr<NodeBase> RemoveChild(NodeBase* child_node, Nodes* orphans);
145 
146     // Returns the best parent for insertion of the provided |node| as a child.
147     Node* ChooseSubtree(NodeBase* node);
148 
149     // Adds |node| as a child of this Node, and recomputes the bounds of this
150     // node after the addition of the child. Returns the new count of children
151     // stored in this Node. This node becomes the owner of |node|.
152     size_t AddChild(scoped_ptr<NodeBase> node);
153 
154     // Returns a sibling to this Node with at least min_children and no greater
155     // than max_children of this Node's children assigned to it, and having the
156     // same parent. Bounds will be valid on both Nodes after this call.
157     scoped_ptr<NodeBase> Split(size_t min_children, size_t max_children);
158 
count()159     size_t count() const { return children_.size(); }
child(size_t i)160     const NodeBase* child(size_t i) const { return children_[i]; }
child(size_t i)161     NodeBase* child(size_t i) { return children_[i]; }
162 
163    private:
164     typedef std::vector<Rect> Rects;
165 
166     explicit Node(int level);
167 
168     // Given two arrays of bounds rectangles as computed by BuildLowBounds()
169     // and BuildHighBounds(), returns the index of the element in those arrays
170     // along which a split of the arrays would result in a minimum amount of
171     // overlap (area of intersection) in the two groups.
172     static size_t ChooseSplitIndex(size_t start_index,
173                                    size_t end_index,
174                                    const Rects& low_bounds,
175                                    const Rects& high_bounds);
176 
177     // R*-Tree attempts to keep groups of rectangles that are roughly square
178     // in shape. It does this by comparing the "margins" of different bounding
179     // boxes, where margin is defined as the sum of the length of all four sides
180     // of a rectangle. For two rectangles of equal area, the one with the
181     // smallest margin will be the rectangle whose width and height differ the
182     // least. When splitting we decide to split along an axis chosen from the
183     // rectangles either sorted vertically or horizontally by finding the axis
184     // that would result in the smallest sum of margins between the two bounding
185     // boxes of the resulting split. Returns the smallest sum computed given the
186     // sorted bounding boxes and a range to look within.
187     static int SmallestMarginSum(size_t start_index,
188                                  size_t end_index,
189                                  const Rects& low_bounds,
190                                  const Rects& high_bounds);
191 
192     // Sorts nodes primarily by increasing y coordinates, and secondarily by
193     // increasing height.
194     static bool CompareVertical(const NodeBase* a, const NodeBase* b);
195 
196     // Sorts nodes primarily by increasing x coordinates, and secondarily by
197     // increasing width.
198     static bool CompareHorizontal(const NodeBase* a, const NodeBase* b);
199 
200     // Sorts nodes by the distance of the center of their rectangles to the
201     // center of their parent's rectangles.
202     static bool CompareCenterDistanceFromParent(
203         const NodeBase* a, const NodeBase* b);
204 
205     // Given two vectors of Nodes sorted by vertical or horizontal bounds,
206     // populates two vectors of Rectangles in which the ith element is the union
207     // of all bounding rectangles [0,i] in the associated sorted array of Nodes.
208     static void BuildLowBounds(const std::vector<NodeBase*>& vertical_sort,
209                                const std::vector<NodeBase*>& horizontal_sort,
210                                Rects* vertical_bounds,
211                                Rects* horizontal_bounds);
212 
213     // Given two vectors of Nodes sorted by vertical or horizontal bounds,
214     // populates two vectors of Rectangles in which the ith element is the
215     // union of all bounding rectangles [i, count()) in the associated sorted
216     // array of Nodes.
217     static void BuildHighBounds(const std::vector<NodeBase*>& vertical_sort,
218                                 const std::vector<NodeBase*>& horizontal_sort,
219                                 Rects* vertical_bounds,
220                                 Rects* horizontal_bounds);
221 
222     virtual void RecomputeLocalBounds() OVERRIDE;
223 
224     // Returns the increase in overlap value, as defined in Beckmann et al. as
225     // the sum of the areas of the intersection of all child rectangles
226     // (excepting the candidate child) with the argument rectangle. Here the
227     // |candidate_node| is one of our |children_|, and |expanded_rect| is the
228     // already-computed union of the candidate's rect and |rect|.
229     int OverlapIncreaseToAdd(const Rect& rect,
230                              const NodeBase* candidate_node,
231                              const Rect& expanded_rect) const;
232 
233     // Returns a new node containing children [split_index, count()) within
234     // |sorted_children|.  Children before |split_index| remain with |this|.
235     scoped_ptr<NodeBase> DivideChildren(
236         const Rects& low_bounds,
237         const Rects& high_bounds,
238         const std::vector<NodeBase*>& sorted_children,
239         size_t split_index);
240 
241     // Returns a pointer to the child node that will result in the least overlap
242     // increase with the addition of node_rect, or NULL if there's a tie found.
243     // Requires a precomputed vector of expanded rectangles where the ith
244     // rectangle in the vector is the union of |children_|[i] and node_rect.
245     // Overlap is defined in Beckmann et al. as the sum of the areas of
246     // intersection of all child rectangles with the |node_rect| argument
247     // rectangle.  This heuristic attempts to choose the node for which adding
248     // the new rectangle to their bounding box will result in the least overlap
249     // with the other rectangles, thus trying to preserve the usefulness of the
250     // bounding rectangle by keeping it from covering too much redundant area.
251     Node* LeastOverlapIncrease(const Rect& node_rect,
252                                const Rects& expanded_rects);
253 
254     // Returns a pointer to the child node that will result in the least area
255     // enlargement if the argument node rectangle were to be added to that
256     // node's bounding box. Requires a precomputed vector of expanded rectangles
257     // where the ith rectangle in the vector is the union of children_[i] and
258     // |node_rect|.
259     Node* LeastAreaEnlargement(const Rect& node_rect,
260                                const Rects& expanded_rects);
261 
262     const int level_;
263 
264     Nodes children_;
265 
266     friend class RTreeTest;
267     friend class RTreeNodeTest;
268 
269     DISALLOW_COPY_AND_ASSIGN(Node);
270   };
271 
272   // Inserts |node| into the tree. The |highest_reinsert_level| supports
273   // re-insertion as described by Beckmann et al. As Node overflows progagate
274   // up the tree the algorithm performs a reinsertion of the overflow Nodes
275   // (instead of a split) at most once per level of the tree. A starting value
276   // of -1 for |highest_reinsert_level| means that reinserts are permitted for
277   // every level of the tree. This should always be set to -1 except by
278   // recursive calls from within InsertNode().
279   void InsertNode(scoped_ptr<NodeBase> node, int* highest_reinsert_level);
280 
281   // Removes |node| from the tree without deleting it.
282   scoped_ptr<NodeBase> RemoveNode(NodeBase* node);
283 
284   // If |root_| has only one child, deletes the |root_| Node and replaces it
285   // with its only descendant child. Otherwise does nothing.
286   void PruneRootIfNecessary();
287 
288   // Deletes the entire current tree and replaces it with an empty Node.
289   void ResetRoot();
290 
root()291   const Node* root() const { return root_.get(); }
292 
293  private:
294   friend class RTreeTest;
295   friend class RTreeNodeTest;
296 
297   // A pointer to the root node in the RTree.
298   scoped_ptr<Node> root_;
299 
300   // The parameters used to define the shape of the RTree.
301   const size_t min_children_;
302   const size_t max_children_;
303 
304   DISALLOW_COPY_AND_ASSIGN(RTreeBase);
305 };
306 
307 }  // namespace gfx
308 
309 #endif  // UI_GFX_GEOMETRY_R_TREE_BASE_H_
310