1 /*
2 * lib/attr.c Netlink Attributes
3 *
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Lesser General Public
6 * License as published by the Free Software Foundation version 2.1
7 * of the License.
8 *
9 * Copyright (c) 2003-2008 Thomas Graf <tgraf@suug.ch>
10 */
11
12 #include <netlink-local.h>
13 #include <netlink/netlink.h>
14 #include <netlink/utils.h>
15 #include <netlink/addr.h>
16 #include <netlink/attr.h>
17 #include <netlink/msg.h>
18 #include <linux/socket.h>
19
20 /**
21 * @ingroup msg
22 * @defgroup attr Attributes
23 * Netlink Attributes Construction/Parsing Interface
24 *
25 * \section attr_sec Netlink Attributes
26 * Netlink attributes allow for data chunks of arbitary length to be
27 * attached to a netlink message. Each attribute is encoded with a
28 * type and length field, both 16 bits, stored in the attribute header
29 * preceding the attribute data. The main advantage of using attributes
30 * over packing everything into the family header is that the interface
31 * stays extendable as new attributes can supersede old attributes while
32 * remaining backwards compatible. Also attributes can be defined optional
33 * thus avoiding the transmission of unnecessary empty data blocks.
34 * Special nested attributes allow for more complex data structures to
35 * be transmitted, e.g. trees, lists, etc.
36 *
37 * While not required, netlink attributes typically follow the family
38 * header of a netlink message and must be properly aligned to NLA_ALIGNTO:
39 * @code
40 * +----------------+- - -+---------------+- - -+------------+- - -+
41 * | Netlink Header | Pad | Family Header | Pad | Attributes | Pad |
42 * +----------------+- - -+---------------+- - -+------------+- - -+
43 * @endcode
44 *
45 * The actual attributes are chained together each separately aligned to
46 * NLA_ALIGNTO. The position of an attribute is defined based on the
47 * length field of the preceding attributes:
48 * @code
49 * +-------------+- - -+-------------+- - -+------
50 * | Attribute 1 | Pad | Attribute 2 | Pad | ...
51 * +-------------+- - -+-------------+- - -+------
52 * nla_next(attr1)------^
53 * @endcode
54 *
55 * The attribute itself consists of the attribute header followed by
56 * the actual payload also aligned to NLA_ALIGNTO. The function nla_data()
57 * returns a pointer to the start of the payload while nla_len() returns
58 * the length of the payload in bytes.
59 *
60 * \b Note: Be aware, NLA_ALIGNTO equals to 4 bytes, therefore it is not
61 * safe to dereference any 64 bit data types directly.
62 *
63 * @code
64 * <----------- nla_total_size(payload) ----------->
65 * <-------- nla_attr_size(payload) --------->
66 * +------------------+- - -+- - - - - - - - - +- - -+
67 * | Attribute Header | Pad | Payload | Pad |
68 * +------------------+- - -+- - - - - - - - - +- - -+
69 * nla_data(nla)-------------^
70 * <- nla_len(nla) ->
71 * @endcode
72 *
73 * @subsection attr_datatypes Attribute Data Types
74 * A number of basic data types are supported to simplify access and
75 * validation of netlink attributes. This data type information is
76 * not encoded in the attribute, both the kernel and userspace part
77 * are required to share this information on their own.
78 *
79 * One of the major advantages of these basic types is the automatic
80 * validation of each attribute based on an attribute policy. The
81 * validation covers most of the checks required to safely use
82 * attributes and thus keeps the individual sanity check to a minimum.
83 *
84 * Never access attribute payload without ensuring basic validation
85 * first, attributes may:
86 * - not be present even though required
87 * - contain less actual payload than expected
88 * - fake a attribute length which exceeds the end of the message
89 * - contain unterminated character strings
90 *
91 * Policies are defined as array of the struct nla_policy. The array is
92 * indexed with the attribute type, therefore the array must be sized
93 * accordingly.
94 * @code
95 * static struct nla_policy my_policy[ATTR_MAX+1] = {
96 * [ATTR_FOO] = { .type = ..., .minlen = ..., .maxlen = ... },
97 * };
98 *
99 * err = nla_validate(attrs, attrlen, ATTR_MAX, &my_policy);
100 * @endcode
101 *
102 * Some basic validations are performed on every attribute, regardless of type.
103 * - If the attribute type exceeds the maximum attribute type specified or
104 * the attribute type is lesser-or-equal than zero, the attribute will
105 * be silently ignored.
106 * - If the payload length falls below the \a minlen value the attribute
107 * will be rejected.
108 * - If \a maxlen is non-zero and the payload length exceeds the \a maxlen
109 * value the attribute will be rejected.
110 *
111 *
112 * @par Unspecific Attribute (NLA_UNSPEC)
113 * This is the standard type if no type is specified. It is used for
114 * binary data of arbitary length. Typically this attribute carries
115 * a binary structure or a stream of bytes.
116 * @par
117 * @code
118 * // In this example, we will assume a binary structure requires to
119 * // be transmitted. The definition of the structure will typically
120 * // go into a header file available to both the kernel and userspace
121 * // side.
122 * //
123 * // Note: Be careful when putting 64 bit data types into a structure.
124 * // The attribute payload is only aligned to 4 bytes, dereferencing
125 * // the member may fail.
126 * struct my_struct {
127 * int a;
128 * int b;
129 * };
130 *
131 * // The validation function will not enforce an exact length match to
132 * // allow structures to grow as required. Note: While it is allowed
133 * // to add members to the end of the structure, changing the order or
134 * // inserting members in the middle of the structure will break your
135 * // binary interface.
136 * static struct nla_policy my_policy[ATTR_MAX+1] = {
137 * [ATTR_MY_STRICT] = { .type = NLA_UNSPEC,
138 * .minlen = sizeof(struct my_struct) },
139 *
140 * // The binary structure is appened to the message using nla_put()
141 * struct my_struct foo = { .a = 1, .b = 2 };
142 * nla_put(msg, ATTR_MY_STRUCT, sizeof(foo), &foo);
143 *
144 * // On the receiving side, a pointer to the structure pointing inside
145 * // the message payload is returned by nla_get().
146 * if (attrs[ATTR_MY_STRUCT])
147 * struct my_struct *foo = nla_get(attrs[ATTR_MY_STRUCT]);
148 * @endcode
149 *
150 * @par Integers (NLA_U8, NLA_U16, NLA_U32, NLA_U64)
151 * Integers come in different sizes from 8 bit to 64 bit. However, since the
152 * payload length is aligned to 4 bytes, integers smaller than 32 bit are
153 * only useful to enforce the maximum range of values.
154 * @par
155 * \b Note: There is no difference made between signed and unsigned integers.
156 * The validation only enforces the minimal payload length required to store
157 * an integer of specified type.
158 * @par
159 * @code
160 * // Even though possible, it does not make sense to specify .minlen or
161 * // .maxlen for integer types. The data types implies the corresponding
162 * // minimal payload length.
163 * static struct nla_policy my_policy[ATTR_MAX+1] = {
164 * [ATTR_FOO] = { .type = NLA_U32 },
165 *
166 * // Numeric values can be appended directly using the respective
167 * // nla_put_uxxx() function
168 * nla_put_u32(msg, ATTR_FOO, 123);
169 *
170 * // Same for the receiving side.
171 * if (attrs[ATTR_FOO])
172 * uint32_t foo = nla_get_u32(attrs[ATTR_FOO]);
173 * @endcode
174 *
175 * @par Character string (NLA_STRING)
176 * This data type represents a NUL terminated character string of variable
177 * length. For binary data streams the type NLA_UNSPEC is recommended.
178 * @par
179 * @code
180 * // Enforce a NUL terminated character string of at most 4 characters
181 * // including the NUL termination.
182 * static struct nla_policy my_policy[ATTR_MAX+1] = {
183 * [ATTR_BAR] = { .type = NLA_STRING, maxlen = 4 },
184 *
185 * // nla_put_string() creates a string attribute of the necessary length
186 * // and appends it to the message including the NUL termination.
187 * nla_put_string(msg, ATTR_BAR, "some text");
188 *
189 * // It is safe to use the returned character string directly if the
190 * // attribute has been validated as the validation enforces the proper
191 * // termination of the string.
192 * if (attrs[ATTR_BAR])
193 * char *text = nla_get_string(attrs[ATTR_BAR]);
194 * @endcode
195 *
196 * @par Flag (NLA_FLAG)
197 * This attribute type may be used to indicate the presence of a flag. The
198 * attribute is only valid if the payload length is zero. The presence of
199 * the attribute header indicates the presence of the flag.
200 * @par
201 * @code
202 * // This attribute type is special as .minlen and .maxlen have no effect.
203 * static struct nla_policy my_policy[ATTR_MAX+1] = {
204 * [ATTR_FLAG] = { .type = NLA_FLAG },
205 *
206 * // nla_put_flag() appends a zero sized attribute to the message.
207 * nla_put_flag(msg, ATTR_FLAG);
208 *
209 * // There is no need for a receival function, the presence is the value.
210 * if (attrs[ATTR_FLAG])
211 * // flag is present
212 * @endcode
213 *
214 * @par Micro Seconds (NLA_MSECS)
215 *
216 * @par Nested Attribute (NLA_NESTED)
217 * Attributes can be nested and put into a container to create groups, lists
218 * or to construct trees of attributes. Nested attributes are often used to
219 * pass attributes to a subsystem where the top layer has no knowledge of the
220 * configuration possibilities of each subsystem.
221 * @par
222 * \b Note: When validating the attributes using nlmsg_validate() or
223 * nlmsg_parse() it will only affect the top level attributes. Each
224 * level of nested attributes must be validated seperately using
225 * nla_parse_nested() or nla_validate().
226 * @par
227 * @code
228 * // The minimal length policy may be used to enforce the presence of at
229 * // least one attribute.
230 * static struct nla_policy my_policy[ATTR_MAX+1] = {
231 * [ATTR_OPTS] = { .type = NLA_NESTED, minlen = NLA_HDRLEN },
232 *
233 * // Nested attributes are constructed by enclosing the attributes
234 * // to be nested with calls to nla_nest_start() respetively nla_nest_end().
235 * struct nlattr *opts = nla_nest_start(msg, ATTR_OPTS);
236 * nla_put_u32(msg, ATTR_FOO, 123);
237 * nla_put_string(msg, ATTR_BAR, "some text");
238 * nla_nest_end(msg, opts);
239 *
240 * // Various methods exist to parse nested attributes, the easiest being
241 * // nla_parse_nested() which also allows validation in the same step.
242 * if (attrs[ATTR_OPTS]) {
243 * struct nlattr *nested[ATTR_MAX+1];
244 *
245 * nla_parse_nested(nested, ATTR_MAX, attrs[ATTR_OPTS], &policy);
246 *
247 * if (nested[ATTR_FOO])
248 * uint32_t foo = nla_get_u32(nested[ATTR_FOO]);
249 * }
250 * @endcode
251 *
252 * @subsection attr_exceptions Exception Based Attribute Construction
253 * Often a large number of attributes are added to a message in a single
254 * function. In order to simplify error handling, a second set of
255 * construction functions exist which jump to a error label when they
256 * fail instead of returning an error code. This second set consists
257 * of macros which are named after their error code based counterpart
258 * except that the name is written all uppercase.
259 *
260 * All of the macros jump to the target \c nla_put_failure if they fail.
261 * @code
262 * void my_func(struct nl_msg *msg)
263 * {
264 * NLA_PUT_U32(msg, ATTR_FOO, 10);
265 * NLA_PUT_STRING(msg, ATTR_BAR, "bar");
266 *
267 * return 0;
268 *
269 * nla_put_failure:
270 * return -NLE_NOMEM;
271 * }
272 * @endcode
273 *
274 * @subsection attr_examples Examples
275 * @par Example 1.1 Constructing a netlink message with attributes.
276 * @code
277 * struct nl_msg *build_msg(int ifindex, struct nl_addr *lladdr, int mtu)
278 * {
279 * struct nl_msg *msg;
280 * struct nlattr *info, *vlan;
281 * struct ifinfomsg ifi = {
282 * .ifi_family = AF_INET,
283 * .ifi_index = ifindex,
284 * };
285 *
286 * // Allocate a new netlink message, type=RTM_SETLINK, flags=NLM_F_ECHO
287 * if (!(msg = nlmsg_alloc_simple(RTM_SETLINK, NLM_F_ECHO)))
288 * return NULL;
289 *
290 * // Append the family specific header (struct ifinfomsg)
291 * if (nlmsg_append(msg, &ifi, sizeof(ifi), NLMSG_ALIGNTO) < 0)
292 * goto nla_put_failure
293 *
294 * // Append a 32 bit integer attribute to carry the MTU
295 * NLA_PUT_U32(msg, IFLA_MTU, mtu);
296 *
297 * // Append a unspecific attribute to carry the link layer address
298 * NLA_PUT_ADDR(msg, IFLA_ADDRESS, lladdr);
299 *
300 * // Append a container for nested attributes to carry link information
301 * if (!(info = nla_nest_start(msg, IFLA_LINKINFO)))
302 * goto nla_put_failure;
303 *
304 * // Put a string attribute into the container
305 * NLA_PUT_STRING(msg, IFLA_INFO_KIND, "vlan");
306 *
307 * // Append another container inside the open container to carry
308 * // vlan specific attributes
309 * if (!(vlan = nla_nest_start(msg, IFLA_INFO_DATA)))
310 * goto nla_put_failure;
311 *
312 * // add vlan specific info attributes here...
313 *
314 * // Finish nesting the vlan attributes and close the second container.
315 * nla_nest_end(msg, vlan);
316 *
317 * // Finish nesting the link info attribute and close the first container.
318 * nla_nest_end(msg, info);
319 *
320 * return msg;
321 *
322 * // If any of the construction macros fails, we end up here.
323 * nla_put_failure:
324 * nlmsg_free(msg);
325 * return NULL;
326 * }
327 * @endcode
328 *
329 * @par Example 2.1 Parsing a netlink message with attributes.
330 * @code
331 * int parse_message(struct nl_msg *msg)
332 * {
333 * // The policy defines two attributes: a 32 bit integer and a container
334 * // for nested attributes.
335 * struct nla_policy attr_policy[ATTR_MAX+1] = {
336 * [ATTR_FOO] = { .type = NLA_U32 },
337 * [ATTR_BAR] = { .type = NLA_NESTED },
338 * };
339 * struct nlattr *attrs[ATTR_MAX+1];
340 * int err;
341 *
342 * // The nlmsg_parse() function will make sure that the message contains
343 * // enough payload to hold the header (struct my_hdr), validates any
344 * // attributes attached to the messages and stores a pointer to each
345 * // attribute in the attrs[] array accessable by attribute type.
346 * if ((err = nlmsg_parse(nlmsg_hdr(msg), sizeof(struct my_hdr), attrs,
347 * ATTR_MAX, attr_policy)) < 0)
348 * goto errout;
349 *
350 * if (attrs[ATTR_FOO]) {
351 * // It is safe to directly access the attribute payload without
352 * // any further checks since nlmsg_parse() enforced the policy.
353 * uint32_t foo = nla_get_u32(attrs[ATTR_FOO]);
354 * }
355 *
356 * if (attrs[ATTR_BAR]) {
357 * struct nlattr *nested[NESTED_MAX+1];
358 *
359 * // Attributes nested in a container can be parsed the same way
360 * // as top level attributes.
361 * if ((err = nla_parse_nested(nested, NESTED_MAX, attrs[ATTR_BAR],
362 * nested_policy)) < 0)
363 * goto errout;
364 *
365 * // Process nested attributes here.
366 * }
367 *
368 * err = 0;
369 * errout:
370 * return err;
371 * }
372 * @endcode
373 *
374 * @{
375 */
376
377 /**
378 * @name Attribute Size Calculation
379 * @{
380 */
381
382 /**
383 * Return size of attribute whithout padding.
384 * @arg payload Payload length of attribute.
385 *
386 * @code
387 * <-------- nla_attr_size(payload) --------->
388 * +------------------+- - -+- - - - - - - - - +- - -+
389 * | Attribute Header | Pad | Payload | Pad |
390 * +------------------+- - -+- - - - - - - - - +- - -+
391 * @endcode
392 *
393 * @return Size of attribute in bytes without padding.
394 */
nla_attr_size(int payload)395 int nla_attr_size(int payload)
396 {
397 return NLA_HDRLEN + payload;
398 }
399
400 /**
401 * Return size of attribute including padding.
402 * @arg payload Payload length of attribute.
403 *
404 * @code
405 * <----------- nla_total_size(payload) ----------->
406 * +------------------+- - -+- - - - - - - - - +- - -+
407 * | Attribute Header | Pad | Payload | Pad |
408 * +------------------+- - -+- - - - - - - - - +- - -+
409 * @endcode
410 *
411 * @return Size of attribute in bytes.
412 */
nla_total_size(int payload)413 int nla_total_size(int payload)
414 {
415 return NLA_ALIGN(nla_attr_size(payload));
416 }
417
418 /**
419 * Return length of padding at the tail of the attribute.
420 * @arg payload Payload length of attribute.
421 *
422 * @code
423 * +------------------+- - -+- - - - - - - - - +- - -+
424 * | Attribute Header | Pad | Payload | Pad |
425 * +------------------+- - -+- - - - - - - - - +- - -+
426 * <--->
427 * @endcode
428 *
429 * @return Length of padding in bytes.
430 */
nla_padlen(int payload)431 int nla_padlen(int payload)
432 {
433 return nla_total_size(payload) - nla_attr_size(payload);
434 }
435
436 /** @} */
437
438 /**
439 * @name Parsing Attributes
440 * @{
441 */
442
443 /**
444 * Return type of the attribute.
445 * @arg nla Attribute.
446 *
447 * @return Type of attribute.
448 */
nla_type(const struct nlattr * nla)449 int nla_type(const struct nlattr *nla)
450 {
451 return nla->nla_type & NLA_TYPE_MASK;
452 }
453
454 /**
455 * Return pointer to the payload section.
456 * @arg nla Attribute.
457 *
458 * @return Pointer to start of payload section.
459 */
nla_data(const struct nlattr * nla)460 void *nla_data(const struct nlattr *nla)
461 {
462 return (char *) nla + NLA_HDRLEN;
463 }
464
465 /**
466 * Return length of the payload .
467 * @arg nla Attribute
468 *
469 * @return Length of payload in bytes.
470 */
nla_len(const struct nlattr * nla)471 int nla_len(const struct nlattr *nla)
472 {
473 return nla->nla_len - NLA_HDRLEN;
474 }
475
476 /**
477 * Check if the attribute header and payload can be accessed safely.
478 * @arg nla Attribute of any kind.
479 * @arg remaining Number of bytes remaining in attribute stream.
480 *
481 * Verifies that the header and payload do not exceed the number of
482 * bytes left in the attribute stream. This function must be called
483 * before access the attribute header or payload when iterating over
484 * the attribute stream using nla_next().
485 *
486 * @return True if the attribute can be accessed safely, false otherwise.
487 */
nla_ok(const struct nlattr * nla,int remaining)488 int nla_ok(const struct nlattr *nla, int remaining)
489 {
490 return remaining >= sizeof(*nla) &&
491 nla->nla_len >= sizeof(*nla) &&
492 nla->nla_len <= remaining;
493 }
494
495 /**
496 * Return next attribute in a stream of attributes.
497 * @arg nla Attribute of any kind.
498 * @arg remaining Variable to count remaining bytes in stream.
499 *
500 * Calculates the offset to the next attribute based on the attribute
501 * given. The attribute provided is assumed to be accessible, the
502 * caller is responsible to use nla_ok() beforehand. The offset (length
503 * of specified attribute including padding) is then subtracted from
504 * the remaining bytes variable and a pointer to the next attribute is
505 * returned.
506 *
507 * nla_next() can be called as long as remainig is >0.
508 *
509 * @return Pointer to next attribute.
510 */
nla_next(const struct nlattr * nla,int * remaining)511 struct nlattr *nla_next(const struct nlattr *nla, int *remaining)
512 {
513 int totlen = NLA_ALIGN(nla->nla_len);
514
515 *remaining -= totlen;
516 return (struct nlattr *) ((char *) nla + totlen);
517 }
518
519 static uint16_t nla_attr_minlen[NLA_TYPE_MAX+1] = {
520 [NLA_U8] = sizeof(uint8_t),
521 [NLA_U16] = sizeof(uint16_t),
522 [NLA_U32] = sizeof(uint32_t),
523 [NLA_U64] = sizeof(uint64_t),
524 [NLA_STRING] = 1,
525 };
526
validate_nla(struct nlattr * nla,int maxtype,struct nla_policy * policy)527 static int validate_nla(struct nlattr *nla, int maxtype,
528 struct nla_policy *policy)
529 {
530 struct nla_policy *pt;
531 int minlen = 0, type = nla_type(nla);
532
533 if (type <= 0 || type > maxtype)
534 return 0;
535
536 pt = &policy[type];
537
538 if (pt->type > NLA_TYPE_MAX)
539 BUG();
540
541 if (pt->minlen)
542 minlen = pt->minlen;
543 else if (pt->type != NLA_UNSPEC)
544 minlen = nla_attr_minlen[pt->type];
545
546 if (pt->type == NLA_FLAG && nla_len(nla) > 0)
547 return -NLE_RANGE;
548
549 if (nla_len(nla) < minlen)
550 return -NLE_RANGE;
551
552 if (pt->maxlen && nla_len(nla) > pt->maxlen)
553 return -NLE_RANGE;
554
555 if (pt->type == NLA_STRING) {
556 char *data = nla_data(nla);
557 if (data[nla_len(nla) - 1] != '\0')
558 return -NLE_INVAL;
559 }
560
561 return 0;
562 }
563
564
565 /**
566 * Create attribute index based on a stream of attributes.
567 * @arg tb Index array to be filled (maxtype+1 elements).
568 * @arg maxtype Maximum attribute type expected and accepted.
569 * @arg head Head of attribute stream.
570 * @arg len Length of attribute stream.
571 * @arg policy Attribute validation policy.
572 *
573 * Iterates over the stream of attributes and stores a pointer to each
574 * attribute in the index array using the attribute type as index to
575 * the array. Attribute with a type greater than the maximum type
576 * specified will be silently ignored in order to maintain backwards
577 * compatibility. If \a policy is not NULL, the attribute will be
578 * validated using the specified policy.
579 *
580 * @see nla_validate
581 * @return 0 on success or a negative error code.
582 */
nla_parse(struct nlattr * tb[],int maxtype,struct nlattr * head,int len,struct nla_policy * policy)583 int nla_parse(struct nlattr *tb[], int maxtype, struct nlattr *head, int len,
584 struct nla_policy *policy)
585 {
586 struct nlattr *nla;
587 int rem, err;
588
589 memset(tb, 0, sizeof(struct nlattr *) * (maxtype + 1));
590
591 nla_for_each_attr(nla, head, len, rem) {
592 int type = nla_type(nla);
593
594 if (type == 0) {
595 fprintf(stderr, "Illegal nla->nla_type == 0\n");
596 continue;
597 }
598
599 if (type <= maxtype) {
600 if (policy) {
601 err = validate_nla(nla, maxtype, policy);
602 if (err < 0)
603 goto errout;
604 }
605
606 tb[type] = nla;
607 }
608 }
609
610 if (rem > 0)
611 fprintf(stderr, "netlink: %d bytes leftover after parsing "
612 "attributes.\n", rem);
613
614 err = 0;
615 errout:
616 return err;
617 }
618
619 /**
620 * Validate a stream of attributes.
621 * @arg head Head of attributes stream.
622 * @arg len Length of attributes stream.
623 * @arg maxtype Maximum attribute type expected and accepted.
624 * @arg policy Validation policy.
625 *
626 * Iterates over the stream of attributes and validates each attribute
627 * one by one using the specified policy. Attributes with a type greater
628 * than the maximum type specified will be silently ignored in order to
629 * maintain backwards compatibility.
630 *
631 * See \ref attr_datatypes for more details on what kind of validation
632 * checks are performed on each attribute data type.
633 *
634 * @return 0 on success or a negative error code.
635 */
nla_validate(struct nlattr * head,int len,int maxtype,struct nla_policy * policy)636 int nla_validate(struct nlattr *head, int len, int maxtype,
637 struct nla_policy *policy)
638 {
639 struct nlattr *nla;
640 int rem, err;
641
642 nla_for_each_attr(nla, head, len, rem) {
643 err = validate_nla(nla, maxtype, policy);
644 if (err < 0)
645 goto errout;
646 }
647
648 err = 0;
649 errout:
650 return err;
651 }
652
653 /**
654 * Find a single attribute in a stream of attributes.
655 * @arg head Head of attributes stream.
656 * @arg len Length of attributes stream.
657 * @arg attrtype Attribute type to look for.
658 *
659 * Iterates over the stream of attributes and compares each type with
660 * the type specified. Returns the first attribute which matches the
661 * type.
662 *
663 * @return Pointer to attribute found or NULL.
664 */
nla_find(struct nlattr * head,int len,int attrtype)665 struct nlattr *nla_find(struct nlattr *head, int len, int attrtype)
666 {
667 struct nlattr *nla;
668 int rem;
669
670 nla_for_each_attr(nla, head, len, rem)
671 if (nla_type(nla) == attrtype)
672 return nla;
673
674 return NULL;
675 }
676
677 /** @} */
678
679 /**
680 * @name Helper Functions
681 * @{
682 */
683
684 /**
685 * Copy attribute payload to another memory area.
686 * @arg dest Pointer to destination memory area.
687 * @arg src Attribute
688 * @arg count Number of bytes to copy at most.
689 *
690 * Note: The number of bytes copied is limited by the length of
691 * the attribute payload.
692 *
693 * @return The number of bytes copied to dest.
694 */
nla_memcpy(void * dest,struct nlattr * src,int count)695 int nla_memcpy(void *dest, struct nlattr *src, int count)
696 {
697 int minlen;
698
699 if (!src)
700 return 0;
701
702 minlen = min_t(int, count, nla_len(src));
703 memcpy(dest, nla_data(src), minlen);
704
705 return minlen;
706 }
707
708 /**
709 * Copy string attribute payload to a buffer.
710 * @arg dst Pointer to destination buffer.
711 * @arg nla Attribute of type NLA_STRING.
712 * @arg dstsize Size of destination buffer in bytes.
713 *
714 * Copies at most dstsize - 1 bytes to the destination buffer.
715 * The result is always a valid NUL terminated string. Unlike
716 * strlcpy the destination buffer is always padded out.
717 *
718 * @return The length of string attribute without the terminating NUL.
719 */
nla_strlcpy(char * dst,const struct nlattr * nla,size_t dstsize)720 size_t nla_strlcpy(char *dst, const struct nlattr *nla, size_t dstsize)
721 {
722 size_t srclen = nla_len(nla);
723 char *src = nla_data(nla);
724
725 if (srclen > 0 && src[srclen - 1] == '\0')
726 srclen--;
727
728 if (dstsize > 0) {
729 size_t len = (srclen >= dstsize) ? dstsize - 1 : srclen;
730
731 memset(dst, 0, dstsize);
732 memcpy(dst, src, len);
733 }
734
735 return srclen;
736 }
737
738 /**
739 * Compare attribute payload with memory area.
740 * @arg nla Attribute.
741 * @arg data Memory area to compare to.
742 * @arg size Number of bytes to compare.
743 *
744 * @see memcmp(3)
745 * @return An integer less than, equal to, or greater than zero.
746 */
nla_memcmp(const struct nlattr * nla,const void * data,size_t size)747 int nla_memcmp(const struct nlattr *nla, const void *data, size_t size)
748 {
749 int d = nla_len(nla) - size;
750
751 if (d == 0)
752 d = memcmp(nla_data(nla), data, size);
753
754 return d;
755 }
756
757 /**
758 * Compare string attribute payload with string
759 * @arg nla Attribute of type NLA_STRING.
760 * @arg str NUL terminated string.
761 *
762 * @see strcmp(3)
763 * @return An integer less than, equal to, or greater than zero.
764 */
nla_strcmp(const struct nlattr * nla,const char * str)765 int nla_strcmp(const struct nlattr *nla, const char *str)
766 {
767 int len = strlen(str) + 1;
768 int d = nla_len(nla) - len;
769
770 if (d == 0)
771 d = memcmp(nla_data(nla), str, len);
772
773 return d;
774 }
775
776 /** @} */
777
778 /**
779 * @name Unspecific Attribute
780 * @{
781 */
782
783 /**
784 * Reserve space for a attribute.
785 * @arg msg Netlink Message.
786 * @arg attrtype Attribute Type.
787 * @arg attrlen Length of payload.
788 *
789 * Reserves room for a attribute in the specified netlink message and
790 * fills in the attribute header (type, length). Returns NULL if there
791 * is unsuficient space for the attribute.
792 *
793 * Any padding between payload and the start of the next attribute is
794 * zeroed out.
795 *
796 * @return Pointer to start of attribute or NULL on failure.
797 */
nla_reserve(struct nl_msg * msg,int attrtype,int attrlen)798 struct nlattr *nla_reserve(struct nl_msg *msg, int attrtype, int attrlen)
799 {
800 struct nlattr *nla;
801 int tlen;
802
803 tlen = NLMSG_ALIGN(msg->nm_nlh->nlmsg_len) + nla_total_size(attrlen);
804
805 if ((tlen + msg->nm_nlh->nlmsg_len) > msg->nm_size)
806 return NULL;
807
808 nla = (struct nlattr *) nlmsg_tail(msg->nm_nlh);
809 nla->nla_type = attrtype;
810 nla->nla_len = nla_attr_size(attrlen);
811
812 memset((unsigned char *) nla + nla->nla_len, 0, nla_padlen(attrlen));
813 msg->nm_nlh->nlmsg_len = tlen;
814
815 NL_DBG(2, "msg %p: Reserved %d bytes at offset +%td for attr %d "
816 "nlmsg_len=%d\n", msg, attrlen,
817 (void *) nla - nlmsg_data(msg->nm_nlh),
818 attrtype, msg->nm_nlh->nlmsg_len);
819
820 return nla;
821 }
822
823 /**
824 * Add a unspecific attribute to netlink message.
825 * @arg msg Netlink message.
826 * @arg attrtype Attribute type.
827 * @arg datalen Length of data to be used as payload.
828 * @arg data Pointer to data to be used as attribute payload.
829 *
830 * Reserves room for a unspecific attribute and copies the provided data
831 * into the message as payload of the attribute. Returns an error if there
832 * is insufficient space for the attribute.
833 *
834 * @see nla_reserve
835 * @return 0 on success or a negative error code.
836 */
nla_put(struct nl_msg * msg,int attrtype,int datalen,const void * data)837 int nla_put(struct nl_msg *msg, int attrtype, int datalen, const void *data)
838 {
839 struct nlattr *nla;
840
841 nla = nla_reserve(msg, attrtype, datalen);
842 if (!nla)
843 return -NLE_NOMEM;
844
845 memcpy(nla_data(nla), data, datalen);
846 NL_DBG(2, "msg %p: Wrote %d bytes at offset +%td for attr %d\n",
847 msg, datalen, (void *) nla - nlmsg_data(msg->nm_nlh), attrtype);
848
849 return 0;
850 }
851
852 /**
853 * Add abstract data as unspecific attribute to netlink message.
854 * @arg msg Netlink message.
855 * @arg attrtype Attribute type.
856 * @arg data Abstract data object.
857 *
858 * Equivalent to nla_put() except that the length of the payload is
859 * derived from the abstract data object.
860 *
861 * @see nla_put
862 * @return 0 on success or a negative error code.
863 */
nla_put_data(struct nl_msg * msg,int attrtype,struct nl_data * data)864 int nla_put_data(struct nl_msg *msg, int attrtype, struct nl_data *data)
865 {
866 return nla_put(msg, attrtype, nl_data_get_size(data),
867 nl_data_get(data));
868 }
869
870 /**
871 * Add abstract address as unspecific attribute to netlink message.
872 * @arg msg Netlink message.
873 * @arg attrtype Attribute type.
874 * @arg addr Abstract address object.
875 *
876 * @see nla_put
877 * @return 0 on success or a negative error code.
878 */
nla_put_addr(struct nl_msg * msg,int attrtype,struct nl_addr * addr)879 int nla_put_addr(struct nl_msg *msg, int attrtype, struct nl_addr *addr)
880 {
881 return nla_put(msg, attrtype, nl_addr_get_len(addr),
882 nl_addr_get_binary_addr(addr));
883 }
884
885 /** @} */
886
887 /**
888 * @name Integer Attributes
889 */
890
891 /**
892 * Add 8 bit integer attribute to netlink message.
893 * @arg msg Netlink message.
894 * @arg attrtype Attribute type.
895 * @arg value Numeric value to store as payload.
896 *
897 * @see nla_put
898 * @return 0 on success or a negative error code.
899 */
nla_put_u8(struct nl_msg * msg,int attrtype,uint8_t value)900 int nla_put_u8(struct nl_msg *msg, int attrtype, uint8_t value)
901 {
902 return nla_put(msg, attrtype, sizeof(uint8_t), &value);
903 }
904
905 /**
906 * Return value of 8 bit integer attribute.
907 * @arg nla 8 bit integer attribute
908 *
909 * @return Payload as 8 bit integer.
910 */
nla_get_u8(struct nlattr * nla)911 uint8_t nla_get_u8(struct nlattr *nla)
912 {
913 return *(uint8_t *) nla_data(nla);
914 }
915
916 /**
917 * Add 16 bit integer attribute to netlink message.
918 * @arg msg Netlink message.
919 * @arg attrtype Attribute type.
920 * @arg value Numeric value to store as payload.
921 *
922 * @see nla_put
923 * @return 0 on success or a negative error code.
924 */
nla_put_u16(struct nl_msg * msg,int attrtype,uint16_t value)925 int nla_put_u16(struct nl_msg *msg, int attrtype, uint16_t value)
926 {
927 return nla_put(msg, attrtype, sizeof(uint16_t), &value);
928 }
929
930 /**
931 * Return payload of 16 bit integer attribute.
932 * @arg nla 16 bit integer attribute
933 *
934 * @return Payload as 16 bit integer.
935 */
nla_get_u16(struct nlattr * nla)936 uint16_t nla_get_u16(struct nlattr *nla)
937 {
938 return *(uint16_t *) nla_data(nla);
939 }
940
941 /**
942 * Add 32 bit integer attribute to netlink message.
943 * @arg msg Netlink message.
944 * @arg attrtype Attribute type.
945 * @arg value Numeric value to store as payload.
946 *
947 * @see nla_put
948 * @return 0 on success or a negative error code.
949 */
nla_put_u32(struct nl_msg * msg,int attrtype,uint32_t value)950 int nla_put_u32(struct nl_msg *msg, int attrtype, uint32_t value)
951 {
952 return nla_put(msg, attrtype, sizeof(uint32_t), &value);
953 }
954
955 /**
956 * Return payload of 32 bit integer attribute.
957 * @arg nla 32 bit integer attribute.
958 *
959 * @return Payload as 32 bit integer.
960 */
nla_get_u32(struct nlattr * nla)961 uint32_t nla_get_u32(struct nlattr *nla)
962 {
963 return *(uint32_t *) nla_data(nla);
964 }
965
966 /**
967 * Add 64 bit integer attribute to netlink message.
968 * @arg msg Netlink message.
969 * @arg attrtype Attribute type.
970 * @arg value Numeric value to store as payload.
971 *
972 * @see nla_put
973 * @return 0 on success or a negative error code.
974 */
nla_put_u64(struct nl_msg * msg,int attrtype,uint64_t value)975 int nla_put_u64(struct nl_msg *msg, int attrtype, uint64_t value)
976 {
977 return nla_put(msg, attrtype, sizeof(uint64_t), &value);
978 }
979
980 /**
981 * Return payload of u64 attribute
982 * @arg nla u64 netlink attribute
983 *
984 * @return Payload as 64 bit integer.
985 */
nla_get_u64(struct nlattr * nla)986 uint64_t nla_get_u64(struct nlattr *nla)
987 {
988 uint64_t tmp;
989
990 nla_memcpy(&tmp, nla, sizeof(tmp));
991
992 return tmp;
993 }
994
995 /** @} */
996
997 /**
998 * @name String Attribute
999 */
1000
1001 /**
1002 * Add string attribute to netlink message.
1003 * @arg msg Netlink message.
1004 * @arg attrtype Attribute type.
1005 * @arg str NUL terminated string.
1006 *
1007 * @see nla_put
1008 * @return 0 on success or a negative error code.
1009 */
nla_put_string(struct nl_msg * msg,int attrtype,const char * str)1010 int nla_put_string(struct nl_msg *msg, int attrtype, const char *str)
1011 {
1012 return nla_put(msg, attrtype, strlen(str) + 1, str);
1013 }
1014
1015 /**
1016 * Return payload of string attribute.
1017 * @arg nla String attribute.
1018 *
1019 * @return Pointer to attribute payload.
1020 */
nla_get_string(struct nlattr * nla)1021 char *nla_get_string(struct nlattr *nla)
1022 {
1023 return (char *) nla_data(nla);
1024 }
1025
nla_strdup(struct nlattr * nla)1026 char *nla_strdup(struct nlattr *nla)
1027 {
1028 return strdup(nla_get_string(nla));
1029 }
1030
1031 /** @} */
1032
1033 /**
1034 * @name Flag Attribute
1035 */
1036
1037 /**
1038 * Add flag netlink attribute to netlink message.
1039 * @arg msg Netlink message.
1040 * @arg attrtype Attribute type.
1041 *
1042 * @see nla_put
1043 * @return 0 on success or a negative error code.
1044 */
nla_put_flag(struct nl_msg * msg,int attrtype)1045 int nla_put_flag(struct nl_msg *msg, int attrtype)
1046 {
1047 return nla_put(msg, attrtype, 0, NULL);
1048 }
1049
1050 /**
1051 * Return true if flag attribute is set.
1052 * @arg nla Flag netlink attribute.
1053 *
1054 * @return True if flag is set, otherwise false.
1055 */
nla_get_flag(struct nlattr * nla)1056 int nla_get_flag(struct nlattr *nla)
1057 {
1058 return !!nla;
1059 }
1060
1061 /** @} */
1062
1063 /**
1064 * @name Microseconds Attribute
1065 */
1066
1067 /**
1068 * Add a msecs netlink attribute to a netlink message
1069 * @arg n netlink message
1070 * @arg attrtype attribute type
1071 * @arg msecs number of msecs
1072 */
nla_put_msecs(struct nl_msg * n,int attrtype,unsigned long msecs)1073 int nla_put_msecs(struct nl_msg *n, int attrtype, unsigned long msecs)
1074 {
1075 return nla_put_u64(n, attrtype, msecs);
1076 }
1077
1078 /**
1079 * Return payload of msecs attribute
1080 * @arg nla msecs netlink attribute
1081 *
1082 * @return the number of milliseconds.
1083 */
nla_get_msecs(struct nlattr * nla)1084 unsigned long nla_get_msecs(struct nlattr *nla)
1085 {
1086 return nla_get_u64(nla);
1087 }
1088
1089 /** @} */
1090
1091 /**
1092 * @name Nested Attribute
1093 */
1094
1095 /**
1096 * Add nested attributes to netlink message.
1097 * @arg msg Netlink message.
1098 * @arg attrtype Attribute type.
1099 * @arg nested Message containing attributes to be nested.
1100 *
1101 * Takes the attributes found in the \a nested message and appends them
1102 * to the message \a msg nested in a container of the type \a attrtype.
1103 * The \a nested message may not have a family specific header.
1104 *
1105 * @see nla_put
1106 * @return 0 on success or a negative error code.
1107 */
nla_put_nested(struct nl_msg * msg,int attrtype,struct nl_msg * nested)1108 int nla_put_nested(struct nl_msg *msg, int attrtype, struct nl_msg *nested)
1109 {
1110 return nla_put(msg, attrtype, nlmsg_len(nested->nm_nlh),
1111 nlmsg_data(nested->nm_nlh));
1112 }
1113
1114
1115 /**
1116 * Start a new level of nested attributes.
1117 * @arg msg Netlink message.
1118 * @arg attrtype Attribute type of container.
1119 *
1120 * @return Pointer to container attribute.
1121 */
nla_nest_start(struct nl_msg * msg,int attrtype)1122 struct nlattr *nla_nest_start(struct nl_msg *msg, int attrtype)
1123 {
1124 struct nlattr *start = (struct nlattr *) nlmsg_tail(msg->nm_nlh);
1125
1126 if (nla_put(msg, attrtype, 0, NULL) < 0)
1127 return NULL;
1128
1129 return start;
1130 }
1131
1132 /**
1133 * Finalize nesting of attributes.
1134 * @arg msg Netlink message.
1135 * @arg start Container attribute as returned from nla_nest_start().
1136 *
1137 * Corrects the container attribute header to include the appeneded attributes.
1138 *
1139 * @return 0
1140 */
nla_nest_end(struct nl_msg * msg,struct nlattr * start)1141 int nla_nest_end(struct nl_msg *msg, struct nlattr *start)
1142 {
1143 start->nla_len = (unsigned char *) nlmsg_tail(msg->nm_nlh) -
1144 (unsigned char *) start;
1145 return 0;
1146 }
1147
1148 /**
1149 * Create attribute index based on nested attribute
1150 * @arg tb Index array to be filled (maxtype+1 elements).
1151 * @arg maxtype Maximum attribute type expected and accepted.
1152 * @arg nla Nested Attribute.
1153 * @arg policy Attribute validation policy.
1154 *
1155 * Feeds the stream of attributes nested into the specified attribute
1156 * to nla_parse().
1157 *
1158 * @see nla_parse
1159 * @return 0 on success or a negative error code.
1160 */
nla_parse_nested(struct nlattr * tb[],int maxtype,struct nlattr * nla,struct nla_policy * policy)1161 int nla_parse_nested(struct nlattr *tb[], int maxtype, struct nlattr *nla,
1162 struct nla_policy *policy)
1163 {
1164 return nla_parse(tb, maxtype, nla_data(nla), nla_len(nla), policy);
1165 }
1166
1167 /** @} */
1168
1169 /** @} */
1170