1 //===-- DeclCXX.h - Classes for representing C++ declarations -*- C++ -*-=====// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// 10 /// \file 11 /// \brief Defines the C++ Decl subclasses, other than those for templates 12 /// (found in DeclTemplate.h) and friends (in DeclFriend.h). 13 /// 14 //===----------------------------------------------------------------------===// 15 16 #ifndef LLVM_CLANG_AST_DECLCXX_H 17 #define LLVM_CLANG_AST_DECLCXX_H 18 19 #include "clang/AST/ASTUnresolvedSet.h" 20 #include "clang/AST/Attr.h" 21 #include "clang/AST/Decl.h" 22 #include "clang/AST/Expr.h" 23 #include "clang/AST/LambdaCapture.h" 24 #include "llvm/ADT/DenseMap.h" 25 #include "llvm/ADT/PointerIntPair.h" 26 #include "llvm/Support/Compiler.h" 27 28 namespace clang { 29 30 class ClassTemplateDecl; 31 class ClassTemplateSpecializationDecl; 32 class CXXBasePath; 33 class CXXBasePaths; 34 class CXXConstructorDecl; 35 class CXXConversionDecl; 36 class CXXDestructorDecl; 37 class CXXMethodDecl; 38 class CXXRecordDecl; 39 class CXXMemberLookupCriteria; 40 class CXXFinalOverriderMap; 41 class CXXIndirectPrimaryBaseSet; 42 class FriendDecl; 43 class LambdaExpr; 44 class UsingDecl; 45 46 /// \brief Represents any kind of function declaration, whether it is a 47 /// concrete function or a function template. 48 class AnyFunctionDecl { 49 NamedDecl *Function; 50 AnyFunctionDecl(NamedDecl * ND)51 AnyFunctionDecl(NamedDecl *ND) : Function(ND) { } 52 53 public: AnyFunctionDecl(FunctionDecl * FD)54 AnyFunctionDecl(FunctionDecl *FD) : Function(FD) { } 55 AnyFunctionDecl(FunctionTemplateDecl *FTD); 56 57 /// \brief Implicily converts any function or function template into a 58 /// named declaration. 59 operator NamedDecl *() const { return Function; } 60 61 /// \brief Retrieve the underlying function or function template. get()62 NamedDecl *get() const { return Function; } 63 getFromNamedDecl(NamedDecl * ND)64 static AnyFunctionDecl getFromNamedDecl(NamedDecl *ND) { 65 return AnyFunctionDecl(ND); 66 } 67 }; 68 69 } // end namespace clang 70 71 namespace llvm { 72 // Provide PointerLikeTypeTraits for non-cvr pointers. 73 template<> 74 class PointerLikeTypeTraits< ::clang::AnyFunctionDecl> { 75 public: getAsVoidPointer(::clang::AnyFunctionDecl F)76 static inline void *getAsVoidPointer(::clang::AnyFunctionDecl F) { 77 return F.get(); 78 } getFromVoidPointer(void * P)79 static inline ::clang::AnyFunctionDecl getFromVoidPointer(void *P) { 80 return ::clang::AnyFunctionDecl::getFromNamedDecl( 81 static_cast< ::clang::NamedDecl*>(P)); 82 } 83 84 enum { NumLowBitsAvailable = 2 }; 85 }; 86 87 } // end namespace llvm 88 89 namespace clang { 90 91 /// \brief Represents an access specifier followed by colon ':'. 92 /// 93 /// An objects of this class represents sugar for the syntactic occurrence 94 /// of an access specifier followed by a colon in the list of member 95 /// specifiers of a C++ class definition. 96 /// 97 /// Note that they do not represent other uses of access specifiers, 98 /// such as those occurring in a list of base specifiers. 99 /// Also note that this class has nothing to do with so-called 100 /// "access declarations" (C++98 11.3 [class.access.dcl]). 101 class AccessSpecDecl : public Decl { 102 virtual void anchor(); 103 /// \brief The location of the ':'. 104 SourceLocation ColonLoc; 105 AccessSpecDecl(AccessSpecifier AS,DeclContext * DC,SourceLocation ASLoc,SourceLocation ColonLoc)106 AccessSpecDecl(AccessSpecifier AS, DeclContext *DC, 107 SourceLocation ASLoc, SourceLocation ColonLoc) 108 : Decl(AccessSpec, DC, ASLoc), ColonLoc(ColonLoc) { 109 setAccess(AS); 110 } AccessSpecDecl(EmptyShell Empty)111 AccessSpecDecl(EmptyShell Empty) 112 : Decl(AccessSpec, Empty) { } 113 public: 114 /// \brief The location of the access specifier. getAccessSpecifierLoc()115 SourceLocation getAccessSpecifierLoc() const { return getLocation(); } 116 /// \brief Sets the location of the access specifier. setAccessSpecifierLoc(SourceLocation ASLoc)117 void setAccessSpecifierLoc(SourceLocation ASLoc) { setLocation(ASLoc); } 118 119 /// \brief The location of the colon following the access specifier. getColonLoc()120 SourceLocation getColonLoc() const { return ColonLoc; } 121 /// \brief Sets the location of the colon. setColonLoc(SourceLocation CLoc)122 void setColonLoc(SourceLocation CLoc) { ColonLoc = CLoc; } 123 getSourceRange()124 SourceRange getSourceRange() const override LLVM_READONLY { 125 return SourceRange(getAccessSpecifierLoc(), getColonLoc()); 126 } 127 Create(ASTContext & C,AccessSpecifier AS,DeclContext * DC,SourceLocation ASLoc,SourceLocation ColonLoc)128 static AccessSpecDecl *Create(ASTContext &C, AccessSpecifier AS, 129 DeclContext *DC, SourceLocation ASLoc, 130 SourceLocation ColonLoc) { 131 return new (C, DC) AccessSpecDecl(AS, DC, ASLoc, ColonLoc); 132 } 133 static AccessSpecDecl *CreateDeserialized(ASTContext &C, unsigned ID); 134 135 // Implement isa/cast/dyncast/etc. classof(const Decl * D)136 static bool classof(const Decl *D) { return classofKind(D->getKind()); } classofKind(Kind K)137 static bool classofKind(Kind K) { return K == AccessSpec; } 138 }; 139 140 141 /// \brief Represents a base class of a C++ class. 142 /// 143 /// Each CXXBaseSpecifier represents a single, direct base class (or 144 /// struct) of a C++ class (or struct). It specifies the type of that 145 /// base class, whether it is a virtual or non-virtual base, and what 146 /// level of access (public, protected, private) is used for the 147 /// derivation. For example: 148 /// 149 /// \code 150 /// class A { }; 151 /// class B { }; 152 /// class C : public virtual A, protected B { }; 153 /// \endcode 154 /// 155 /// In this code, C will have two CXXBaseSpecifiers, one for "public 156 /// virtual A" and the other for "protected B". 157 class CXXBaseSpecifier { 158 /// \brief The source code range that covers the full base 159 /// specifier, including the "virtual" (if present) and access 160 /// specifier (if present). 161 SourceRange Range; 162 163 /// \brief The source location of the ellipsis, if this is a pack 164 /// expansion. 165 SourceLocation EllipsisLoc; 166 167 /// \brief Whether this is a virtual base class or not. 168 bool Virtual : 1; 169 170 /// \brief Whether this is the base of a class (true) or of a struct (false). 171 /// 172 /// This determines the mapping from the access specifier as written in the 173 /// source code to the access specifier used for semantic analysis. 174 bool BaseOfClass : 1; 175 176 /// \brief Access specifier as written in the source code (may be AS_none). 177 /// 178 /// The actual type of data stored here is an AccessSpecifier, but we use 179 /// "unsigned" here to work around a VC++ bug. 180 unsigned Access : 2; 181 182 /// \brief Whether the class contains a using declaration 183 /// to inherit the named class's constructors. 184 bool InheritConstructors : 1; 185 186 /// \brief The type of the base class. 187 /// 188 /// This will be a class or struct (or a typedef of such). The source code 189 /// range does not include the \c virtual or the access specifier. 190 TypeSourceInfo *BaseTypeInfo; 191 192 public: CXXBaseSpecifier()193 CXXBaseSpecifier() { } 194 CXXBaseSpecifier(SourceRange R,bool V,bool BC,AccessSpecifier A,TypeSourceInfo * TInfo,SourceLocation EllipsisLoc)195 CXXBaseSpecifier(SourceRange R, bool V, bool BC, AccessSpecifier A, 196 TypeSourceInfo *TInfo, SourceLocation EllipsisLoc) 197 : Range(R), EllipsisLoc(EllipsisLoc), Virtual(V), BaseOfClass(BC), 198 Access(A), InheritConstructors(false), BaseTypeInfo(TInfo) { } 199 200 /// \brief Retrieves the source range that contains the entire base specifier. getSourceRange()201 SourceRange getSourceRange() const LLVM_READONLY { return Range; } getLocStart()202 SourceLocation getLocStart() const LLVM_READONLY { return Range.getBegin(); } getLocEnd()203 SourceLocation getLocEnd() const LLVM_READONLY { return Range.getEnd(); } 204 205 /// \brief Determines whether the base class is a virtual base class (or not). isVirtual()206 bool isVirtual() const { return Virtual; } 207 208 /// \brief Determine whether this base class is a base of a class declared 209 /// with the 'class' keyword (vs. one declared with the 'struct' keyword). isBaseOfClass()210 bool isBaseOfClass() const { return BaseOfClass; } 211 212 /// \brief Determine whether this base specifier is a pack expansion. isPackExpansion()213 bool isPackExpansion() const { return EllipsisLoc.isValid(); } 214 215 /// \brief Determine whether this base class's constructors get inherited. getInheritConstructors()216 bool getInheritConstructors() const { return InheritConstructors; } 217 218 /// \brief Set that this base class's constructors should be inherited. 219 void setInheritConstructors(bool Inherit = true) { 220 InheritConstructors = Inherit; 221 } 222 223 /// \brief For a pack expansion, determine the location of the ellipsis. getEllipsisLoc()224 SourceLocation getEllipsisLoc() const { 225 return EllipsisLoc; 226 } 227 228 /// \brief Returns the access specifier for this base specifier. 229 /// 230 /// This is the actual base specifier as used for semantic analysis, so 231 /// the result can never be AS_none. To retrieve the access specifier as 232 /// written in the source code, use getAccessSpecifierAsWritten(). getAccessSpecifier()233 AccessSpecifier getAccessSpecifier() const { 234 if ((AccessSpecifier)Access == AS_none) 235 return BaseOfClass? AS_private : AS_public; 236 else 237 return (AccessSpecifier)Access; 238 } 239 240 /// \brief Retrieves the access specifier as written in the source code 241 /// (which may mean that no access specifier was explicitly written). 242 /// 243 /// Use getAccessSpecifier() to retrieve the access specifier for use in 244 /// semantic analysis. getAccessSpecifierAsWritten()245 AccessSpecifier getAccessSpecifierAsWritten() const { 246 return (AccessSpecifier)Access; 247 } 248 249 /// \brief Retrieves the type of the base class. 250 /// 251 /// This type will always be an unqualified class type. getType()252 QualType getType() const { 253 return BaseTypeInfo->getType().getUnqualifiedType(); 254 } 255 256 /// \brief Retrieves the type and source location of the base class. getTypeSourceInfo()257 TypeSourceInfo *getTypeSourceInfo() const { return BaseTypeInfo; } 258 }; 259 260 /// \brief A lazy pointer to the definition data for a declaration. 261 /// FIXME: This is a little CXXRecordDecl-specific that the moment. 262 template<typename Decl, typename T> class LazyDefinitionDataPtr { 263 llvm::PointerUnion<T *, Decl *> DataOrCanonicalDecl; 264 update()265 LazyDefinitionDataPtr update() { 266 if (Decl *Canon = DataOrCanonicalDecl.template dyn_cast<Decl*>()) { 267 if (Canon->isCanonicalDecl()) 268 Canon->getMostRecentDecl(); 269 else 270 // Declaration isn't canonical any more; 271 // update it and perform path compression. 272 *this = Canon->getPreviousDecl()->DefinitionData.update(); 273 } 274 return *this; 275 } 276 277 public: LazyDefinitionDataPtr(Decl * Canon)278 LazyDefinitionDataPtr(Decl *Canon) : DataOrCanonicalDecl(Canon) {} LazyDefinitionDataPtr(T * Data)279 LazyDefinitionDataPtr(T *Data) : DataOrCanonicalDecl(Data) {} getNotUpdated()280 T *getNotUpdated() { return DataOrCanonicalDecl.template dyn_cast<T*>(); } get()281 T *get() { return update().getNotUpdated(); } 282 }; 283 284 /// \brief Represents a C++ struct/union/class. 285 class CXXRecordDecl : public RecordDecl { 286 287 friend void TagDecl::startDefinition(); 288 289 /// Values used in DefinitionData fields to represent special members. 290 enum SpecialMemberFlags { 291 SMF_DefaultConstructor = 0x1, 292 SMF_CopyConstructor = 0x2, 293 SMF_MoveConstructor = 0x4, 294 SMF_CopyAssignment = 0x8, 295 SMF_MoveAssignment = 0x10, 296 SMF_Destructor = 0x20, 297 SMF_All = 0x3f 298 }; 299 300 struct DefinitionData { 301 DefinitionData(CXXRecordDecl *D); 302 303 /// \brief True if this class has any user-declared constructors. 304 bool UserDeclaredConstructor : 1; 305 306 /// \brief The user-declared special members which this class has. 307 unsigned UserDeclaredSpecialMembers : 6; 308 309 /// \brief True when this class is an aggregate. 310 bool Aggregate : 1; 311 312 /// \brief True when this class is a POD-type. 313 bool PlainOldData : 1; 314 315 /// true when this class is empty for traits purposes, 316 /// i.e. has no data members other than 0-width bit-fields, has no 317 /// virtual function/base, and doesn't inherit from a non-empty 318 /// class. Doesn't take union-ness into account. 319 bool Empty : 1; 320 321 /// \brief True when this class is polymorphic, i.e., has at 322 /// least one virtual member or derives from a polymorphic class. 323 bool Polymorphic : 1; 324 325 /// \brief True when this class is abstract, i.e., has at least 326 /// one pure virtual function, (that can come from a base class). 327 bool Abstract : 1; 328 329 /// \brief True when this class has standard layout. 330 /// 331 /// C++11 [class]p7. A standard-layout class is a class that: 332 /// * has no non-static data members of type non-standard-layout class (or 333 /// array of such types) or reference, 334 /// * has no virtual functions (10.3) and no virtual base classes (10.1), 335 /// * has the same access control (Clause 11) for all non-static data 336 /// members 337 /// * has no non-standard-layout base classes, 338 /// * either has no non-static data members in the most derived class and at 339 /// most one base class with non-static data members, or has no base 340 /// classes with non-static data members, and 341 /// * has no base classes of the same type as the first non-static data 342 /// member. 343 bool IsStandardLayout : 1; 344 345 /// \brief True when there are no non-empty base classes. 346 /// 347 /// This is a helper bit of state used to implement IsStandardLayout more 348 /// efficiently. 349 bool HasNoNonEmptyBases : 1; 350 351 /// \brief True when there are private non-static data members. 352 bool HasPrivateFields : 1; 353 354 /// \brief True when there are protected non-static data members. 355 bool HasProtectedFields : 1; 356 357 /// \brief True when there are private non-static data members. 358 bool HasPublicFields : 1; 359 360 /// \brief True if this class (or any subobject) has mutable fields. 361 bool HasMutableFields : 1; 362 363 /// \brief True if this class (or any nested anonymous struct or union) 364 /// has variant members. 365 bool HasVariantMembers : 1; 366 367 /// \brief True if there no non-field members declared by the user. 368 bool HasOnlyCMembers : 1; 369 370 /// \brief True if any field has an in-class initializer, including those 371 /// within anonymous unions or structs. 372 bool HasInClassInitializer : 1; 373 374 /// \brief True if any field is of reference type, and does not have an 375 /// in-class initializer. 376 /// 377 /// In this case, value-initialization of this class is illegal in C++98 378 /// even if the class has a trivial default constructor. 379 bool HasUninitializedReferenceMember : 1; 380 381 /// \brief These flags are \c true if a defaulted corresponding special 382 /// member can't be fully analyzed without performing overload resolution. 383 /// @{ 384 bool NeedOverloadResolutionForMoveConstructor : 1; 385 bool NeedOverloadResolutionForMoveAssignment : 1; 386 bool NeedOverloadResolutionForDestructor : 1; 387 /// @} 388 389 /// \brief These flags are \c true if an implicit defaulted corresponding 390 /// special member would be defined as deleted. 391 /// @{ 392 bool DefaultedMoveConstructorIsDeleted : 1; 393 bool DefaultedMoveAssignmentIsDeleted : 1; 394 bool DefaultedDestructorIsDeleted : 1; 395 /// @} 396 397 /// \brief The trivial special members which this class has, per 398 /// C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25, 399 /// C++11 [class.dtor]p5, or would have if the member were not suppressed. 400 /// 401 /// This excludes any user-declared but not user-provided special members 402 /// which have been declared but not yet defined. 403 unsigned HasTrivialSpecialMembers : 6; 404 405 /// \brief The declared special members of this class which are known to be 406 /// non-trivial. 407 /// 408 /// This excludes any user-declared but not user-provided special members 409 /// which have been declared but not yet defined, and any implicit special 410 /// members which have not yet been declared. 411 unsigned DeclaredNonTrivialSpecialMembers : 6; 412 413 /// \brief True when this class has a destructor with no semantic effect. 414 bool HasIrrelevantDestructor : 1; 415 416 /// \brief True when this class has at least one user-declared constexpr 417 /// constructor which is neither the copy nor move constructor. 418 bool HasConstexprNonCopyMoveConstructor : 1; 419 420 /// \brief True if a defaulted default constructor for this class would 421 /// be constexpr. 422 bool DefaultedDefaultConstructorIsConstexpr : 1; 423 424 /// \brief True if this class has a constexpr default constructor. 425 /// 426 /// This is true for either a user-declared constexpr default constructor 427 /// or an implicitly declared constexpr default constructor. 428 bool HasConstexprDefaultConstructor : 1; 429 430 /// \brief True when this class contains at least one non-static data 431 /// member or base class of non-literal or volatile type. 432 bool HasNonLiteralTypeFieldsOrBases : 1; 433 434 /// \brief True when visible conversion functions are already computed 435 /// and are available. 436 bool ComputedVisibleConversions : 1; 437 438 /// \brief Whether we have a C++11 user-provided default constructor (not 439 /// explicitly deleted or defaulted). 440 bool UserProvidedDefaultConstructor : 1; 441 442 /// \brief The special members which have been declared for this class, 443 /// either by the user or implicitly. 444 unsigned DeclaredSpecialMembers : 6; 445 446 /// \brief Whether an implicit copy constructor would have a const-qualified 447 /// parameter. 448 bool ImplicitCopyConstructorHasConstParam : 1; 449 450 /// \brief Whether an implicit copy assignment operator would have a 451 /// const-qualified parameter. 452 bool ImplicitCopyAssignmentHasConstParam : 1; 453 454 /// \brief Whether any declared copy constructor has a const-qualified 455 /// parameter. 456 bool HasDeclaredCopyConstructorWithConstParam : 1; 457 458 /// \brief Whether any declared copy assignment operator has either a 459 /// const-qualified reference parameter or a non-reference parameter. 460 bool HasDeclaredCopyAssignmentWithConstParam : 1; 461 462 /// \brief Whether this class describes a C++ lambda. 463 bool IsLambda : 1; 464 465 /// \brief Whether we are currently parsing base specifiers. 466 bool IsParsingBaseSpecifiers : 1; 467 468 /// \brief The number of base class specifiers in Bases. 469 unsigned NumBases; 470 471 /// \brief The number of virtual base class specifiers in VBases. 472 unsigned NumVBases; 473 474 /// \brief Base classes of this class. 475 /// 476 /// FIXME: This is wasted space for a union. 477 LazyCXXBaseSpecifiersPtr Bases; 478 479 /// \brief direct and indirect virtual base classes of this class. 480 LazyCXXBaseSpecifiersPtr VBases; 481 482 /// \brief The conversion functions of this C++ class (but not its 483 /// inherited conversion functions). 484 /// 485 /// Each of the entries in this overload set is a CXXConversionDecl. 486 LazyASTUnresolvedSet Conversions; 487 488 /// \brief The conversion functions of this C++ class and all those 489 /// inherited conversion functions that are visible in this class. 490 /// 491 /// Each of the entries in this overload set is a CXXConversionDecl or a 492 /// FunctionTemplateDecl. 493 LazyASTUnresolvedSet VisibleConversions; 494 495 /// \brief The declaration which defines this record. 496 CXXRecordDecl *Definition; 497 498 /// \brief The first friend declaration in this class, or null if there 499 /// aren't any. 500 /// 501 /// This is actually currently stored in reverse order. 502 LazyDeclPtr FirstFriend; 503 504 /// \brief Retrieve the set of direct base classes. getBasesDefinitionData505 CXXBaseSpecifier *getBases() const { 506 if (!Bases.isOffset()) 507 return Bases.get(nullptr); 508 return getBasesSlowCase(); 509 } 510 511 /// \brief Retrieve the set of virtual base classes. getVBasesDefinitionData512 CXXBaseSpecifier *getVBases() const { 513 if (!VBases.isOffset()) 514 return VBases.get(nullptr); 515 return getVBasesSlowCase(); 516 } 517 518 private: 519 CXXBaseSpecifier *getBasesSlowCase() const; 520 CXXBaseSpecifier *getVBasesSlowCase() const; 521 }; 522 523 typedef LazyDefinitionDataPtr<CXXRecordDecl, struct DefinitionData> 524 DefinitionDataPtr; 525 friend class LazyDefinitionDataPtr<CXXRecordDecl, struct DefinitionData>; 526 527 mutable DefinitionDataPtr DefinitionData; 528 529 /// \brief Describes a C++ closure type (generated by a lambda expression). 530 struct LambdaDefinitionData : public DefinitionData { 531 typedef LambdaCapture Capture; 532 LambdaDefinitionDataLambdaDefinitionData533 LambdaDefinitionData(CXXRecordDecl *D, TypeSourceInfo *Info, 534 bool Dependent, bool IsGeneric, 535 LambdaCaptureDefault CaptureDefault) 536 : DefinitionData(D), Dependent(Dependent), IsGenericLambda(IsGeneric), 537 CaptureDefault(CaptureDefault), NumCaptures(0), NumExplicitCaptures(0), 538 ManglingNumber(0), ContextDecl(nullptr), Captures(nullptr), 539 MethodTyInfo(Info) { 540 IsLambda = true; 541 } 542 543 /// \brief Whether this lambda is known to be dependent, even if its 544 /// context isn't dependent. 545 /// 546 /// A lambda with a non-dependent context can be dependent if it occurs 547 /// within the default argument of a function template, because the 548 /// lambda will have been created with the enclosing context as its 549 /// declaration context, rather than function. This is an unfortunate 550 /// artifact of having to parse the default arguments before. 551 unsigned Dependent : 1; 552 553 /// \brief Whether this lambda is a generic lambda. 554 unsigned IsGenericLambda : 1; 555 556 /// \brief The Default Capture. 557 unsigned CaptureDefault : 2; 558 559 /// \brief The number of captures in this lambda is limited 2^NumCaptures. 560 unsigned NumCaptures : 15; 561 562 /// \brief The number of explicit captures in this lambda. 563 unsigned NumExplicitCaptures : 13; 564 565 /// \brief The number used to indicate this lambda expression for name 566 /// mangling in the Itanium C++ ABI. 567 unsigned ManglingNumber; 568 569 /// \brief The declaration that provides context for this lambda, if the 570 /// actual DeclContext does not suffice. This is used for lambdas that 571 /// occur within default arguments of function parameters within the class 572 /// or within a data member initializer. 573 Decl *ContextDecl; 574 575 /// \brief The list of captures, both explicit and implicit, for this 576 /// lambda. 577 Capture *Captures; 578 579 /// \brief The type of the call method. 580 TypeSourceInfo *MethodTyInfo; 581 582 }; 583 data()584 struct DefinitionData &data() const { 585 auto *DD = DefinitionData.get(); 586 assert(DD && "queried property of class with no definition"); 587 return *DD; 588 } 589 getLambdaData()590 struct LambdaDefinitionData &getLambdaData() const { 591 // No update required: a merged definition cannot change any lambda 592 // properties. 593 auto *DD = DefinitionData.getNotUpdated(); 594 assert(DD && DD->IsLambda && "queried lambda property of non-lambda class"); 595 return static_cast<LambdaDefinitionData&>(*DD); 596 } 597 598 /// \brief The template or declaration that this declaration 599 /// describes or was instantiated from, respectively. 600 /// 601 /// For non-templates, this value will be null. For record 602 /// declarations that describe a class template, this will be a 603 /// pointer to a ClassTemplateDecl. For member 604 /// classes of class template specializations, this will be the 605 /// MemberSpecializationInfo referring to the member class that was 606 /// instantiated or specialized. 607 llvm::PointerUnion<ClassTemplateDecl*, MemberSpecializationInfo*> 608 TemplateOrInstantiation; 609 610 friend class DeclContext; 611 friend class LambdaExpr; 612 613 /// \brief Called from setBases and addedMember to notify the class that a 614 /// direct or virtual base class or a member of class type has been added. 615 void addedClassSubobject(CXXRecordDecl *Base); 616 617 /// \brief Notify the class that member has been added. 618 /// 619 /// This routine helps maintain information about the class based on which 620 /// members have been added. It will be invoked by DeclContext::addDecl() 621 /// whenever a member is added to this record. 622 void addedMember(Decl *D); 623 624 void markedVirtualFunctionPure(); 625 friend void FunctionDecl::setPure(bool); 626 627 friend class ASTNodeImporter; 628 629 /// \brief Get the head of our list of friend declarations, possibly 630 /// deserializing the friends from an external AST source. 631 FriendDecl *getFirstFriend() const; 632 633 protected: 634 CXXRecordDecl(Kind K, TagKind TK, const ASTContext &C, DeclContext *DC, 635 SourceLocation StartLoc, SourceLocation IdLoc, 636 IdentifierInfo *Id, CXXRecordDecl *PrevDecl); 637 638 public: 639 /// \brief Iterator that traverses the base classes of a class. 640 typedef CXXBaseSpecifier* base_class_iterator; 641 642 /// \brief Iterator that traverses the base classes of a class. 643 typedef const CXXBaseSpecifier* base_class_const_iterator; 644 getCanonicalDecl()645 CXXRecordDecl *getCanonicalDecl() override { 646 return cast<CXXRecordDecl>(RecordDecl::getCanonicalDecl()); 647 } getCanonicalDecl()648 virtual const CXXRecordDecl *getCanonicalDecl() const { 649 return cast<CXXRecordDecl>(RecordDecl::getCanonicalDecl()); 650 } 651 getPreviousDecl()652 CXXRecordDecl *getPreviousDecl() { 653 return cast_or_null<CXXRecordDecl>( 654 static_cast<RecordDecl *>(this)->getPreviousDecl()); 655 } getPreviousDecl()656 const CXXRecordDecl *getPreviousDecl() const { 657 return const_cast<CXXRecordDecl*>(this)->getPreviousDecl(); 658 } 659 getMostRecentDecl()660 CXXRecordDecl *getMostRecentDecl() { 661 return cast<CXXRecordDecl>( 662 static_cast<RecordDecl *>(this)->getMostRecentDecl()); 663 } 664 getMostRecentDecl()665 const CXXRecordDecl *getMostRecentDecl() const { 666 return const_cast<CXXRecordDecl*>(this)->getMostRecentDecl(); 667 } 668 getDefinition()669 CXXRecordDecl *getDefinition() const { 670 auto *DD = DefinitionData.get(); 671 return DD ? DD->Definition : nullptr; 672 } 673 hasDefinition()674 bool hasDefinition() const { return DefinitionData.get(); } 675 676 static CXXRecordDecl *Create(const ASTContext &C, TagKind TK, DeclContext *DC, 677 SourceLocation StartLoc, SourceLocation IdLoc, 678 IdentifierInfo *Id, 679 CXXRecordDecl *PrevDecl = nullptr, 680 bool DelayTypeCreation = false); 681 static CXXRecordDecl *CreateLambda(const ASTContext &C, DeclContext *DC, 682 TypeSourceInfo *Info, SourceLocation Loc, 683 bool DependentLambda, bool IsGeneric, 684 LambdaCaptureDefault CaptureDefault); 685 static CXXRecordDecl *CreateDeserialized(const ASTContext &C, unsigned ID); 686 isDynamicClass()687 bool isDynamicClass() const { 688 return data().Polymorphic || data().NumVBases != 0; 689 } 690 setIsParsingBaseSpecifiers()691 void setIsParsingBaseSpecifiers() { data().IsParsingBaseSpecifiers = true; } 692 isParsingBaseSpecifiers()693 bool isParsingBaseSpecifiers() const { 694 return data().IsParsingBaseSpecifiers; 695 } 696 697 /// \brief Sets the base classes of this struct or class. 698 void setBases(CXXBaseSpecifier const * const *Bases, unsigned NumBases); 699 700 /// \brief Retrieves the number of base classes of this class. getNumBases()701 unsigned getNumBases() const { return data().NumBases; } 702 703 typedef llvm::iterator_range<base_class_iterator> base_class_range; 704 typedef llvm::iterator_range<base_class_const_iterator> 705 base_class_const_range; 706 bases()707 base_class_range bases() { 708 return base_class_range(bases_begin(), bases_end()); 709 } bases()710 base_class_const_range bases() const { 711 return base_class_const_range(bases_begin(), bases_end()); 712 } 713 bases_begin()714 base_class_iterator bases_begin() { return data().getBases(); } bases_begin()715 base_class_const_iterator bases_begin() const { return data().getBases(); } bases_end()716 base_class_iterator bases_end() { return bases_begin() + data().NumBases; } bases_end()717 base_class_const_iterator bases_end() const { 718 return bases_begin() + data().NumBases; 719 } 720 721 /// \brief Retrieves the number of virtual base classes of this class. getNumVBases()722 unsigned getNumVBases() const { return data().NumVBases; } 723 vbases()724 base_class_range vbases() { 725 return base_class_range(vbases_begin(), vbases_end()); 726 } vbases()727 base_class_const_range vbases() const { 728 return base_class_const_range(vbases_begin(), vbases_end()); 729 } 730 vbases_begin()731 base_class_iterator vbases_begin() { return data().getVBases(); } vbases_begin()732 base_class_const_iterator vbases_begin() const { return data().getVBases(); } vbases_end()733 base_class_iterator vbases_end() { return vbases_begin() + data().NumVBases; } vbases_end()734 base_class_const_iterator vbases_end() const { 735 return vbases_begin() + data().NumVBases; 736 } 737 738 /// \brief Determine whether this class has any dependent base classes which 739 /// are not the current instantiation. 740 bool hasAnyDependentBases() const; 741 742 /// Iterator access to method members. The method iterator visits 743 /// all method members of the class, including non-instance methods, 744 /// special methods, etc. 745 typedef specific_decl_iterator<CXXMethodDecl> method_iterator; 746 typedef llvm::iterator_range<specific_decl_iterator<CXXMethodDecl>> 747 method_range; 748 methods()749 method_range methods() const { 750 return method_range(method_begin(), method_end()); 751 } 752 753 /// \brief Method begin iterator. Iterates in the order the methods 754 /// were declared. method_begin()755 method_iterator method_begin() const { 756 return method_iterator(decls_begin()); 757 } 758 /// \brief Method past-the-end iterator. method_end()759 method_iterator method_end() const { 760 return method_iterator(decls_end()); 761 } 762 763 /// Iterator access to constructor members. 764 typedef specific_decl_iterator<CXXConstructorDecl> ctor_iterator; 765 typedef llvm::iterator_range<specific_decl_iterator<CXXConstructorDecl>> 766 ctor_range; 767 ctors()768 ctor_range ctors() const { return ctor_range(ctor_begin(), ctor_end()); } 769 ctor_begin()770 ctor_iterator ctor_begin() const { 771 return ctor_iterator(decls_begin()); 772 } ctor_end()773 ctor_iterator ctor_end() const { 774 return ctor_iterator(decls_end()); 775 } 776 777 /// An iterator over friend declarations. All of these are defined 778 /// in DeclFriend.h. 779 class friend_iterator; 780 typedef llvm::iterator_range<friend_iterator> friend_range; 781 782 friend_range friends() const; 783 friend_iterator friend_begin() const; 784 friend_iterator friend_end() const; 785 void pushFriendDecl(FriendDecl *FD); 786 787 /// Determines whether this record has any friends. hasFriends()788 bool hasFriends() const { 789 return data().FirstFriend.isValid(); 790 } 791 792 /// \brief \c true if we know for sure that this class has a single, 793 /// accessible, unambiguous move constructor that is not deleted. hasSimpleMoveConstructor()794 bool hasSimpleMoveConstructor() const { 795 return !hasUserDeclaredMoveConstructor() && hasMoveConstructor() && 796 !data().DefaultedMoveConstructorIsDeleted; 797 } 798 /// \brief \c true if we know for sure that this class has a single, 799 /// accessible, unambiguous move assignment operator that is not deleted. hasSimpleMoveAssignment()800 bool hasSimpleMoveAssignment() const { 801 return !hasUserDeclaredMoveAssignment() && hasMoveAssignment() && 802 !data().DefaultedMoveAssignmentIsDeleted; 803 } 804 /// \brief \c true if we know for sure that this class has an accessible 805 /// destructor that is not deleted. hasSimpleDestructor()806 bool hasSimpleDestructor() const { 807 return !hasUserDeclaredDestructor() && 808 !data().DefaultedDestructorIsDeleted; 809 } 810 811 /// \brief Determine whether this class has any default constructors. hasDefaultConstructor()812 bool hasDefaultConstructor() const { 813 return (data().DeclaredSpecialMembers & SMF_DefaultConstructor) || 814 needsImplicitDefaultConstructor(); 815 } 816 817 /// \brief Determine if we need to declare a default constructor for 818 /// this class. 819 /// 820 /// This value is used for lazy creation of default constructors. needsImplicitDefaultConstructor()821 bool needsImplicitDefaultConstructor() const { 822 return !data().UserDeclaredConstructor && 823 !(data().DeclaredSpecialMembers & SMF_DefaultConstructor); 824 } 825 826 /// \brief Determine whether this class has any user-declared constructors. 827 /// 828 /// When true, a default constructor will not be implicitly declared. hasUserDeclaredConstructor()829 bool hasUserDeclaredConstructor() const { 830 return data().UserDeclaredConstructor; 831 } 832 833 /// \brief Whether this class has a user-provided default constructor 834 /// per C++11. hasUserProvidedDefaultConstructor()835 bool hasUserProvidedDefaultConstructor() const { 836 return data().UserProvidedDefaultConstructor; 837 } 838 839 /// \brief Determine whether this class has a user-declared copy constructor. 840 /// 841 /// When false, a copy constructor will be implicitly declared. hasUserDeclaredCopyConstructor()842 bool hasUserDeclaredCopyConstructor() const { 843 return data().UserDeclaredSpecialMembers & SMF_CopyConstructor; 844 } 845 846 /// \brief Determine whether this class needs an implicit copy 847 /// constructor to be lazily declared. needsImplicitCopyConstructor()848 bool needsImplicitCopyConstructor() const { 849 return !(data().DeclaredSpecialMembers & SMF_CopyConstructor); 850 } 851 852 /// \brief Determine whether we need to eagerly declare a defaulted copy 853 /// constructor for this class. needsOverloadResolutionForCopyConstructor()854 bool needsOverloadResolutionForCopyConstructor() const { 855 return data().HasMutableFields; 856 } 857 858 /// \brief Determine whether an implicit copy constructor for this type 859 /// would have a parameter with a const-qualified reference type. implicitCopyConstructorHasConstParam()860 bool implicitCopyConstructorHasConstParam() const { 861 return data().ImplicitCopyConstructorHasConstParam; 862 } 863 864 /// \brief Determine whether this class has a copy constructor with 865 /// a parameter type which is a reference to a const-qualified type. hasCopyConstructorWithConstParam()866 bool hasCopyConstructorWithConstParam() const { 867 return data().HasDeclaredCopyConstructorWithConstParam || 868 (needsImplicitCopyConstructor() && 869 implicitCopyConstructorHasConstParam()); 870 } 871 872 /// \brief Whether this class has a user-declared move constructor or 873 /// assignment operator. 874 /// 875 /// When false, a move constructor and assignment operator may be 876 /// implicitly declared. hasUserDeclaredMoveOperation()877 bool hasUserDeclaredMoveOperation() const { 878 return data().UserDeclaredSpecialMembers & 879 (SMF_MoveConstructor | SMF_MoveAssignment); 880 } 881 882 /// \brief Determine whether this class has had a move constructor 883 /// declared by the user. hasUserDeclaredMoveConstructor()884 bool hasUserDeclaredMoveConstructor() const { 885 return data().UserDeclaredSpecialMembers & SMF_MoveConstructor; 886 } 887 888 /// \brief Determine whether this class has a move constructor. hasMoveConstructor()889 bool hasMoveConstructor() const { 890 return (data().DeclaredSpecialMembers & SMF_MoveConstructor) || 891 needsImplicitMoveConstructor(); 892 } 893 894 /// \brief Set that we attempted to declare an implicitly move 895 /// constructor, but overload resolution failed so we deleted it. setImplicitMoveConstructorIsDeleted()896 void setImplicitMoveConstructorIsDeleted() { 897 assert((data().DefaultedMoveConstructorIsDeleted || 898 needsOverloadResolutionForMoveConstructor()) && 899 "move constructor should not be deleted"); 900 data().DefaultedMoveConstructorIsDeleted = true; 901 } 902 903 /// \brief Determine whether this class should get an implicit move 904 /// constructor or if any existing special member function inhibits this. needsImplicitMoveConstructor()905 bool needsImplicitMoveConstructor() const { 906 return !(data().DeclaredSpecialMembers & SMF_MoveConstructor) && 907 !hasUserDeclaredCopyConstructor() && 908 !hasUserDeclaredCopyAssignment() && 909 !hasUserDeclaredMoveAssignment() && 910 !hasUserDeclaredDestructor(); 911 } 912 913 /// \brief Determine whether we need to eagerly declare a defaulted move 914 /// constructor for this class. needsOverloadResolutionForMoveConstructor()915 bool needsOverloadResolutionForMoveConstructor() const { 916 return data().NeedOverloadResolutionForMoveConstructor; 917 } 918 919 /// \brief Determine whether this class has a user-declared copy assignment 920 /// operator. 921 /// 922 /// When false, a copy assigment operator will be implicitly declared. hasUserDeclaredCopyAssignment()923 bool hasUserDeclaredCopyAssignment() const { 924 return data().UserDeclaredSpecialMembers & SMF_CopyAssignment; 925 } 926 927 /// \brief Determine whether this class needs an implicit copy 928 /// assignment operator to be lazily declared. needsImplicitCopyAssignment()929 bool needsImplicitCopyAssignment() const { 930 return !(data().DeclaredSpecialMembers & SMF_CopyAssignment); 931 } 932 933 /// \brief Determine whether we need to eagerly declare a defaulted copy 934 /// assignment operator for this class. needsOverloadResolutionForCopyAssignment()935 bool needsOverloadResolutionForCopyAssignment() const { 936 return data().HasMutableFields; 937 } 938 939 /// \brief Determine whether an implicit copy assignment operator for this 940 /// type would have a parameter with a const-qualified reference type. implicitCopyAssignmentHasConstParam()941 bool implicitCopyAssignmentHasConstParam() const { 942 return data().ImplicitCopyAssignmentHasConstParam; 943 } 944 945 /// \brief Determine whether this class has a copy assignment operator with 946 /// a parameter type which is a reference to a const-qualified type or is not 947 /// a reference. hasCopyAssignmentWithConstParam()948 bool hasCopyAssignmentWithConstParam() const { 949 return data().HasDeclaredCopyAssignmentWithConstParam || 950 (needsImplicitCopyAssignment() && 951 implicitCopyAssignmentHasConstParam()); 952 } 953 954 /// \brief Determine whether this class has had a move assignment 955 /// declared by the user. hasUserDeclaredMoveAssignment()956 bool hasUserDeclaredMoveAssignment() const { 957 return data().UserDeclaredSpecialMembers & SMF_MoveAssignment; 958 } 959 960 /// \brief Determine whether this class has a move assignment operator. hasMoveAssignment()961 bool hasMoveAssignment() const { 962 return (data().DeclaredSpecialMembers & SMF_MoveAssignment) || 963 needsImplicitMoveAssignment(); 964 } 965 966 /// \brief Set that we attempted to declare an implicit move assignment 967 /// operator, but overload resolution failed so we deleted it. setImplicitMoveAssignmentIsDeleted()968 void setImplicitMoveAssignmentIsDeleted() { 969 assert((data().DefaultedMoveAssignmentIsDeleted || 970 needsOverloadResolutionForMoveAssignment()) && 971 "move assignment should not be deleted"); 972 data().DefaultedMoveAssignmentIsDeleted = true; 973 } 974 975 /// \brief Determine whether this class should get an implicit move 976 /// assignment operator or if any existing special member function inhibits 977 /// this. needsImplicitMoveAssignment()978 bool needsImplicitMoveAssignment() const { 979 return !(data().DeclaredSpecialMembers & SMF_MoveAssignment) && 980 !hasUserDeclaredCopyConstructor() && 981 !hasUserDeclaredCopyAssignment() && 982 !hasUserDeclaredMoveConstructor() && 983 !hasUserDeclaredDestructor(); 984 } 985 986 /// \brief Determine whether we need to eagerly declare a move assignment 987 /// operator for this class. needsOverloadResolutionForMoveAssignment()988 bool needsOverloadResolutionForMoveAssignment() const { 989 return data().NeedOverloadResolutionForMoveAssignment; 990 } 991 992 /// \brief Determine whether this class has a user-declared destructor. 993 /// 994 /// When false, a destructor will be implicitly declared. hasUserDeclaredDestructor()995 bool hasUserDeclaredDestructor() const { 996 return data().UserDeclaredSpecialMembers & SMF_Destructor; 997 } 998 999 /// \brief Determine whether this class needs an implicit destructor to 1000 /// be lazily declared. needsImplicitDestructor()1001 bool needsImplicitDestructor() const { 1002 return !(data().DeclaredSpecialMembers & SMF_Destructor); 1003 } 1004 1005 /// \brief Determine whether we need to eagerly declare a destructor for this 1006 /// class. needsOverloadResolutionForDestructor()1007 bool needsOverloadResolutionForDestructor() const { 1008 return data().NeedOverloadResolutionForDestructor; 1009 } 1010 1011 /// \brief Determine whether this class describes a lambda function object. isLambda()1012 bool isLambda() const { 1013 // An update record can't turn a non-lambda into a lambda. 1014 auto *DD = DefinitionData.getNotUpdated(); 1015 return DD && DD->IsLambda; 1016 } 1017 1018 /// \brief Determine whether this class describes a generic 1019 /// lambda function object (i.e. function call operator is 1020 /// a template). 1021 bool isGenericLambda() const; 1022 1023 /// \brief Retrieve the lambda call operator of the closure type 1024 /// if this is a closure type. 1025 CXXMethodDecl *getLambdaCallOperator() const; 1026 1027 /// \brief Retrieve the lambda static invoker, the address of which 1028 /// is returned by the conversion operator, and the body of which 1029 /// is forwarded to the lambda call operator. 1030 CXXMethodDecl *getLambdaStaticInvoker() const; 1031 1032 /// \brief Retrieve the generic lambda's template parameter list. 1033 /// Returns null if the class does not represent a lambda or a generic 1034 /// lambda. 1035 TemplateParameterList *getGenericLambdaTemplateParameterList() const; 1036 getLambdaCaptureDefault()1037 LambdaCaptureDefault getLambdaCaptureDefault() const { 1038 assert(isLambda()); 1039 return static_cast<LambdaCaptureDefault>(getLambdaData().CaptureDefault); 1040 } 1041 1042 /// \brief For a closure type, retrieve the mapping from captured 1043 /// variables and \c this to the non-static data members that store the 1044 /// values or references of the captures. 1045 /// 1046 /// \param Captures Will be populated with the mapping from captured 1047 /// variables to the corresponding fields. 1048 /// 1049 /// \param ThisCapture Will be set to the field declaration for the 1050 /// \c this capture. 1051 /// 1052 /// \note No entries will be added for init-captures, as they do not capture 1053 /// variables. 1054 void getCaptureFields(llvm::DenseMap<const VarDecl *, FieldDecl *> &Captures, 1055 FieldDecl *&ThisCapture) const; 1056 1057 typedef const LambdaCapture *capture_const_iterator; 1058 typedef llvm::iterator_range<capture_const_iterator> capture_const_range; 1059 captures()1060 capture_const_range captures() const { 1061 return capture_const_range(captures_begin(), captures_end()); 1062 } captures_begin()1063 capture_const_iterator captures_begin() const { 1064 return isLambda() ? getLambdaData().Captures : nullptr; 1065 } captures_end()1066 capture_const_iterator captures_end() const { 1067 return isLambda() ? captures_begin() + getLambdaData().NumCaptures 1068 : nullptr; 1069 } 1070 1071 typedef UnresolvedSetIterator conversion_iterator; conversion_begin()1072 conversion_iterator conversion_begin() const { 1073 return data().Conversions.get(getASTContext()).begin(); 1074 } conversion_end()1075 conversion_iterator conversion_end() const { 1076 return data().Conversions.get(getASTContext()).end(); 1077 } 1078 1079 /// Removes a conversion function from this class. The conversion 1080 /// function must currently be a member of this class. Furthermore, 1081 /// this class must currently be in the process of being defined. 1082 void removeConversion(const NamedDecl *Old); 1083 1084 /// \brief Get all conversion functions visible in current class, 1085 /// including conversion function templates. 1086 std::pair<conversion_iterator, conversion_iterator> 1087 getVisibleConversionFunctions(); 1088 1089 /// Determine whether this class is an aggregate (C++ [dcl.init.aggr]), 1090 /// which is a class with no user-declared constructors, no private 1091 /// or protected non-static data members, no base classes, and no virtual 1092 /// functions (C++ [dcl.init.aggr]p1). isAggregate()1093 bool isAggregate() const { return data().Aggregate; } 1094 1095 /// \brief Whether this class has any in-class initializers 1096 /// for non-static data members (including those in anonymous unions or 1097 /// structs). hasInClassInitializer()1098 bool hasInClassInitializer() const { return data().HasInClassInitializer; } 1099 1100 /// \brief Whether this class or any of its subobjects has any members of 1101 /// reference type which would make value-initialization ill-formed. 1102 /// 1103 /// Per C++03 [dcl.init]p5: 1104 /// - if T is a non-union class type without a user-declared constructor, 1105 /// then every non-static data member and base-class component of T is 1106 /// value-initialized [...] A program that calls for [...] 1107 /// value-initialization of an entity of reference type is ill-formed. hasUninitializedReferenceMember()1108 bool hasUninitializedReferenceMember() const { 1109 return !isUnion() && !hasUserDeclaredConstructor() && 1110 data().HasUninitializedReferenceMember; 1111 } 1112 1113 /// \brief Whether this class is a POD-type (C++ [class]p4) 1114 /// 1115 /// For purposes of this function a class is POD if it is an aggregate 1116 /// that has no non-static non-POD data members, no reference data 1117 /// members, no user-defined copy assignment operator and no 1118 /// user-defined destructor. 1119 /// 1120 /// Note that this is the C++ TR1 definition of POD. isPOD()1121 bool isPOD() const { return data().PlainOldData; } 1122 1123 /// \brief True if this class is C-like, without C++-specific features, e.g. 1124 /// it contains only public fields, no bases, tag kind is not 'class', etc. 1125 bool isCLike() const; 1126 1127 /// \brief Determine whether this is an empty class in the sense of 1128 /// (C++11 [meta.unary.prop]). 1129 /// 1130 /// A non-union class is empty iff it has a virtual function, virtual base, 1131 /// data member (other than 0-width bit-field) or inherits from a non-empty 1132 /// class. 1133 /// 1134 /// \note This does NOT include a check for union-ness. isEmpty()1135 bool isEmpty() const { return data().Empty; } 1136 1137 /// Whether this class is polymorphic (C++ [class.virtual]), 1138 /// which means that the class contains or inherits a virtual function. isPolymorphic()1139 bool isPolymorphic() const { return data().Polymorphic; } 1140 1141 /// \brief Determine whether this class has a pure virtual function. 1142 /// 1143 /// The class is is abstract per (C++ [class.abstract]p2) if it declares 1144 /// a pure virtual function or inherits a pure virtual function that is 1145 /// not overridden. isAbstract()1146 bool isAbstract() const { return data().Abstract; } 1147 1148 /// \brief Determine whether this class has standard layout per 1149 /// (C++ [class]p7) isStandardLayout()1150 bool isStandardLayout() const { return data().IsStandardLayout; } 1151 1152 /// \brief Determine whether this class, or any of its class subobjects, 1153 /// contains a mutable field. hasMutableFields()1154 bool hasMutableFields() const { return data().HasMutableFields; } 1155 1156 /// \brief Determine whether this class has any variant members. hasVariantMembers()1157 bool hasVariantMembers() const { return data().HasVariantMembers; } 1158 1159 /// \brief Determine whether this class has a trivial default constructor 1160 /// (C++11 [class.ctor]p5). hasTrivialDefaultConstructor()1161 bool hasTrivialDefaultConstructor() const { 1162 return hasDefaultConstructor() && 1163 (data().HasTrivialSpecialMembers & SMF_DefaultConstructor); 1164 } 1165 1166 /// \brief Determine whether this class has a non-trivial default constructor 1167 /// (C++11 [class.ctor]p5). hasNonTrivialDefaultConstructor()1168 bool hasNonTrivialDefaultConstructor() const { 1169 return (data().DeclaredNonTrivialSpecialMembers & SMF_DefaultConstructor) || 1170 (needsImplicitDefaultConstructor() && 1171 !(data().HasTrivialSpecialMembers & SMF_DefaultConstructor)); 1172 } 1173 1174 /// \brief Determine whether this class has at least one constexpr constructor 1175 /// other than the copy or move constructors. hasConstexprNonCopyMoveConstructor()1176 bool hasConstexprNonCopyMoveConstructor() const { 1177 return data().HasConstexprNonCopyMoveConstructor || 1178 (needsImplicitDefaultConstructor() && 1179 defaultedDefaultConstructorIsConstexpr()); 1180 } 1181 1182 /// \brief Determine whether a defaulted default constructor for this class 1183 /// would be constexpr. defaultedDefaultConstructorIsConstexpr()1184 bool defaultedDefaultConstructorIsConstexpr() const { 1185 return data().DefaultedDefaultConstructorIsConstexpr && 1186 (!isUnion() || hasInClassInitializer() || !hasVariantMembers()); 1187 } 1188 1189 /// \brief Determine whether this class has a constexpr default constructor. hasConstexprDefaultConstructor()1190 bool hasConstexprDefaultConstructor() const { 1191 return data().HasConstexprDefaultConstructor || 1192 (needsImplicitDefaultConstructor() && 1193 defaultedDefaultConstructorIsConstexpr()); 1194 } 1195 1196 /// \brief Determine whether this class has a trivial copy constructor 1197 /// (C++ [class.copy]p6, C++11 [class.copy]p12) hasTrivialCopyConstructor()1198 bool hasTrivialCopyConstructor() const { 1199 return data().HasTrivialSpecialMembers & SMF_CopyConstructor; 1200 } 1201 1202 /// \brief Determine whether this class has a non-trivial copy constructor 1203 /// (C++ [class.copy]p6, C++11 [class.copy]p12) hasNonTrivialCopyConstructor()1204 bool hasNonTrivialCopyConstructor() const { 1205 return data().DeclaredNonTrivialSpecialMembers & SMF_CopyConstructor || 1206 !hasTrivialCopyConstructor(); 1207 } 1208 1209 /// \brief Determine whether this class has a trivial move constructor 1210 /// (C++11 [class.copy]p12) hasTrivialMoveConstructor()1211 bool hasTrivialMoveConstructor() const { 1212 return hasMoveConstructor() && 1213 (data().HasTrivialSpecialMembers & SMF_MoveConstructor); 1214 } 1215 1216 /// \brief Determine whether this class has a non-trivial move constructor 1217 /// (C++11 [class.copy]p12) hasNonTrivialMoveConstructor()1218 bool hasNonTrivialMoveConstructor() const { 1219 return (data().DeclaredNonTrivialSpecialMembers & SMF_MoveConstructor) || 1220 (needsImplicitMoveConstructor() && 1221 !(data().HasTrivialSpecialMembers & SMF_MoveConstructor)); 1222 } 1223 1224 /// \brief Determine whether this class has a trivial copy assignment operator 1225 /// (C++ [class.copy]p11, C++11 [class.copy]p25) hasTrivialCopyAssignment()1226 bool hasTrivialCopyAssignment() const { 1227 return data().HasTrivialSpecialMembers & SMF_CopyAssignment; 1228 } 1229 1230 /// \brief Determine whether this class has a non-trivial copy assignment 1231 /// operator (C++ [class.copy]p11, C++11 [class.copy]p25) hasNonTrivialCopyAssignment()1232 bool hasNonTrivialCopyAssignment() const { 1233 return data().DeclaredNonTrivialSpecialMembers & SMF_CopyAssignment || 1234 !hasTrivialCopyAssignment(); 1235 } 1236 1237 /// \brief Determine whether this class has a trivial move assignment operator 1238 /// (C++11 [class.copy]p25) hasTrivialMoveAssignment()1239 bool hasTrivialMoveAssignment() const { 1240 return hasMoveAssignment() && 1241 (data().HasTrivialSpecialMembers & SMF_MoveAssignment); 1242 } 1243 1244 /// \brief Determine whether this class has a non-trivial move assignment 1245 /// operator (C++11 [class.copy]p25) hasNonTrivialMoveAssignment()1246 bool hasNonTrivialMoveAssignment() const { 1247 return (data().DeclaredNonTrivialSpecialMembers & SMF_MoveAssignment) || 1248 (needsImplicitMoveAssignment() && 1249 !(data().HasTrivialSpecialMembers & SMF_MoveAssignment)); 1250 } 1251 1252 /// \brief Determine whether this class has a trivial destructor 1253 /// (C++ [class.dtor]p3) hasTrivialDestructor()1254 bool hasTrivialDestructor() const { 1255 return data().HasTrivialSpecialMembers & SMF_Destructor; 1256 } 1257 1258 /// \brief Determine whether this class has a non-trivial destructor 1259 /// (C++ [class.dtor]p3) hasNonTrivialDestructor()1260 bool hasNonTrivialDestructor() const { 1261 return !(data().HasTrivialSpecialMembers & SMF_Destructor); 1262 } 1263 1264 /// \brief Determine whether this class has a destructor which has no 1265 /// semantic effect. 1266 /// 1267 /// Any such destructor will be trivial, public, defaulted and not deleted, 1268 /// and will call only irrelevant destructors. hasIrrelevantDestructor()1269 bool hasIrrelevantDestructor() const { 1270 return data().HasIrrelevantDestructor; 1271 } 1272 1273 /// \brief Determine whether this class has a non-literal or/ volatile type 1274 /// non-static data member or base class. hasNonLiteralTypeFieldsOrBases()1275 bool hasNonLiteralTypeFieldsOrBases() const { 1276 return data().HasNonLiteralTypeFieldsOrBases; 1277 } 1278 1279 /// \brief Determine whether this class is considered trivially copyable per 1280 /// (C++11 [class]p6). 1281 bool isTriviallyCopyable() const; 1282 1283 /// \brief Determine whether this class is considered trivial. 1284 /// 1285 /// C++11 [class]p6: 1286 /// "A trivial class is a class that has a trivial default constructor and 1287 /// is trivially copiable." isTrivial()1288 bool isTrivial() const { 1289 return isTriviallyCopyable() && hasTrivialDefaultConstructor(); 1290 } 1291 1292 /// \brief Determine whether this class is a literal type. 1293 /// 1294 /// C++11 [basic.types]p10: 1295 /// A class type that has all the following properties: 1296 /// - it has a trivial destructor 1297 /// - every constructor call and full-expression in the 1298 /// brace-or-equal-intializers for non-static data members (if any) is 1299 /// a constant expression. 1300 /// - it is an aggregate type or has at least one constexpr constructor 1301 /// or constructor template that is not a copy or move constructor, and 1302 /// - all of its non-static data members and base classes are of literal 1303 /// types 1304 /// 1305 /// We resolve DR1361 by ignoring the second bullet. We resolve DR1452 by 1306 /// treating types with trivial default constructors as literal types. isLiteral()1307 bool isLiteral() const { 1308 return hasTrivialDestructor() && 1309 (isAggregate() || hasConstexprNonCopyMoveConstructor() || 1310 hasTrivialDefaultConstructor()) && 1311 !hasNonLiteralTypeFieldsOrBases(); 1312 } 1313 1314 /// \brief If this record is an instantiation of a member class, 1315 /// retrieves the member class from which it was instantiated. 1316 /// 1317 /// This routine will return non-null for (non-templated) member 1318 /// classes of class templates. For example, given: 1319 /// 1320 /// \code 1321 /// template<typename T> 1322 /// struct X { 1323 /// struct A { }; 1324 /// }; 1325 /// \endcode 1326 /// 1327 /// The declaration for X<int>::A is a (non-templated) CXXRecordDecl 1328 /// whose parent is the class template specialization X<int>. For 1329 /// this declaration, getInstantiatedFromMemberClass() will return 1330 /// the CXXRecordDecl X<T>::A. When a complete definition of 1331 /// X<int>::A is required, it will be instantiated from the 1332 /// declaration returned by getInstantiatedFromMemberClass(). 1333 CXXRecordDecl *getInstantiatedFromMemberClass() const; 1334 1335 /// \brief If this class is an instantiation of a member class of a 1336 /// class template specialization, retrieves the member specialization 1337 /// information. getMemberSpecializationInfo()1338 MemberSpecializationInfo *getMemberSpecializationInfo() const { 1339 return TemplateOrInstantiation.dyn_cast<MemberSpecializationInfo *>(); 1340 } 1341 1342 /// \brief Specify that this record is an instantiation of the 1343 /// member class \p RD. 1344 void setInstantiationOfMemberClass(CXXRecordDecl *RD, 1345 TemplateSpecializationKind TSK); 1346 1347 /// \brief Retrieves the class template that is described by this 1348 /// class declaration. 1349 /// 1350 /// Every class template is represented as a ClassTemplateDecl and a 1351 /// CXXRecordDecl. The former contains template properties (such as 1352 /// the template parameter lists) while the latter contains the 1353 /// actual description of the template's 1354 /// contents. ClassTemplateDecl::getTemplatedDecl() retrieves the 1355 /// CXXRecordDecl that from a ClassTemplateDecl, while 1356 /// getDescribedClassTemplate() retrieves the ClassTemplateDecl from 1357 /// a CXXRecordDecl. getDescribedClassTemplate()1358 ClassTemplateDecl *getDescribedClassTemplate() const { 1359 return TemplateOrInstantiation.dyn_cast<ClassTemplateDecl*>(); 1360 } 1361 setDescribedClassTemplate(ClassTemplateDecl * Template)1362 void setDescribedClassTemplate(ClassTemplateDecl *Template) { 1363 TemplateOrInstantiation = Template; 1364 } 1365 1366 /// \brief Determine whether this particular class is a specialization or 1367 /// instantiation of a class template or member class of a class template, 1368 /// and how it was instantiated or specialized. 1369 TemplateSpecializationKind getTemplateSpecializationKind() const; 1370 1371 /// \brief Set the kind of specialization or template instantiation this is. 1372 void setTemplateSpecializationKind(TemplateSpecializationKind TSK); 1373 1374 /// \brief Returns the destructor decl for this class. 1375 CXXDestructorDecl *getDestructor() const; 1376 1377 /// \brief If the class is a local class [class.local], returns 1378 /// the enclosing function declaration. isLocalClass()1379 const FunctionDecl *isLocalClass() const { 1380 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(getDeclContext())) 1381 return RD->isLocalClass(); 1382 1383 return dyn_cast<FunctionDecl>(getDeclContext()); 1384 } 1385 isLocalClass()1386 FunctionDecl *isLocalClass() { 1387 return const_cast<FunctionDecl*>( 1388 const_cast<const CXXRecordDecl*>(this)->isLocalClass()); 1389 } 1390 1391 /// \brief Determine whether this dependent class is a current instantiation, 1392 /// when viewed from within the given context. 1393 bool isCurrentInstantiation(const DeclContext *CurContext) const; 1394 1395 /// \brief Determine whether this class is derived from the class \p Base. 1396 /// 1397 /// This routine only determines whether this class is derived from \p Base, 1398 /// but does not account for factors that may make a Derived -> Base class 1399 /// ill-formed, such as private/protected inheritance or multiple, ambiguous 1400 /// base class subobjects. 1401 /// 1402 /// \param Base the base class we are searching for. 1403 /// 1404 /// \returns true if this class is derived from Base, false otherwise. 1405 bool isDerivedFrom(const CXXRecordDecl *Base) const; 1406 1407 /// \brief Determine whether this class is derived from the type \p Base. 1408 /// 1409 /// This routine only determines whether this class is derived from \p Base, 1410 /// but does not account for factors that may make a Derived -> Base class 1411 /// ill-formed, such as private/protected inheritance or multiple, ambiguous 1412 /// base class subobjects. 1413 /// 1414 /// \param Base the base class we are searching for. 1415 /// 1416 /// \param Paths will contain the paths taken from the current class to the 1417 /// given \p Base class. 1418 /// 1419 /// \returns true if this class is derived from \p Base, false otherwise. 1420 /// 1421 /// \todo add a separate paramaeter to configure IsDerivedFrom, rather than 1422 /// tangling input and output in \p Paths 1423 bool isDerivedFrom(const CXXRecordDecl *Base, CXXBasePaths &Paths) const; 1424 1425 /// \brief Determine whether this class is virtually derived from 1426 /// the class \p Base. 1427 /// 1428 /// This routine only determines whether this class is virtually 1429 /// derived from \p Base, but does not account for factors that may 1430 /// make a Derived -> Base class ill-formed, such as 1431 /// private/protected inheritance or multiple, ambiguous base class 1432 /// subobjects. 1433 /// 1434 /// \param Base the base class we are searching for. 1435 /// 1436 /// \returns true if this class is virtually derived from Base, 1437 /// false otherwise. 1438 bool isVirtuallyDerivedFrom(const CXXRecordDecl *Base) const; 1439 1440 /// \brief Determine whether this class is provably not derived from 1441 /// the type \p Base. 1442 bool isProvablyNotDerivedFrom(const CXXRecordDecl *Base) const; 1443 1444 /// \brief Function type used by forallBases() as a callback. 1445 /// 1446 /// \param BaseDefinition the definition of the base class 1447 /// 1448 /// \returns true if this base matched the search criteria 1449 typedef bool ForallBasesCallback(const CXXRecordDecl *BaseDefinition, 1450 void *UserData); 1451 1452 /// \brief Determines if the given callback holds for all the direct 1453 /// or indirect base classes of this type. 1454 /// 1455 /// The class itself does not count as a base class. This routine 1456 /// returns false if the class has non-computable base classes. 1457 /// 1458 /// \param BaseMatches Callback invoked for each (direct or indirect) base 1459 /// class of this type, or if \p AllowShortCircuit is true then until a call 1460 /// returns false. 1461 /// 1462 /// \param UserData Passed as the second argument of every call to 1463 /// \p BaseMatches. 1464 /// 1465 /// \param AllowShortCircuit if false, forces the callback to be called 1466 /// for every base class, even if a dependent or non-matching base was 1467 /// found. 1468 bool forallBases(ForallBasesCallback *BaseMatches, void *UserData, 1469 bool AllowShortCircuit = true) const; 1470 1471 /// \brief Function type used by lookupInBases() to determine whether a 1472 /// specific base class subobject matches the lookup criteria. 1473 /// 1474 /// \param Specifier the base-class specifier that describes the inheritance 1475 /// from the base class we are trying to match. 1476 /// 1477 /// \param Path the current path, from the most-derived class down to the 1478 /// base named by the \p Specifier. 1479 /// 1480 /// \param UserData a single pointer to user-specified data, provided to 1481 /// lookupInBases(). 1482 /// 1483 /// \returns true if this base matched the search criteria, false otherwise. 1484 typedef bool BaseMatchesCallback(const CXXBaseSpecifier *Specifier, 1485 CXXBasePath &Path, 1486 void *UserData); 1487 1488 /// \brief Look for entities within the base classes of this C++ class, 1489 /// transitively searching all base class subobjects. 1490 /// 1491 /// This routine uses the callback function \p BaseMatches to find base 1492 /// classes meeting some search criteria, walking all base class subobjects 1493 /// and populating the given \p Paths structure with the paths through the 1494 /// inheritance hierarchy that resulted in a match. On a successful search, 1495 /// the \p Paths structure can be queried to retrieve the matching paths and 1496 /// to determine if there were any ambiguities. 1497 /// 1498 /// \param BaseMatches callback function used to determine whether a given 1499 /// base matches the user-defined search criteria. 1500 /// 1501 /// \param UserData user data pointer that will be provided to \p BaseMatches. 1502 /// 1503 /// \param Paths used to record the paths from this class to its base class 1504 /// subobjects that match the search criteria. 1505 /// 1506 /// \returns true if there exists any path from this class to a base class 1507 /// subobject that matches the search criteria. 1508 bool lookupInBases(BaseMatchesCallback *BaseMatches, void *UserData, 1509 CXXBasePaths &Paths) const; 1510 1511 /// \brief Base-class lookup callback that determines whether the given 1512 /// base class specifier refers to a specific class declaration. 1513 /// 1514 /// This callback can be used with \c lookupInBases() to determine whether 1515 /// a given derived class has is a base class subobject of a particular type. 1516 /// The user data pointer should refer to the canonical CXXRecordDecl of the 1517 /// base class that we are searching for. 1518 static bool FindBaseClass(const CXXBaseSpecifier *Specifier, 1519 CXXBasePath &Path, void *BaseRecord); 1520 1521 /// \brief Base-class lookup callback that determines whether the 1522 /// given base class specifier refers to a specific class 1523 /// declaration and describes virtual derivation. 1524 /// 1525 /// This callback can be used with \c lookupInBases() to determine 1526 /// whether a given derived class has is a virtual base class 1527 /// subobject of a particular type. The user data pointer should 1528 /// refer to the canonical CXXRecordDecl of the base class that we 1529 /// are searching for. 1530 static bool FindVirtualBaseClass(const CXXBaseSpecifier *Specifier, 1531 CXXBasePath &Path, void *BaseRecord); 1532 1533 /// \brief Base-class lookup callback that determines whether there exists 1534 /// a tag with the given name. 1535 /// 1536 /// This callback can be used with \c lookupInBases() to find tag members 1537 /// of the given name within a C++ class hierarchy. The user data pointer 1538 /// is an opaque \c DeclarationName pointer. 1539 static bool FindTagMember(const CXXBaseSpecifier *Specifier, 1540 CXXBasePath &Path, void *Name); 1541 1542 /// \brief Base-class lookup callback that determines whether there exists 1543 /// a member with the given name. 1544 /// 1545 /// This callback can be used with \c lookupInBases() to find members 1546 /// of the given name within a C++ class hierarchy. The user data pointer 1547 /// is an opaque \c DeclarationName pointer. 1548 static bool FindOrdinaryMember(const CXXBaseSpecifier *Specifier, 1549 CXXBasePath &Path, void *Name); 1550 1551 /// \brief Base-class lookup callback that determines whether there exists 1552 /// a member with the given name that can be used in a nested-name-specifier. 1553 /// 1554 /// This callback can be used with \c lookupInBases() to find membes of 1555 /// the given name within a C++ class hierarchy that can occur within 1556 /// nested-name-specifiers. 1557 static bool FindNestedNameSpecifierMember(const CXXBaseSpecifier *Specifier, 1558 CXXBasePath &Path, 1559 void *UserData); 1560 1561 /// \brief Retrieve the final overriders for each virtual member 1562 /// function in the class hierarchy where this class is the 1563 /// most-derived class in the class hierarchy. 1564 void getFinalOverriders(CXXFinalOverriderMap &FinaOverriders) const; 1565 1566 /// \brief Get the indirect primary bases for this class. 1567 void getIndirectPrimaryBases(CXXIndirectPrimaryBaseSet& Bases) const; 1568 1569 /// Renders and displays an inheritance diagram 1570 /// for this C++ class and all of its base classes (transitively) using 1571 /// GraphViz. 1572 void viewInheritance(ASTContext& Context) const; 1573 1574 /// \brief Calculates the access of a decl that is reached 1575 /// along a path. MergeAccess(AccessSpecifier PathAccess,AccessSpecifier DeclAccess)1576 static AccessSpecifier MergeAccess(AccessSpecifier PathAccess, 1577 AccessSpecifier DeclAccess) { 1578 assert(DeclAccess != AS_none); 1579 if (DeclAccess == AS_private) return AS_none; 1580 return (PathAccess > DeclAccess ? PathAccess : DeclAccess); 1581 } 1582 1583 /// \brief Indicates that the declaration of a defaulted or deleted special 1584 /// member function is now complete. 1585 void finishedDefaultedOrDeletedMember(CXXMethodDecl *MD); 1586 1587 /// \brief Indicates that the definition of this class is now complete. 1588 void completeDefinition() override; 1589 1590 /// \brief Indicates that the definition of this class is now complete, 1591 /// and provides a final overrider map to help determine 1592 /// 1593 /// \param FinalOverriders The final overrider map for this class, which can 1594 /// be provided as an optimization for abstract-class checking. If NULL, 1595 /// final overriders will be computed if they are needed to complete the 1596 /// definition. 1597 void completeDefinition(CXXFinalOverriderMap *FinalOverriders); 1598 1599 /// \brief Determine whether this class may end up being abstract, even though 1600 /// it is not yet known to be abstract. 1601 /// 1602 /// \returns true if this class is not known to be abstract but has any 1603 /// base classes that are abstract. In this case, \c completeDefinition() 1604 /// will need to compute final overriders to determine whether the class is 1605 /// actually abstract. 1606 bool mayBeAbstract() const; 1607 1608 /// \brief If this is the closure type of a lambda expression, retrieve the 1609 /// number to be used for name mangling in the Itanium C++ ABI. 1610 /// 1611 /// Zero indicates that this closure type has internal linkage, so the 1612 /// mangling number does not matter, while a non-zero value indicates which 1613 /// lambda expression this is in this particular context. getLambdaManglingNumber()1614 unsigned getLambdaManglingNumber() const { 1615 assert(isLambda() && "Not a lambda closure type!"); 1616 return getLambdaData().ManglingNumber; 1617 } 1618 1619 /// \brief Retrieve the declaration that provides additional context for a 1620 /// lambda, when the normal declaration context is not specific enough. 1621 /// 1622 /// Certain contexts (default arguments of in-class function parameters and 1623 /// the initializers of data members) have separate name mangling rules for 1624 /// lambdas within the Itanium C++ ABI. For these cases, this routine provides 1625 /// the declaration in which the lambda occurs, e.g., the function parameter 1626 /// or the non-static data member. Otherwise, it returns NULL to imply that 1627 /// the declaration context suffices. getLambdaContextDecl()1628 Decl *getLambdaContextDecl() const { 1629 assert(isLambda() && "Not a lambda closure type!"); 1630 return getLambdaData().ContextDecl; 1631 } 1632 1633 /// \brief Set the mangling number and context declaration for a lambda 1634 /// class. setLambdaMangling(unsigned ManglingNumber,Decl * ContextDecl)1635 void setLambdaMangling(unsigned ManglingNumber, Decl *ContextDecl) { 1636 getLambdaData().ManglingNumber = ManglingNumber; 1637 getLambdaData().ContextDecl = ContextDecl; 1638 } 1639 1640 /// \brief Returns the inheritance model used for this record. 1641 MSInheritanceAttr::Spelling getMSInheritanceModel() const; 1642 /// \brief Calculate what the inheritance model would be for this class. 1643 MSInheritanceAttr::Spelling calculateInheritanceModel() const; 1644 1645 /// In the Microsoft C++ ABI, use zero for the field offset of a null data 1646 /// member pointer if we can guarantee that zero is not a valid field offset, 1647 /// or if the member pointer has multiple fields. Polymorphic classes have a 1648 /// vfptr at offset zero, so we can use zero for null. If there are multiple 1649 /// fields, we can use zero even if it is a valid field offset because 1650 /// null-ness testing will check the other fields. nullFieldOffsetIsZero()1651 bool nullFieldOffsetIsZero() const { 1652 return !MSInheritanceAttr::hasOnlyOneField(/*IsMemberFunction=*/false, 1653 getMSInheritanceModel()) || 1654 (hasDefinition() && isPolymorphic()); 1655 } 1656 1657 /// \brief Controls when vtordisps will be emitted if this record is used as a 1658 /// virtual base. 1659 MSVtorDispAttr::Mode getMSVtorDispMode() const; 1660 1661 /// \brief Determine whether this lambda expression was known to be dependent 1662 /// at the time it was created, even if its context does not appear to be 1663 /// dependent. 1664 /// 1665 /// This flag is a workaround for an issue with parsing, where default 1666 /// arguments are parsed before their enclosing function declarations have 1667 /// been created. This means that any lambda expressions within those 1668 /// default arguments will have as their DeclContext the context enclosing 1669 /// the function declaration, which may be non-dependent even when the 1670 /// function declaration itself is dependent. This flag indicates when we 1671 /// know that the lambda is dependent despite that. isDependentLambda()1672 bool isDependentLambda() const { 1673 return isLambda() && getLambdaData().Dependent; 1674 } 1675 getLambdaTypeInfo()1676 TypeSourceInfo *getLambdaTypeInfo() const { 1677 return getLambdaData().MethodTyInfo; 1678 } 1679 classof(const Decl * D)1680 static bool classof(const Decl *D) { return classofKind(D->getKind()); } classofKind(Kind K)1681 static bool classofKind(Kind K) { 1682 return K >= firstCXXRecord && K <= lastCXXRecord; 1683 } 1684 1685 friend class ASTDeclReader; 1686 friend class ASTDeclWriter; 1687 friend class ASTReader; 1688 friend class ASTWriter; 1689 }; 1690 1691 /// \brief Represents a static or instance method of a struct/union/class. 1692 /// 1693 /// In the terminology of the C++ Standard, these are the (static and 1694 /// non-static) member functions, whether virtual or not. 1695 class CXXMethodDecl : public FunctionDecl { 1696 void anchor() override; 1697 protected: CXXMethodDecl(Kind DK,ASTContext & C,CXXRecordDecl * RD,SourceLocation StartLoc,const DeclarationNameInfo & NameInfo,QualType T,TypeSourceInfo * TInfo,StorageClass SC,bool isInline,bool isConstexpr,SourceLocation EndLocation)1698 CXXMethodDecl(Kind DK, ASTContext &C, CXXRecordDecl *RD, 1699 SourceLocation StartLoc, const DeclarationNameInfo &NameInfo, 1700 QualType T, TypeSourceInfo *TInfo, 1701 StorageClass SC, bool isInline, 1702 bool isConstexpr, SourceLocation EndLocation) 1703 : FunctionDecl(DK, C, RD, StartLoc, NameInfo, T, TInfo, 1704 SC, isInline, isConstexpr) { 1705 if (EndLocation.isValid()) 1706 setRangeEnd(EndLocation); 1707 } 1708 1709 public: 1710 static CXXMethodDecl *Create(ASTContext &C, CXXRecordDecl *RD, 1711 SourceLocation StartLoc, 1712 const DeclarationNameInfo &NameInfo, 1713 QualType T, TypeSourceInfo *TInfo, 1714 StorageClass SC, 1715 bool isInline, 1716 bool isConstexpr, 1717 SourceLocation EndLocation); 1718 1719 static CXXMethodDecl *CreateDeserialized(ASTContext &C, unsigned ID); 1720 1721 bool isStatic() const; isInstance()1722 bool isInstance() const { return !isStatic(); } 1723 1724 /// Returns true if the given operator is implicitly static in a record 1725 /// context. isStaticOverloadedOperator(OverloadedOperatorKind OOK)1726 static bool isStaticOverloadedOperator(OverloadedOperatorKind OOK) { 1727 // [class.free]p1: 1728 // Any allocation function for a class T is a static member 1729 // (even if not explicitly declared static). 1730 // [class.free]p6 Any deallocation function for a class X is a static member 1731 // (even if not explicitly declared static). 1732 return OOK == OO_New || OOK == OO_Array_New || OOK == OO_Delete || 1733 OOK == OO_Array_Delete; 1734 } 1735 isConst()1736 bool isConst() const { return getType()->castAs<FunctionType>()->isConst(); } isVolatile()1737 bool isVolatile() const { return getType()->castAs<FunctionType>()->isVolatile(); } 1738 isVirtual()1739 bool isVirtual() const { 1740 CXXMethodDecl *CD = 1741 cast<CXXMethodDecl>(const_cast<CXXMethodDecl*>(this)->getCanonicalDecl()); 1742 1743 // Member function is virtual if it is marked explicitly so, or if it is 1744 // declared in __interface -- then it is automatically pure virtual. 1745 if (CD->isVirtualAsWritten() || CD->isPure()) 1746 return true; 1747 1748 return (CD->begin_overridden_methods() != CD->end_overridden_methods()); 1749 } 1750 1751 /// \brief Determine whether this is a usual deallocation function 1752 /// (C++ [basic.stc.dynamic.deallocation]p2), which is an overloaded 1753 /// delete or delete[] operator with a particular signature. 1754 bool isUsualDeallocationFunction() const; 1755 1756 /// \brief Determine whether this is a copy-assignment operator, regardless 1757 /// of whether it was declared implicitly or explicitly. 1758 bool isCopyAssignmentOperator() const; 1759 1760 /// \brief Determine whether this is a move assignment operator. 1761 bool isMoveAssignmentOperator() const; 1762 getCanonicalDecl()1763 CXXMethodDecl *getCanonicalDecl() override { 1764 return cast<CXXMethodDecl>(FunctionDecl::getCanonicalDecl()); 1765 } getCanonicalDecl()1766 const CXXMethodDecl *getCanonicalDecl() const override { 1767 return const_cast<CXXMethodDecl*>(this)->getCanonicalDecl(); 1768 } 1769 getMostRecentDecl()1770 CXXMethodDecl *getMostRecentDecl() { 1771 return cast<CXXMethodDecl>( 1772 static_cast<FunctionDecl *>(this)->getMostRecentDecl()); 1773 } getMostRecentDecl()1774 const CXXMethodDecl *getMostRecentDecl() const { 1775 return const_cast<CXXMethodDecl*>(this)->getMostRecentDecl(); 1776 } 1777 1778 /// True if this method is user-declared and was not 1779 /// deleted or defaulted on its first declaration. isUserProvided()1780 bool isUserProvided() const { 1781 return !(isDeleted() || getCanonicalDecl()->isDefaulted()); 1782 } 1783 1784 /// 1785 void addOverriddenMethod(const CXXMethodDecl *MD); 1786 1787 typedef const CXXMethodDecl *const* method_iterator; 1788 1789 method_iterator begin_overridden_methods() const; 1790 method_iterator end_overridden_methods() const; 1791 unsigned size_overridden_methods() const; 1792 1793 /// Returns the parent of this method declaration, which 1794 /// is the class in which this method is defined. getParent()1795 const CXXRecordDecl *getParent() const { 1796 return cast<CXXRecordDecl>(FunctionDecl::getParent()); 1797 } 1798 1799 /// Returns the parent of this method declaration, which 1800 /// is the class in which this method is defined. getParent()1801 CXXRecordDecl *getParent() { 1802 return const_cast<CXXRecordDecl *>( 1803 cast<CXXRecordDecl>(FunctionDecl::getParent())); 1804 } 1805 1806 /// \brief Returns the type of the \c this pointer. 1807 /// 1808 /// Should only be called for instance (i.e., non-static) methods. 1809 QualType getThisType(ASTContext &C) const; 1810 getTypeQualifiers()1811 unsigned getTypeQualifiers() const { 1812 return getType()->getAs<FunctionProtoType>()->getTypeQuals(); 1813 } 1814 1815 /// \brief Retrieve the ref-qualifier associated with this method. 1816 /// 1817 /// In the following example, \c f() has an lvalue ref-qualifier, \c g() 1818 /// has an rvalue ref-qualifier, and \c h() has no ref-qualifier. 1819 /// @code 1820 /// struct X { 1821 /// void f() &; 1822 /// void g() &&; 1823 /// void h(); 1824 /// }; 1825 /// @endcode getRefQualifier()1826 RefQualifierKind getRefQualifier() const { 1827 return getType()->getAs<FunctionProtoType>()->getRefQualifier(); 1828 } 1829 1830 bool hasInlineBody() const; 1831 1832 /// \brief Determine whether this is a lambda closure type's static member 1833 /// function that is used for the result of the lambda's conversion to 1834 /// function pointer (for a lambda with no captures). 1835 /// 1836 /// The function itself, if used, will have a placeholder body that will be 1837 /// supplied by IR generation to either forward to the function call operator 1838 /// or clone the function call operator. 1839 bool isLambdaStaticInvoker() const; 1840 1841 /// \brief Find the method in \p RD that corresponds to this one. 1842 /// 1843 /// Find if \p RD or one of the classes it inherits from override this method. 1844 /// If so, return it. \p RD is assumed to be a subclass of the class defining 1845 /// this method (or be the class itself), unless \p MayBeBase is set to true. 1846 CXXMethodDecl * 1847 getCorrespondingMethodInClass(const CXXRecordDecl *RD, 1848 bool MayBeBase = false); 1849 1850 const CXXMethodDecl * 1851 getCorrespondingMethodInClass(const CXXRecordDecl *RD, 1852 bool MayBeBase = false) const { 1853 return const_cast<CXXMethodDecl *>(this) 1854 ->getCorrespondingMethodInClass(RD, MayBeBase); 1855 } 1856 1857 // Implement isa/cast/dyncast/etc. classof(const Decl * D)1858 static bool classof(const Decl *D) { return classofKind(D->getKind()); } classofKind(Kind K)1859 static bool classofKind(Kind K) { 1860 return K >= firstCXXMethod && K <= lastCXXMethod; 1861 } 1862 }; 1863 1864 /// \brief Represents a C++ base or member initializer. 1865 /// 1866 /// This is part of a constructor initializer that 1867 /// initializes one non-static member variable or one base class. For 1868 /// example, in the following, both 'A(a)' and 'f(3.14159)' are member 1869 /// initializers: 1870 /// 1871 /// \code 1872 /// class A { }; 1873 /// class B : public A { 1874 /// float f; 1875 /// public: 1876 /// B(A& a) : A(a), f(3.14159) { } 1877 /// }; 1878 /// \endcode 1879 class CXXCtorInitializer { 1880 /// \brief Either the base class name/delegating constructor type (stored as 1881 /// a TypeSourceInfo*), an normal field (FieldDecl), or an anonymous field 1882 /// (IndirectFieldDecl*) being initialized. 1883 llvm::PointerUnion3<TypeSourceInfo *, FieldDecl *, IndirectFieldDecl *> 1884 Initializee; 1885 1886 /// \brief The source location for the field name or, for a base initializer 1887 /// pack expansion, the location of the ellipsis. 1888 /// 1889 /// In the case of a delegating 1890 /// constructor, it will still include the type's source location as the 1891 /// Initializee points to the CXXConstructorDecl (to allow loop detection). 1892 SourceLocation MemberOrEllipsisLocation; 1893 1894 /// \brief The argument used to initialize the base or member, which may 1895 /// end up constructing an object (when multiple arguments are involved). 1896 Stmt *Init; 1897 1898 /// \brief Location of the left paren of the ctor-initializer. 1899 SourceLocation LParenLoc; 1900 1901 /// \brief Location of the right paren of the ctor-initializer. 1902 SourceLocation RParenLoc; 1903 1904 /// \brief If the initializee is a type, whether that type makes this 1905 /// a delegating initialization. 1906 bool IsDelegating : 1; 1907 1908 /// \brief If the initializer is a base initializer, this keeps track 1909 /// of whether the base is virtual or not. 1910 bool IsVirtual : 1; 1911 1912 /// \brief Whether or not the initializer is explicitly written 1913 /// in the sources. 1914 bool IsWritten : 1; 1915 1916 /// If IsWritten is true, then this number keeps track of the textual order 1917 /// of this initializer in the original sources, counting from 0; otherwise, 1918 /// it stores the number of array index variables stored after this object 1919 /// in memory. 1920 unsigned SourceOrderOrNumArrayIndices : 13; 1921 1922 CXXCtorInitializer(ASTContext &Context, FieldDecl *Member, 1923 SourceLocation MemberLoc, SourceLocation L, Expr *Init, 1924 SourceLocation R, VarDecl **Indices, unsigned NumIndices); 1925 1926 public: 1927 /// \brief Creates a new base-class initializer. 1928 explicit 1929 CXXCtorInitializer(ASTContext &Context, TypeSourceInfo *TInfo, bool IsVirtual, 1930 SourceLocation L, Expr *Init, SourceLocation R, 1931 SourceLocation EllipsisLoc); 1932 1933 /// \brief Creates a new member initializer. 1934 explicit 1935 CXXCtorInitializer(ASTContext &Context, FieldDecl *Member, 1936 SourceLocation MemberLoc, SourceLocation L, Expr *Init, 1937 SourceLocation R); 1938 1939 /// \brief Creates a new anonymous field initializer. 1940 explicit 1941 CXXCtorInitializer(ASTContext &Context, IndirectFieldDecl *Member, 1942 SourceLocation MemberLoc, SourceLocation L, Expr *Init, 1943 SourceLocation R); 1944 1945 /// \brief Creates a new delegating initializer. 1946 explicit 1947 CXXCtorInitializer(ASTContext &Context, TypeSourceInfo *TInfo, 1948 SourceLocation L, Expr *Init, SourceLocation R); 1949 1950 /// \brief Creates a new member initializer that optionally contains 1951 /// array indices used to describe an elementwise initialization. 1952 static CXXCtorInitializer *Create(ASTContext &Context, FieldDecl *Member, 1953 SourceLocation MemberLoc, SourceLocation L, 1954 Expr *Init, SourceLocation R, 1955 VarDecl **Indices, unsigned NumIndices); 1956 1957 /// \brief Determine whether this initializer is initializing a base class. isBaseInitializer()1958 bool isBaseInitializer() const { 1959 return Initializee.is<TypeSourceInfo*>() && !IsDelegating; 1960 } 1961 1962 /// \brief Determine whether this initializer is initializing a non-static 1963 /// data member. isMemberInitializer()1964 bool isMemberInitializer() const { return Initializee.is<FieldDecl*>(); } 1965 isAnyMemberInitializer()1966 bool isAnyMemberInitializer() const { 1967 return isMemberInitializer() || isIndirectMemberInitializer(); 1968 } 1969 isIndirectMemberInitializer()1970 bool isIndirectMemberInitializer() const { 1971 return Initializee.is<IndirectFieldDecl*>(); 1972 } 1973 1974 /// \brief Determine whether this initializer is an implicit initializer 1975 /// generated for a field with an initializer defined on the member 1976 /// declaration. 1977 /// 1978 /// In-class member initializers (also known as "non-static data member 1979 /// initializations", NSDMIs) were introduced in C++11. isInClassMemberInitializer()1980 bool isInClassMemberInitializer() const { 1981 return Init->getStmtClass() == Stmt::CXXDefaultInitExprClass; 1982 } 1983 1984 /// \brief Determine whether this initializer is creating a delegating 1985 /// constructor. isDelegatingInitializer()1986 bool isDelegatingInitializer() const { 1987 return Initializee.is<TypeSourceInfo*>() && IsDelegating; 1988 } 1989 1990 /// \brief Determine whether this initializer is a pack expansion. isPackExpansion()1991 bool isPackExpansion() const { 1992 return isBaseInitializer() && MemberOrEllipsisLocation.isValid(); 1993 } 1994 1995 // \brief For a pack expansion, returns the location of the ellipsis. getEllipsisLoc()1996 SourceLocation getEllipsisLoc() const { 1997 assert(isPackExpansion() && "Initializer is not a pack expansion"); 1998 return MemberOrEllipsisLocation; 1999 } 2000 2001 /// If this is a base class initializer, returns the type of the 2002 /// base class with location information. Otherwise, returns an NULL 2003 /// type location. 2004 TypeLoc getBaseClassLoc() const; 2005 2006 /// If this is a base class initializer, returns the type of the base class. 2007 /// Otherwise, returns null. 2008 const Type *getBaseClass() const; 2009 2010 /// Returns whether the base is virtual or not. isBaseVirtual()2011 bool isBaseVirtual() const { 2012 assert(isBaseInitializer() && "Must call this on base initializer!"); 2013 2014 return IsVirtual; 2015 } 2016 2017 /// \brief Returns the declarator information for a base class or delegating 2018 /// initializer. getTypeSourceInfo()2019 TypeSourceInfo *getTypeSourceInfo() const { 2020 return Initializee.dyn_cast<TypeSourceInfo *>(); 2021 } 2022 2023 /// \brief If this is a member initializer, returns the declaration of the 2024 /// non-static data member being initialized. Otherwise, returns null. getMember()2025 FieldDecl *getMember() const { 2026 if (isMemberInitializer()) 2027 return Initializee.get<FieldDecl*>(); 2028 return nullptr; 2029 } getAnyMember()2030 FieldDecl *getAnyMember() const { 2031 if (isMemberInitializer()) 2032 return Initializee.get<FieldDecl*>(); 2033 if (isIndirectMemberInitializer()) 2034 return Initializee.get<IndirectFieldDecl*>()->getAnonField(); 2035 return nullptr; 2036 } 2037 getIndirectMember()2038 IndirectFieldDecl *getIndirectMember() const { 2039 if (isIndirectMemberInitializer()) 2040 return Initializee.get<IndirectFieldDecl*>(); 2041 return nullptr; 2042 } 2043 getMemberLocation()2044 SourceLocation getMemberLocation() const { 2045 return MemberOrEllipsisLocation; 2046 } 2047 2048 /// \brief Determine the source location of the initializer. 2049 SourceLocation getSourceLocation() const; 2050 2051 /// \brief Determine the source range covering the entire initializer. 2052 SourceRange getSourceRange() const LLVM_READONLY; 2053 2054 /// \brief Determine whether this initializer is explicitly written 2055 /// in the source code. isWritten()2056 bool isWritten() const { return IsWritten; } 2057 2058 /// \brief Return the source position of the initializer, counting from 0. 2059 /// If the initializer was implicit, -1 is returned. getSourceOrder()2060 int getSourceOrder() const { 2061 return IsWritten ? static_cast<int>(SourceOrderOrNumArrayIndices) : -1; 2062 } 2063 2064 /// \brief Set the source order of this initializer. 2065 /// 2066 /// This can only be called once for each initializer; it cannot be called 2067 /// on an initializer having a positive number of (implicit) array indices. 2068 /// 2069 /// This assumes that the initialzier was written in the source code, and 2070 /// ensures that isWritten() returns true. setSourceOrder(int pos)2071 void setSourceOrder(int pos) { 2072 assert(!IsWritten && 2073 "calling twice setSourceOrder() on the same initializer"); 2074 assert(SourceOrderOrNumArrayIndices == 0 && 2075 "setSourceOrder() used when there are implicit array indices"); 2076 assert(pos >= 0 && 2077 "setSourceOrder() used to make an initializer implicit"); 2078 IsWritten = true; 2079 SourceOrderOrNumArrayIndices = static_cast<unsigned>(pos); 2080 } 2081 getLParenLoc()2082 SourceLocation getLParenLoc() const { return LParenLoc; } getRParenLoc()2083 SourceLocation getRParenLoc() const { return RParenLoc; } 2084 2085 /// \brief Determine the number of implicit array indices used while 2086 /// described an array member initialization. getNumArrayIndices()2087 unsigned getNumArrayIndices() const { 2088 return IsWritten ? 0 : SourceOrderOrNumArrayIndices; 2089 } 2090 2091 /// \brief Retrieve a particular array index variable used to 2092 /// describe an array member initialization. getArrayIndex(unsigned I)2093 VarDecl *getArrayIndex(unsigned I) { 2094 assert(I < getNumArrayIndices() && "Out of bounds member array index"); 2095 return reinterpret_cast<VarDecl **>(this + 1)[I]; 2096 } getArrayIndex(unsigned I)2097 const VarDecl *getArrayIndex(unsigned I) const { 2098 assert(I < getNumArrayIndices() && "Out of bounds member array index"); 2099 return reinterpret_cast<const VarDecl * const *>(this + 1)[I]; 2100 } setArrayIndex(unsigned I,VarDecl * Index)2101 void setArrayIndex(unsigned I, VarDecl *Index) { 2102 assert(I < getNumArrayIndices() && "Out of bounds member array index"); 2103 reinterpret_cast<VarDecl **>(this + 1)[I] = Index; 2104 } getArrayIndexes()2105 ArrayRef<VarDecl *> getArrayIndexes() { 2106 assert(getNumArrayIndices() != 0 && "Getting indexes for non-array init"); 2107 return ArrayRef<VarDecl *>(reinterpret_cast<VarDecl **>(this + 1), 2108 getNumArrayIndices()); 2109 } 2110 2111 /// \brief Get the initializer. getInit()2112 Expr *getInit() const { return static_cast<Expr*>(Init); } 2113 }; 2114 2115 /// \brief Represents a C++ constructor within a class. 2116 /// 2117 /// For example: 2118 /// 2119 /// \code 2120 /// class X { 2121 /// public: 2122 /// explicit X(int); // represented by a CXXConstructorDecl. 2123 /// }; 2124 /// \endcode 2125 class CXXConstructorDecl : public CXXMethodDecl { 2126 void anchor() override; 2127 /// \brief Whether this constructor declaration has the \c explicit keyword 2128 /// specified. 2129 bool IsExplicitSpecified : 1; 2130 2131 /// \name Support for base and member initializers. 2132 /// \{ 2133 /// \brief The arguments used to initialize the base or member. 2134 CXXCtorInitializer **CtorInitializers; 2135 unsigned NumCtorInitializers; 2136 /// \} 2137 CXXConstructorDecl(ASTContext & C,CXXRecordDecl * RD,SourceLocation StartLoc,const DeclarationNameInfo & NameInfo,QualType T,TypeSourceInfo * TInfo,bool isExplicitSpecified,bool isInline,bool isImplicitlyDeclared,bool isConstexpr)2138 CXXConstructorDecl(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, 2139 const DeclarationNameInfo &NameInfo, 2140 QualType T, TypeSourceInfo *TInfo, 2141 bool isExplicitSpecified, bool isInline, 2142 bool isImplicitlyDeclared, bool isConstexpr) 2143 : CXXMethodDecl(CXXConstructor, C, RD, StartLoc, NameInfo, T, TInfo, 2144 SC_None, isInline, isConstexpr, SourceLocation()), 2145 IsExplicitSpecified(isExplicitSpecified), CtorInitializers(nullptr), 2146 NumCtorInitializers(0) { 2147 setImplicit(isImplicitlyDeclared); 2148 } 2149 2150 public: 2151 static CXXConstructorDecl *CreateDeserialized(ASTContext &C, unsigned ID); 2152 static CXXConstructorDecl *Create(ASTContext &C, CXXRecordDecl *RD, 2153 SourceLocation StartLoc, 2154 const DeclarationNameInfo &NameInfo, 2155 QualType T, TypeSourceInfo *TInfo, 2156 bool isExplicit, 2157 bool isInline, bool isImplicitlyDeclared, 2158 bool isConstexpr); 2159 2160 /// \brief Determine whether this constructor declaration has the 2161 /// \c explicit keyword specified. isExplicitSpecified()2162 bool isExplicitSpecified() const { return IsExplicitSpecified; } 2163 2164 /// \brief Determine whether this constructor was marked "explicit" or not. isExplicit()2165 bool isExplicit() const { 2166 return cast<CXXConstructorDecl>(getFirstDecl())->isExplicitSpecified(); 2167 } 2168 2169 /// \brief Iterates through the member/base initializer list. 2170 typedef CXXCtorInitializer **init_iterator; 2171 2172 /// \brief Iterates through the member/base initializer list. 2173 typedef CXXCtorInitializer * const * init_const_iterator; 2174 2175 typedef llvm::iterator_range<init_iterator> init_range; 2176 typedef llvm::iterator_range<init_const_iterator> init_const_range; 2177 inits()2178 init_range inits() { return init_range(init_begin(), init_end()); } inits()2179 init_const_range inits() const { 2180 return init_const_range(init_begin(), init_end()); 2181 } 2182 2183 /// \brief Retrieve an iterator to the first initializer. init_begin()2184 init_iterator init_begin() { return CtorInitializers; } 2185 /// \brief Retrieve an iterator to the first initializer. init_begin()2186 init_const_iterator init_begin() const { return CtorInitializers; } 2187 2188 /// \brief Retrieve an iterator past the last initializer. init_end()2189 init_iterator init_end() { 2190 return CtorInitializers + NumCtorInitializers; 2191 } 2192 /// \brief Retrieve an iterator past the last initializer. init_end()2193 init_const_iterator init_end() const { 2194 return CtorInitializers + NumCtorInitializers; 2195 } 2196 2197 typedef std::reverse_iterator<init_iterator> init_reverse_iterator; 2198 typedef std::reverse_iterator<init_const_iterator> 2199 init_const_reverse_iterator; 2200 init_rbegin()2201 init_reverse_iterator init_rbegin() { 2202 return init_reverse_iterator(init_end()); 2203 } init_rbegin()2204 init_const_reverse_iterator init_rbegin() const { 2205 return init_const_reverse_iterator(init_end()); 2206 } 2207 init_rend()2208 init_reverse_iterator init_rend() { 2209 return init_reverse_iterator(init_begin()); 2210 } init_rend()2211 init_const_reverse_iterator init_rend() const { 2212 return init_const_reverse_iterator(init_begin()); 2213 } 2214 2215 /// \brief Determine the number of arguments used to initialize the member 2216 /// or base. getNumCtorInitializers()2217 unsigned getNumCtorInitializers() const { 2218 return NumCtorInitializers; 2219 } 2220 setNumCtorInitializers(unsigned numCtorInitializers)2221 void setNumCtorInitializers(unsigned numCtorInitializers) { 2222 NumCtorInitializers = numCtorInitializers; 2223 } 2224 setCtorInitializers(CXXCtorInitializer ** initializers)2225 void setCtorInitializers(CXXCtorInitializer ** initializers) { 2226 CtorInitializers = initializers; 2227 } 2228 2229 /// \brief Determine whether this constructor is a delegating constructor. isDelegatingConstructor()2230 bool isDelegatingConstructor() const { 2231 return (getNumCtorInitializers() == 1) && 2232 CtorInitializers[0]->isDelegatingInitializer(); 2233 } 2234 2235 /// \brief When this constructor delegates to another, retrieve the target. 2236 CXXConstructorDecl *getTargetConstructor() const; 2237 2238 /// Whether this constructor is a default 2239 /// constructor (C++ [class.ctor]p5), which can be used to 2240 /// default-initialize a class of this type. 2241 bool isDefaultConstructor() const; 2242 2243 /// \brief Whether this constructor is a copy constructor (C++ [class.copy]p2, 2244 /// which can be used to copy the class. 2245 /// 2246 /// \p TypeQuals will be set to the qualifiers on the 2247 /// argument type. For example, \p TypeQuals would be set to \c 2248 /// Qualifiers::Const for the following copy constructor: 2249 /// 2250 /// \code 2251 /// class X { 2252 /// public: 2253 /// X(const X&); 2254 /// }; 2255 /// \endcode 2256 bool isCopyConstructor(unsigned &TypeQuals) const; 2257 2258 /// Whether this constructor is a copy 2259 /// constructor (C++ [class.copy]p2, which can be used to copy the 2260 /// class. isCopyConstructor()2261 bool isCopyConstructor() const { 2262 unsigned TypeQuals = 0; 2263 return isCopyConstructor(TypeQuals); 2264 } 2265 2266 /// \brief Determine whether this constructor is a move constructor 2267 /// (C++0x [class.copy]p3), which can be used to move values of the class. 2268 /// 2269 /// \param TypeQuals If this constructor is a move constructor, will be set 2270 /// to the type qualifiers on the referent of the first parameter's type. 2271 bool isMoveConstructor(unsigned &TypeQuals) const; 2272 2273 /// \brief Determine whether this constructor is a move constructor 2274 /// (C++0x [class.copy]p3), which can be used to move values of the class. isMoveConstructor()2275 bool isMoveConstructor() const { 2276 unsigned TypeQuals = 0; 2277 return isMoveConstructor(TypeQuals); 2278 } 2279 2280 /// \brief Determine whether this is a copy or move constructor. 2281 /// 2282 /// \param TypeQuals Will be set to the type qualifiers on the reference 2283 /// parameter, if in fact this is a copy or move constructor. 2284 bool isCopyOrMoveConstructor(unsigned &TypeQuals) const; 2285 2286 /// \brief Determine whether this a copy or move constructor. isCopyOrMoveConstructor()2287 bool isCopyOrMoveConstructor() const { 2288 unsigned Quals; 2289 return isCopyOrMoveConstructor(Quals); 2290 } 2291 2292 /// Whether this constructor is a 2293 /// converting constructor (C++ [class.conv.ctor]), which can be 2294 /// used for user-defined conversions. 2295 bool isConvertingConstructor(bool AllowExplicit) const; 2296 2297 /// \brief Determine whether this is a member template specialization that 2298 /// would copy the object to itself. Such constructors are never used to copy 2299 /// an object. 2300 bool isSpecializationCopyingObject() const; 2301 2302 /// \brief Get the constructor that this inheriting constructor is based on. 2303 const CXXConstructorDecl *getInheritedConstructor() const; 2304 2305 /// \brief Set the constructor that this inheriting constructor is based on. 2306 void setInheritedConstructor(const CXXConstructorDecl *BaseCtor); 2307 getCanonicalDecl()2308 const CXXConstructorDecl *getCanonicalDecl() const override { 2309 return cast<CXXConstructorDecl>(FunctionDecl::getCanonicalDecl()); 2310 } getCanonicalDecl()2311 CXXConstructorDecl *getCanonicalDecl() override { 2312 return cast<CXXConstructorDecl>(FunctionDecl::getCanonicalDecl()); 2313 } 2314 2315 // Implement isa/cast/dyncast/etc. classof(const Decl * D)2316 static bool classof(const Decl *D) { return classofKind(D->getKind()); } classofKind(Kind K)2317 static bool classofKind(Kind K) { return K == CXXConstructor; } 2318 2319 friend class ASTDeclReader; 2320 friend class ASTDeclWriter; 2321 }; 2322 2323 /// \brief Represents a C++ destructor within a class. 2324 /// 2325 /// For example: 2326 /// 2327 /// \code 2328 /// class X { 2329 /// public: 2330 /// ~X(); // represented by a CXXDestructorDecl. 2331 /// }; 2332 /// \endcode 2333 class CXXDestructorDecl : public CXXMethodDecl { 2334 void anchor() override; 2335 2336 FunctionDecl *OperatorDelete; 2337 CXXDestructorDecl(ASTContext & C,CXXRecordDecl * RD,SourceLocation StartLoc,const DeclarationNameInfo & NameInfo,QualType T,TypeSourceInfo * TInfo,bool isInline,bool isImplicitlyDeclared)2338 CXXDestructorDecl(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, 2339 const DeclarationNameInfo &NameInfo, 2340 QualType T, TypeSourceInfo *TInfo, 2341 bool isInline, bool isImplicitlyDeclared) 2342 : CXXMethodDecl(CXXDestructor, C, RD, StartLoc, NameInfo, T, TInfo, 2343 SC_None, isInline, /*isConstexpr=*/false, SourceLocation()), 2344 OperatorDelete(nullptr) { 2345 setImplicit(isImplicitlyDeclared); 2346 } 2347 2348 public: 2349 static CXXDestructorDecl *Create(ASTContext &C, CXXRecordDecl *RD, 2350 SourceLocation StartLoc, 2351 const DeclarationNameInfo &NameInfo, 2352 QualType T, TypeSourceInfo* TInfo, 2353 bool isInline, 2354 bool isImplicitlyDeclared); 2355 static CXXDestructorDecl *CreateDeserialized(ASTContext & C, unsigned ID); 2356 setOperatorDelete(FunctionDecl * OD)2357 void setOperatorDelete(FunctionDecl *OD) { 2358 cast<CXXDestructorDecl>(getFirstDecl())->OperatorDelete = OD; 2359 } getOperatorDelete()2360 const FunctionDecl *getOperatorDelete() const { 2361 return cast<CXXDestructorDecl>(getFirstDecl())->OperatorDelete; 2362 } 2363 2364 // Implement isa/cast/dyncast/etc. classof(const Decl * D)2365 static bool classof(const Decl *D) { return classofKind(D->getKind()); } classofKind(Kind K)2366 static bool classofKind(Kind K) { return K == CXXDestructor; } 2367 2368 friend class ASTDeclReader; 2369 friend class ASTDeclWriter; 2370 }; 2371 2372 /// \brief Represents a C++ conversion function within a class. 2373 /// 2374 /// For example: 2375 /// 2376 /// \code 2377 /// class X { 2378 /// public: 2379 /// operator bool(); 2380 /// }; 2381 /// \endcode 2382 class CXXConversionDecl : public CXXMethodDecl { 2383 void anchor() override; 2384 /// Whether this conversion function declaration is marked 2385 /// "explicit", meaning that it can only be applied when the user 2386 /// explicitly wrote a cast. This is a C++0x feature. 2387 bool IsExplicitSpecified : 1; 2388 CXXConversionDecl(ASTContext & C,CXXRecordDecl * RD,SourceLocation StartLoc,const DeclarationNameInfo & NameInfo,QualType T,TypeSourceInfo * TInfo,bool isInline,bool isExplicitSpecified,bool isConstexpr,SourceLocation EndLocation)2389 CXXConversionDecl(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, 2390 const DeclarationNameInfo &NameInfo, 2391 QualType T, TypeSourceInfo *TInfo, 2392 bool isInline, bool isExplicitSpecified, 2393 bool isConstexpr, SourceLocation EndLocation) 2394 : CXXMethodDecl(CXXConversion, C, RD, StartLoc, NameInfo, T, TInfo, 2395 SC_None, isInline, isConstexpr, EndLocation), 2396 IsExplicitSpecified(isExplicitSpecified) { } 2397 2398 public: 2399 static CXXConversionDecl *Create(ASTContext &C, CXXRecordDecl *RD, 2400 SourceLocation StartLoc, 2401 const DeclarationNameInfo &NameInfo, 2402 QualType T, TypeSourceInfo *TInfo, 2403 bool isInline, bool isExplicit, 2404 bool isConstexpr, 2405 SourceLocation EndLocation); 2406 static CXXConversionDecl *CreateDeserialized(ASTContext &C, unsigned ID); 2407 2408 /// Whether this conversion function declaration is marked 2409 /// "explicit", meaning that it can only be used for direct initialization 2410 /// (including explitly written casts). This is a C++11 feature. isExplicitSpecified()2411 bool isExplicitSpecified() const { return IsExplicitSpecified; } 2412 2413 /// \brief Whether this is an explicit conversion operator (C++11 and later). 2414 /// 2415 /// Explicit conversion operators are only considered for direct 2416 /// initialization, e.g., when the user has explicitly written a cast. isExplicit()2417 bool isExplicit() const { 2418 return cast<CXXConversionDecl>(getFirstDecl())->isExplicitSpecified(); 2419 } 2420 2421 /// \brief Returns the type that this conversion function is converting to. getConversionType()2422 QualType getConversionType() const { 2423 return getType()->getAs<FunctionType>()->getReturnType(); 2424 } 2425 2426 /// \brief Determine whether this conversion function is a conversion from 2427 /// a lambda closure type to a block pointer. 2428 bool isLambdaToBlockPointerConversion() const; 2429 2430 // Implement isa/cast/dyncast/etc. classof(const Decl * D)2431 static bool classof(const Decl *D) { return classofKind(D->getKind()); } classofKind(Kind K)2432 static bool classofKind(Kind K) { return K == CXXConversion; } 2433 2434 friend class ASTDeclReader; 2435 friend class ASTDeclWriter; 2436 }; 2437 2438 /// \brief Represents a linkage specification. 2439 /// 2440 /// For example: 2441 /// \code 2442 /// extern "C" void foo(); 2443 /// \endcode 2444 class LinkageSpecDecl : public Decl, public DeclContext { 2445 virtual void anchor(); 2446 public: 2447 /// \brief Represents the language in a linkage specification. 2448 /// 2449 /// The values are part of the serialization ABI for 2450 /// ASTs and cannot be changed without altering that ABI. To help 2451 /// ensure a stable ABI for this, we choose the DW_LANG_ encodings 2452 /// from the dwarf standard. 2453 enum LanguageIDs { 2454 lang_c = /* DW_LANG_C */ 0x0002, 2455 lang_cxx = /* DW_LANG_C_plus_plus */ 0x0004 2456 }; 2457 private: 2458 /// \brief The language for this linkage specification. 2459 unsigned Language : 3; 2460 /// \brief True if this linkage spec has braces. 2461 /// 2462 /// This is needed so that hasBraces() returns the correct result while the 2463 /// linkage spec body is being parsed. Once RBraceLoc has been set this is 2464 /// not used, so it doesn't need to be serialized. 2465 unsigned HasBraces : 1; 2466 /// \brief The source location for the extern keyword. 2467 SourceLocation ExternLoc; 2468 /// \brief The source location for the right brace (if valid). 2469 SourceLocation RBraceLoc; 2470 LinkageSpecDecl(DeclContext * DC,SourceLocation ExternLoc,SourceLocation LangLoc,LanguageIDs lang,bool HasBraces)2471 LinkageSpecDecl(DeclContext *DC, SourceLocation ExternLoc, 2472 SourceLocation LangLoc, LanguageIDs lang, bool HasBraces) 2473 : Decl(LinkageSpec, DC, LangLoc), DeclContext(LinkageSpec), 2474 Language(lang), HasBraces(HasBraces), ExternLoc(ExternLoc), 2475 RBraceLoc(SourceLocation()) { } 2476 2477 public: 2478 static LinkageSpecDecl *Create(ASTContext &C, DeclContext *DC, 2479 SourceLocation ExternLoc, 2480 SourceLocation LangLoc, LanguageIDs Lang, 2481 bool HasBraces); 2482 static LinkageSpecDecl *CreateDeserialized(ASTContext &C, unsigned ID); 2483 2484 /// \brief Return the language specified by this linkage specification. getLanguage()2485 LanguageIDs getLanguage() const { return LanguageIDs(Language); } 2486 /// \brief Set the language specified by this linkage specification. setLanguage(LanguageIDs L)2487 void setLanguage(LanguageIDs L) { Language = L; } 2488 2489 /// \brief Determines whether this linkage specification had braces in 2490 /// its syntactic form. hasBraces()2491 bool hasBraces() const { 2492 assert(!RBraceLoc.isValid() || HasBraces); 2493 return HasBraces; 2494 } 2495 getExternLoc()2496 SourceLocation getExternLoc() const { return ExternLoc; } getRBraceLoc()2497 SourceLocation getRBraceLoc() const { return RBraceLoc; } setExternLoc(SourceLocation L)2498 void setExternLoc(SourceLocation L) { ExternLoc = L; } setRBraceLoc(SourceLocation L)2499 void setRBraceLoc(SourceLocation L) { 2500 RBraceLoc = L; 2501 HasBraces = RBraceLoc.isValid(); 2502 } 2503 getLocEnd()2504 SourceLocation getLocEnd() const LLVM_READONLY { 2505 if (hasBraces()) 2506 return getRBraceLoc(); 2507 // No braces: get the end location of the (only) declaration in context 2508 // (if present). 2509 return decls_empty() ? getLocation() : decls_begin()->getLocEnd(); 2510 } 2511 getSourceRange()2512 SourceRange getSourceRange() const override LLVM_READONLY { 2513 return SourceRange(ExternLoc, getLocEnd()); 2514 } 2515 classof(const Decl * D)2516 static bool classof(const Decl *D) { return classofKind(D->getKind()); } classofKind(Kind K)2517 static bool classofKind(Kind K) { return K == LinkageSpec; } castToDeclContext(const LinkageSpecDecl * D)2518 static DeclContext *castToDeclContext(const LinkageSpecDecl *D) { 2519 return static_cast<DeclContext *>(const_cast<LinkageSpecDecl*>(D)); 2520 } castFromDeclContext(const DeclContext * DC)2521 static LinkageSpecDecl *castFromDeclContext(const DeclContext *DC) { 2522 return static_cast<LinkageSpecDecl *>(const_cast<DeclContext*>(DC)); 2523 } 2524 }; 2525 2526 /// \brief Represents C++ using-directive. 2527 /// 2528 /// For example: 2529 /// \code 2530 /// using namespace std; 2531 /// \endcode 2532 /// 2533 /// \note UsingDirectiveDecl should be Decl not NamedDecl, but we provide 2534 /// artificial names for all using-directives in order to store 2535 /// them in DeclContext effectively. 2536 class UsingDirectiveDecl : public NamedDecl { 2537 void anchor() override; 2538 /// \brief The location of the \c using keyword. 2539 SourceLocation UsingLoc; 2540 2541 /// \brief The location of the \c namespace keyword. 2542 SourceLocation NamespaceLoc; 2543 2544 /// \brief The nested-name-specifier that precedes the namespace. 2545 NestedNameSpecifierLoc QualifierLoc; 2546 2547 /// \brief The namespace nominated by this using-directive. 2548 NamedDecl *NominatedNamespace; 2549 2550 /// Enclosing context containing both using-directive and nominated 2551 /// namespace. 2552 DeclContext *CommonAncestor; 2553 2554 /// \brief Returns special DeclarationName used by using-directives. 2555 /// 2556 /// This is only used by DeclContext for storing UsingDirectiveDecls in 2557 /// its lookup structure. getName()2558 static DeclarationName getName() { 2559 return DeclarationName::getUsingDirectiveName(); 2560 } 2561 UsingDirectiveDecl(DeclContext * DC,SourceLocation UsingLoc,SourceLocation NamespcLoc,NestedNameSpecifierLoc QualifierLoc,SourceLocation IdentLoc,NamedDecl * Nominated,DeclContext * CommonAncestor)2562 UsingDirectiveDecl(DeclContext *DC, SourceLocation UsingLoc, 2563 SourceLocation NamespcLoc, 2564 NestedNameSpecifierLoc QualifierLoc, 2565 SourceLocation IdentLoc, 2566 NamedDecl *Nominated, 2567 DeclContext *CommonAncestor) 2568 : NamedDecl(UsingDirective, DC, IdentLoc, getName()), UsingLoc(UsingLoc), 2569 NamespaceLoc(NamespcLoc), QualifierLoc(QualifierLoc), 2570 NominatedNamespace(Nominated), CommonAncestor(CommonAncestor) { } 2571 2572 public: 2573 /// \brief Retrieve the nested-name-specifier that qualifies the 2574 /// name of the namespace, with source-location information. getQualifierLoc()2575 NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; } 2576 2577 /// \brief Retrieve the nested-name-specifier that qualifies the 2578 /// name of the namespace. getQualifier()2579 NestedNameSpecifier *getQualifier() const { 2580 return QualifierLoc.getNestedNameSpecifier(); 2581 } 2582 getNominatedNamespaceAsWritten()2583 NamedDecl *getNominatedNamespaceAsWritten() { return NominatedNamespace; } getNominatedNamespaceAsWritten()2584 const NamedDecl *getNominatedNamespaceAsWritten() const { 2585 return NominatedNamespace; 2586 } 2587 2588 /// \brief Returns the namespace nominated by this using-directive. 2589 NamespaceDecl *getNominatedNamespace(); 2590 getNominatedNamespace()2591 const NamespaceDecl *getNominatedNamespace() const { 2592 return const_cast<UsingDirectiveDecl*>(this)->getNominatedNamespace(); 2593 } 2594 2595 /// \brief Returns the common ancestor context of this using-directive and 2596 /// its nominated namespace. getCommonAncestor()2597 DeclContext *getCommonAncestor() { return CommonAncestor; } getCommonAncestor()2598 const DeclContext *getCommonAncestor() const { return CommonAncestor; } 2599 2600 /// \brief Return the location of the \c using keyword. getUsingLoc()2601 SourceLocation getUsingLoc() const { return UsingLoc; } 2602 2603 // FIXME: Could omit 'Key' in name. 2604 /// \brief Returns the location of the \c namespace keyword. getNamespaceKeyLocation()2605 SourceLocation getNamespaceKeyLocation() const { return NamespaceLoc; } 2606 2607 /// \brief Returns the location of this using declaration's identifier. getIdentLocation()2608 SourceLocation getIdentLocation() const { return getLocation(); } 2609 2610 static UsingDirectiveDecl *Create(ASTContext &C, DeclContext *DC, 2611 SourceLocation UsingLoc, 2612 SourceLocation NamespaceLoc, 2613 NestedNameSpecifierLoc QualifierLoc, 2614 SourceLocation IdentLoc, 2615 NamedDecl *Nominated, 2616 DeclContext *CommonAncestor); 2617 static UsingDirectiveDecl *CreateDeserialized(ASTContext &C, unsigned ID); 2618 getSourceRange()2619 SourceRange getSourceRange() const override LLVM_READONLY { 2620 return SourceRange(UsingLoc, getLocation()); 2621 } 2622 classof(const Decl * D)2623 static bool classof(const Decl *D) { return classofKind(D->getKind()); } classofKind(Kind K)2624 static bool classofKind(Kind K) { return K == UsingDirective; } 2625 2626 // Friend for getUsingDirectiveName. 2627 friend class DeclContext; 2628 2629 friend class ASTDeclReader; 2630 }; 2631 2632 /// \brief Represents a C++ namespace alias. 2633 /// 2634 /// For example: 2635 /// 2636 /// \code 2637 /// namespace Foo = Bar; 2638 /// \endcode 2639 class NamespaceAliasDecl : public NamedDecl { 2640 void anchor() override; 2641 2642 /// \brief The location of the \c namespace keyword. 2643 SourceLocation NamespaceLoc; 2644 2645 /// \brief The location of the namespace's identifier. 2646 /// 2647 /// This is accessed by TargetNameLoc. 2648 SourceLocation IdentLoc; 2649 2650 /// \brief The nested-name-specifier that precedes the namespace. 2651 NestedNameSpecifierLoc QualifierLoc; 2652 2653 /// \brief The Decl that this alias points to, either a NamespaceDecl or 2654 /// a NamespaceAliasDecl. 2655 NamedDecl *Namespace; 2656 NamespaceAliasDecl(DeclContext * DC,SourceLocation NamespaceLoc,SourceLocation AliasLoc,IdentifierInfo * Alias,NestedNameSpecifierLoc QualifierLoc,SourceLocation IdentLoc,NamedDecl * Namespace)2657 NamespaceAliasDecl(DeclContext *DC, SourceLocation NamespaceLoc, 2658 SourceLocation AliasLoc, IdentifierInfo *Alias, 2659 NestedNameSpecifierLoc QualifierLoc, 2660 SourceLocation IdentLoc, NamedDecl *Namespace) 2661 : NamedDecl(NamespaceAlias, DC, AliasLoc, Alias), 2662 NamespaceLoc(NamespaceLoc), IdentLoc(IdentLoc), 2663 QualifierLoc(QualifierLoc), Namespace(Namespace) { } 2664 2665 friend class ASTDeclReader; 2666 2667 public: 2668 /// \brief Retrieve the nested-name-specifier that qualifies the 2669 /// name of the namespace, with source-location information. getQualifierLoc()2670 NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; } 2671 2672 /// \brief Retrieve the nested-name-specifier that qualifies the 2673 /// name of the namespace. getQualifier()2674 NestedNameSpecifier *getQualifier() const { 2675 return QualifierLoc.getNestedNameSpecifier(); 2676 } 2677 2678 /// \brief Retrieve the namespace declaration aliased by this directive. getNamespace()2679 NamespaceDecl *getNamespace() { 2680 if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(Namespace)) 2681 return AD->getNamespace(); 2682 2683 return cast<NamespaceDecl>(Namespace); 2684 } 2685 getNamespace()2686 const NamespaceDecl *getNamespace() const { 2687 return const_cast<NamespaceAliasDecl*>(this)->getNamespace(); 2688 } 2689 2690 /// Returns the location of the alias name, i.e. 'foo' in 2691 /// "namespace foo = ns::bar;". getAliasLoc()2692 SourceLocation getAliasLoc() const { return getLocation(); } 2693 2694 /// Returns the location of the \c namespace keyword. getNamespaceLoc()2695 SourceLocation getNamespaceLoc() const { return NamespaceLoc; } 2696 2697 /// Returns the location of the identifier in the named namespace. getTargetNameLoc()2698 SourceLocation getTargetNameLoc() const { return IdentLoc; } 2699 2700 /// \brief Retrieve the namespace that this alias refers to, which 2701 /// may either be a NamespaceDecl or a NamespaceAliasDecl. getAliasedNamespace()2702 NamedDecl *getAliasedNamespace() const { return Namespace; } 2703 2704 static NamespaceAliasDecl *Create(ASTContext &C, DeclContext *DC, 2705 SourceLocation NamespaceLoc, 2706 SourceLocation AliasLoc, 2707 IdentifierInfo *Alias, 2708 NestedNameSpecifierLoc QualifierLoc, 2709 SourceLocation IdentLoc, 2710 NamedDecl *Namespace); 2711 2712 static NamespaceAliasDecl *CreateDeserialized(ASTContext &C, unsigned ID); 2713 getSourceRange()2714 SourceRange getSourceRange() const override LLVM_READONLY { 2715 return SourceRange(NamespaceLoc, IdentLoc); 2716 } 2717 classof(const Decl * D)2718 static bool classof(const Decl *D) { return classofKind(D->getKind()); } classofKind(Kind K)2719 static bool classofKind(Kind K) { return K == NamespaceAlias; } 2720 }; 2721 2722 /// \brief Represents a shadow declaration introduced into a scope by a 2723 /// (resolved) using declaration. 2724 /// 2725 /// For example, 2726 /// \code 2727 /// namespace A { 2728 /// void foo(); 2729 /// } 2730 /// namespace B { 2731 /// using A::foo; // <- a UsingDecl 2732 /// // Also creates a UsingShadowDecl for A::foo() in B 2733 /// } 2734 /// \endcode 2735 class UsingShadowDecl : public NamedDecl, public Redeclarable<UsingShadowDecl> { 2736 void anchor() override; 2737 2738 /// The referenced declaration. 2739 NamedDecl *Underlying; 2740 2741 /// \brief The using declaration which introduced this decl or the next using 2742 /// shadow declaration contained in the aforementioned using declaration. 2743 NamedDecl *UsingOrNextShadow; 2744 friend class UsingDecl; 2745 UsingShadowDecl(ASTContext & C,DeclContext * DC,SourceLocation Loc,UsingDecl * Using,NamedDecl * Target)2746 UsingShadowDecl(ASTContext &C, DeclContext *DC, SourceLocation Loc, 2747 UsingDecl *Using, NamedDecl *Target) 2748 : NamedDecl(UsingShadow, DC, Loc, DeclarationName()), 2749 redeclarable_base(C), Underlying(Target), 2750 UsingOrNextShadow(reinterpret_cast<NamedDecl *>(Using)) { 2751 if (Target) { 2752 setDeclName(Target->getDeclName()); 2753 IdentifierNamespace = Target->getIdentifierNamespace(); 2754 } 2755 setImplicit(); 2756 } 2757 2758 typedef Redeclarable<UsingShadowDecl> redeclarable_base; getNextRedeclarationImpl()2759 UsingShadowDecl *getNextRedeclarationImpl() override { 2760 return getNextRedeclaration(); 2761 } getPreviousDeclImpl()2762 UsingShadowDecl *getPreviousDeclImpl() override { 2763 return getPreviousDecl(); 2764 } getMostRecentDeclImpl()2765 UsingShadowDecl *getMostRecentDeclImpl() override { 2766 return getMostRecentDecl(); 2767 } 2768 2769 public: Create(ASTContext & C,DeclContext * DC,SourceLocation Loc,UsingDecl * Using,NamedDecl * Target)2770 static UsingShadowDecl *Create(ASTContext &C, DeclContext *DC, 2771 SourceLocation Loc, UsingDecl *Using, 2772 NamedDecl *Target) { 2773 return new (C, DC) UsingShadowDecl(C, DC, Loc, Using, Target); 2774 } 2775 2776 static UsingShadowDecl *CreateDeserialized(ASTContext &C, unsigned ID); 2777 2778 typedef redeclarable_base::redecl_range redecl_range; 2779 typedef redeclarable_base::redecl_iterator redecl_iterator; 2780 using redeclarable_base::redecls_begin; 2781 using redeclarable_base::redecls_end; 2782 using redeclarable_base::redecls; 2783 using redeclarable_base::getPreviousDecl; 2784 using redeclarable_base::getMostRecentDecl; 2785 getCanonicalDecl()2786 UsingShadowDecl *getCanonicalDecl() override { 2787 return getFirstDecl(); 2788 } getCanonicalDecl()2789 const UsingShadowDecl *getCanonicalDecl() const { 2790 return getFirstDecl(); 2791 } 2792 2793 /// \brief Gets the underlying declaration which has been brought into the 2794 /// local scope. getTargetDecl()2795 NamedDecl *getTargetDecl() const { return Underlying; } 2796 2797 /// \brief Sets the underlying declaration which has been brought into the 2798 /// local scope. setTargetDecl(NamedDecl * ND)2799 void setTargetDecl(NamedDecl* ND) { 2800 assert(ND && "Target decl is null!"); 2801 Underlying = ND; 2802 IdentifierNamespace = ND->getIdentifierNamespace(); 2803 } 2804 2805 /// \brief Gets the using declaration to which this declaration is tied. 2806 UsingDecl *getUsingDecl() const; 2807 2808 /// \brief The next using shadow declaration contained in the shadow decl 2809 /// chain of the using declaration which introduced this decl. getNextUsingShadowDecl()2810 UsingShadowDecl *getNextUsingShadowDecl() const { 2811 return dyn_cast_or_null<UsingShadowDecl>(UsingOrNextShadow); 2812 } 2813 classof(const Decl * D)2814 static bool classof(const Decl *D) { return classofKind(D->getKind()); } classofKind(Kind K)2815 static bool classofKind(Kind K) { return K == Decl::UsingShadow; } 2816 2817 friend class ASTDeclReader; 2818 friend class ASTDeclWriter; 2819 }; 2820 2821 /// \brief Represents a C++ using-declaration. 2822 /// 2823 /// For example: 2824 /// \code 2825 /// using someNameSpace::someIdentifier; 2826 /// \endcode 2827 class UsingDecl : public NamedDecl { 2828 void anchor() override; 2829 2830 /// \brief The source location of the 'using' keyword itself. 2831 SourceLocation UsingLocation; 2832 2833 /// \brief The nested-name-specifier that precedes the name. 2834 NestedNameSpecifierLoc QualifierLoc; 2835 2836 /// \brief Provides source/type location info for the declaration name 2837 /// embedded in the ValueDecl base class. 2838 DeclarationNameLoc DNLoc; 2839 2840 /// \brief The first shadow declaration of the shadow decl chain associated 2841 /// with this using declaration. 2842 /// 2843 /// The bool member of the pair store whether this decl has the \c typename 2844 /// keyword. 2845 llvm::PointerIntPair<UsingShadowDecl *, 1, bool> FirstUsingShadow; 2846 UsingDecl(DeclContext * DC,SourceLocation UL,NestedNameSpecifierLoc QualifierLoc,const DeclarationNameInfo & NameInfo,bool HasTypenameKeyword)2847 UsingDecl(DeclContext *DC, SourceLocation UL, 2848 NestedNameSpecifierLoc QualifierLoc, 2849 const DeclarationNameInfo &NameInfo, bool HasTypenameKeyword) 2850 : NamedDecl(Using, DC, NameInfo.getLoc(), NameInfo.getName()), 2851 UsingLocation(UL), QualifierLoc(QualifierLoc), 2852 DNLoc(NameInfo.getInfo()), FirstUsingShadow(nullptr, HasTypenameKeyword) { 2853 } 2854 2855 public: 2856 /// \brief Return the source location of the 'using' keyword. getUsingLoc()2857 SourceLocation getUsingLoc() const { return UsingLocation; } 2858 2859 /// \brief Set the source location of the 'using' keyword. setUsingLoc(SourceLocation L)2860 void setUsingLoc(SourceLocation L) { UsingLocation = L; } 2861 2862 /// \brief Retrieve the nested-name-specifier that qualifies the name, 2863 /// with source-location information. getQualifierLoc()2864 NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; } 2865 2866 /// \brief Retrieve the nested-name-specifier that qualifies the name. getQualifier()2867 NestedNameSpecifier *getQualifier() const { 2868 return QualifierLoc.getNestedNameSpecifier(); 2869 } 2870 getNameInfo()2871 DeclarationNameInfo getNameInfo() const { 2872 return DeclarationNameInfo(getDeclName(), getLocation(), DNLoc); 2873 } 2874 2875 /// \brief Return true if it is a C++03 access declaration (no 'using'). isAccessDeclaration()2876 bool isAccessDeclaration() const { return UsingLocation.isInvalid(); } 2877 2878 /// \brief Return true if the using declaration has 'typename'. hasTypename()2879 bool hasTypename() const { return FirstUsingShadow.getInt(); } 2880 2881 /// \brief Sets whether the using declaration has 'typename'. setTypename(bool TN)2882 void setTypename(bool TN) { FirstUsingShadow.setInt(TN); } 2883 2884 /// \brief Iterates through the using shadow declarations associated with 2885 /// this using declaration. 2886 class shadow_iterator { 2887 /// \brief The current using shadow declaration. 2888 UsingShadowDecl *Current; 2889 2890 public: 2891 typedef UsingShadowDecl* value_type; 2892 typedef UsingShadowDecl* reference; 2893 typedef UsingShadowDecl* pointer; 2894 typedef std::forward_iterator_tag iterator_category; 2895 typedef std::ptrdiff_t difference_type; 2896 shadow_iterator()2897 shadow_iterator() : Current(nullptr) { } shadow_iterator(UsingShadowDecl * C)2898 explicit shadow_iterator(UsingShadowDecl *C) : Current(C) { } 2899 2900 reference operator*() const { return Current; } 2901 pointer operator->() const { return Current; } 2902 2903 shadow_iterator& operator++() { 2904 Current = Current->getNextUsingShadowDecl(); 2905 return *this; 2906 } 2907 2908 shadow_iterator operator++(int) { 2909 shadow_iterator tmp(*this); 2910 ++(*this); 2911 return tmp; 2912 } 2913 2914 friend bool operator==(shadow_iterator x, shadow_iterator y) { 2915 return x.Current == y.Current; 2916 } 2917 friend bool operator!=(shadow_iterator x, shadow_iterator y) { 2918 return x.Current != y.Current; 2919 } 2920 }; 2921 2922 typedef llvm::iterator_range<shadow_iterator> shadow_range; 2923 shadows()2924 shadow_range shadows() const { 2925 return shadow_range(shadow_begin(), shadow_end()); 2926 } shadow_begin()2927 shadow_iterator shadow_begin() const { 2928 return shadow_iterator(FirstUsingShadow.getPointer()); 2929 } shadow_end()2930 shadow_iterator shadow_end() const { return shadow_iterator(); } 2931 2932 /// \brief Return the number of shadowed declarations associated with this 2933 /// using declaration. shadow_size()2934 unsigned shadow_size() const { 2935 return std::distance(shadow_begin(), shadow_end()); 2936 } 2937 2938 void addShadowDecl(UsingShadowDecl *S); 2939 void removeShadowDecl(UsingShadowDecl *S); 2940 2941 static UsingDecl *Create(ASTContext &C, DeclContext *DC, 2942 SourceLocation UsingL, 2943 NestedNameSpecifierLoc QualifierLoc, 2944 const DeclarationNameInfo &NameInfo, 2945 bool HasTypenameKeyword); 2946 2947 static UsingDecl *CreateDeserialized(ASTContext &C, unsigned ID); 2948 2949 SourceRange getSourceRange() const override LLVM_READONLY; 2950 classof(const Decl * D)2951 static bool classof(const Decl *D) { return classofKind(D->getKind()); } classofKind(Kind K)2952 static bool classofKind(Kind K) { return K == Using; } 2953 2954 friend class ASTDeclReader; 2955 friend class ASTDeclWriter; 2956 }; 2957 2958 /// \brief Represents a dependent using declaration which was not marked with 2959 /// \c typename. 2960 /// 2961 /// Unlike non-dependent using declarations, these *only* bring through 2962 /// non-types; otherwise they would break two-phase lookup. 2963 /// 2964 /// \code 2965 /// template \<class T> class A : public Base<T> { 2966 /// using Base<T>::foo; 2967 /// }; 2968 /// \endcode 2969 class UnresolvedUsingValueDecl : public ValueDecl { 2970 void anchor() override; 2971 2972 /// \brief The source location of the 'using' keyword 2973 SourceLocation UsingLocation; 2974 2975 /// \brief The nested-name-specifier that precedes the name. 2976 NestedNameSpecifierLoc QualifierLoc; 2977 2978 /// \brief Provides source/type location info for the declaration name 2979 /// embedded in the ValueDecl base class. 2980 DeclarationNameLoc DNLoc; 2981 UnresolvedUsingValueDecl(DeclContext * DC,QualType Ty,SourceLocation UsingLoc,NestedNameSpecifierLoc QualifierLoc,const DeclarationNameInfo & NameInfo)2982 UnresolvedUsingValueDecl(DeclContext *DC, QualType Ty, 2983 SourceLocation UsingLoc, 2984 NestedNameSpecifierLoc QualifierLoc, 2985 const DeclarationNameInfo &NameInfo) 2986 : ValueDecl(UnresolvedUsingValue, DC, 2987 NameInfo.getLoc(), NameInfo.getName(), Ty), 2988 UsingLocation(UsingLoc), QualifierLoc(QualifierLoc), 2989 DNLoc(NameInfo.getInfo()) 2990 { } 2991 2992 public: 2993 /// \brief Returns the source location of the 'using' keyword. getUsingLoc()2994 SourceLocation getUsingLoc() const { return UsingLocation; } 2995 2996 /// \brief Set the source location of the 'using' keyword. setUsingLoc(SourceLocation L)2997 void setUsingLoc(SourceLocation L) { UsingLocation = L; } 2998 2999 /// \brief Return true if it is a C++03 access declaration (no 'using'). isAccessDeclaration()3000 bool isAccessDeclaration() const { return UsingLocation.isInvalid(); } 3001 3002 /// \brief Retrieve the nested-name-specifier that qualifies the name, 3003 /// with source-location information. getQualifierLoc()3004 NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; } 3005 3006 /// \brief Retrieve the nested-name-specifier that qualifies the name. getQualifier()3007 NestedNameSpecifier *getQualifier() const { 3008 return QualifierLoc.getNestedNameSpecifier(); 3009 } 3010 getNameInfo()3011 DeclarationNameInfo getNameInfo() const { 3012 return DeclarationNameInfo(getDeclName(), getLocation(), DNLoc); 3013 } 3014 3015 static UnresolvedUsingValueDecl * 3016 Create(ASTContext &C, DeclContext *DC, SourceLocation UsingLoc, 3017 NestedNameSpecifierLoc QualifierLoc, 3018 const DeclarationNameInfo &NameInfo); 3019 3020 static UnresolvedUsingValueDecl * 3021 CreateDeserialized(ASTContext &C, unsigned ID); 3022 3023 SourceRange getSourceRange() const override LLVM_READONLY; 3024 classof(const Decl * D)3025 static bool classof(const Decl *D) { return classofKind(D->getKind()); } classofKind(Kind K)3026 static bool classofKind(Kind K) { return K == UnresolvedUsingValue; } 3027 3028 friend class ASTDeclReader; 3029 friend class ASTDeclWriter; 3030 }; 3031 3032 /// \brief Represents a dependent using declaration which was marked with 3033 /// \c typename. 3034 /// 3035 /// \code 3036 /// template \<class T> class A : public Base<T> { 3037 /// using typename Base<T>::foo; 3038 /// }; 3039 /// \endcode 3040 /// 3041 /// The type associated with an unresolved using typename decl is 3042 /// currently always a typename type. 3043 class UnresolvedUsingTypenameDecl : public TypeDecl { 3044 void anchor() override; 3045 3046 /// \brief The source location of the 'typename' keyword 3047 SourceLocation TypenameLocation; 3048 3049 /// \brief The nested-name-specifier that precedes the name. 3050 NestedNameSpecifierLoc QualifierLoc; 3051 UnresolvedUsingTypenameDecl(DeclContext * DC,SourceLocation UsingLoc,SourceLocation TypenameLoc,NestedNameSpecifierLoc QualifierLoc,SourceLocation TargetNameLoc,IdentifierInfo * TargetName)3052 UnresolvedUsingTypenameDecl(DeclContext *DC, SourceLocation UsingLoc, 3053 SourceLocation TypenameLoc, 3054 NestedNameSpecifierLoc QualifierLoc, 3055 SourceLocation TargetNameLoc, 3056 IdentifierInfo *TargetName) 3057 : TypeDecl(UnresolvedUsingTypename, DC, TargetNameLoc, TargetName, 3058 UsingLoc), 3059 TypenameLocation(TypenameLoc), QualifierLoc(QualifierLoc) { } 3060 3061 friend class ASTDeclReader; 3062 3063 public: 3064 /// \brief Returns the source location of the 'using' keyword. getUsingLoc()3065 SourceLocation getUsingLoc() const { return getLocStart(); } 3066 3067 /// \brief Returns the source location of the 'typename' keyword. getTypenameLoc()3068 SourceLocation getTypenameLoc() const { return TypenameLocation; } 3069 3070 /// \brief Retrieve the nested-name-specifier that qualifies the name, 3071 /// with source-location information. getQualifierLoc()3072 NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; } 3073 3074 /// \brief Retrieve the nested-name-specifier that qualifies the name. getQualifier()3075 NestedNameSpecifier *getQualifier() const { 3076 return QualifierLoc.getNestedNameSpecifier(); 3077 } 3078 3079 static UnresolvedUsingTypenameDecl * 3080 Create(ASTContext &C, DeclContext *DC, SourceLocation UsingLoc, 3081 SourceLocation TypenameLoc, NestedNameSpecifierLoc QualifierLoc, 3082 SourceLocation TargetNameLoc, DeclarationName TargetName); 3083 3084 static UnresolvedUsingTypenameDecl * 3085 CreateDeserialized(ASTContext &C, unsigned ID); 3086 classof(const Decl * D)3087 static bool classof(const Decl *D) { return classofKind(D->getKind()); } classofKind(Kind K)3088 static bool classofKind(Kind K) { return K == UnresolvedUsingTypename; } 3089 }; 3090 3091 /// \brief Represents a C++11 static_assert declaration. 3092 class StaticAssertDecl : public Decl { 3093 virtual void anchor(); 3094 llvm::PointerIntPair<Expr *, 1, bool> AssertExprAndFailed; 3095 StringLiteral *Message; 3096 SourceLocation RParenLoc; 3097 StaticAssertDecl(DeclContext * DC,SourceLocation StaticAssertLoc,Expr * AssertExpr,StringLiteral * Message,SourceLocation RParenLoc,bool Failed)3098 StaticAssertDecl(DeclContext *DC, SourceLocation StaticAssertLoc, 3099 Expr *AssertExpr, StringLiteral *Message, 3100 SourceLocation RParenLoc, bool Failed) 3101 : Decl(StaticAssert, DC, StaticAssertLoc), 3102 AssertExprAndFailed(AssertExpr, Failed), Message(Message), 3103 RParenLoc(RParenLoc) { } 3104 3105 public: 3106 static StaticAssertDecl *Create(ASTContext &C, DeclContext *DC, 3107 SourceLocation StaticAssertLoc, 3108 Expr *AssertExpr, StringLiteral *Message, 3109 SourceLocation RParenLoc, bool Failed); 3110 static StaticAssertDecl *CreateDeserialized(ASTContext &C, unsigned ID); 3111 getAssertExpr()3112 Expr *getAssertExpr() { return AssertExprAndFailed.getPointer(); } getAssertExpr()3113 const Expr *getAssertExpr() const { return AssertExprAndFailed.getPointer(); } 3114 getMessage()3115 StringLiteral *getMessage() { return Message; } getMessage()3116 const StringLiteral *getMessage() const { return Message; } 3117 isFailed()3118 bool isFailed() const { return AssertExprAndFailed.getInt(); } 3119 getRParenLoc()3120 SourceLocation getRParenLoc() const { return RParenLoc; } 3121 getSourceRange()3122 SourceRange getSourceRange() const override LLVM_READONLY { 3123 return SourceRange(getLocation(), getRParenLoc()); 3124 } 3125 classof(const Decl * D)3126 static bool classof(const Decl *D) { return classofKind(D->getKind()); } classofKind(Kind K)3127 static bool classofKind(Kind K) { return K == StaticAssert; } 3128 3129 friend class ASTDeclReader; 3130 }; 3131 3132 /// An instance of this class represents the declaration of a property 3133 /// member. This is a Microsoft extension to C++, first introduced in 3134 /// Visual Studio .NET 2003 as a parallel to similar features in C# 3135 /// and Managed C++. 3136 /// 3137 /// A property must always be a non-static class member. 3138 /// 3139 /// A property member superficially resembles a non-static data 3140 /// member, except preceded by a property attribute: 3141 /// __declspec(property(get=GetX, put=PutX)) int x; 3142 /// Either (but not both) of the 'get' and 'put' names may be omitted. 3143 /// 3144 /// A reference to a property is always an lvalue. If the lvalue 3145 /// undergoes lvalue-to-rvalue conversion, then a getter name is 3146 /// required, and that member is called with no arguments. 3147 /// If the lvalue is assigned into, then a setter name is required, 3148 /// and that member is called with one argument, the value assigned. 3149 /// Both operations are potentially overloaded. Compound assignments 3150 /// are permitted, as are the increment and decrement operators. 3151 /// 3152 /// The getter and putter methods are permitted to be overloaded, 3153 /// although their return and parameter types are subject to certain 3154 /// restrictions according to the type of the property. 3155 /// 3156 /// A property declared using an incomplete array type may 3157 /// additionally be subscripted, adding extra parameters to the getter 3158 /// and putter methods. 3159 class MSPropertyDecl : public DeclaratorDecl { 3160 IdentifierInfo *GetterId, *SetterId; 3161 MSPropertyDecl(DeclContext * DC,SourceLocation L,DeclarationName N,QualType T,TypeSourceInfo * TInfo,SourceLocation StartL,IdentifierInfo * Getter,IdentifierInfo * Setter)3162 MSPropertyDecl(DeclContext *DC, SourceLocation L, DeclarationName N, 3163 QualType T, TypeSourceInfo *TInfo, SourceLocation StartL, 3164 IdentifierInfo *Getter, IdentifierInfo *Setter) 3165 : DeclaratorDecl(MSProperty, DC, L, N, T, TInfo, StartL), 3166 GetterId(Getter), SetterId(Setter) {} 3167 3168 public: 3169 static MSPropertyDecl *Create(ASTContext &C, DeclContext *DC, 3170 SourceLocation L, DeclarationName N, QualType T, 3171 TypeSourceInfo *TInfo, SourceLocation StartL, 3172 IdentifierInfo *Getter, IdentifierInfo *Setter); 3173 static MSPropertyDecl *CreateDeserialized(ASTContext &C, unsigned ID); 3174 classof(const Decl * D)3175 static bool classof(const Decl *D) { return D->getKind() == MSProperty; } 3176 hasGetter()3177 bool hasGetter() const { return GetterId != nullptr; } getGetterId()3178 IdentifierInfo* getGetterId() const { return GetterId; } hasSetter()3179 bool hasSetter() const { return SetterId != nullptr; } getSetterId()3180 IdentifierInfo* getSetterId() const { return SetterId; } 3181 3182 friend class ASTDeclReader; 3183 }; 3184 3185 /// Insertion operator for diagnostics. This allows sending an AccessSpecifier 3186 /// into a diagnostic with <<. 3187 const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB, 3188 AccessSpecifier AS); 3189 3190 const PartialDiagnostic &operator<<(const PartialDiagnostic &DB, 3191 AccessSpecifier AS); 3192 3193 } // end namespace clang 3194 3195 #endif 3196