• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2006, 2007, 2008, 2009, 2010 Apple Inc. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  *
13  * THIS SOFTWARE IS PROVIDED BY APPLE COMPUTER, INC. ``AS IS'' AND ANY
14  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
16  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE COMPUTER, INC. OR
17  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
18  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
19  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
20  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
21  * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
23  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24  */
25 
26 #ifndef WTF_MathExtras_h
27 #define WTF_MathExtras_h
28 
29 #include "wtf/CPU.h"
30 #include <cmath>
31 #include <limits>
32 
33 #if COMPILER(MSVC)
34 #include "wtf/Assertions.h"
35 #include <stdint.h>
36 #endif
37 
38 #if OS(OPENBSD)
39 #include <sys/types.h>
40 #include <machine/ieee.h>
41 #endif
42 
43 const double piDouble = M_PI;
44 const float piFloat = static_cast<float>(M_PI);
45 
46 const double piOverTwoDouble = M_PI_2;
47 const float piOverTwoFloat = static_cast<float>(M_PI_2);
48 
49 const double piOverFourDouble = M_PI_4;
50 const float piOverFourFloat = static_cast<float>(M_PI_4);
51 
52 const double twoPiDouble = piDouble * 2.0;
53 const float twoPiFloat = piFloat * 2.0f;
54 
55 #if OS(MACOSX)
56 
57 // Work around a bug in the Mac OS X libc where ceil(-0.1) return +0.
wtf_ceil(double x)58 inline double wtf_ceil(double x) { return copysign(ceil(x), x); }
59 
60 #define ceil(x) wtf_ceil(x)
61 
62 #endif
63 
64 #if OS(OPENBSD)
65 
66 namespace std {
67 
68 #ifndef isfinite
isfinite(double x)69 inline bool isfinite(double x) { return finite(x); }
70 #endif
71 #ifndef signbit
signbit(double x)72 inline bool signbit(double x) { struct ieee_double *p = (struct ieee_double *)&x; return p->dbl_sign; }
73 #endif
74 
75 } // namespace std
76 
77 #endif
78 
79 #if COMPILER(MSVC) && (_MSC_VER < 1800)
80 
81 // We must not do 'num + 0.5' or 'num - 0.5' because they can cause precision loss.
round(double num)82 static double round(double num)
83 {
84     double integer = ceil(num);
85     if (num > 0)
86         return integer - num > 0.5 ? integer - 1.0 : integer;
87     return integer - num >= 0.5 ? integer - 1.0 : integer;
88 }
roundf(float num)89 static float roundf(float num)
90 {
91     float integer = ceilf(num);
92     if (num > 0)
93         return integer - num > 0.5f ? integer - 1.0f : integer;
94     return integer - num >= 0.5f ? integer - 1.0f : integer;
95 }
llround(double num)96 inline long long llround(double num) { return static_cast<long long>(round(num)); }
llroundf(float num)97 inline long long llroundf(float num) { return static_cast<long long>(roundf(num)); }
lround(double num)98 inline long lround(double num) { return static_cast<long>(round(num)); }
lroundf(float num)99 inline long lroundf(float num) { return static_cast<long>(roundf(num)); }
trunc(double num)100 inline double trunc(double num) { return num > 0 ? floor(num) : ceil(num); }
101 
102 #endif
103 
104 #if OS(ANDROID) || COMPILER(MSVC)
105 // ANDROID and MSVC's math.h does not currently supply log2 or log2f.
log2(double num)106 inline double log2(double num)
107 {
108     // This constant is roughly M_LN2, which is not provided by default on Windows and Android.
109     return log(num) / 0.693147180559945309417232121458176568;
110 }
111 
log2f(float num)112 inline float log2f(float num)
113 {
114     // This constant is roughly M_LN2, which is not provided by default on Windows and Android.
115     return logf(num) / 0.693147180559945309417232121458176568f;
116 }
117 #endif
118 
119 #if COMPILER(MSVC)
120 
121 // VS2013 has most of the math functions now, but we still need to work
122 // around various differences in behavior of Inf.
123 
124 #if _MSC_VER < 1800
125 
126 namespace std {
127 
isinf(double num)128 inline bool isinf(double num) { return !_finite(num) && !_isnan(num); }
isnan(double num)129 inline bool isnan(double num) { return !!_isnan(num); }
isfinite(double x)130 inline bool isfinite(double x) { return _finite(x); }
signbit(double num)131 inline bool signbit(double num) { return _copysign(1.0, num) < 0; }
132 
133 } // namespace std
134 
nextafter(double x,double y)135 inline double nextafter(double x, double y) { return _nextafter(x, y); }
nextafterf(float x,float y)136 inline float nextafterf(float x, float y) { return x > y ? x - FLT_EPSILON : x + FLT_EPSILON; }
137 
copysign(double x,double y)138 inline double copysign(double x, double y) { return _copysign(x, y); }
139 
140 #endif // _MSC_VER
141 
142 // Work around a bug in Win, where atan2(+-infinity, +-infinity) yields NaN instead of specific values.
wtf_atan2(double x,double y)143 inline double wtf_atan2(double x, double y)
144 {
145     double posInf = std::numeric_limits<double>::infinity();
146     double negInf = -std::numeric_limits<double>::infinity();
147     double nan = std::numeric_limits<double>::quiet_NaN();
148 
149     double result = nan;
150 
151     if (x == posInf && y == posInf)
152         result = piOverFourDouble;
153     else if (x == posInf && y == negInf)
154         result = 3 * piOverFourDouble;
155     else if (x == negInf && y == posInf)
156         result = -piOverFourDouble;
157     else if (x == negInf && y == negInf)
158         result = -3 * piOverFourDouble;
159     else
160         result = ::atan2(x, y);
161 
162     return result;
163 }
164 
165 // Work around a bug in the Microsoft CRT, where fmod(x, +-infinity) yields NaN instead of x.
wtf_fmod(double x,double y)166 inline double wtf_fmod(double x, double y) { return (!std::isinf(x) && std::isinf(y)) ? x : fmod(x, y); }
167 
168 // Work around a bug in the Microsoft CRT, where pow(NaN, 0) yields NaN instead of 1.
wtf_pow(double x,double y)169 inline double wtf_pow(double x, double y) { return y == 0 ? 1 : pow(x, y); }
170 
171 #define atan2(x, y) wtf_atan2(x, y)
172 #define fmod(x, y) wtf_fmod(x, y)
173 #define pow(x, y) wtf_pow(x, y)
174 
175 #if _MSC_VER < 1800
176 
177 // MSVC's math functions do not bring lrint.
lrint(double flt)178 inline long int lrint(double flt)
179 {
180     int64_t intgr;
181 #if CPU(X86)
182     __asm {
183         fld flt
184         fistp intgr
185     };
186 #else
187     ASSERT(std::isfinite(flt));
188     double rounded = round(flt);
189     intgr = static_cast<int64_t>(rounded);
190     // If the fractional part is exactly 0.5, we need to check whether
191     // the rounded result is even. If it is not we need to add 1 to
192     // negative values and subtract one from positive values.
193     if ((fabs(intgr - flt) == 0.5) & intgr)
194         intgr -= ((intgr >> 62) | 1); // 1 with the sign of result, i.e. -1 or 1.
195 #endif
196     return static_cast<long int>(intgr);
197 }
198 
199 #endif // _MSC_VER
200 
201 #endif // COMPILER(MSVC)
202 
deg2rad(double d)203 inline double deg2rad(double d)  { return d * piDouble / 180.0; }
rad2deg(double r)204 inline double rad2deg(double r)  { return r * 180.0 / piDouble; }
deg2grad(double d)205 inline double deg2grad(double d) { return d * 400.0 / 360.0; }
grad2deg(double g)206 inline double grad2deg(double g) { return g * 360.0 / 400.0; }
turn2deg(double t)207 inline double turn2deg(double t) { return t * 360.0; }
deg2turn(double d)208 inline double deg2turn(double d) { return d / 360.0; }
rad2grad(double r)209 inline double rad2grad(double r) { return r * 200.0 / piDouble; }
grad2rad(double g)210 inline double grad2rad(double g) { return g * piDouble / 200.0; }
turn2grad(double t)211 inline double turn2grad(double t) { return t * 400; }
grad2turn(double g)212 inline double grad2turn(double g) { return g / 400; }
213 
deg2rad(float d)214 inline float deg2rad(float d)  { return d * piFloat / 180.0f; }
rad2deg(float r)215 inline float rad2deg(float r)  { return r * 180.0f / piFloat; }
deg2grad(float d)216 inline float deg2grad(float d) { return d * 400.0f / 360.0f; }
grad2deg(float g)217 inline float grad2deg(float g) { return g * 360.0f / 400.0f; }
turn2deg(float t)218 inline float turn2deg(float t) { return t * 360.0f; }
deg2turn(float d)219 inline float deg2turn(float d) { return d / 360.0f; }
rad2grad(float r)220 inline float rad2grad(float r) { return r * 200.0f / piFloat; }
grad2rad(float g)221 inline float grad2rad(float g) { return g * piFloat / 200.0f; }
turn2grad(float t)222 inline float turn2grad(float t) { return t * 400; }
grad2turn(float g)223 inline float grad2turn(float g) { return g / 400; }
224 
225 // std::numeric_limits<T>::min() returns the smallest positive value for floating point types
defaultMinimumForClamp()226 template<typename T> inline T defaultMinimumForClamp() { return std::numeric_limits<T>::min(); }
defaultMinimumForClamp()227 template<> inline float defaultMinimumForClamp() { return -std::numeric_limits<float>::max(); }
defaultMinimumForClamp()228 template<> inline double defaultMinimumForClamp() { return -std::numeric_limits<double>::max(); }
defaultMaximumForClamp()229 template<typename T> inline T defaultMaximumForClamp() { return std::numeric_limits<T>::max(); }
230 
231 template<typename T> inline T clampTo(double value, T min = defaultMinimumForClamp<T>(), T max = defaultMaximumForClamp<T>())
232 {
233     if (value >= static_cast<double>(max))
234         return max;
235     if (value <= static_cast<double>(min))
236         return min;
237     return static_cast<T>(value);
238 }
239 template<> inline long long int clampTo(double, long long int, long long int); // clampTo does not support long long ints.
240 
clampToInteger(double value)241 inline int clampToInteger(double value)
242 {
243     return clampTo<int>(value);
244 }
245 
clampToUnsigned(double value)246 inline unsigned clampToUnsigned(double value)
247 {
248     return clampTo<unsigned>(value);
249 }
250 
clampToFloat(double value)251 inline float clampToFloat(double value)
252 {
253     return clampTo<float>(value);
254 }
255 
clampToPositiveInteger(double value)256 inline int clampToPositiveInteger(double value)
257 {
258     return clampTo<int>(value, 0);
259 }
260 
clampToInteger(float value)261 inline int clampToInteger(float value)
262 {
263     return clampTo<int>(value);
264 }
265 
clampToInteger(unsigned x)266 inline int clampToInteger(unsigned x)
267 {
268     const unsigned intMax = static_cast<unsigned>(std::numeric_limits<int>::max());
269 
270     if (x >= intMax)
271         return std::numeric_limits<int>::max();
272     return static_cast<int>(x);
273 }
274 
isWithinIntRange(float x)275 inline bool isWithinIntRange(float x)
276 {
277     return x > static_cast<float>(std::numeric_limits<int>::min()) && x < static_cast<float>(std::numeric_limits<int>::max());
278 }
279 
greatestCommonDivisor(size_t a,size_t b)280 static size_t greatestCommonDivisor(size_t a, size_t b)
281 {
282     return b ? greatestCommonDivisor(b, a % b) : a;
283 }
284 
lowestCommonMultiple(size_t a,size_t b)285 inline size_t lowestCommonMultiple(size_t a, size_t b)
286 {
287     return a && b ? a / greatestCommonDivisor(a, b) * b : 0;
288 }
289 
290 #ifndef UINT64_C
291 #if COMPILER(MSVC)
292 #define UINT64_C(c) c ## ui64
293 #else
294 #define UINT64_C(c) c ## ull
295 #endif
296 #endif
297 
298 // Calculate d % 2^{64}.
doubleToInteger(double d,unsigned long long & value)299 inline void doubleToInteger(double d, unsigned long long& value)
300 {
301     if (std::isnan(d) || std::isinf(d))
302         value = 0;
303     else {
304         // -2^{64} < fmodValue < 2^{64}.
305         double fmodValue = fmod(trunc(d), std::numeric_limits<unsigned long long>::max() + 1.0);
306         if (fmodValue >= 0) {
307             // 0 <= fmodValue < 2^{64}.
308             // 0 <= value < 2^{64}. This cast causes no loss.
309             value = static_cast<unsigned long long>(fmodValue);
310         } else {
311             // -2^{64} < fmodValue < 0.
312             // 0 < fmodValueInUnsignedLongLong < 2^{64}. This cast causes no loss.
313             unsigned long long fmodValueInUnsignedLongLong = static_cast<unsigned long long>(-fmodValue);
314             // -1 < (std::numeric_limits<unsigned long long>::max() - fmodValueInUnsignedLongLong) < 2^{64} - 1.
315             // 0 < value < 2^{64}.
316             value = std::numeric_limits<unsigned long long>::max() - fmodValueInUnsignedLongLong + 1;
317         }
318     }
319 }
320 
321 namespace WTF {
322 
fastLog2(unsigned i)323 inline unsigned fastLog2(unsigned i)
324 {
325     unsigned log2 = 0;
326     if (i & (i - 1))
327         log2 += 1;
328     if (i >> 16)
329         log2 += 16, i >>= 16;
330     if (i >> 8)
331         log2 += 8, i >>= 8;
332     if (i >> 4)
333         log2 += 4, i >>= 4;
334     if (i >> 2)
335         log2 += 2, i >>= 2;
336     if (i >> 1)
337         log2 += 1;
338     return log2;
339 }
340 
341 } // namespace WTF
342 
343 #endif // #ifndef WTF_MathExtras_h
344