• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * lib/attr.c		Netlink Attributes
3  *
4  *	This library is free software; you can redistribute it and/or
5  *	modify it under the terms of the GNU Lesser General Public
6  *	License as published by the Free Software Foundation version 2.1
7  *	of the License.
8  *
9  * Copyright (c) 2003-2008 Thomas Graf <tgraf@suug.ch>
10  */
11 
12 #include <netlink-local.h>
13 #include <netlink/netlink.h>
14 #include <netlink/utils.h>
15 #include <netlink/addr.h>
16 #include <netlink/attr.h>
17 #include <netlink/msg.h>
18 #include <linux/socket.h>
19 
20 /**
21  * @ingroup msg
22  * @defgroup attr Attributes
23  * Netlink Attributes Construction/Parsing Interface
24  *
25  * \section attr_sec Netlink Attributes
26  * Netlink attributes allow for data chunks of arbitary length to be
27  * attached to a netlink message. Each attribute is encoded with a
28  * type and length field, both 16 bits, stored in the attribute header
29  * preceding the attribute data. The main advantage of using attributes
30  * over packing everything into the family header is that the interface
31  * stays extendable as new attributes can supersede old attributes while
32  * remaining backwards compatible. Also attributes can be defined optional
33  * thus avoiding the transmission of unnecessary empty data blocks.
34  * Special nested attributes allow for more complex data structures to
35  * be transmitted, e.g. trees, lists, etc.
36  *
37  * While not required, netlink attributes typically follow the family
38  * header of a netlink message and must be properly aligned to NLA_ALIGNTO:
39  * @code
40  *   +----------------+- - -+---------------+- - -+------------+- - -+
41  *   | Netlink Header | Pad | Family Header | Pad | Attributes | Pad |
42  *   +----------------+- - -+---------------+- - -+------------+- - -+
43  * @endcode
44  *
45  * The actual attributes are chained together each separately aligned to
46  * NLA_ALIGNTO. The position of an attribute is defined based on the
47  * length field of the preceding attributes:
48  * @code
49  *   +-------------+- - -+-------------+- - -+------
50  *   | Attribute 1 | Pad | Attribute 2 | Pad | ...
51  *   +-------------+- - -+-------------+- - -+------
52  *   nla_next(attr1)------^
53  * @endcode
54  *
55  * The attribute itself consists of the attribute header followed by
56  * the actual payload also aligned to NLA_ALIGNTO. The function nla_data()
57  * returns a pointer to the start of the payload while nla_len() returns
58  * the length of the payload in bytes.
59  *
60  * \b Note: Be aware, NLA_ALIGNTO equals to 4 bytes, therefore it is not
61  * safe to dereference any 64 bit data types directly.
62  *
63  * @code
64  *    <----------- nla_total_size(payload) ----------->
65  *    <-------- nla_attr_size(payload) --------->
66  *   +------------------+- - -+- - - - - - - - - +- - -+
67  *   | Attribute Header | Pad |     Payload      | Pad |
68  *   +------------------+- - -+- - - - - - - - - +- - -+
69  *   nla_data(nla)-------------^
70  *                             <- nla_len(nla) ->
71  * @endcode
72  *
73  * @subsection attr_datatypes Attribute Data Types
74  * A number of basic data types are supported to simplify access and
75  * validation of netlink attributes. This data type information is
76  * not encoded in the attribute, both the kernel and userspace part
77  * are required to share this information on their own.
78  *
79  * One of the major advantages of these basic types is the automatic
80  * validation of each attribute based on an attribute policy. The
81  * validation covers most of the checks required to safely use
82  * attributes and thus keeps the individual sanity check to a minimum.
83  *
84  * Never access attribute payload without ensuring basic validation
85  * first, attributes may:
86  * - not be present even though required
87  * - contain less actual payload than expected
88  * - fake a attribute length which exceeds the end of the message
89  * - contain unterminated character strings
90  *
91  * Policies are defined as array of the struct nla_policy. The array is
92  * indexed with the attribute type, therefore the array must be sized
93  * accordingly.
94  * @code
95  * static struct nla_policy my_policy[ATTR_MAX+1] = {
96  * 	[ATTR_FOO] = { .type = ..., .minlen = ..., .maxlen = ... },
97  * };
98  *
99  * err = nla_validate(attrs, attrlen, ATTR_MAX, &my_policy);
100  * @endcode
101  *
102  * Some basic validations are performed on every attribute, regardless of type.
103  * - If the attribute type exceeds the maximum attribute type specified or
104  *   the attribute type is lesser-or-equal than zero, the attribute will
105  *   be silently ignored.
106  * - If the payload length falls below the \a minlen value the attribute
107  *   will be rejected.
108  * - If \a maxlen is non-zero and the payload length exceeds the \a maxlen
109  *   value the attribute will be rejected.
110  *
111  *
112  * @par Unspecific Attribute (NLA_UNSPEC)
113  * This is the standard type if no type is specified. It is used for
114  * binary data of arbitary length. Typically this attribute carries
115  * a binary structure or a stream of bytes.
116  * @par
117  * @code
118  * // In this example, we will assume a binary structure requires to
119  * // be transmitted. The definition of the structure will typically
120  * // go into a header file available to both the kernel and userspace
121  * // side.
122  * //
123  * // Note: Be careful when putting 64 bit data types into a structure.
124  * // The attribute payload is only aligned to 4 bytes, dereferencing
125  * // the member may fail.
126  * struct my_struct {
127  *     int a;
128  *     int b;
129  * };
130  *
131  * // The validation function will not enforce an exact length match to
132  * // allow structures to grow as required. Note: While it is allowed
133  * // to add members to the end of the structure, changing the order or
134  * // inserting members in the middle of the structure will break your
135  * // binary interface.
136  * static struct nla_policy my_policy[ATTR_MAX+1] = {
137  *     [ATTR_MY_STRICT] = { .type = NLA_UNSPEC,
138  *                          .minlen = sizeof(struct my_struct) },
139  *
140  * // The binary structure is appened to the message using nla_put()
141  * struct my_struct foo = { .a = 1, .b = 2 };
142  * nla_put(msg, ATTR_MY_STRUCT, sizeof(foo), &foo);
143  *
144  * // On the receiving side, a pointer to the structure pointing inside
145  * // the message payload is returned by nla_get().
146  * if (attrs[ATTR_MY_STRUCT])
147  *     struct my_struct *foo = nla_get(attrs[ATTR_MY_STRUCT]);
148  * @endcode
149  *
150  * @par Integers (NLA_U8, NLA_U16, NLA_U32, NLA_U64)
151  * Integers come in different sizes from 8 bit to 64 bit. However, since the
152  * payload length is aligned to 4 bytes, integers smaller than 32 bit are
153  * only useful to enforce the maximum range of values.
154  * @par
155  * \b Note: There is no difference made between signed and unsigned integers.
156  * The validation only enforces the minimal payload length required to store
157  * an integer of specified type.
158  * @par
159  * @code
160  * // Even though possible, it does not make sense to specify .minlen or
161  * // .maxlen for integer types. The data types implies the corresponding
162  * // minimal payload length.
163  * static struct nla_policy my_policy[ATTR_MAX+1] = {
164  *     [ATTR_FOO] = { .type = NLA_U32 },
165  *
166  * // Numeric values can be appended directly using the respective
167  * // nla_put_uxxx() function
168  * nla_put_u32(msg, ATTR_FOO, 123);
169  *
170  * // Same for the receiving side.
171  * if (attrs[ATTR_FOO])
172  *     uint32_t foo = nla_get_u32(attrs[ATTR_FOO]);
173  * @endcode
174  *
175  * @par Character string (NLA_STRING)
176  * This data type represents a NUL terminated character string of variable
177  * length. For binary data streams the type NLA_UNSPEC is recommended.
178  * @par
179  * @code
180  * // Enforce a NUL terminated character string of at most 4 characters
181  * // including the NUL termination.
182  * static struct nla_policy my_policy[ATTR_MAX+1] = {
183  *     [ATTR_BAR] = { .type = NLA_STRING, maxlen = 4 },
184  *
185  * // nla_put_string() creates a string attribute of the necessary length
186  * // and appends it to the message including the NUL termination.
187  * nla_put_string(msg, ATTR_BAR, "some text");
188  *
189  * // It is safe to use the returned character string directly if the
190  * // attribute has been validated as the validation enforces the proper
191  * // termination of the string.
192  * if (attrs[ATTR_BAR])
193  *     char *text = nla_get_string(attrs[ATTR_BAR]);
194  * @endcode
195  *
196  * @par Flag (NLA_FLAG)
197  * This attribute type may be used to indicate the presence of a flag. The
198  * attribute is only valid if the payload length is zero. The presence of
199  * the attribute header indicates the presence of the flag.
200  * @par
201  * @code
202  * // This attribute type is special as .minlen and .maxlen have no effect.
203  * static struct nla_policy my_policy[ATTR_MAX+1] = {
204  *     [ATTR_FLAG] = { .type = NLA_FLAG },
205  *
206  * // nla_put_flag() appends a zero sized attribute to the message.
207  * nla_put_flag(msg, ATTR_FLAG);
208  *
209  * // There is no need for a receival function, the presence is the value.
210  * if (attrs[ATTR_FLAG])
211  *     // flag is present
212  * @endcode
213  *
214  * @par Micro Seconds (NLA_MSECS)
215  *
216  * @par Nested Attribute (NLA_NESTED)
217  * Attributes can be nested and put into a container to create groups, lists
218  * or to construct trees of attributes. Nested attributes are often used to
219  * pass attributes to a subsystem where the top layer has no knowledge of the
220  * configuration possibilities of each subsystem.
221  * @par
222  * \b Note: When validating the attributes using nlmsg_validate() or
223  * nlmsg_parse() it will only affect the top level attributes. Each
224  * level of nested attributes must be validated seperately using
225  * nla_parse_nested() or nla_validate().
226  * @par
227  * @code
228  * // The minimal length policy may be used to enforce the presence of at
229  * // least one attribute.
230  * static struct nla_policy my_policy[ATTR_MAX+1] = {
231  *     [ATTR_OPTS] = { .type = NLA_NESTED, minlen = NLA_HDRLEN },
232  *
233  * // Nested attributes are constructed by enclosing the attributes
234  * // to be nested with calls to nla_nest_start() respetively nla_nest_end().
235  * struct nlattr *opts = nla_nest_start(msg, ATTR_OPTS);
236  * nla_put_u32(msg, ATTR_FOO, 123);
237  * nla_put_string(msg, ATTR_BAR, "some text");
238  * nla_nest_end(msg, opts);
239  *
240  * // Various methods exist to parse nested attributes, the easiest being
241  * // nla_parse_nested() which also allows validation in the same step.
242  * if (attrs[ATTR_OPTS]) {
243  *     struct nlattr *nested[ATTR_MAX+1];
244  *
245  *     nla_parse_nested(nested, ATTR_MAX, attrs[ATTR_OPTS], &policy);
246  *
247  *     if (nested[ATTR_FOO])
248  *         uint32_t foo = nla_get_u32(nested[ATTR_FOO]);
249  * }
250  * @endcode
251  *
252  * @subsection attr_exceptions Exception Based Attribute Construction
253  * Often a large number of attributes are added to a message in a single
254  * function. In order to simplify error handling, a second set of
255  * construction functions exist which jump to a error label when they
256  * fail instead of returning an error code. This second set consists
257  * of macros which are named after their error code based counterpart
258  * except that the name is written all uppercase.
259  *
260  * All of the macros jump to the target \c nla_put_failure if they fail.
261  * @code
262  * void my_func(struct nl_msg *msg)
263  * {
264  *     NLA_PUT_U32(msg, ATTR_FOO, 10);
265  *     NLA_PUT_STRING(msg, ATTR_BAR, "bar");
266  *
267  *     return 0;
268  *
269  * nla_put_failure:
270  *     return -NLE_NOMEM;
271  * }
272  * @endcode
273  *
274  * @subsection attr_examples Examples
275  * @par Example 1.1 Constructing a netlink message with attributes.
276  * @code
277  * struct nl_msg *build_msg(int ifindex, struct nl_addr *lladdr, int mtu)
278  * {
279  *     struct nl_msg *msg;
280  *     struct nlattr *info, *vlan;
281  *     struct ifinfomsg ifi = {
282  *         .ifi_family = AF_INET,
283  *         .ifi_index = ifindex,
284  *     };
285  *
286  *     // Allocate a new netlink message, type=RTM_SETLINK, flags=NLM_F_ECHO
287  *     if (!(msg = nlmsg_alloc_simple(RTM_SETLINK, NLM_F_ECHO)))
288  *         return NULL;
289  *
290  *     // Append the family specific header (struct ifinfomsg)
291  *     if (nlmsg_append(msg, &ifi, sizeof(ifi), NLMSG_ALIGNTO) < 0)
292  *         goto nla_put_failure
293  *
294  *     // Append a 32 bit integer attribute to carry the MTU
295  *     NLA_PUT_U32(msg, IFLA_MTU, mtu);
296  *
297  *     // Append a unspecific attribute to carry the link layer address
298  *     NLA_PUT_ADDR(msg, IFLA_ADDRESS, lladdr);
299  *
300  *     // Append a container for nested attributes to carry link information
301  *     if (!(info = nla_nest_start(msg, IFLA_LINKINFO)))
302  *         goto nla_put_failure;
303  *
304  *     // Put a string attribute into the container
305  *     NLA_PUT_STRING(msg, IFLA_INFO_KIND, "vlan");
306  *
307  *     // Append another container inside the open container to carry
308  *     // vlan specific attributes
309  *     if (!(vlan = nla_nest_start(msg, IFLA_INFO_DATA)))
310  *         goto nla_put_failure;
311  *
312  *     // add vlan specific info attributes here...
313  *
314  *     // Finish nesting the vlan attributes and close the second container.
315  *     nla_nest_end(msg, vlan);
316  *
317  *     // Finish nesting the link info attribute and close the first container.
318  *     nla_nest_end(msg, info);
319  *
320  *     return msg;
321  *
322  * // If any of the construction macros fails, we end up here.
323  * nla_put_failure:
324  *     nlmsg_free(msg);
325  *     return NULL;
326  * }
327  * @endcode
328  *
329  * @par Example 2.1 Parsing a netlink message with attributes.
330  * @code
331  * int parse_message(struct nl_msg *msg)
332  * {
333  *     // The policy defines two attributes: a 32 bit integer and a container
334  *     // for nested attributes.
335  *     struct nla_policy attr_policy[ATTR_MAX+1] = {
336  *         [ATTR_FOO] = { .type = NLA_U32 },
337  *         [ATTR_BAR] = { .type = NLA_NESTED },
338  *     };
339  *     struct nlattr *attrs[ATTR_MAX+1];
340  *     int err;
341  *
342  *     // The nlmsg_parse() function will make sure that the message contains
343  *     // enough payload to hold the header (struct my_hdr), validates any
344  *     // attributes attached to the messages and stores a pointer to each
345  *     // attribute in the attrs[] array accessable by attribute type.
346  *     if ((err = nlmsg_parse(nlmsg_hdr(msg), sizeof(struct my_hdr), attrs,
347  *                            ATTR_MAX, attr_policy)) < 0)
348  *         goto errout;
349  *
350  *     if (attrs[ATTR_FOO]) {
351  *         // It is safe to directly access the attribute payload without
352  *         // any further checks since nlmsg_parse() enforced the policy.
353  *         uint32_t foo = nla_get_u32(attrs[ATTR_FOO]);
354  *     }
355  *
356  *     if (attrs[ATTR_BAR]) {
357  *         struct nlattr *nested[NESTED_MAX+1];
358  *
359  *         // Attributes nested in a container can be parsed the same way
360  *         // as top level attributes.
361  *         if ((err = nla_parse_nested(nested, NESTED_MAX, attrs[ATTR_BAR],
362  *                                     nested_policy)) < 0)
363  *             goto errout;
364  *
365  *         // Process nested attributes here.
366  *     }
367  *
368  *     err = 0;
369  * errout:
370  *     return err;
371  * }
372  * @endcode
373  *
374  * @{
375  */
376 
377 /**
378  * @name Attribute Size Calculation
379  * @{
380  */
381 
382 /**
383  * Return size of attribute whithout padding.
384  * @arg payload		Payload length of attribute.
385  *
386  * @code
387  *    <-------- nla_attr_size(payload) --------->
388  *   +------------------+- - -+- - - - - - - - - +- - -+
389  *   | Attribute Header | Pad |     Payload      | Pad |
390  *   +------------------+- - -+- - - - - - - - - +- - -+
391  * @endcode
392  *
393  * @return Size of attribute in bytes without padding.
394  */
nla_attr_size(int payload)395 int nla_attr_size(int payload)
396 {
397 	return NLA_HDRLEN + payload;
398 }
399 
400 /**
401  * Return size of attribute including padding.
402  * @arg payload		Payload length of attribute.
403  *
404  * @code
405  *    <----------- nla_total_size(payload) ----------->
406  *   +------------------+- - -+- - - - - - - - - +- - -+
407  *   | Attribute Header | Pad |     Payload      | Pad |
408  *   +------------------+- - -+- - - - - - - - - +- - -+
409  * @endcode
410  *
411  * @return Size of attribute in bytes.
412  */
nla_total_size(int payload)413 int nla_total_size(int payload)
414 {
415 	return NLA_ALIGN(nla_attr_size(payload));
416 }
417 
418 /**
419  * Return length of padding at the tail of the attribute.
420  * @arg payload		Payload length of attribute.
421  *
422  * @code
423  *   +------------------+- - -+- - - - - - - - - +- - -+
424  *   | Attribute Header | Pad |     Payload      | Pad |
425  *   +------------------+- - -+- - - - - - - - - +- - -+
426  *                                                <--->
427  * @endcode
428  *
429  * @return Length of padding in bytes.
430  */
nla_padlen(int payload)431 int nla_padlen(int payload)
432 {
433 	return nla_total_size(payload) - nla_attr_size(payload);
434 }
435 
436 /** @} */
437 
438 /**
439  * @name Parsing Attributes
440  * @{
441  */
442 
443 /**
444  * Return type of the attribute.
445  * @arg nla		Attribute.
446  *
447  * @return Type of attribute.
448  */
nla_type(const struct nlattr * nla)449 int nla_type(const struct nlattr *nla)
450 {
451 	return nla->nla_type & NLA_TYPE_MASK;
452 }
453 
454 /**
455  * Return pointer to the payload section.
456  * @arg nla		Attribute.
457  *
458  * @return Pointer to start of payload section.
459  */
nla_data(const struct nlattr * nla)460 void *nla_data(const struct nlattr *nla)
461 {
462 	return (char *) nla + NLA_HDRLEN;
463 }
464 
465 /**
466  * Return length of the payload .
467  * @arg nla		Attribute
468  *
469  * @return Length of payload in bytes.
470  */
nla_len(const struct nlattr * nla)471 int nla_len(const struct nlattr *nla)
472 {
473 	return nla->nla_len - NLA_HDRLEN;
474 }
475 
476 /**
477  * Check if the attribute header and payload can be accessed safely.
478  * @arg nla		Attribute of any kind.
479  * @arg remaining	Number of bytes remaining in attribute stream.
480  *
481  * Verifies that the header and payload do not exceed the number of
482  * bytes left in the attribute stream. This function must be called
483  * before access the attribute header or payload when iterating over
484  * the attribute stream using nla_next().
485  *
486  * @return True if the attribute can be accessed safely, false otherwise.
487  */
nla_ok(const struct nlattr * nla,int remaining)488 int nla_ok(const struct nlattr *nla, int remaining)
489 {
490 	return remaining >= sizeof(*nla) &&
491 	       nla->nla_len >= sizeof(*nla) &&
492 	       nla->nla_len <= remaining;
493 }
494 
495 /**
496  * Return next attribute in a stream of attributes.
497  * @arg nla		Attribute of any kind.
498  * @arg remaining	Variable to count remaining bytes in stream.
499  *
500  * Calculates the offset to the next attribute based on the attribute
501  * given. The attribute provided is assumed to be accessible, the
502  * caller is responsible to use nla_ok() beforehand. The offset (length
503  * of specified attribute including padding) is then subtracted from
504  * the remaining bytes variable and a pointer to the next attribute is
505  * returned.
506  *
507  * nla_next() can be called as long as remainig is >0.
508  *
509  * @return Pointer to next attribute.
510  */
nla_next(const struct nlattr * nla,int * remaining)511 struct nlattr *nla_next(const struct nlattr *nla, int *remaining)
512 {
513 	int totlen = NLA_ALIGN(nla->nla_len);
514 
515 	*remaining -= totlen;
516 	return (struct nlattr *) ((char *) nla + totlen);
517 }
518 
519 static uint16_t nla_attr_minlen[NLA_TYPE_MAX+1] = {
520 	[NLA_U8]	= sizeof(uint8_t),
521 	[NLA_U16]	= sizeof(uint16_t),
522 	[NLA_U32]	= sizeof(uint32_t),
523 	[NLA_U64]	= sizeof(uint64_t),
524 	[NLA_STRING]	= 1,
525 };
526 
validate_nla(struct nlattr * nla,int maxtype,struct nla_policy * policy)527 static int validate_nla(struct nlattr *nla, int maxtype,
528 			struct nla_policy *policy)
529 {
530 	struct nla_policy *pt;
531 	int minlen = 0, type = nla_type(nla);
532 
533 	if (type <= 0 || type > maxtype)
534 		return 0;
535 
536 	pt = &policy[type];
537 
538 	if (pt->type > NLA_TYPE_MAX)
539 		BUG();
540 
541 	if (pt->minlen)
542 		minlen = pt->minlen;
543 	else if (pt->type != NLA_UNSPEC)
544 		minlen = nla_attr_minlen[pt->type];
545 
546 	if (pt->type == NLA_FLAG && nla_len(nla) > 0)
547 		return -NLE_RANGE;
548 
549 	if (nla_len(nla) < minlen)
550 		return -NLE_RANGE;
551 
552 	if (pt->maxlen && nla_len(nla) > pt->maxlen)
553 		return -NLE_RANGE;
554 
555 	if (pt->type == NLA_STRING) {
556 		char *data = nla_data(nla);
557 		if (data[nla_len(nla) - 1] != '\0')
558 			return -NLE_INVAL;
559 	}
560 
561 	return 0;
562 }
563 
564 
565 /**
566  * Create attribute index based on a stream of attributes.
567  * @arg tb		Index array to be filled (maxtype+1 elements).
568  * @arg maxtype		Maximum attribute type expected and accepted.
569  * @arg head		Head of attribute stream.
570  * @arg len		Length of attribute stream.
571  * @arg policy		Attribute validation policy.
572  *
573  * Iterates over the stream of attributes and stores a pointer to each
574  * attribute in the index array using the attribute type as index to
575  * the array. Attribute with a type greater than the maximum type
576  * specified will be silently ignored in order to maintain backwards
577  * compatibility. If \a policy is not NULL, the attribute will be
578  * validated using the specified policy.
579  *
580  * @see nla_validate
581  * @return 0 on success or a negative error code.
582  */
nla_parse(struct nlattr * tb[],int maxtype,struct nlattr * head,int len,struct nla_policy * policy)583 int nla_parse(struct nlattr *tb[], int maxtype, struct nlattr *head, int len,
584 	      struct nla_policy *policy)
585 {
586 	struct nlattr *nla;
587 	int rem, err;
588 
589 	memset(tb, 0, sizeof(struct nlattr *) * (maxtype + 1));
590 
591 	nla_for_each_attr(nla, head, len, rem) {
592 		int type = nla_type(nla);
593 
594 		if (type == 0) {
595 			fprintf(stderr, "Illegal nla->nla_type == 0\n");
596 			continue;
597 		}
598 
599 		if (type <= maxtype) {
600 			if (policy) {
601 				err = validate_nla(nla, maxtype, policy);
602 				if (err < 0)
603 					goto errout;
604 			}
605 
606 			tb[type] = nla;
607 		}
608 	}
609 
610 	if (rem > 0)
611 		fprintf(stderr, "netlink: %d bytes leftover after parsing "
612 		       "attributes.\n", rem);
613 
614 	err = 0;
615 errout:
616 	return err;
617 }
618 
619 /**
620  * Validate a stream of attributes.
621  * @arg head		Head of attributes stream.
622  * @arg len		Length of attributes stream.
623  * @arg maxtype		Maximum attribute type expected and accepted.
624  * @arg policy		Validation policy.
625  *
626  * Iterates over the stream of attributes and validates each attribute
627  * one by one using the specified policy. Attributes with a type greater
628  * than the maximum type specified will be silently ignored in order to
629  * maintain backwards compatibility.
630  *
631  * See \ref attr_datatypes for more details on what kind of validation
632  * checks are performed on each attribute data type.
633  *
634  * @return 0 on success or a negative error code.
635  */
nla_validate(struct nlattr * head,int len,int maxtype,struct nla_policy * policy)636 int nla_validate(struct nlattr *head, int len, int maxtype,
637 		 struct nla_policy *policy)
638 {
639 	struct nlattr *nla;
640 	int rem, err;
641 
642 	nla_for_each_attr(nla, head, len, rem) {
643 		err = validate_nla(nla, maxtype, policy);
644 		if (err < 0)
645 			goto errout;
646 	}
647 
648 	err = 0;
649 errout:
650 	return err;
651 }
652 
653 /**
654  * Find a single attribute in a stream of attributes.
655  * @arg head		Head of attributes stream.
656  * @arg len		Length of attributes stream.
657  * @arg attrtype	Attribute type to look for.
658  *
659  * Iterates over the stream of attributes and compares each type with
660  * the type specified. Returns the first attribute which matches the
661  * type.
662  *
663  * @return Pointer to attribute found or NULL.
664  */
nla_find(struct nlattr * head,int len,int attrtype)665 struct nlattr *nla_find(struct nlattr *head, int len, int attrtype)
666 {
667 	struct nlattr *nla;
668 	int rem;
669 
670 	nla_for_each_attr(nla, head, len, rem)
671 		if (nla_type(nla) == attrtype)
672 			return nla;
673 
674 	return NULL;
675 }
676 
677 /** @} */
678 
679 /**
680  * @name Helper Functions
681  * @{
682  */
683 
684 /**
685  * Copy attribute payload to another memory area.
686  * @arg dest		Pointer to destination memory area.
687  * @arg src		Attribute
688  * @arg count		Number of bytes to copy at most.
689  *
690  * Note: The number of bytes copied is limited by the length of
691  *       the attribute payload.
692  *
693  * @return The number of bytes copied to dest.
694  */
nla_memcpy(void * dest,struct nlattr * src,int count)695 int nla_memcpy(void *dest, struct nlattr *src, int count)
696 {
697 	int minlen;
698 
699 	if (!src)
700 		return 0;
701 
702 	minlen = min_t(int, count, nla_len(src));
703 	memcpy(dest, nla_data(src), minlen);
704 
705 	return minlen;
706 }
707 
708 /**
709  * Copy string attribute payload to a buffer.
710  * @arg dst		Pointer to destination buffer.
711  * @arg nla		Attribute of type NLA_STRING.
712  * @arg dstsize		Size of destination buffer in bytes.
713  *
714  * Copies at most dstsize - 1 bytes to the destination buffer.
715  * The result is always a valid NUL terminated string. Unlike
716  * strlcpy the destination buffer is always padded out.
717  *
718  * @return The length of string attribute without the terminating NUL.
719  */
nla_strlcpy(char * dst,const struct nlattr * nla,size_t dstsize)720 size_t nla_strlcpy(char *dst, const struct nlattr *nla, size_t dstsize)
721 {
722 	size_t srclen = nla_len(nla);
723 	char *src = nla_data(nla);
724 
725 	if (srclen > 0 && src[srclen - 1] == '\0')
726 		srclen--;
727 
728 	if (dstsize > 0) {
729 		size_t len = (srclen >= dstsize) ? dstsize - 1 : srclen;
730 
731 		memset(dst, 0, dstsize);
732 		memcpy(dst, src, len);
733 	}
734 
735 	return srclen;
736 }
737 
738 /**
739  * Compare attribute payload with memory area.
740  * @arg nla		Attribute.
741  * @arg data		Memory area to compare to.
742  * @arg size		Number of bytes to compare.
743  *
744  * @see memcmp(3)
745  * @return An integer less than, equal to, or greater than zero.
746  */
nla_memcmp(const struct nlattr * nla,const void * data,size_t size)747 int nla_memcmp(const struct nlattr *nla, const void *data, size_t size)
748 {
749 	int d = nla_len(nla) - size;
750 
751 	if (d == 0)
752 		d = memcmp(nla_data(nla), data, size);
753 
754 	return d;
755 }
756 
757 /**
758  * Compare string attribute payload with string
759  * @arg nla		Attribute of type NLA_STRING.
760  * @arg str		NUL terminated string.
761  *
762  * @see strcmp(3)
763  * @return An integer less than, equal to, or greater than zero.
764  */
nla_strcmp(const struct nlattr * nla,const char * str)765 int nla_strcmp(const struct nlattr *nla, const char *str)
766 {
767 	int len = strlen(str) + 1;
768 	int d = nla_len(nla) - len;
769 
770 	if (d == 0)
771 		d = memcmp(nla_data(nla), str, len);
772 
773 	return d;
774 }
775 
776 /** @} */
777 
778 /**
779  * @name Unspecific Attribute
780  * @{
781  */
782 
783 /**
784  * Reserve space for a attribute.
785  * @arg msg		Netlink Message.
786  * @arg attrtype	Attribute Type.
787  * @arg attrlen		Length of payload.
788  *
789  * Reserves room for a attribute in the specified netlink message and
790  * fills in the attribute header (type, length). Returns NULL if there
791  * is unsuficient space for the attribute.
792  *
793  * Any padding between payload and the start of the next attribute is
794  * zeroed out.
795  *
796  * @return Pointer to start of attribute or NULL on failure.
797  */
nla_reserve(struct nl_msg * msg,int attrtype,int attrlen)798 struct nlattr *nla_reserve(struct nl_msg *msg, int attrtype, int attrlen)
799 {
800 	struct nlattr *nla;
801 	int tlen;
802 
803 	tlen = NLMSG_ALIGN(msg->nm_nlh->nlmsg_len) + nla_total_size(attrlen);
804 
805 	if ((tlen + msg->nm_nlh->nlmsg_len) > msg->nm_size)
806 		return NULL;
807 
808 	nla = (struct nlattr *) nlmsg_tail(msg->nm_nlh);
809 	nla->nla_type = attrtype;
810 	nla->nla_len = nla_attr_size(attrlen);
811 
812 	memset((unsigned char *) nla + nla->nla_len, 0, nla_padlen(attrlen));
813 	msg->nm_nlh->nlmsg_len = tlen;
814 
815 	NL_DBG(2, "msg %p: Reserved %d bytes at offset +%td for attr %d "
816 		  "nlmsg_len=%d\n", msg, attrlen,
817 		  (void *) nla - nlmsg_data(msg->nm_nlh),
818 		  attrtype, msg->nm_nlh->nlmsg_len);
819 
820 	return nla;
821 }
822 
823 /**
824  * Add a unspecific attribute to netlink message.
825  * @arg msg		Netlink message.
826  * @arg attrtype	Attribute type.
827  * @arg datalen		Length of data to be used as payload.
828  * @arg data		Pointer to data to be used as attribute payload.
829  *
830  * Reserves room for a unspecific attribute and copies the provided data
831  * into the message as payload of the attribute. Returns an error if there
832  * is insufficient space for the attribute.
833  *
834  * @see nla_reserve
835  * @return 0 on success or a negative error code.
836  */
nla_put(struct nl_msg * msg,int attrtype,int datalen,const void * data)837 int nla_put(struct nl_msg *msg, int attrtype, int datalen, const void *data)
838 {
839 	struct nlattr *nla;
840 
841 	nla = nla_reserve(msg, attrtype, datalen);
842 	if (!nla)
843 		return -NLE_NOMEM;
844 
845 	memcpy(nla_data(nla), data, datalen);
846 	NL_DBG(2, "msg %p: Wrote %d bytes at offset +%td for attr %d\n",
847 	       msg, datalen, (void *) nla - nlmsg_data(msg->nm_nlh), attrtype);
848 
849 	return 0;
850 }
851 
852 /**
853  * Add abstract data as unspecific attribute to netlink message.
854  * @arg msg		Netlink message.
855  * @arg attrtype	Attribute type.
856  * @arg data		Abstract data object.
857  *
858  * Equivalent to nla_put() except that the length of the payload is
859  * derived from the abstract data object.
860  *
861  * @see nla_put
862  * @return 0 on success or a negative error code.
863  */
nla_put_data(struct nl_msg * msg,int attrtype,struct nl_data * data)864 int nla_put_data(struct nl_msg *msg, int attrtype, struct nl_data *data)
865 {
866 	return nla_put(msg, attrtype, nl_data_get_size(data),
867 		       nl_data_get(data));
868 }
869 
870 /**
871  * Add abstract address as unspecific attribute to netlink message.
872  * @arg msg		Netlink message.
873  * @arg attrtype	Attribute type.
874  * @arg addr		Abstract address object.
875  *
876  * @see nla_put
877  * @return 0 on success or a negative error code.
878  */
nla_put_addr(struct nl_msg * msg,int attrtype,struct nl_addr * addr)879 int nla_put_addr(struct nl_msg *msg, int attrtype, struct nl_addr *addr)
880 {
881 	return nla_put(msg, attrtype, nl_addr_get_len(addr),
882 		       nl_addr_get_binary_addr(addr));
883 }
884 
885 /** @} */
886 
887 /**
888  * @name Integer Attributes
889  */
890 
891 /**
892  * Add 8 bit integer attribute to netlink message.
893  * @arg msg		Netlink message.
894  * @arg attrtype	Attribute type.
895  * @arg value		Numeric value to store as payload.
896  *
897  * @see nla_put
898  * @return 0 on success or a negative error code.
899  */
nla_put_u8(struct nl_msg * msg,int attrtype,uint8_t value)900 int nla_put_u8(struct nl_msg *msg, int attrtype, uint8_t value)
901 {
902 	return nla_put(msg, attrtype, sizeof(uint8_t), &value);
903 }
904 
905 /**
906  * Return value of 8 bit integer attribute.
907  * @arg nla		8 bit integer attribute
908  *
909  * @return Payload as 8 bit integer.
910  */
nla_get_u8(struct nlattr * nla)911 uint8_t nla_get_u8(struct nlattr *nla)
912 {
913 	return *(uint8_t *) nla_data(nla);
914 }
915 
916 /**
917  * Add 16 bit integer attribute to netlink message.
918  * @arg msg		Netlink message.
919  * @arg attrtype	Attribute type.
920  * @arg value		Numeric value to store as payload.
921  *
922  * @see nla_put
923  * @return 0 on success or a negative error code.
924  */
nla_put_u16(struct nl_msg * msg,int attrtype,uint16_t value)925 int nla_put_u16(struct nl_msg *msg, int attrtype, uint16_t value)
926 {
927 	return nla_put(msg, attrtype, sizeof(uint16_t), &value);
928 }
929 
930 /**
931  * Return payload of 16 bit integer attribute.
932  * @arg nla		16 bit integer attribute
933  *
934  * @return Payload as 16 bit integer.
935  */
nla_get_u16(struct nlattr * nla)936 uint16_t nla_get_u16(struct nlattr *nla)
937 {
938 	return *(uint16_t *) nla_data(nla);
939 }
940 
941 /**
942  * Add 32 bit integer attribute to netlink message.
943  * @arg msg		Netlink message.
944  * @arg attrtype	Attribute type.
945  * @arg value		Numeric value to store as payload.
946  *
947  * @see nla_put
948  * @return 0 on success or a negative error code.
949  */
nla_put_u32(struct nl_msg * msg,int attrtype,uint32_t value)950 int nla_put_u32(struct nl_msg *msg, int attrtype, uint32_t value)
951 {
952 	return nla_put(msg, attrtype, sizeof(uint32_t), &value);
953 }
954 
955 /**
956  * Return payload of 32 bit integer attribute.
957  * @arg nla		32 bit integer attribute.
958  *
959  * @return Payload as 32 bit integer.
960  */
nla_get_u32(struct nlattr * nla)961 uint32_t nla_get_u32(struct nlattr *nla)
962 {
963 	return *(uint32_t *) nla_data(nla);
964 }
965 
966 /**
967  * Add 64 bit integer attribute to netlink message.
968  * @arg msg		Netlink message.
969  * @arg attrtype	Attribute type.
970  * @arg value		Numeric value to store as payload.
971  *
972  * @see nla_put
973  * @return 0 on success or a negative error code.
974  */
nla_put_u64(struct nl_msg * msg,int attrtype,uint64_t value)975 int nla_put_u64(struct nl_msg *msg, int attrtype, uint64_t value)
976 {
977 	return nla_put(msg, attrtype, sizeof(uint64_t), &value);
978 }
979 
980 /**
981  * Return payload of u64 attribute
982  * @arg nla		u64 netlink attribute
983  *
984  * @return Payload as 64 bit integer.
985  */
nla_get_u64(struct nlattr * nla)986 uint64_t nla_get_u64(struct nlattr *nla)
987 {
988 	uint64_t tmp;
989 
990 	nla_memcpy(&tmp, nla, sizeof(tmp));
991 
992 	return tmp;
993 }
994 
995 /** @} */
996 
997 /**
998  * @name String Attribute
999  */
1000 
1001 /**
1002  * Add string attribute to netlink message.
1003  * @arg msg		Netlink message.
1004  * @arg attrtype	Attribute type.
1005  * @arg str		NUL terminated string.
1006  *
1007  * @see nla_put
1008  * @return 0 on success or a negative error code.
1009  */
nla_put_string(struct nl_msg * msg,int attrtype,const char * str)1010 int nla_put_string(struct nl_msg *msg, int attrtype, const char *str)
1011 {
1012 	return nla_put(msg, attrtype, strlen(str) + 1, str);
1013 }
1014 
1015 /**
1016  * Return payload of string attribute.
1017  * @arg nla		String attribute.
1018  *
1019  * @return Pointer to attribute payload.
1020  */
nla_get_string(struct nlattr * nla)1021 char *nla_get_string(struct nlattr *nla)
1022 {
1023 	return (char *) nla_data(nla);
1024 }
1025 
nla_strdup(struct nlattr * nla)1026 char *nla_strdup(struct nlattr *nla)
1027 {
1028 	return strdup(nla_get_string(nla));
1029 }
1030 
1031 /** @} */
1032 
1033 /**
1034  * @name Flag Attribute
1035  */
1036 
1037 /**
1038  * Add flag netlink attribute to netlink message.
1039  * @arg msg		Netlink message.
1040  * @arg attrtype	Attribute type.
1041  *
1042  * @see nla_put
1043  * @return 0 on success or a negative error code.
1044  */
nla_put_flag(struct nl_msg * msg,int attrtype)1045 int nla_put_flag(struct nl_msg *msg, int attrtype)
1046 {
1047 	return nla_put(msg, attrtype, 0, NULL);
1048 }
1049 
1050 /**
1051  * Return true if flag attribute is set.
1052  * @arg nla		Flag netlink attribute.
1053  *
1054  * @return True if flag is set, otherwise false.
1055  */
nla_get_flag(struct nlattr * nla)1056 int nla_get_flag(struct nlattr *nla)
1057 {
1058 	return !!nla;
1059 }
1060 
1061 /** @} */
1062 
1063 /**
1064  * @name Microseconds Attribute
1065  */
1066 
1067 /**
1068  * Add a msecs netlink attribute to a netlink message
1069  * @arg n		netlink message
1070  * @arg attrtype	attribute type
1071  * @arg msecs 		number of msecs
1072  */
nla_put_msecs(struct nl_msg * n,int attrtype,unsigned long msecs)1073 int nla_put_msecs(struct nl_msg *n, int attrtype, unsigned long msecs)
1074 {
1075 	return nla_put_u64(n, attrtype, msecs);
1076 }
1077 
1078 /**
1079  * Return payload of msecs attribute
1080  * @arg nla		msecs netlink attribute
1081  *
1082  * @return the number of milliseconds.
1083  */
nla_get_msecs(struct nlattr * nla)1084 unsigned long nla_get_msecs(struct nlattr *nla)
1085 {
1086 	return nla_get_u64(nla);
1087 }
1088 
1089 /** @} */
1090 
1091 /**
1092  * @name Nested Attribute
1093  */
1094 
1095 /**
1096  * Add nested attributes to netlink message.
1097  * @arg msg		Netlink message.
1098  * @arg attrtype	Attribute type.
1099  * @arg nested		Message containing attributes to be nested.
1100  *
1101  * Takes the attributes found in the \a nested message and appends them
1102  * to the message \a msg nested in a container of the type \a attrtype.
1103  * The \a nested message may not have a family specific header.
1104  *
1105  * @see nla_put
1106  * @return 0 on success or a negative error code.
1107  */
nla_put_nested(struct nl_msg * msg,int attrtype,struct nl_msg * nested)1108 int nla_put_nested(struct nl_msg *msg, int attrtype, struct nl_msg *nested)
1109 {
1110 	return nla_put(msg, attrtype, nlmsg_len(nested->nm_nlh),
1111 		       nlmsg_data(nested->nm_nlh));
1112 }
1113 
1114 
1115 /**
1116  * Start a new level of nested attributes.
1117  * @arg msg		Netlink message.
1118  * @arg attrtype	Attribute type of container.
1119  *
1120  * @return Pointer to container attribute.
1121  */
nla_nest_start(struct nl_msg * msg,int attrtype)1122 struct nlattr *nla_nest_start(struct nl_msg *msg, int attrtype)
1123 {
1124 	struct nlattr *start = (struct nlattr *) nlmsg_tail(msg->nm_nlh);
1125 
1126 	if (nla_put(msg, attrtype, 0, NULL) < 0)
1127 		return NULL;
1128 
1129 	return start;
1130 }
1131 
1132 /**
1133  * Finalize nesting of attributes.
1134  * @arg msg		Netlink message.
1135  * @arg start		Container attribute as returned from nla_nest_start().
1136  *
1137  * Corrects the container attribute header to include the appeneded attributes.
1138  *
1139  * @return 0
1140  */
nla_nest_end(struct nl_msg * msg,struct nlattr * start)1141 int nla_nest_end(struct nl_msg *msg, struct nlattr *start)
1142 {
1143 	start->nla_len = (unsigned char *) nlmsg_tail(msg->nm_nlh) -
1144 				(unsigned char *) start;
1145 	return 0;
1146 }
1147 
1148 /**
1149  * Create attribute index based on nested attribute
1150  * @arg tb		Index array to be filled (maxtype+1 elements).
1151  * @arg maxtype		Maximum attribute type expected and accepted.
1152  * @arg nla		Nested Attribute.
1153  * @arg policy		Attribute validation policy.
1154  *
1155  * Feeds the stream of attributes nested into the specified attribute
1156  * to nla_parse().
1157  *
1158  * @see nla_parse
1159  * @return 0 on success or a negative error code.
1160  */
nla_parse_nested(struct nlattr * tb[],int maxtype,struct nlattr * nla,struct nla_policy * policy)1161 int nla_parse_nested(struct nlattr *tb[], int maxtype, struct nlattr *nla,
1162 		     struct nla_policy *policy)
1163 {
1164 	return nla_parse(tb, maxtype, nla_data(nla), nla_len(nla), policy);
1165 }
1166 
1167 /** @} */
1168 
1169 /** @} */
1170