• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include <limits.h>  // For LONG_MIN, LONG_MAX.
6 
7 #include "src/v8.h"
8 
9 #if V8_TARGET_ARCH_ARM
10 
11 #include "src/bootstrapper.h"
12 #include "src/codegen.h"
13 #include "src/cpu-profiler.h"
14 #include "src/debug.h"
15 #include "src/isolate-inl.h"
16 #include "src/runtime.h"
17 
18 namespace v8 {
19 namespace internal {
20 
MacroAssembler(Isolate * arg_isolate,void * buffer,int size)21 MacroAssembler::MacroAssembler(Isolate* arg_isolate, void* buffer, int size)
22     : Assembler(arg_isolate, buffer, size),
23       generating_stub_(false),
24       has_frame_(false) {
25   if (isolate() != NULL) {
26     code_object_ = Handle<Object>(isolate()->heap()->undefined_value(),
27                                   isolate());
28   }
29 }
30 
31 
Jump(Register target,Condition cond)32 void MacroAssembler::Jump(Register target, Condition cond) {
33   bx(target, cond);
34 }
35 
36 
Jump(intptr_t target,RelocInfo::Mode rmode,Condition cond)37 void MacroAssembler::Jump(intptr_t target, RelocInfo::Mode rmode,
38                           Condition cond) {
39   ASSERT(RelocInfo::IsCodeTarget(rmode));
40   mov(pc, Operand(target, rmode), LeaveCC, cond);
41 }
42 
43 
Jump(Address target,RelocInfo::Mode rmode,Condition cond)44 void MacroAssembler::Jump(Address target, RelocInfo::Mode rmode,
45                           Condition cond) {
46   ASSERT(!RelocInfo::IsCodeTarget(rmode));
47   Jump(reinterpret_cast<intptr_t>(target), rmode, cond);
48 }
49 
50 
Jump(Handle<Code> code,RelocInfo::Mode rmode,Condition cond)51 void MacroAssembler::Jump(Handle<Code> code, RelocInfo::Mode rmode,
52                           Condition cond) {
53   ASSERT(RelocInfo::IsCodeTarget(rmode));
54   // 'code' is always generated ARM code, never THUMB code
55   AllowDeferredHandleDereference embedding_raw_address;
56   Jump(reinterpret_cast<intptr_t>(code.location()), rmode, cond);
57 }
58 
59 
CallSize(Register target,Condition cond)60 int MacroAssembler::CallSize(Register target, Condition cond) {
61   return kInstrSize;
62 }
63 
64 
Call(Register target,Condition cond)65 void MacroAssembler::Call(Register target, Condition cond) {
66   // Block constant pool for the call instruction sequence.
67   BlockConstPoolScope block_const_pool(this);
68   Label start;
69   bind(&start);
70   blx(target, cond);
71   ASSERT_EQ(CallSize(target, cond), SizeOfCodeGeneratedSince(&start));
72 }
73 
74 
CallSize(Address target,RelocInfo::Mode rmode,Condition cond)75 int MacroAssembler::CallSize(
76     Address target, RelocInfo::Mode rmode, Condition cond) {
77   int size = 2 * kInstrSize;
78   Instr mov_instr = cond | MOV | LeaveCC;
79   intptr_t immediate = reinterpret_cast<intptr_t>(target);
80   if (!Operand(immediate, rmode).is_single_instruction(this, mov_instr)) {
81     size += kInstrSize;
82   }
83   return size;
84 }
85 
86 
CallStubSize(CodeStub * stub,TypeFeedbackId ast_id,Condition cond)87 int MacroAssembler::CallStubSize(
88     CodeStub* stub, TypeFeedbackId ast_id, Condition cond) {
89   return CallSize(stub->GetCode(), RelocInfo::CODE_TARGET, ast_id, cond);
90 }
91 
92 
CallSizeNotPredictableCodeSize(Isolate * isolate,Address target,RelocInfo::Mode rmode,Condition cond)93 int MacroAssembler::CallSizeNotPredictableCodeSize(Isolate* isolate,
94                                                    Address target,
95                                                    RelocInfo::Mode rmode,
96                                                    Condition cond) {
97   int size = 2 * kInstrSize;
98   Instr mov_instr = cond | MOV | LeaveCC;
99   intptr_t immediate = reinterpret_cast<intptr_t>(target);
100   if (!Operand(immediate, rmode).is_single_instruction(NULL, mov_instr)) {
101     size += kInstrSize;
102   }
103   return size;
104 }
105 
106 
Call(Address target,RelocInfo::Mode rmode,Condition cond,TargetAddressStorageMode mode)107 void MacroAssembler::Call(Address target,
108                           RelocInfo::Mode rmode,
109                           Condition cond,
110                           TargetAddressStorageMode mode) {
111   // Block constant pool for the call instruction sequence.
112   BlockConstPoolScope block_const_pool(this);
113   Label start;
114   bind(&start);
115 
116   bool old_predictable_code_size = predictable_code_size();
117   if (mode == NEVER_INLINE_TARGET_ADDRESS) {
118     set_predictable_code_size(true);
119   }
120 
121 #ifdef DEBUG
122   // Check the expected size before generating code to ensure we assume the same
123   // constant pool availability (e.g., whether constant pool is full or not).
124   int expected_size = CallSize(target, rmode, cond);
125 #endif
126 
127   // Call sequence on V7 or later may be :
128   //  movw  ip, #... @ call address low 16
129   //  movt  ip, #... @ call address high 16
130   //  blx   ip
131   //                      @ return address
132   // Or for pre-V7 or values that may be back-patched
133   // to avoid ICache flushes:
134   //  ldr   ip, [pc, #...] @ call address
135   //  blx   ip
136   //                      @ return address
137 
138   // Statement positions are expected to be recorded when the target
139   // address is loaded. The mov method will automatically record
140   // positions when pc is the target, since this is not the case here
141   // we have to do it explicitly.
142   positions_recorder()->WriteRecordedPositions();
143 
144   mov(ip, Operand(reinterpret_cast<int32_t>(target), rmode));
145   blx(ip, cond);
146 
147   ASSERT_EQ(expected_size, SizeOfCodeGeneratedSince(&start));
148   if (mode == NEVER_INLINE_TARGET_ADDRESS) {
149     set_predictable_code_size(old_predictable_code_size);
150   }
151 }
152 
153 
CallSize(Handle<Code> code,RelocInfo::Mode rmode,TypeFeedbackId ast_id,Condition cond)154 int MacroAssembler::CallSize(Handle<Code> code,
155                              RelocInfo::Mode rmode,
156                              TypeFeedbackId ast_id,
157                              Condition cond) {
158   AllowDeferredHandleDereference using_raw_address;
159   return CallSize(reinterpret_cast<Address>(code.location()), rmode, cond);
160 }
161 
162 
Call(Handle<Code> code,RelocInfo::Mode rmode,TypeFeedbackId ast_id,Condition cond,TargetAddressStorageMode mode)163 void MacroAssembler::Call(Handle<Code> code,
164                           RelocInfo::Mode rmode,
165                           TypeFeedbackId ast_id,
166                           Condition cond,
167                           TargetAddressStorageMode mode) {
168   Label start;
169   bind(&start);
170   ASSERT(RelocInfo::IsCodeTarget(rmode));
171   if (rmode == RelocInfo::CODE_TARGET && !ast_id.IsNone()) {
172     SetRecordedAstId(ast_id);
173     rmode = RelocInfo::CODE_TARGET_WITH_ID;
174   }
175   // 'code' is always generated ARM code, never THUMB code
176   AllowDeferredHandleDereference embedding_raw_address;
177   Call(reinterpret_cast<Address>(code.location()), rmode, cond, mode);
178 }
179 
180 
Ret(Condition cond)181 void MacroAssembler::Ret(Condition cond) {
182   bx(lr, cond);
183 }
184 
185 
Drop(int count,Condition cond)186 void MacroAssembler::Drop(int count, Condition cond) {
187   if (count > 0) {
188     add(sp, sp, Operand(count * kPointerSize), LeaveCC, cond);
189   }
190 }
191 
192 
Ret(int drop,Condition cond)193 void MacroAssembler::Ret(int drop, Condition cond) {
194   Drop(drop, cond);
195   Ret(cond);
196 }
197 
198 
Swap(Register reg1,Register reg2,Register scratch,Condition cond)199 void MacroAssembler::Swap(Register reg1,
200                           Register reg2,
201                           Register scratch,
202                           Condition cond) {
203   if (scratch.is(no_reg)) {
204     eor(reg1, reg1, Operand(reg2), LeaveCC, cond);
205     eor(reg2, reg2, Operand(reg1), LeaveCC, cond);
206     eor(reg1, reg1, Operand(reg2), LeaveCC, cond);
207   } else {
208     mov(scratch, reg1, LeaveCC, cond);
209     mov(reg1, reg2, LeaveCC, cond);
210     mov(reg2, scratch, LeaveCC, cond);
211   }
212 }
213 
214 
Call(Label * target)215 void MacroAssembler::Call(Label* target) {
216   bl(target);
217 }
218 
219 
Push(Handle<Object> handle)220 void MacroAssembler::Push(Handle<Object> handle) {
221   mov(ip, Operand(handle));
222   push(ip);
223 }
224 
225 
Move(Register dst,Handle<Object> value)226 void MacroAssembler::Move(Register dst, Handle<Object> value) {
227   AllowDeferredHandleDereference smi_check;
228   if (value->IsSmi()) {
229     mov(dst, Operand(value));
230   } else {
231     ASSERT(value->IsHeapObject());
232     if (isolate()->heap()->InNewSpace(*value)) {
233       Handle<Cell> cell = isolate()->factory()->NewCell(value);
234       mov(dst, Operand(cell));
235       ldr(dst, FieldMemOperand(dst, Cell::kValueOffset));
236     } else {
237       mov(dst, Operand(value));
238     }
239   }
240 }
241 
242 
Move(Register dst,Register src,Condition cond)243 void MacroAssembler::Move(Register dst, Register src, Condition cond) {
244   if (!dst.is(src)) {
245     mov(dst, src, LeaveCC, cond);
246   }
247 }
248 
249 
Move(DwVfpRegister dst,DwVfpRegister src)250 void MacroAssembler::Move(DwVfpRegister dst, DwVfpRegister src) {
251   if (!dst.is(src)) {
252     vmov(dst, src);
253   }
254 }
255 
256 
Mls(Register dst,Register src1,Register src2,Register srcA,Condition cond)257 void MacroAssembler::Mls(Register dst, Register src1, Register src2,
258                          Register srcA, Condition cond) {
259   if (CpuFeatures::IsSupported(MLS)) {
260     CpuFeatureScope scope(this, MLS);
261     mls(dst, src1, src2, srcA, cond);
262   } else {
263     ASSERT(!dst.is(srcA));
264     mul(ip, src1, src2, LeaveCC, cond);
265     sub(dst, srcA, ip, LeaveCC, cond);
266   }
267 }
268 
269 
And(Register dst,Register src1,const Operand & src2,Condition cond)270 void MacroAssembler::And(Register dst, Register src1, const Operand& src2,
271                          Condition cond) {
272   if (!src2.is_reg() &&
273       !src2.must_output_reloc_info(this) &&
274       src2.immediate() == 0) {
275     mov(dst, Operand::Zero(), LeaveCC, cond);
276   } else if (!src2.is_single_instruction(this) &&
277              !src2.must_output_reloc_info(this) &&
278              CpuFeatures::IsSupported(ARMv7) &&
279              IsPowerOf2(src2.immediate() + 1)) {
280     ubfx(dst, src1, 0,
281         WhichPowerOf2(static_cast<uint32_t>(src2.immediate()) + 1), cond);
282   } else {
283     and_(dst, src1, src2, LeaveCC, cond);
284   }
285 }
286 
287 
Ubfx(Register dst,Register src1,int lsb,int width,Condition cond)288 void MacroAssembler::Ubfx(Register dst, Register src1, int lsb, int width,
289                           Condition cond) {
290   ASSERT(lsb < 32);
291   if (!CpuFeatures::IsSupported(ARMv7) || predictable_code_size()) {
292     int mask = (1 << (width + lsb)) - 1 - ((1 << lsb) - 1);
293     and_(dst, src1, Operand(mask), LeaveCC, cond);
294     if (lsb != 0) {
295       mov(dst, Operand(dst, LSR, lsb), LeaveCC, cond);
296     }
297   } else {
298     ubfx(dst, src1, lsb, width, cond);
299   }
300 }
301 
302 
Sbfx(Register dst,Register src1,int lsb,int width,Condition cond)303 void MacroAssembler::Sbfx(Register dst, Register src1, int lsb, int width,
304                           Condition cond) {
305   ASSERT(lsb < 32);
306   if (!CpuFeatures::IsSupported(ARMv7) || predictable_code_size()) {
307     int mask = (1 << (width + lsb)) - 1 - ((1 << lsb) - 1);
308     and_(dst, src1, Operand(mask), LeaveCC, cond);
309     int shift_up = 32 - lsb - width;
310     int shift_down = lsb + shift_up;
311     if (shift_up != 0) {
312       mov(dst, Operand(dst, LSL, shift_up), LeaveCC, cond);
313     }
314     if (shift_down != 0) {
315       mov(dst, Operand(dst, ASR, shift_down), LeaveCC, cond);
316     }
317   } else {
318     sbfx(dst, src1, lsb, width, cond);
319   }
320 }
321 
322 
Bfi(Register dst,Register src,Register scratch,int lsb,int width,Condition cond)323 void MacroAssembler::Bfi(Register dst,
324                          Register src,
325                          Register scratch,
326                          int lsb,
327                          int width,
328                          Condition cond) {
329   ASSERT(0 <= lsb && lsb < 32);
330   ASSERT(0 <= width && width < 32);
331   ASSERT(lsb + width < 32);
332   ASSERT(!scratch.is(dst));
333   if (width == 0) return;
334   if (!CpuFeatures::IsSupported(ARMv7) || predictable_code_size()) {
335     int mask = (1 << (width + lsb)) - 1 - ((1 << lsb) - 1);
336     bic(dst, dst, Operand(mask));
337     and_(scratch, src, Operand((1 << width) - 1));
338     mov(scratch, Operand(scratch, LSL, lsb));
339     orr(dst, dst, scratch);
340   } else {
341     bfi(dst, src, lsb, width, cond);
342   }
343 }
344 
345 
Bfc(Register dst,Register src,int lsb,int width,Condition cond)346 void MacroAssembler::Bfc(Register dst, Register src, int lsb, int width,
347                          Condition cond) {
348   ASSERT(lsb < 32);
349   if (!CpuFeatures::IsSupported(ARMv7) || predictable_code_size()) {
350     int mask = (1 << (width + lsb)) - 1 - ((1 << lsb) - 1);
351     bic(dst, src, Operand(mask));
352   } else {
353     Move(dst, src, cond);
354     bfc(dst, lsb, width, cond);
355   }
356 }
357 
358 
Usat(Register dst,int satpos,const Operand & src,Condition cond)359 void MacroAssembler::Usat(Register dst, int satpos, const Operand& src,
360                           Condition cond) {
361   if (!CpuFeatures::IsSupported(ARMv7) || predictable_code_size()) {
362     ASSERT(!dst.is(pc) && !src.rm().is(pc));
363     ASSERT((satpos >= 0) && (satpos <= 31));
364 
365     // These asserts are required to ensure compatibility with the ARMv7
366     // implementation.
367     ASSERT((src.shift_op() == ASR) || (src.shift_op() == LSL));
368     ASSERT(src.rs().is(no_reg));
369 
370     Label done;
371     int satval = (1 << satpos) - 1;
372 
373     if (cond != al) {
374       b(NegateCondition(cond), &done);  // Skip saturate if !condition.
375     }
376     if (!(src.is_reg() && dst.is(src.rm()))) {
377       mov(dst, src);
378     }
379     tst(dst, Operand(~satval));
380     b(eq, &done);
381     mov(dst, Operand::Zero(), LeaveCC, mi);  // 0 if negative.
382     mov(dst, Operand(satval), LeaveCC, pl);  // satval if positive.
383     bind(&done);
384   } else {
385     usat(dst, satpos, src, cond);
386   }
387 }
388 
389 
Load(Register dst,const MemOperand & src,Representation r)390 void MacroAssembler::Load(Register dst,
391                           const MemOperand& src,
392                           Representation r) {
393   ASSERT(!r.IsDouble());
394   if (r.IsInteger8()) {
395     ldrsb(dst, src);
396   } else if (r.IsUInteger8()) {
397     ldrb(dst, src);
398   } else if (r.IsInteger16()) {
399     ldrsh(dst, src);
400   } else if (r.IsUInteger16()) {
401     ldrh(dst, src);
402   } else {
403     ldr(dst, src);
404   }
405 }
406 
407 
Store(Register src,const MemOperand & dst,Representation r)408 void MacroAssembler::Store(Register src,
409                            const MemOperand& dst,
410                            Representation r) {
411   ASSERT(!r.IsDouble());
412   if (r.IsInteger8() || r.IsUInteger8()) {
413     strb(src, dst);
414   } else if (r.IsInteger16() || r.IsUInteger16()) {
415     strh(src, dst);
416   } else {
417     if (r.IsHeapObject()) {
418       AssertNotSmi(src);
419     } else if (r.IsSmi()) {
420       AssertSmi(src);
421     }
422     str(src, dst);
423   }
424 }
425 
426 
LoadRoot(Register destination,Heap::RootListIndex index,Condition cond)427 void MacroAssembler::LoadRoot(Register destination,
428                               Heap::RootListIndex index,
429                               Condition cond) {
430   if (CpuFeatures::IsSupported(MOVW_MOVT_IMMEDIATE_LOADS) &&
431       isolate()->heap()->RootCanBeTreatedAsConstant(index) &&
432       !predictable_code_size()) {
433     // The CPU supports fast immediate values, and this root will never
434     // change. We will load it as a relocatable immediate value.
435     Handle<Object> root(&isolate()->heap()->roots_array_start()[index]);
436     mov(destination, Operand(root), LeaveCC, cond);
437     return;
438   }
439   ldr(destination, MemOperand(kRootRegister, index << kPointerSizeLog2), cond);
440 }
441 
442 
StoreRoot(Register source,Heap::RootListIndex index,Condition cond)443 void MacroAssembler::StoreRoot(Register source,
444                                Heap::RootListIndex index,
445                                Condition cond) {
446   str(source, MemOperand(kRootRegister, index << kPointerSizeLog2), cond);
447 }
448 
449 
InNewSpace(Register object,Register scratch,Condition cond,Label * branch)450 void MacroAssembler::InNewSpace(Register object,
451                                 Register scratch,
452                                 Condition cond,
453                                 Label* branch) {
454   ASSERT(cond == eq || cond == ne);
455   and_(scratch, object, Operand(ExternalReference::new_space_mask(isolate())));
456   cmp(scratch, Operand(ExternalReference::new_space_start(isolate())));
457   b(cond, branch);
458 }
459 
460 
RecordWriteField(Register object,int offset,Register value,Register dst,LinkRegisterStatus lr_status,SaveFPRegsMode save_fp,RememberedSetAction remembered_set_action,SmiCheck smi_check,PointersToHereCheck pointers_to_here_check_for_value)461 void MacroAssembler::RecordWriteField(
462     Register object,
463     int offset,
464     Register value,
465     Register dst,
466     LinkRegisterStatus lr_status,
467     SaveFPRegsMode save_fp,
468     RememberedSetAction remembered_set_action,
469     SmiCheck smi_check,
470     PointersToHereCheck pointers_to_here_check_for_value) {
471   // First, check if a write barrier is even needed. The tests below
472   // catch stores of Smis.
473   Label done;
474 
475   // Skip barrier if writing a smi.
476   if (smi_check == INLINE_SMI_CHECK) {
477     JumpIfSmi(value, &done);
478   }
479 
480   // Although the object register is tagged, the offset is relative to the start
481   // of the object, so so offset must be a multiple of kPointerSize.
482   ASSERT(IsAligned(offset, kPointerSize));
483 
484   add(dst, object, Operand(offset - kHeapObjectTag));
485   if (emit_debug_code()) {
486     Label ok;
487     tst(dst, Operand((1 << kPointerSizeLog2) - 1));
488     b(eq, &ok);
489     stop("Unaligned cell in write barrier");
490     bind(&ok);
491   }
492 
493   RecordWrite(object,
494               dst,
495               value,
496               lr_status,
497               save_fp,
498               remembered_set_action,
499               OMIT_SMI_CHECK,
500               pointers_to_here_check_for_value);
501 
502   bind(&done);
503 
504   // Clobber clobbered input registers when running with the debug-code flag
505   // turned on to provoke errors.
506   if (emit_debug_code()) {
507     mov(value, Operand(BitCast<int32_t>(kZapValue + 4)));
508     mov(dst, Operand(BitCast<int32_t>(kZapValue + 8)));
509   }
510 }
511 
512 
513 // Will clobber 4 registers: object, map, dst, ip.  The
514 // register 'object' contains a heap object pointer.
RecordWriteForMap(Register object,Register map,Register dst,LinkRegisterStatus lr_status,SaveFPRegsMode fp_mode)515 void MacroAssembler::RecordWriteForMap(Register object,
516                                        Register map,
517                                        Register dst,
518                                        LinkRegisterStatus lr_status,
519                                        SaveFPRegsMode fp_mode) {
520   if (emit_debug_code()) {
521     ldr(dst, FieldMemOperand(map, HeapObject::kMapOffset));
522     cmp(dst, Operand(isolate()->factory()->meta_map()));
523     Check(eq, kWrongAddressOrValuePassedToRecordWrite);
524   }
525 
526   if (!FLAG_incremental_marking) {
527     return;
528   }
529 
530   // Count number of write barriers in generated code.
531   isolate()->counters()->write_barriers_static()->Increment();
532   // TODO(mstarzinger): Dynamic counter missing.
533 
534   if (emit_debug_code()) {
535     ldr(ip, FieldMemOperand(object, HeapObject::kMapOffset));
536     cmp(ip, map);
537     Check(eq, kWrongAddressOrValuePassedToRecordWrite);
538   }
539 
540   Label done;
541 
542   // A single check of the map's pages interesting flag suffices, since it is
543   // only set during incremental collection, and then it's also guaranteed that
544   // the from object's page's interesting flag is also set.  This optimization
545   // relies on the fact that maps can never be in new space.
546   CheckPageFlag(map,
547                 map,  // Used as scratch.
548                 MemoryChunk::kPointersToHereAreInterestingMask,
549                 eq,
550                 &done);
551 
552   add(dst, object, Operand(HeapObject::kMapOffset - kHeapObjectTag));
553   if (emit_debug_code()) {
554     Label ok;
555     tst(dst, Operand((1 << kPointerSizeLog2) - 1));
556     b(eq, &ok);
557     stop("Unaligned cell in write barrier");
558     bind(&ok);
559   }
560 
561   // Record the actual write.
562   if (lr_status == kLRHasNotBeenSaved) {
563     push(lr);
564   }
565   RecordWriteStub stub(isolate(), object, map, dst, OMIT_REMEMBERED_SET,
566                        fp_mode);
567   CallStub(&stub);
568   if (lr_status == kLRHasNotBeenSaved) {
569     pop(lr);
570   }
571 
572   bind(&done);
573 
574   // Clobber clobbered registers when running with the debug-code flag
575   // turned on to provoke errors.
576   if (emit_debug_code()) {
577     mov(dst, Operand(BitCast<int32_t>(kZapValue + 12)));
578     mov(map, Operand(BitCast<int32_t>(kZapValue + 16)));
579   }
580 }
581 
582 
583 // Will clobber 4 registers: object, address, scratch, ip.  The
584 // register 'object' contains a heap object pointer.  The heap object
585 // tag is shifted away.
RecordWrite(Register object,Register address,Register value,LinkRegisterStatus lr_status,SaveFPRegsMode fp_mode,RememberedSetAction remembered_set_action,SmiCheck smi_check,PointersToHereCheck pointers_to_here_check_for_value)586 void MacroAssembler::RecordWrite(
587     Register object,
588     Register address,
589     Register value,
590     LinkRegisterStatus lr_status,
591     SaveFPRegsMode fp_mode,
592     RememberedSetAction remembered_set_action,
593     SmiCheck smi_check,
594     PointersToHereCheck pointers_to_here_check_for_value) {
595   ASSERT(!object.is(value));
596   if (emit_debug_code()) {
597     ldr(ip, MemOperand(address));
598     cmp(ip, value);
599     Check(eq, kWrongAddressOrValuePassedToRecordWrite);
600   }
601 
602   if (remembered_set_action == OMIT_REMEMBERED_SET &&
603       !FLAG_incremental_marking) {
604     return;
605   }
606 
607   // Count number of write barriers in generated code.
608   isolate()->counters()->write_barriers_static()->Increment();
609   // TODO(mstarzinger): Dynamic counter missing.
610 
611   // First, check if a write barrier is even needed. The tests below
612   // catch stores of smis and stores into the young generation.
613   Label done;
614 
615   if (smi_check == INLINE_SMI_CHECK) {
616     JumpIfSmi(value, &done);
617   }
618 
619   if (pointers_to_here_check_for_value != kPointersToHereAreAlwaysInteresting) {
620     CheckPageFlag(value,
621                   value,  // Used as scratch.
622                   MemoryChunk::kPointersToHereAreInterestingMask,
623                   eq,
624                   &done);
625   }
626   CheckPageFlag(object,
627                 value,  // Used as scratch.
628                 MemoryChunk::kPointersFromHereAreInterestingMask,
629                 eq,
630                 &done);
631 
632   // Record the actual write.
633   if (lr_status == kLRHasNotBeenSaved) {
634     push(lr);
635   }
636   RecordWriteStub stub(isolate(), object, value, address, remembered_set_action,
637                        fp_mode);
638   CallStub(&stub);
639   if (lr_status == kLRHasNotBeenSaved) {
640     pop(lr);
641   }
642 
643   bind(&done);
644 
645   // Clobber clobbered registers when running with the debug-code flag
646   // turned on to provoke errors.
647   if (emit_debug_code()) {
648     mov(address, Operand(BitCast<int32_t>(kZapValue + 12)));
649     mov(value, Operand(BitCast<int32_t>(kZapValue + 16)));
650   }
651 }
652 
653 
RememberedSetHelper(Register object,Register address,Register scratch,SaveFPRegsMode fp_mode,RememberedSetFinalAction and_then)654 void MacroAssembler::RememberedSetHelper(Register object,  // For debug tests.
655                                          Register address,
656                                          Register scratch,
657                                          SaveFPRegsMode fp_mode,
658                                          RememberedSetFinalAction and_then) {
659   Label done;
660   if (emit_debug_code()) {
661     Label ok;
662     JumpIfNotInNewSpace(object, scratch, &ok);
663     stop("Remembered set pointer is in new space");
664     bind(&ok);
665   }
666   // Load store buffer top.
667   ExternalReference store_buffer =
668       ExternalReference::store_buffer_top(isolate());
669   mov(ip, Operand(store_buffer));
670   ldr(scratch, MemOperand(ip));
671   // Store pointer to buffer and increment buffer top.
672   str(address, MemOperand(scratch, kPointerSize, PostIndex));
673   // Write back new top of buffer.
674   str(scratch, MemOperand(ip));
675   // Call stub on end of buffer.
676   // Check for end of buffer.
677   tst(scratch, Operand(StoreBuffer::kStoreBufferOverflowBit));
678   if (and_then == kFallThroughAtEnd) {
679     b(eq, &done);
680   } else {
681     ASSERT(and_then == kReturnAtEnd);
682     Ret(eq);
683   }
684   push(lr);
685   StoreBufferOverflowStub store_buffer_overflow =
686       StoreBufferOverflowStub(isolate(), fp_mode);
687   CallStub(&store_buffer_overflow);
688   pop(lr);
689   bind(&done);
690   if (and_then == kReturnAtEnd) {
691     Ret();
692   }
693 }
694 
695 
PushFixedFrame(Register marker_reg)696 void MacroAssembler::PushFixedFrame(Register marker_reg) {
697   ASSERT(!marker_reg.is_valid() || marker_reg.code() < cp.code());
698   stm(db_w, sp, (marker_reg.is_valid() ? marker_reg.bit() : 0) |
699                 cp.bit() |
700                 (FLAG_enable_ool_constant_pool ? pp.bit() : 0) |
701                 fp.bit() |
702                 lr.bit());
703 }
704 
705 
PopFixedFrame(Register marker_reg)706 void MacroAssembler::PopFixedFrame(Register marker_reg) {
707   ASSERT(!marker_reg.is_valid() || marker_reg.code() < cp.code());
708   ldm(ia_w, sp, (marker_reg.is_valid() ? marker_reg.bit() : 0) |
709                 cp.bit() |
710                 (FLAG_enable_ool_constant_pool ? pp.bit() : 0) |
711                 fp.bit() |
712                 lr.bit());
713 }
714 
715 
716 // Push and pop all registers that can hold pointers.
PushSafepointRegisters()717 void MacroAssembler::PushSafepointRegisters() {
718   // Safepoints expect a block of contiguous register values starting with r0:
719   ASSERT(((1 << kNumSafepointSavedRegisters) - 1) == kSafepointSavedRegisters);
720   // Safepoints expect a block of kNumSafepointRegisters values on the
721   // stack, so adjust the stack for unsaved registers.
722   const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters;
723   ASSERT(num_unsaved >= 0);
724   sub(sp, sp, Operand(num_unsaved * kPointerSize));
725   stm(db_w, sp, kSafepointSavedRegisters);
726 }
727 
728 
PopSafepointRegisters()729 void MacroAssembler::PopSafepointRegisters() {
730   const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters;
731   ldm(ia_w, sp, kSafepointSavedRegisters);
732   add(sp, sp, Operand(num_unsaved * kPointerSize));
733 }
734 
735 
PushSafepointRegistersAndDoubles()736 void MacroAssembler::PushSafepointRegistersAndDoubles() {
737   // Number of d-regs not known at snapshot time.
738   ASSERT(!serializer_enabled());
739   PushSafepointRegisters();
740   // Only save allocatable registers.
741   ASSERT(kScratchDoubleReg.is(d15) && kDoubleRegZero.is(d14));
742   ASSERT(DwVfpRegister::NumReservedRegisters() == 2);
743   if (CpuFeatures::IsSupported(VFP32DREGS)) {
744     vstm(db_w, sp, d16, d31);
745   }
746   vstm(db_w, sp, d0, d13);
747 }
748 
749 
PopSafepointRegistersAndDoubles()750 void MacroAssembler::PopSafepointRegistersAndDoubles() {
751   // Number of d-regs not known at snapshot time.
752   ASSERT(!serializer_enabled());
753   // Only save allocatable registers.
754   ASSERT(kScratchDoubleReg.is(d15) && kDoubleRegZero.is(d14));
755   ASSERT(DwVfpRegister::NumReservedRegisters() == 2);
756   vldm(ia_w, sp, d0, d13);
757   if (CpuFeatures::IsSupported(VFP32DREGS)) {
758     vldm(ia_w, sp, d16, d31);
759   }
760   PopSafepointRegisters();
761 }
762 
StoreToSafepointRegistersAndDoublesSlot(Register src,Register dst)763 void MacroAssembler::StoreToSafepointRegistersAndDoublesSlot(Register src,
764                                                              Register dst) {
765   str(src, SafepointRegistersAndDoublesSlot(dst));
766 }
767 
768 
StoreToSafepointRegisterSlot(Register src,Register dst)769 void MacroAssembler::StoreToSafepointRegisterSlot(Register src, Register dst) {
770   str(src, SafepointRegisterSlot(dst));
771 }
772 
773 
LoadFromSafepointRegisterSlot(Register dst,Register src)774 void MacroAssembler::LoadFromSafepointRegisterSlot(Register dst, Register src) {
775   ldr(dst, SafepointRegisterSlot(src));
776 }
777 
778 
SafepointRegisterStackIndex(int reg_code)779 int MacroAssembler::SafepointRegisterStackIndex(int reg_code) {
780   // The registers are pushed starting with the highest encoding,
781   // which means that lowest encodings are closest to the stack pointer.
782   ASSERT(reg_code >= 0 && reg_code < kNumSafepointRegisters);
783   return reg_code;
784 }
785 
786 
SafepointRegisterSlot(Register reg)787 MemOperand MacroAssembler::SafepointRegisterSlot(Register reg) {
788   return MemOperand(sp, SafepointRegisterStackIndex(reg.code()) * kPointerSize);
789 }
790 
791 
SafepointRegistersAndDoublesSlot(Register reg)792 MemOperand MacroAssembler::SafepointRegistersAndDoublesSlot(Register reg) {
793   // Number of d-regs not known at snapshot time.
794   ASSERT(!serializer_enabled());
795   // General purpose registers are pushed last on the stack.
796   int doubles_size = DwVfpRegister::NumAllocatableRegisters() * kDoubleSize;
797   int register_offset = SafepointRegisterStackIndex(reg.code()) * kPointerSize;
798   return MemOperand(sp, doubles_size + register_offset);
799 }
800 
801 
Ldrd(Register dst1,Register dst2,const MemOperand & src,Condition cond)802 void MacroAssembler::Ldrd(Register dst1, Register dst2,
803                           const MemOperand& src, Condition cond) {
804   ASSERT(src.rm().is(no_reg));
805   ASSERT(!dst1.is(lr));  // r14.
806 
807   // V8 does not use this addressing mode, so the fallback code
808   // below doesn't support it yet.
809   ASSERT((src.am() != PreIndex) && (src.am() != NegPreIndex));
810 
811   // Generate two ldr instructions if ldrd is not available.
812   if (CpuFeatures::IsSupported(ARMv7) && !predictable_code_size() &&
813       (dst1.code() % 2 == 0) && (dst1.code() + 1 == dst2.code())) {
814     CpuFeatureScope scope(this, ARMv7);
815     ldrd(dst1, dst2, src, cond);
816   } else {
817     if ((src.am() == Offset) || (src.am() == NegOffset)) {
818       MemOperand src2(src);
819       src2.set_offset(src2.offset() + 4);
820       if (dst1.is(src.rn())) {
821         ldr(dst2, src2, cond);
822         ldr(dst1, src, cond);
823       } else {
824         ldr(dst1, src, cond);
825         ldr(dst2, src2, cond);
826       }
827     } else {  // PostIndex or NegPostIndex.
828       ASSERT((src.am() == PostIndex) || (src.am() == NegPostIndex));
829       if (dst1.is(src.rn())) {
830         ldr(dst2, MemOperand(src.rn(), 4, Offset), cond);
831         ldr(dst1, src, cond);
832       } else {
833         MemOperand src2(src);
834         src2.set_offset(src2.offset() - 4);
835         ldr(dst1, MemOperand(src.rn(), 4, PostIndex), cond);
836         ldr(dst2, src2, cond);
837       }
838     }
839   }
840 }
841 
842 
Strd(Register src1,Register src2,const MemOperand & dst,Condition cond)843 void MacroAssembler::Strd(Register src1, Register src2,
844                           const MemOperand& dst, Condition cond) {
845   ASSERT(dst.rm().is(no_reg));
846   ASSERT(!src1.is(lr));  // r14.
847 
848   // V8 does not use this addressing mode, so the fallback code
849   // below doesn't support it yet.
850   ASSERT((dst.am() != PreIndex) && (dst.am() != NegPreIndex));
851 
852   // Generate two str instructions if strd is not available.
853   if (CpuFeatures::IsSupported(ARMv7) && !predictable_code_size() &&
854       (src1.code() % 2 == 0) && (src1.code() + 1 == src2.code())) {
855     CpuFeatureScope scope(this, ARMv7);
856     strd(src1, src2, dst, cond);
857   } else {
858     MemOperand dst2(dst);
859     if ((dst.am() == Offset) || (dst.am() == NegOffset)) {
860       dst2.set_offset(dst2.offset() + 4);
861       str(src1, dst, cond);
862       str(src2, dst2, cond);
863     } else {  // PostIndex or NegPostIndex.
864       ASSERT((dst.am() == PostIndex) || (dst.am() == NegPostIndex));
865       dst2.set_offset(dst2.offset() - 4);
866       str(src1, MemOperand(dst.rn(), 4, PostIndex), cond);
867       str(src2, dst2, cond);
868     }
869   }
870 }
871 
872 
VFPEnsureFPSCRState(Register scratch)873 void MacroAssembler::VFPEnsureFPSCRState(Register scratch) {
874   // If needed, restore wanted bits of FPSCR.
875   Label fpscr_done;
876   vmrs(scratch);
877   if (emit_debug_code()) {
878     Label rounding_mode_correct;
879     tst(scratch, Operand(kVFPRoundingModeMask));
880     b(eq, &rounding_mode_correct);
881     // Don't call Assert here, since Runtime_Abort could re-enter here.
882     stop("Default rounding mode not set");
883     bind(&rounding_mode_correct);
884   }
885   tst(scratch, Operand(kVFPDefaultNaNModeControlBit));
886   b(ne, &fpscr_done);
887   orr(scratch, scratch, Operand(kVFPDefaultNaNModeControlBit));
888   vmsr(scratch);
889   bind(&fpscr_done);
890 }
891 
892 
VFPCanonicalizeNaN(const DwVfpRegister dst,const DwVfpRegister src,const Condition cond)893 void MacroAssembler::VFPCanonicalizeNaN(const DwVfpRegister dst,
894                                         const DwVfpRegister src,
895                                         const Condition cond) {
896   vsub(dst, src, kDoubleRegZero, cond);
897 }
898 
899 
VFPCompareAndSetFlags(const DwVfpRegister src1,const DwVfpRegister src2,const Condition cond)900 void MacroAssembler::VFPCompareAndSetFlags(const DwVfpRegister src1,
901                                            const DwVfpRegister src2,
902                                            const Condition cond) {
903   // Compare and move FPSCR flags to the normal condition flags.
904   VFPCompareAndLoadFlags(src1, src2, pc, cond);
905 }
906 
VFPCompareAndSetFlags(const DwVfpRegister src1,const double src2,const Condition cond)907 void MacroAssembler::VFPCompareAndSetFlags(const DwVfpRegister src1,
908                                            const double src2,
909                                            const Condition cond) {
910   // Compare and move FPSCR flags to the normal condition flags.
911   VFPCompareAndLoadFlags(src1, src2, pc, cond);
912 }
913 
914 
VFPCompareAndLoadFlags(const DwVfpRegister src1,const DwVfpRegister src2,const Register fpscr_flags,const Condition cond)915 void MacroAssembler::VFPCompareAndLoadFlags(const DwVfpRegister src1,
916                                             const DwVfpRegister src2,
917                                             const Register fpscr_flags,
918                                             const Condition cond) {
919   // Compare and load FPSCR.
920   vcmp(src1, src2, cond);
921   vmrs(fpscr_flags, cond);
922 }
923 
VFPCompareAndLoadFlags(const DwVfpRegister src1,const double src2,const Register fpscr_flags,const Condition cond)924 void MacroAssembler::VFPCompareAndLoadFlags(const DwVfpRegister src1,
925                                             const double src2,
926                                             const Register fpscr_flags,
927                                             const Condition cond) {
928   // Compare and load FPSCR.
929   vcmp(src1, src2, cond);
930   vmrs(fpscr_flags, cond);
931 }
932 
Vmov(const DwVfpRegister dst,const double imm,const Register scratch)933 void MacroAssembler::Vmov(const DwVfpRegister dst,
934                           const double imm,
935                           const Register scratch) {
936   static const DoubleRepresentation minus_zero(-0.0);
937   static const DoubleRepresentation zero(0.0);
938   DoubleRepresentation value_rep(imm);
939   // Handle special values first.
940   if (value_rep == zero) {
941     vmov(dst, kDoubleRegZero);
942   } else if (value_rep == minus_zero) {
943     vneg(dst, kDoubleRegZero);
944   } else {
945     vmov(dst, imm, scratch);
946   }
947 }
948 
949 
VmovHigh(Register dst,DwVfpRegister src)950 void MacroAssembler::VmovHigh(Register dst, DwVfpRegister src) {
951   if (src.code() < 16) {
952     const LowDwVfpRegister loc = LowDwVfpRegister::from_code(src.code());
953     vmov(dst, loc.high());
954   } else {
955     vmov(dst, VmovIndexHi, src);
956   }
957 }
958 
959 
VmovHigh(DwVfpRegister dst,Register src)960 void MacroAssembler::VmovHigh(DwVfpRegister dst, Register src) {
961   if (dst.code() < 16) {
962     const LowDwVfpRegister loc = LowDwVfpRegister::from_code(dst.code());
963     vmov(loc.high(), src);
964   } else {
965     vmov(dst, VmovIndexHi, src);
966   }
967 }
968 
969 
VmovLow(Register dst,DwVfpRegister src)970 void MacroAssembler::VmovLow(Register dst, DwVfpRegister src) {
971   if (src.code() < 16) {
972     const LowDwVfpRegister loc = LowDwVfpRegister::from_code(src.code());
973     vmov(dst, loc.low());
974   } else {
975     vmov(dst, VmovIndexLo, src);
976   }
977 }
978 
979 
VmovLow(DwVfpRegister dst,Register src)980 void MacroAssembler::VmovLow(DwVfpRegister dst, Register src) {
981   if (dst.code() < 16) {
982     const LowDwVfpRegister loc = LowDwVfpRegister::from_code(dst.code());
983     vmov(loc.low(), src);
984   } else {
985     vmov(dst, VmovIndexLo, src);
986   }
987 }
988 
989 
LoadConstantPoolPointerRegister()990 void MacroAssembler::LoadConstantPoolPointerRegister() {
991   if (FLAG_enable_ool_constant_pool) {
992     int constant_pool_offset = Code::kConstantPoolOffset - Code::kHeaderSize -
993         pc_offset() - Instruction::kPCReadOffset;
994     ASSERT(ImmediateFitsAddrMode2Instruction(constant_pool_offset));
995     ldr(pp, MemOperand(pc, constant_pool_offset));
996   }
997 }
998 
999 
StubPrologue()1000 void MacroAssembler::StubPrologue() {
1001   PushFixedFrame();
1002   Push(Smi::FromInt(StackFrame::STUB));
1003   // Adjust FP to point to saved FP.
1004   add(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp));
1005   if (FLAG_enable_ool_constant_pool) {
1006     LoadConstantPoolPointerRegister();
1007     set_constant_pool_available(true);
1008   }
1009 }
1010 
1011 
Prologue(bool code_pre_aging)1012 void MacroAssembler::Prologue(bool code_pre_aging) {
1013   { PredictableCodeSizeScope predictible_code_size_scope(
1014         this, kNoCodeAgeSequenceLength);
1015     // The following three instructions must remain together and unmodified
1016     // for code aging to work properly.
1017     if (code_pre_aging) {
1018       // Pre-age the code.
1019       Code* stub = Code::GetPreAgedCodeAgeStub(isolate());
1020       add(r0, pc, Operand(-8));
1021       ldr(pc, MemOperand(pc, -4));
1022       emit_code_stub_address(stub);
1023     } else {
1024       PushFixedFrame(r1);
1025       nop(ip.code());
1026       // Adjust FP to point to saved FP.
1027       add(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp));
1028     }
1029   }
1030   if (FLAG_enable_ool_constant_pool) {
1031     LoadConstantPoolPointerRegister();
1032     set_constant_pool_available(true);
1033   }
1034 }
1035 
1036 
EnterFrame(StackFrame::Type type,bool load_constant_pool)1037 void MacroAssembler::EnterFrame(StackFrame::Type type,
1038                                 bool load_constant_pool) {
1039   // r0-r3: preserved
1040   PushFixedFrame();
1041   if (FLAG_enable_ool_constant_pool && load_constant_pool) {
1042     LoadConstantPoolPointerRegister();
1043   }
1044   mov(ip, Operand(Smi::FromInt(type)));
1045   push(ip);
1046   mov(ip, Operand(CodeObject()));
1047   push(ip);
1048   // Adjust FP to point to saved FP.
1049   add(fp, sp,
1050       Operand(StandardFrameConstants::kFixedFrameSizeFromFp + kPointerSize));
1051 }
1052 
1053 
LeaveFrame(StackFrame::Type type)1054 int MacroAssembler::LeaveFrame(StackFrame::Type type) {
1055   // r0: preserved
1056   // r1: preserved
1057   // r2: preserved
1058 
1059   // Drop the execution stack down to the frame pointer and restore
1060   // the caller frame pointer, return address and constant pool pointer
1061   // (if FLAG_enable_ool_constant_pool).
1062   int frame_ends;
1063   if (FLAG_enable_ool_constant_pool) {
1064     add(sp, fp, Operand(StandardFrameConstants::kConstantPoolOffset));
1065     frame_ends = pc_offset();
1066     ldm(ia_w, sp, pp.bit() | fp.bit() | lr.bit());
1067   } else {
1068     mov(sp, fp);
1069     frame_ends = pc_offset();
1070     ldm(ia_w, sp, fp.bit() | lr.bit());
1071   }
1072   return frame_ends;
1073 }
1074 
1075 
EnterExitFrame(bool save_doubles,int stack_space)1076 void MacroAssembler::EnterExitFrame(bool save_doubles, int stack_space) {
1077   // Set up the frame structure on the stack.
1078   ASSERT_EQ(2 * kPointerSize, ExitFrameConstants::kCallerSPDisplacement);
1079   ASSERT_EQ(1 * kPointerSize, ExitFrameConstants::kCallerPCOffset);
1080   ASSERT_EQ(0 * kPointerSize, ExitFrameConstants::kCallerFPOffset);
1081   Push(lr, fp);
1082   mov(fp, Operand(sp));  // Set up new frame pointer.
1083   // Reserve room for saved entry sp and code object.
1084   sub(sp, sp, Operand(ExitFrameConstants::kFrameSize));
1085   if (emit_debug_code()) {
1086     mov(ip, Operand::Zero());
1087     str(ip, MemOperand(fp, ExitFrameConstants::kSPOffset));
1088   }
1089   if (FLAG_enable_ool_constant_pool) {
1090     str(pp, MemOperand(fp, ExitFrameConstants::kConstantPoolOffset));
1091   }
1092   mov(ip, Operand(CodeObject()));
1093   str(ip, MemOperand(fp, ExitFrameConstants::kCodeOffset));
1094 
1095   // Save the frame pointer and the context in top.
1096   mov(ip, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate())));
1097   str(fp, MemOperand(ip));
1098   mov(ip, Operand(ExternalReference(Isolate::kContextAddress, isolate())));
1099   str(cp, MemOperand(ip));
1100 
1101   // Optionally save all double registers.
1102   if (save_doubles) {
1103     SaveFPRegs(sp, ip);
1104     // Note that d0 will be accessible at
1105     //   fp - ExitFrameConstants::kFrameSize -
1106     //   DwVfpRegister::kMaxNumRegisters * kDoubleSize,
1107     // since the sp slot, code slot and constant pool slot (if
1108     // FLAG_enable_ool_constant_pool) were pushed after the fp.
1109   }
1110 
1111   // Reserve place for the return address and stack space and align the frame
1112   // preparing for calling the runtime function.
1113   const int frame_alignment = MacroAssembler::ActivationFrameAlignment();
1114   sub(sp, sp, Operand((stack_space + 1) * kPointerSize));
1115   if (frame_alignment > 0) {
1116     ASSERT(IsPowerOf2(frame_alignment));
1117     and_(sp, sp, Operand(-frame_alignment));
1118   }
1119 
1120   // Set the exit frame sp value to point just before the return address
1121   // location.
1122   add(ip, sp, Operand(kPointerSize));
1123   str(ip, MemOperand(fp, ExitFrameConstants::kSPOffset));
1124 }
1125 
1126 
InitializeNewString(Register string,Register length,Heap::RootListIndex map_index,Register scratch1,Register scratch2)1127 void MacroAssembler::InitializeNewString(Register string,
1128                                          Register length,
1129                                          Heap::RootListIndex map_index,
1130                                          Register scratch1,
1131                                          Register scratch2) {
1132   SmiTag(scratch1, length);
1133   LoadRoot(scratch2, map_index);
1134   str(scratch1, FieldMemOperand(string, String::kLengthOffset));
1135   mov(scratch1, Operand(String::kEmptyHashField));
1136   str(scratch2, FieldMemOperand(string, HeapObject::kMapOffset));
1137   str(scratch1, FieldMemOperand(string, String::kHashFieldOffset));
1138 }
1139 
1140 
ActivationFrameAlignment()1141 int MacroAssembler::ActivationFrameAlignment() {
1142 #if V8_HOST_ARCH_ARM
1143   // Running on the real platform. Use the alignment as mandated by the local
1144   // environment.
1145   // Note: This will break if we ever start generating snapshots on one ARM
1146   // platform for another ARM platform with a different alignment.
1147   return OS::ActivationFrameAlignment();
1148 #else  // V8_HOST_ARCH_ARM
1149   // If we are using the simulator then we should always align to the expected
1150   // alignment. As the simulator is used to generate snapshots we do not know
1151   // if the target platform will need alignment, so this is controlled from a
1152   // flag.
1153   return FLAG_sim_stack_alignment;
1154 #endif  // V8_HOST_ARCH_ARM
1155 }
1156 
1157 
LeaveExitFrame(bool save_doubles,Register argument_count,bool restore_context)1158 void MacroAssembler::LeaveExitFrame(bool save_doubles,
1159                                     Register argument_count,
1160                                     bool restore_context) {
1161   ConstantPoolUnavailableScope constant_pool_unavailable(this);
1162 
1163   // Optionally restore all double registers.
1164   if (save_doubles) {
1165     // Calculate the stack location of the saved doubles and restore them.
1166     const int offset = ExitFrameConstants::kFrameSize;
1167     sub(r3, fp,
1168         Operand(offset + DwVfpRegister::kMaxNumRegisters * kDoubleSize));
1169     RestoreFPRegs(r3, ip);
1170   }
1171 
1172   // Clear top frame.
1173   mov(r3, Operand::Zero());
1174   mov(ip, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate())));
1175   str(r3, MemOperand(ip));
1176 
1177   // Restore current context from top and clear it in debug mode.
1178   if (restore_context) {
1179     mov(ip, Operand(ExternalReference(Isolate::kContextAddress, isolate())));
1180     ldr(cp, MemOperand(ip));
1181   }
1182 #ifdef DEBUG
1183   mov(ip, Operand(ExternalReference(Isolate::kContextAddress, isolate())));
1184   str(r3, MemOperand(ip));
1185 #endif
1186 
1187   // Tear down the exit frame, pop the arguments, and return.
1188   if (FLAG_enable_ool_constant_pool) {
1189     ldr(pp, MemOperand(fp, ExitFrameConstants::kConstantPoolOffset));
1190   }
1191   mov(sp, Operand(fp));
1192   ldm(ia_w, sp, fp.bit() | lr.bit());
1193   if (argument_count.is_valid()) {
1194     add(sp, sp, Operand(argument_count, LSL, kPointerSizeLog2));
1195   }
1196 }
1197 
1198 
MovFromFloatResult(const DwVfpRegister dst)1199 void MacroAssembler::MovFromFloatResult(const DwVfpRegister dst) {
1200   if (use_eabi_hardfloat()) {
1201     Move(dst, d0);
1202   } else {
1203     vmov(dst, r0, r1);
1204   }
1205 }
1206 
1207 
1208 // On ARM this is just a synonym to make the purpose clear.
MovFromFloatParameter(DwVfpRegister dst)1209 void MacroAssembler::MovFromFloatParameter(DwVfpRegister dst) {
1210   MovFromFloatResult(dst);
1211 }
1212 
1213 
InvokePrologue(const ParameterCount & expected,const ParameterCount & actual,Handle<Code> code_constant,Register code_reg,Label * done,bool * definitely_mismatches,InvokeFlag flag,const CallWrapper & call_wrapper)1214 void MacroAssembler::InvokePrologue(const ParameterCount& expected,
1215                                     const ParameterCount& actual,
1216                                     Handle<Code> code_constant,
1217                                     Register code_reg,
1218                                     Label* done,
1219                                     bool* definitely_mismatches,
1220                                     InvokeFlag flag,
1221                                     const CallWrapper& call_wrapper) {
1222   bool definitely_matches = false;
1223   *definitely_mismatches = false;
1224   Label regular_invoke;
1225 
1226   // Check whether the expected and actual arguments count match. If not,
1227   // setup registers according to contract with ArgumentsAdaptorTrampoline:
1228   //  r0: actual arguments count
1229   //  r1: function (passed through to callee)
1230   //  r2: expected arguments count
1231 
1232   // The code below is made a lot easier because the calling code already sets
1233   // up actual and expected registers according to the contract if values are
1234   // passed in registers.
1235   ASSERT(actual.is_immediate() || actual.reg().is(r0));
1236   ASSERT(expected.is_immediate() || expected.reg().is(r2));
1237   ASSERT((!code_constant.is_null() && code_reg.is(no_reg)) || code_reg.is(r3));
1238 
1239   if (expected.is_immediate()) {
1240     ASSERT(actual.is_immediate());
1241     if (expected.immediate() == actual.immediate()) {
1242       definitely_matches = true;
1243     } else {
1244       mov(r0, Operand(actual.immediate()));
1245       const int sentinel = SharedFunctionInfo::kDontAdaptArgumentsSentinel;
1246       if (expected.immediate() == sentinel) {
1247         // Don't worry about adapting arguments for builtins that
1248         // don't want that done. Skip adaption code by making it look
1249         // like we have a match between expected and actual number of
1250         // arguments.
1251         definitely_matches = true;
1252       } else {
1253         *definitely_mismatches = true;
1254         mov(r2, Operand(expected.immediate()));
1255       }
1256     }
1257   } else {
1258     if (actual.is_immediate()) {
1259       cmp(expected.reg(), Operand(actual.immediate()));
1260       b(eq, &regular_invoke);
1261       mov(r0, Operand(actual.immediate()));
1262     } else {
1263       cmp(expected.reg(), Operand(actual.reg()));
1264       b(eq, &regular_invoke);
1265     }
1266   }
1267 
1268   if (!definitely_matches) {
1269     if (!code_constant.is_null()) {
1270       mov(r3, Operand(code_constant));
1271       add(r3, r3, Operand(Code::kHeaderSize - kHeapObjectTag));
1272     }
1273 
1274     Handle<Code> adaptor =
1275         isolate()->builtins()->ArgumentsAdaptorTrampoline();
1276     if (flag == CALL_FUNCTION) {
1277       call_wrapper.BeforeCall(CallSize(adaptor));
1278       Call(adaptor);
1279       call_wrapper.AfterCall();
1280       if (!*definitely_mismatches) {
1281         b(done);
1282       }
1283     } else {
1284       Jump(adaptor, RelocInfo::CODE_TARGET);
1285     }
1286     bind(&regular_invoke);
1287   }
1288 }
1289 
1290 
InvokeCode(Register code,const ParameterCount & expected,const ParameterCount & actual,InvokeFlag flag,const CallWrapper & call_wrapper)1291 void MacroAssembler::InvokeCode(Register code,
1292                                 const ParameterCount& expected,
1293                                 const ParameterCount& actual,
1294                                 InvokeFlag flag,
1295                                 const CallWrapper& call_wrapper) {
1296   // You can't call a function without a valid frame.
1297   ASSERT(flag == JUMP_FUNCTION || has_frame());
1298 
1299   Label done;
1300   bool definitely_mismatches = false;
1301   InvokePrologue(expected, actual, Handle<Code>::null(), code,
1302                  &done, &definitely_mismatches, flag,
1303                  call_wrapper);
1304   if (!definitely_mismatches) {
1305     if (flag == CALL_FUNCTION) {
1306       call_wrapper.BeforeCall(CallSize(code));
1307       Call(code);
1308       call_wrapper.AfterCall();
1309     } else {
1310       ASSERT(flag == JUMP_FUNCTION);
1311       Jump(code);
1312     }
1313 
1314     // Continue here if InvokePrologue does handle the invocation due to
1315     // mismatched parameter counts.
1316     bind(&done);
1317   }
1318 }
1319 
1320 
InvokeFunction(Register fun,const ParameterCount & actual,InvokeFlag flag,const CallWrapper & call_wrapper)1321 void MacroAssembler::InvokeFunction(Register fun,
1322                                     const ParameterCount& actual,
1323                                     InvokeFlag flag,
1324                                     const CallWrapper& call_wrapper) {
1325   // You can't call a function without a valid frame.
1326   ASSERT(flag == JUMP_FUNCTION || has_frame());
1327 
1328   // Contract with called JS functions requires that function is passed in r1.
1329   ASSERT(fun.is(r1));
1330 
1331   Register expected_reg = r2;
1332   Register code_reg = r3;
1333 
1334   ldr(code_reg, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
1335   ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset));
1336   ldr(expected_reg,
1337       FieldMemOperand(code_reg,
1338                       SharedFunctionInfo::kFormalParameterCountOffset));
1339   SmiUntag(expected_reg);
1340   ldr(code_reg,
1341       FieldMemOperand(r1, JSFunction::kCodeEntryOffset));
1342 
1343   ParameterCount expected(expected_reg);
1344   InvokeCode(code_reg, expected, actual, flag, call_wrapper);
1345 }
1346 
1347 
InvokeFunction(Register function,const ParameterCount & expected,const ParameterCount & actual,InvokeFlag flag,const CallWrapper & call_wrapper)1348 void MacroAssembler::InvokeFunction(Register function,
1349                                     const ParameterCount& expected,
1350                                     const ParameterCount& actual,
1351                                     InvokeFlag flag,
1352                                     const CallWrapper& call_wrapper) {
1353   // You can't call a function without a valid frame.
1354   ASSERT(flag == JUMP_FUNCTION || has_frame());
1355 
1356   // Contract with called JS functions requires that function is passed in r1.
1357   ASSERT(function.is(r1));
1358 
1359   // Get the function and setup the context.
1360   ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset));
1361 
1362   // We call indirectly through the code field in the function to
1363   // allow recompilation to take effect without changing any of the
1364   // call sites.
1365   ldr(r3, FieldMemOperand(r1, JSFunction::kCodeEntryOffset));
1366   InvokeCode(r3, expected, actual, flag, call_wrapper);
1367 }
1368 
1369 
InvokeFunction(Handle<JSFunction> function,const ParameterCount & expected,const ParameterCount & actual,InvokeFlag flag,const CallWrapper & call_wrapper)1370 void MacroAssembler::InvokeFunction(Handle<JSFunction> function,
1371                                     const ParameterCount& expected,
1372                                     const ParameterCount& actual,
1373                                     InvokeFlag flag,
1374                                     const CallWrapper& call_wrapper) {
1375   Move(r1, function);
1376   InvokeFunction(r1, expected, actual, flag, call_wrapper);
1377 }
1378 
1379 
IsObjectJSObjectType(Register heap_object,Register map,Register scratch,Label * fail)1380 void MacroAssembler::IsObjectJSObjectType(Register heap_object,
1381                                           Register map,
1382                                           Register scratch,
1383                                           Label* fail) {
1384   ldr(map, FieldMemOperand(heap_object, HeapObject::kMapOffset));
1385   IsInstanceJSObjectType(map, scratch, fail);
1386 }
1387 
1388 
IsInstanceJSObjectType(Register map,Register scratch,Label * fail)1389 void MacroAssembler::IsInstanceJSObjectType(Register map,
1390                                             Register scratch,
1391                                             Label* fail) {
1392   ldrb(scratch, FieldMemOperand(map, Map::kInstanceTypeOffset));
1393   cmp(scratch, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
1394   b(lt, fail);
1395   cmp(scratch, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE));
1396   b(gt, fail);
1397 }
1398 
1399 
IsObjectJSStringType(Register object,Register scratch,Label * fail)1400 void MacroAssembler::IsObjectJSStringType(Register object,
1401                                           Register scratch,
1402                                           Label* fail) {
1403   ASSERT(kNotStringTag != 0);
1404 
1405   ldr(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
1406   ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
1407   tst(scratch, Operand(kIsNotStringMask));
1408   b(ne, fail);
1409 }
1410 
1411 
IsObjectNameType(Register object,Register scratch,Label * fail)1412 void MacroAssembler::IsObjectNameType(Register object,
1413                                       Register scratch,
1414                                       Label* fail) {
1415   ldr(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
1416   ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
1417   cmp(scratch, Operand(LAST_NAME_TYPE));
1418   b(hi, fail);
1419 }
1420 
1421 
DebugBreak()1422 void MacroAssembler::DebugBreak() {
1423   mov(r0, Operand::Zero());
1424   mov(r1, Operand(ExternalReference(Runtime::kDebugBreak, isolate())));
1425   CEntryStub ces(isolate(), 1);
1426   ASSERT(AllowThisStubCall(&ces));
1427   Call(ces.GetCode(), RelocInfo::DEBUG_BREAK);
1428 }
1429 
1430 
PushTryHandler(StackHandler::Kind kind,int handler_index)1431 void MacroAssembler::PushTryHandler(StackHandler::Kind kind,
1432                                     int handler_index) {
1433   // Adjust this code if not the case.
1434   STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
1435   STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize);
1436   STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
1437   STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
1438   STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
1439   STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
1440 
1441   // For the JSEntry handler, we must preserve r0-r4, r5-r6 are available.
1442   // We will build up the handler from the bottom by pushing on the stack.
1443   // Set up the code object (r5) and the state (r6) for pushing.
1444   unsigned state =
1445       StackHandler::IndexField::encode(handler_index) |
1446       StackHandler::KindField::encode(kind);
1447   mov(r5, Operand(CodeObject()));
1448   mov(r6, Operand(state));
1449 
1450   // Push the frame pointer, context, state, and code object.
1451   if (kind == StackHandler::JS_ENTRY) {
1452     mov(cp, Operand(Smi::FromInt(0)));  // Indicates no context.
1453     mov(ip, Operand::Zero());  // NULL frame pointer.
1454     stm(db_w, sp, r5.bit() | r6.bit() | cp.bit() | ip.bit());
1455   } else {
1456     stm(db_w, sp, r5.bit() | r6.bit() | cp.bit() | fp.bit());
1457   }
1458 
1459   // Link the current handler as the next handler.
1460   mov(r6, Operand(ExternalReference(Isolate::kHandlerAddress, isolate())));
1461   ldr(r5, MemOperand(r6));
1462   push(r5);
1463   // Set this new handler as the current one.
1464   str(sp, MemOperand(r6));
1465 }
1466 
1467 
PopTryHandler()1468 void MacroAssembler::PopTryHandler() {
1469   STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
1470   pop(r1);
1471   mov(ip, Operand(ExternalReference(Isolate::kHandlerAddress, isolate())));
1472   add(sp, sp, Operand(StackHandlerConstants::kSize - kPointerSize));
1473   str(r1, MemOperand(ip));
1474 }
1475 
1476 
JumpToHandlerEntry()1477 void MacroAssembler::JumpToHandlerEntry() {
1478   // Compute the handler entry address and jump to it.  The handler table is
1479   // a fixed array of (smi-tagged) code offsets.
1480   // r0 = exception, r1 = code object, r2 = state.
1481 
1482   ConstantPoolUnavailableScope constant_pool_unavailable(this);
1483   if (FLAG_enable_ool_constant_pool) {
1484     ldr(pp, FieldMemOperand(r1, Code::kConstantPoolOffset));  // Constant pool.
1485   }
1486   ldr(r3, FieldMemOperand(r1, Code::kHandlerTableOffset));  // Handler table.
1487   add(r3, r3, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
1488   mov(r2, Operand(r2, LSR, StackHandler::kKindWidth));  // Handler index.
1489   ldr(r2, MemOperand(r3, r2, LSL, kPointerSizeLog2));  // Smi-tagged offset.
1490   add(r1, r1, Operand(Code::kHeaderSize - kHeapObjectTag));  // Code start.
1491   add(pc, r1, Operand::SmiUntag(r2));  // Jump
1492 }
1493 
1494 
Throw(Register value)1495 void MacroAssembler::Throw(Register value) {
1496   // Adjust this code if not the case.
1497   STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
1498   STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
1499   STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
1500   STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
1501   STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
1502   STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
1503 
1504   // The exception is expected in r0.
1505   if (!value.is(r0)) {
1506     mov(r0, value);
1507   }
1508   // Drop the stack pointer to the top of the top handler.
1509   mov(r3, Operand(ExternalReference(Isolate::kHandlerAddress, isolate())));
1510   ldr(sp, MemOperand(r3));
1511   // Restore the next handler.
1512   pop(r2);
1513   str(r2, MemOperand(r3));
1514 
1515   // Get the code object (r1) and state (r2).  Restore the context and frame
1516   // pointer.
1517   ldm(ia_w, sp, r1.bit() | r2.bit() | cp.bit() | fp.bit());
1518 
1519   // If the handler is a JS frame, restore the context to the frame.
1520   // (kind == ENTRY) == (fp == 0) == (cp == 0), so we could test either fp
1521   // or cp.
1522   tst(cp, cp);
1523   str(cp, MemOperand(fp, StandardFrameConstants::kContextOffset), ne);
1524 
1525   JumpToHandlerEntry();
1526 }
1527 
1528 
ThrowUncatchable(Register value)1529 void MacroAssembler::ThrowUncatchable(Register value) {
1530   // Adjust this code if not the case.
1531   STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
1532   STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize);
1533   STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
1534   STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
1535   STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
1536   STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
1537 
1538   // The exception is expected in r0.
1539   if (!value.is(r0)) {
1540     mov(r0, value);
1541   }
1542   // Drop the stack pointer to the top of the top stack handler.
1543   mov(r3, Operand(ExternalReference(Isolate::kHandlerAddress, isolate())));
1544   ldr(sp, MemOperand(r3));
1545 
1546   // Unwind the handlers until the ENTRY handler is found.
1547   Label fetch_next, check_kind;
1548   jmp(&check_kind);
1549   bind(&fetch_next);
1550   ldr(sp, MemOperand(sp, StackHandlerConstants::kNextOffset));
1551 
1552   bind(&check_kind);
1553   STATIC_ASSERT(StackHandler::JS_ENTRY == 0);
1554   ldr(r2, MemOperand(sp, StackHandlerConstants::kStateOffset));
1555   tst(r2, Operand(StackHandler::KindField::kMask));
1556   b(ne, &fetch_next);
1557 
1558   // Set the top handler address to next handler past the top ENTRY handler.
1559   pop(r2);
1560   str(r2, MemOperand(r3));
1561   // Get the code object (r1) and state (r2).  Clear the context and frame
1562   // pointer (0 was saved in the handler).
1563   ldm(ia_w, sp, r1.bit() | r2.bit() | cp.bit() | fp.bit());
1564 
1565   JumpToHandlerEntry();
1566 }
1567 
1568 
CheckAccessGlobalProxy(Register holder_reg,Register scratch,Label * miss)1569 void MacroAssembler::CheckAccessGlobalProxy(Register holder_reg,
1570                                             Register scratch,
1571                                             Label* miss) {
1572   Label same_contexts;
1573 
1574   ASSERT(!holder_reg.is(scratch));
1575   ASSERT(!holder_reg.is(ip));
1576   ASSERT(!scratch.is(ip));
1577 
1578   // Load current lexical context from the stack frame.
1579   ldr(scratch, MemOperand(fp, StandardFrameConstants::kContextOffset));
1580   // In debug mode, make sure the lexical context is set.
1581 #ifdef DEBUG
1582   cmp(scratch, Operand::Zero());
1583   Check(ne, kWeShouldNotHaveAnEmptyLexicalContext);
1584 #endif
1585 
1586   // Load the native context of the current context.
1587   int offset =
1588       Context::kHeaderSize + Context::GLOBAL_OBJECT_INDEX * kPointerSize;
1589   ldr(scratch, FieldMemOperand(scratch, offset));
1590   ldr(scratch, FieldMemOperand(scratch, GlobalObject::kNativeContextOffset));
1591 
1592   // Check the context is a native context.
1593   if (emit_debug_code()) {
1594     // Cannot use ip as a temporary in this verification code. Due to the fact
1595     // that ip is clobbered as part of cmp with an object Operand.
1596     push(holder_reg);  // Temporarily save holder on the stack.
1597     // Read the first word and compare to the native_context_map.
1598     ldr(holder_reg, FieldMemOperand(scratch, HeapObject::kMapOffset));
1599     LoadRoot(ip, Heap::kNativeContextMapRootIndex);
1600     cmp(holder_reg, ip);
1601     Check(eq, kJSGlobalObjectNativeContextShouldBeANativeContext);
1602     pop(holder_reg);  // Restore holder.
1603   }
1604 
1605   // Check if both contexts are the same.
1606   ldr(ip, FieldMemOperand(holder_reg, JSGlobalProxy::kNativeContextOffset));
1607   cmp(scratch, Operand(ip));
1608   b(eq, &same_contexts);
1609 
1610   // Check the context is a native context.
1611   if (emit_debug_code()) {
1612     // Cannot use ip as a temporary in this verification code. Due to the fact
1613     // that ip is clobbered as part of cmp with an object Operand.
1614     push(holder_reg);  // Temporarily save holder on the stack.
1615     mov(holder_reg, ip);  // Move ip to its holding place.
1616     LoadRoot(ip, Heap::kNullValueRootIndex);
1617     cmp(holder_reg, ip);
1618     Check(ne, kJSGlobalProxyContextShouldNotBeNull);
1619 
1620     ldr(holder_reg, FieldMemOperand(holder_reg, HeapObject::kMapOffset));
1621     LoadRoot(ip, Heap::kNativeContextMapRootIndex);
1622     cmp(holder_reg, ip);
1623     Check(eq, kJSGlobalObjectNativeContextShouldBeANativeContext);
1624     // Restore ip is not needed. ip is reloaded below.
1625     pop(holder_reg);  // Restore holder.
1626     // Restore ip to holder's context.
1627     ldr(ip, FieldMemOperand(holder_reg, JSGlobalProxy::kNativeContextOffset));
1628   }
1629 
1630   // Check that the security token in the calling global object is
1631   // compatible with the security token in the receiving global
1632   // object.
1633   int token_offset = Context::kHeaderSize +
1634                      Context::SECURITY_TOKEN_INDEX * kPointerSize;
1635 
1636   ldr(scratch, FieldMemOperand(scratch, token_offset));
1637   ldr(ip, FieldMemOperand(ip, token_offset));
1638   cmp(scratch, Operand(ip));
1639   b(ne, miss);
1640 
1641   bind(&same_contexts);
1642 }
1643 
1644 
1645 // Compute the hash code from the untagged key.  This must be kept in sync with
1646 // ComputeIntegerHash in utils.h and KeyedLoadGenericElementStub in
1647 // code-stub-hydrogen.cc
GetNumberHash(Register t0,Register scratch)1648 void MacroAssembler::GetNumberHash(Register t0, Register scratch) {
1649   // First of all we assign the hash seed to scratch.
1650   LoadRoot(scratch, Heap::kHashSeedRootIndex);
1651   SmiUntag(scratch);
1652 
1653   // Xor original key with a seed.
1654   eor(t0, t0, Operand(scratch));
1655 
1656   // Compute the hash code from the untagged key.  This must be kept in sync
1657   // with ComputeIntegerHash in utils.h.
1658   //
1659   // hash = ~hash + (hash << 15);
1660   mvn(scratch, Operand(t0));
1661   add(t0, scratch, Operand(t0, LSL, 15));
1662   // hash = hash ^ (hash >> 12);
1663   eor(t0, t0, Operand(t0, LSR, 12));
1664   // hash = hash + (hash << 2);
1665   add(t0, t0, Operand(t0, LSL, 2));
1666   // hash = hash ^ (hash >> 4);
1667   eor(t0, t0, Operand(t0, LSR, 4));
1668   // hash = hash * 2057;
1669   mov(scratch, Operand(t0, LSL, 11));
1670   add(t0, t0, Operand(t0, LSL, 3));
1671   add(t0, t0, scratch);
1672   // hash = hash ^ (hash >> 16);
1673   eor(t0, t0, Operand(t0, LSR, 16));
1674 }
1675 
1676 
LoadFromNumberDictionary(Label * miss,Register elements,Register key,Register result,Register t0,Register t1,Register t2)1677 void MacroAssembler::LoadFromNumberDictionary(Label* miss,
1678                                               Register elements,
1679                                               Register key,
1680                                               Register result,
1681                                               Register t0,
1682                                               Register t1,
1683                                               Register t2) {
1684   // Register use:
1685   //
1686   // elements - holds the slow-case elements of the receiver on entry.
1687   //            Unchanged unless 'result' is the same register.
1688   //
1689   // key      - holds the smi key on entry.
1690   //            Unchanged unless 'result' is the same register.
1691   //
1692   // result   - holds the result on exit if the load succeeded.
1693   //            Allowed to be the same as 'key' or 'result'.
1694   //            Unchanged on bailout so 'key' or 'result' can be used
1695   //            in further computation.
1696   //
1697   // Scratch registers:
1698   //
1699   // t0 - holds the untagged key on entry and holds the hash once computed.
1700   //
1701   // t1 - used to hold the capacity mask of the dictionary
1702   //
1703   // t2 - used for the index into the dictionary.
1704   Label done;
1705 
1706   GetNumberHash(t0, t1);
1707 
1708   // Compute the capacity mask.
1709   ldr(t1, FieldMemOperand(elements, SeededNumberDictionary::kCapacityOffset));
1710   SmiUntag(t1);
1711   sub(t1, t1, Operand(1));
1712 
1713   // Generate an unrolled loop that performs a few probes before giving up.
1714   for (int i = 0; i < kNumberDictionaryProbes; i++) {
1715     // Use t2 for index calculations and keep the hash intact in t0.
1716     mov(t2, t0);
1717     // Compute the masked index: (hash + i + i * i) & mask.
1718     if (i > 0) {
1719       add(t2, t2, Operand(SeededNumberDictionary::GetProbeOffset(i)));
1720     }
1721     and_(t2, t2, Operand(t1));
1722 
1723     // Scale the index by multiplying by the element size.
1724     ASSERT(SeededNumberDictionary::kEntrySize == 3);
1725     add(t2, t2, Operand(t2, LSL, 1));  // t2 = t2 * 3
1726 
1727     // Check if the key is identical to the name.
1728     add(t2, elements, Operand(t2, LSL, kPointerSizeLog2));
1729     ldr(ip, FieldMemOperand(t2, SeededNumberDictionary::kElementsStartOffset));
1730     cmp(key, Operand(ip));
1731     if (i != kNumberDictionaryProbes - 1) {
1732       b(eq, &done);
1733     } else {
1734       b(ne, miss);
1735     }
1736   }
1737 
1738   bind(&done);
1739   // Check that the value is a normal property.
1740   // t2: elements + (index * kPointerSize)
1741   const int kDetailsOffset =
1742       SeededNumberDictionary::kElementsStartOffset + 2 * kPointerSize;
1743   ldr(t1, FieldMemOperand(t2, kDetailsOffset));
1744   tst(t1, Operand(Smi::FromInt(PropertyDetails::TypeField::kMask)));
1745   b(ne, miss);
1746 
1747   // Get the value at the masked, scaled index and return.
1748   const int kValueOffset =
1749       SeededNumberDictionary::kElementsStartOffset + kPointerSize;
1750   ldr(result, FieldMemOperand(t2, kValueOffset));
1751 }
1752 
1753 
Allocate(int object_size,Register result,Register scratch1,Register scratch2,Label * gc_required,AllocationFlags flags)1754 void MacroAssembler::Allocate(int object_size,
1755                               Register result,
1756                               Register scratch1,
1757                               Register scratch2,
1758                               Label* gc_required,
1759                               AllocationFlags flags) {
1760   ASSERT(object_size <= Page::kMaxRegularHeapObjectSize);
1761   if (!FLAG_inline_new) {
1762     if (emit_debug_code()) {
1763       // Trash the registers to simulate an allocation failure.
1764       mov(result, Operand(0x7091));
1765       mov(scratch1, Operand(0x7191));
1766       mov(scratch2, Operand(0x7291));
1767     }
1768     jmp(gc_required);
1769     return;
1770   }
1771 
1772   ASSERT(!result.is(scratch1));
1773   ASSERT(!result.is(scratch2));
1774   ASSERT(!scratch1.is(scratch2));
1775   ASSERT(!scratch1.is(ip));
1776   ASSERT(!scratch2.is(ip));
1777 
1778   // Make object size into bytes.
1779   if ((flags & SIZE_IN_WORDS) != 0) {
1780     object_size *= kPointerSize;
1781   }
1782   ASSERT_EQ(0, object_size & kObjectAlignmentMask);
1783 
1784   // Check relative positions of allocation top and limit addresses.
1785   // The values must be adjacent in memory to allow the use of LDM.
1786   // Also, assert that the registers are numbered such that the values
1787   // are loaded in the correct order.
1788   ExternalReference allocation_top =
1789       AllocationUtils::GetAllocationTopReference(isolate(), flags);
1790   ExternalReference allocation_limit =
1791       AllocationUtils::GetAllocationLimitReference(isolate(), flags);
1792 
1793   intptr_t top   =
1794       reinterpret_cast<intptr_t>(allocation_top.address());
1795   intptr_t limit =
1796       reinterpret_cast<intptr_t>(allocation_limit.address());
1797   ASSERT((limit - top) == kPointerSize);
1798   ASSERT(result.code() < ip.code());
1799 
1800   // Set up allocation top address register.
1801   Register topaddr = scratch1;
1802   mov(topaddr, Operand(allocation_top));
1803 
1804   // This code stores a temporary value in ip. This is OK, as the code below
1805   // does not need ip for implicit literal generation.
1806   if ((flags & RESULT_CONTAINS_TOP) == 0) {
1807     // Load allocation top into result and allocation limit into ip.
1808     ldm(ia, topaddr, result.bit() | ip.bit());
1809   } else {
1810     if (emit_debug_code()) {
1811       // Assert that result actually contains top on entry. ip is used
1812       // immediately below so this use of ip does not cause difference with
1813       // respect to register content between debug and release mode.
1814       ldr(ip, MemOperand(topaddr));
1815       cmp(result, ip);
1816       Check(eq, kUnexpectedAllocationTop);
1817     }
1818     // Load allocation limit into ip. Result already contains allocation top.
1819     ldr(ip, MemOperand(topaddr, limit - top));
1820   }
1821 
1822   if ((flags & DOUBLE_ALIGNMENT) != 0) {
1823     // Align the next allocation. Storing the filler map without checking top is
1824     // safe in new-space because the limit of the heap is aligned there.
1825     ASSERT((flags & PRETENURE_OLD_POINTER_SPACE) == 0);
1826     STATIC_ASSERT(kPointerAlignment * 2 == kDoubleAlignment);
1827     and_(scratch2, result, Operand(kDoubleAlignmentMask), SetCC);
1828     Label aligned;
1829     b(eq, &aligned);
1830     if ((flags & PRETENURE_OLD_DATA_SPACE) != 0) {
1831       cmp(result, Operand(ip));
1832       b(hs, gc_required);
1833     }
1834     mov(scratch2, Operand(isolate()->factory()->one_pointer_filler_map()));
1835     str(scratch2, MemOperand(result, kDoubleSize / 2, PostIndex));
1836     bind(&aligned);
1837   }
1838 
1839   // Calculate new top and bail out if new space is exhausted. Use result
1840   // to calculate the new top. We must preserve the ip register at this
1841   // point, so we cannot just use add().
1842   ASSERT(object_size > 0);
1843   Register source = result;
1844   Condition cond = al;
1845   int shift = 0;
1846   while (object_size != 0) {
1847     if (((object_size >> shift) & 0x03) == 0) {
1848       shift += 2;
1849     } else {
1850       int bits = object_size & (0xff << shift);
1851       object_size -= bits;
1852       shift += 8;
1853       Operand bits_operand(bits);
1854       ASSERT(bits_operand.is_single_instruction(this));
1855       add(scratch2, source, bits_operand, SetCC, cond);
1856       source = scratch2;
1857       cond = cc;
1858     }
1859   }
1860   b(cs, gc_required);
1861   cmp(scratch2, Operand(ip));
1862   b(hi, gc_required);
1863   str(scratch2, MemOperand(topaddr));
1864 
1865   // Tag object if requested.
1866   if ((flags & TAG_OBJECT) != 0) {
1867     add(result, result, Operand(kHeapObjectTag));
1868   }
1869 }
1870 
1871 
Allocate(Register object_size,Register result,Register scratch1,Register scratch2,Label * gc_required,AllocationFlags flags)1872 void MacroAssembler::Allocate(Register object_size,
1873                               Register result,
1874                               Register scratch1,
1875                               Register scratch2,
1876                               Label* gc_required,
1877                               AllocationFlags flags) {
1878   if (!FLAG_inline_new) {
1879     if (emit_debug_code()) {
1880       // Trash the registers to simulate an allocation failure.
1881       mov(result, Operand(0x7091));
1882       mov(scratch1, Operand(0x7191));
1883       mov(scratch2, Operand(0x7291));
1884     }
1885     jmp(gc_required);
1886     return;
1887   }
1888 
1889   // Assert that the register arguments are different and that none of
1890   // them are ip. ip is used explicitly in the code generated below.
1891   ASSERT(!result.is(scratch1));
1892   ASSERT(!result.is(scratch2));
1893   ASSERT(!scratch1.is(scratch2));
1894   ASSERT(!object_size.is(ip));
1895   ASSERT(!result.is(ip));
1896   ASSERT(!scratch1.is(ip));
1897   ASSERT(!scratch2.is(ip));
1898 
1899   // Check relative positions of allocation top and limit addresses.
1900   // The values must be adjacent in memory to allow the use of LDM.
1901   // Also, assert that the registers are numbered such that the values
1902   // are loaded in the correct order.
1903   ExternalReference allocation_top =
1904       AllocationUtils::GetAllocationTopReference(isolate(), flags);
1905   ExternalReference allocation_limit =
1906       AllocationUtils::GetAllocationLimitReference(isolate(), flags);
1907   intptr_t top =
1908       reinterpret_cast<intptr_t>(allocation_top.address());
1909   intptr_t limit =
1910       reinterpret_cast<intptr_t>(allocation_limit.address());
1911   ASSERT((limit - top) == kPointerSize);
1912   ASSERT(result.code() < ip.code());
1913 
1914   // Set up allocation top address.
1915   Register topaddr = scratch1;
1916   mov(topaddr, Operand(allocation_top));
1917 
1918   // This code stores a temporary value in ip. This is OK, as the code below
1919   // does not need ip for implicit literal generation.
1920   if ((flags & RESULT_CONTAINS_TOP) == 0) {
1921     // Load allocation top into result and allocation limit into ip.
1922     ldm(ia, topaddr, result.bit() | ip.bit());
1923   } else {
1924     if (emit_debug_code()) {
1925       // Assert that result actually contains top on entry. ip is used
1926       // immediately below so this use of ip does not cause difference with
1927       // respect to register content between debug and release mode.
1928       ldr(ip, MemOperand(topaddr));
1929       cmp(result, ip);
1930       Check(eq, kUnexpectedAllocationTop);
1931     }
1932     // Load allocation limit into ip. Result already contains allocation top.
1933     ldr(ip, MemOperand(topaddr, limit - top));
1934   }
1935 
1936   if ((flags & DOUBLE_ALIGNMENT) != 0) {
1937     // Align the next allocation. Storing the filler map without checking top is
1938     // safe in new-space because the limit of the heap is aligned there.
1939     ASSERT((flags & PRETENURE_OLD_POINTER_SPACE) == 0);
1940     ASSERT(kPointerAlignment * 2 == kDoubleAlignment);
1941     and_(scratch2, result, Operand(kDoubleAlignmentMask), SetCC);
1942     Label aligned;
1943     b(eq, &aligned);
1944     if ((flags & PRETENURE_OLD_DATA_SPACE) != 0) {
1945       cmp(result, Operand(ip));
1946       b(hs, gc_required);
1947     }
1948     mov(scratch2, Operand(isolate()->factory()->one_pointer_filler_map()));
1949     str(scratch2, MemOperand(result, kDoubleSize / 2, PostIndex));
1950     bind(&aligned);
1951   }
1952 
1953   // Calculate new top and bail out if new space is exhausted. Use result
1954   // to calculate the new top. Object size may be in words so a shift is
1955   // required to get the number of bytes.
1956   if ((flags & SIZE_IN_WORDS) != 0) {
1957     add(scratch2, result, Operand(object_size, LSL, kPointerSizeLog2), SetCC);
1958   } else {
1959     add(scratch2, result, Operand(object_size), SetCC);
1960   }
1961   b(cs, gc_required);
1962   cmp(scratch2, Operand(ip));
1963   b(hi, gc_required);
1964 
1965   // Update allocation top. result temporarily holds the new top.
1966   if (emit_debug_code()) {
1967     tst(scratch2, Operand(kObjectAlignmentMask));
1968     Check(eq, kUnalignedAllocationInNewSpace);
1969   }
1970   str(scratch2, MemOperand(topaddr));
1971 
1972   // Tag object if requested.
1973   if ((flags & TAG_OBJECT) != 0) {
1974     add(result, result, Operand(kHeapObjectTag));
1975   }
1976 }
1977 
1978 
UndoAllocationInNewSpace(Register object,Register scratch)1979 void MacroAssembler::UndoAllocationInNewSpace(Register object,
1980                                               Register scratch) {
1981   ExternalReference new_space_allocation_top =
1982       ExternalReference::new_space_allocation_top_address(isolate());
1983 
1984   // Make sure the object has no tag before resetting top.
1985   and_(object, object, Operand(~kHeapObjectTagMask));
1986 #ifdef DEBUG
1987   // Check that the object un-allocated is below the current top.
1988   mov(scratch, Operand(new_space_allocation_top));
1989   ldr(scratch, MemOperand(scratch));
1990   cmp(object, scratch);
1991   Check(lt, kUndoAllocationOfNonAllocatedMemory);
1992 #endif
1993   // Write the address of the object to un-allocate as the current top.
1994   mov(scratch, Operand(new_space_allocation_top));
1995   str(object, MemOperand(scratch));
1996 }
1997 
1998 
AllocateTwoByteString(Register result,Register length,Register scratch1,Register scratch2,Register scratch3,Label * gc_required)1999 void MacroAssembler::AllocateTwoByteString(Register result,
2000                                            Register length,
2001                                            Register scratch1,
2002                                            Register scratch2,
2003                                            Register scratch3,
2004                                            Label* gc_required) {
2005   // Calculate the number of bytes needed for the characters in the string while
2006   // observing object alignment.
2007   ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
2008   mov(scratch1, Operand(length, LSL, 1));  // Length in bytes, not chars.
2009   add(scratch1, scratch1,
2010       Operand(kObjectAlignmentMask + SeqTwoByteString::kHeaderSize));
2011   and_(scratch1, scratch1, Operand(~kObjectAlignmentMask));
2012 
2013   // Allocate two-byte string in new space.
2014   Allocate(scratch1,
2015            result,
2016            scratch2,
2017            scratch3,
2018            gc_required,
2019            TAG_OBJECT);
2020 
2021   // Set the map, length and hash field.
2022   InitializeNewString(result,
2023                       length,
2024                       Heap::kStringMapRootIndex,
2025                       scratch1,
2026                       scratch2);
2027 }
2028 
2029 
AllocateAsciiString(Register result,Register length,Register scratch1,Register scratch2,Register scratch3,Label * gc_required)2030 void MacroAssembler::AllocateAsciiString(Register result,
2031                                          Register length,
2032                                          Register scratch1,
2033                                          Register scratch2,
2034                                          Register scratch3,
2035                                          Label* gc_required) {
2036   // Calculate the number of bytes needed for the characters in the string while
2037   // observing object alignment.
2038   ASSERT((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0);
2039   ASSERT(kCharSize == 1);
2040   add(scratch1, length,
2041       Operand(kObjectAlignmentMask + SeqOneByteString::kHeaderSize));
2042   and_(scratch1, scratch1, Operand(~kObjectAlignmentMask));
2043 
2044   // Allocate ASCII string in new space.
2045   Allocate(scratch1,
2046            result,
2047            scratch2,
2048            scratch3,
2049            gc_required,
2050            TAG_OBJECT);
2051 
2052   // Set the map, length and hash field.
2053   InitializeNewString(result,
2054                       length,
2055                       Heap::kAsciiStringMapRootIndex,
2056                       scratch1,
2057                       scratch2);
2058 }
2059 
2060 
AllocateTwoByteConsString(Register result,Register length,Register scratch1,Register scratch2,Label * gc_required)2061 void MacroAssembler::AllocateTwoByteConsString(Register result,
2062                                                Register length,
2063                                                Register scratch1,
2064                                                Register scratch2,
2065                                                Label* gc_required) {
2066   Allocate(ConsString::kSize, result, scratch1, scratch2, gc_required,
2067            TAG_OBJECT);
2068 
2069   InitializeNewString(result,
2070                       length,
2071                       Heap::kConsStringMapRootIndex,
2072                       scratch1,
2073                       scratch2);
2074 }
2075 
2076 
AllocateAsciiConsString(Register result,Register length,Register scratch1,Register scratch2,Label * gc_required)2077 void MacroAssembler::AllocateAsciiConsString(Register result,
2078                                              Register length,
2079                                              Register scratch1,
2080                                              Register scratch2,
2081                                              Label* gc_required) {
2082   Allocate(ConsString::kSize,
2083            result,
2084            scratch1,
2085            scratch2,
2086            gc_required,
2087            TAG_OBJECT);
2088 
2089   InitializeNewString(result,
2090                       length,
2091                       Heap::kConsAsciiStringMapRootIndex,
2092                       scratch1,
2093                       scratch2);
2094 }
2095 
2096 
AllocateTwoByteSlicedString(Register result,Register length,Register scratch1,Register scratch2,Label * gc_required)2097 void MacroAssembler::AllocateTwoByteSlicedString(Register result,
2098                                                  Register length,
2099                                                  Register scratch1,
2100                                                  Register scratch2,
2101                                                  Label* gc_required) {
2102   Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required,
2103            TAG_OBJECT);
2104 
2105   InitializeNewString(result,
2106                       length,
2107                       Heap::kSlicedStringMapRootIndex,
2108                       scratch1,
2109                       scratch2);
2110 }
2111 
2112 
AllocateAsciiSlicedString(Register result,Register length,Register scratch1,Register scratch2,Label * gc_required)2113 void MacroAssembler::AllocateAsciiSlicedString(Register result,
2114                                                Register length,
2115                                                Register scratch1,
2116                                                Register scratch2,
2117                                                Label* gc_required) {
2118   Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required,
2119            TAG_OBJECT);
2120 
2121   InitializeNewString(result,
2122                       length,
2123                       Heap::kSlicedAsciiStringMapRootIndex,
2124                       scratch1,
2125                       scratch2);
2126 }
2127 
2128 
CompareObjectType(Register object,Register map,Register type_reg,InstanceType type)2129 void MacroAssembler::CompareObjectType(Register object,
2130                                        Register map,
2131                                        Register type_reg,
2132                                        InstanceType type) {
2133   const Register temp = type_reg.is(no_reg) ? ip : type_reg;
2134 
2135   ldr(map, FieldMemOperand(object, HeapObject::kMapOffset));
2136   CompareInstanceType(map, temp, type);
2137 }
2138 
2139 
CheckObjectTypeRange(Register object,Register map,InstanceType min_type,InstanceType max_type,Label * false_label)2140 void MacroAssembler::CheckObjectTypeRange(Register object,
2141                                           Register map,
2142                                           InstanceType min_type,
2143                                           InstanceType max_type,
2144                                           Label* false_label) {
2145   STATIC_ASSERT(Map::kInstanceTypeOffset < 4096);
2146   STATIC_ASSERT(LAST_TYPE < 256);
2147   ldr(map, FieldMemOperand(object, HeapObject::kMapOffset));
2148   ldrb(ip, FieldMemOperand(map, Map::kInstanceTypeOffset));
2149   sub(ip, ip, Operand(min_type));
2150   cmp(ip, Operand(max_type - min_type));
2151   b(hi, false_label);
2152 }
2153 
2154 
CompareInstanceType(Register map,Register type_reg,InstanceType type)2155 void MacroAssembler::CompareInstanceType(Register map,
2156                                          Register type_reg,
2157                                          InstanceType type) {
2158   // Registers map and type_reg can be ip. These two lines assert
2159   // that ip can be used with the two instructions (the constants
2160   // will never need ip).
2161   STATIC_ASSERT(Map::kInstanceTypeOffset < 4096);
2162   STATIC_ASSERT(LAST_TYPE < 256);
2163   ldrb(type_reg, FieldMemOperand(map, Map::kInstanceTypeOffset));
2164   cmp(type_reg, Operand(type));
2165 }
2166 
2167 
CompareRoot(Register obj,Heap::RootListIndex index)2168 void MacroAssembler::CompareRoot(Register obj,
2169                                  Heap::RootListIndex index) {
2170   ASSERT(!obj.is(ip));
2171   LoadRoot(ip, index);
2172   cmp(obj, ip);
2173 }
2174 
2175 
CheckFastElements(Register map,Register scratch,Label * fail)2176 void MacroAssembler::CheckFastElements(Register map,
2177                                        Register scratch,
2178                                        Label* fail) {
2179   STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
2180   STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
2181   STATIC_ASSERT(FAST_ELEMENTS == 2);
2182   STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
2183   ldrb(scratch, FieldMemOperand(map, Map::kBitField2Offset));
2184   cmp(scratch, Operand(Map::kMaximumBitField2FastHoleyElementValue));
2185   b(hi, fail);
2186 }
2187 
2188 
CheckFastObjectElements(Register map,Register scratch,Label * fail)2189 void MacroAssembler::CheckFastObjectElements(Register map,
2190                                              Register scratch,
2191                                              Label* fail) {
2192   STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
2193   STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
2194   STATIC_ASSERT(FAST_ELEMENTS == 2);
2195   STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
2196   ldrb(scratch, FieldMemOperand(map, Map::kBitField2Offset));
2197   cmp(scratch, Operand(Map::kMaximumBitField2FastHoleySmiElementValue));
2198   b(ls, fail);
2199   cmp(scratch, Operand(Map::kMaximumBitField2FastHoleyElementValue));
2200   b(hi, fail);
2201 }
2202 
2203 
CheckFastSmiElements(Register map,Register scratch,Label * fail)2204 void MacroAssembler::CheckFastSmiElements(Register map,
2205                                           Register scratch,
2206                                           Label* fail) {
2207   STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
2208   STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
2209   ldrb(scratch, FieldMemOperand(map, Map::kBitField2Offset));
2210   cmp(scratch, Operand(Map::kMaximumBitField2FastHoleySmiElementValue));
2211   b(hi, fail);
2212 }
2213 
2214 
StoreNumberToDoubleElements(Register value_reg,Register key_reg,Register elements_reg,Register scratch1,LowDwVfpRegister double_scratch,Label * fail,int elements_offset)2215 void MacroAssembler::StoreNumberToDoubleElements(
2216                                       Register value_reg,
2217                                       Register key_reg,
2218                                       Register elements_reg,
2219                                       Register scratch1,
2220                                       LowDwVfpRegister double_scratch,
2221                                       Label* fail,
2222                                       int elements_offset) {
2223   Label smi_value, store;
2224 
2225   // Handle smi values specially.
2226   JumpIfSmi(value_reg, &smi_value);
2227 
2228   // Ensure that the object is a heap number
2229   CheckMap(value_reg,
2230            scratch1,
2231            isolate()->factory()->heap_number_map(),
2232            fail,
2233            DONT_DO_SMI_CHECK);
2234 
2235   vldr(double_scratch, FieldMemOperand(value_reg, HeapNumber::kValueOffset));
2236   // Force a canonical NaN.
2237   if (emit_debug_code()) {
2238     vmrs(ip);
2239     tst(ip, Operand(kVFPDefaultNaNModeControlBit));
2240     Assert(ne, kDefaultNaNModeNotSet);
2241   }
2242   VFPCanonicalizeNaN(double_scratch);
2243   b(&store);
2244 
2245   bind(&smi_value);
2246   SmiToDouble(double_scratch, value_reg);
2247 
2248   bind(&store);
2249   add(scratch1, elements_reg, Operand::DoubleOffsetFromSmiKey(key_reg));
2250   vstr(double_scratch,
2251        FieldMemOperand(scratch1,
2252                        FixedDoubleArray::kHeaderSize - elements_offset));
2253 }
2254 
2255 
CompareMap(Register obj,Register scratch,Handle<Map> map,Label * early_success)2256 void MacroAssembler::CompareMap(Register obj,
2257                                 Register scratch,
2258                                 Handle<Map> map,
2259                                 Label* early_success) {
2260   ldr(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
2261   CompareMap(scratch, map, early_success);
2262 }
2263 
2264 
CompareMap(Register obj_map,Handle<Map> map,Label * early_success)2265 void MacroAssembler::CompareMap(Register obj_map,
2266                                 Handle<Map> map,
2267                                 Label* early_success) {
2268   cmp(obj_map, Operand(map));
2269 }
2270 
2271 
CheckMap(Register obj,Register scratch,Handle<Map> map,Label * fail,SmiCheckType smi_check_type)2272 void MacroAssembler::CheckMap(Register obj,
2273                               Register scratch,
2274                               Handle<Map> map,
2275                               Label* fail,
2276                               SmiCheckType smi_check_type) {
2277   if (smi_check_type == DO_SMI_CHECK) {
2278     JumpIfSmi(obj, fail);
2279   }
2280 
2281   Label success;
2282   CompareMap(obj, scratch, map, &success);
2283   b(ne, fail);
2284   bind(&success);
2285 }
2286 
2287 
CheckMap(Register obj,Register scratch,Heap::RootListIndex index,Label * fail,SmiCheckType smi_check_type)2288 void MacroAssembler::CheckMap(Register obj,
2289                               Register scratch,
2290                               Heap::RootListIndex index,
2291                               Label* fail,
2292                               SmiCheckType smi_check_type) {
2293   if (smi_check_type == DO_SMI_CHECK) {
2294     JumpIfSmi(obj, fail);
2295   }
2296   ldr(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
2297   LoadRoot(ip, index);
2298   cmp(scratch, ip);
2299   b(ne, fail);
2300 }
2301 
2302 
DispatchMap(Register obj,Register scratch,Handle<Map> map,Handle<Code> success,SmiCheckType smi_check_type)2303 void MacroAssembler::DispatchMap(Register obj,
2304                                  Register scratch,
2305                                  Handle<Map> map,
2306                                  Handle<Code> success,
2307                                  SmiCheckType smi_check_type) {
2308   Label fail;
2309   if (smi_check_type == DO_SMI_CHECK) {
2310     JumpIfSmi(obj, &fail);
2311   }
2312   ldr(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
2313   mov(ip, Operand(map));
2314   cmp(scratch, ip);
2315   Jump(success, RelocInfo::CODE_TARGET, eq);
2316   bind(&fail);
2317 }
2318 
2319 
TryGetFunctionPrototype(Register function,Register result,Register scratch,Label * miss,bool miss_on_bound_function)2320 void MacroAssembler::TryGetFunctionPrototype(Register function,
2321                                              Register result,
2322                                              Register scratch,
2323                                              Label* miss,
2324                                              bool miss_on_bound_function) {
2325   // Check that the receiver isn't a smi.
2326   JumpIfSmi(function, miss);
2327 
2328   // Check that the function really is a function.  Load map into result reg.
2329   CompareObjectType(function, result, scratch, JS_FUNCTION_TYPE);
2330   b(ne, miss);
2331 
2332   if (miss_on_bound_function) {
2333     ldr(scratch,
2334         FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset));
2335     ldr(scratch,
2336         FieldMemOperand(scratch, SharedFunctionInfo::kCompilerHintsOffset));
2337     tst(scratch,
2338         Operand(Smi::FromInt(1 << SharedFunctionInfo::kBoundFunction)));
2339     b(ne, miss);
2340   }
2341 
2342   // Make sure that the function has an instance prototype.
2343   Label non_instance;
2344   ldrb(scratch, FieldMemOperand(result, Map::kBitFieldOffset));
2345   tst(scratch, Operand(1 << Map::kHasNonInstancePrototype));
2346   b(ne, &non_instance);
2347 
2348   // Get the prototype or initial map from the function.
2349   ldr(result,
2350       FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
2351 
2352   // If the prototype or initial map is the hole, don't return it and
2353   // simply miss the cache instead. This will allow us to allocate a
2354   // prototype object on-demand in the runtime system.
2355   LoadRoot(ip, Heap::kTheHoleValueRootIndex);
2356   cmp(result, ip);
2357   b(eq, miss);
2358 
2359   // If the function does not have an initial map, we're done.
2360   Label done;
2361   CompareObjectType(result, scratch, scratch, MAP_TYPE);
2362   b(ne, &done);
2363 
2364   // Get the prototype from the initial map.
2365   ldr(result, FieldMemOperand(result, Map::kPrototypeOffset));
2366   jmp(&done);
2367 
2368   // Non-instance prototype: Fetch prototype from constructor field
2369   // in initial map.
2370   bind(&non_instance);
2371   ldr(result, FieldMemOperand(result, Map::kConstructorOffset));
2372 
2373   // All done.
2374   bind(&done);
2375 }
2376 
2377 
CallStub(CodeStub * stub,TypeFeedbackId ast_id,Condition cond)2378 void MacroAssembler::CallStub(CodeStub* stub,
2379                               TypeFeedbackId ast_id,
2380                               Condition cond) {
2381   ASSERT(AllowThisStubCall(stub));  // Stub calls are not allowed in some stubs.
2382   Call(stub->GetCode(), RelocInfo::CODE_TARGET, ast_id, cond);
2383 }
2384 
2385 
TailCallStub(CodeStub * stub,Condition cond)2386 void MacroAssembler::TailCallStub(CodeStub* stub, Condition cond) {
2387   Jump(stub->GetCode(), RelocInfo::CODE_TARGET, cond);
2388 }
2389 
2390 
AddressOffset(ExternalReference ref0,ExternalReference ref1)2391 static int AddressOffset(ExternalReference ref0, ExternalReference ref1) {
2392   return ref0.address() - ref1.address();
2393 }
2394 
2395 
CallApiFunctionAndReturn(Register function_address,ExternalReference thunk_ref,int stack_space,MemOperand return_value_operand,MemOperand * context_restore_operand)2396 void MacroAssembler::CallApiFunctionAndReturn(
2397     Register function_address,
2398     ExternalReference thunk_ref,
2399     int stack_space,
2400     MemOperand return_value_operand,
2401     MemOperand* context_restore_operand) {
2402   ExternalReference next_address =
2403       ExternalReference::handle_scope_next_address(isolate());
2404   const int kNextOffset = 0;
2405   const int kLimitOffset = AddressOffset(
2406       ExternalReference::handle_scope_limit_address(isolate()),
2407       next_address);
2408   const int kLevelOffset = AddressOffset(
2409       ExternalReference::handle_scope_level_address(isolate()),
2410       next_address);
2411 
2412   ASSERT(function_address.is(r1) || function_address.is(r2));
2413 
2414   Label profiler_disabled;
2415   Label end_profiler_check;
2416   mov(r9, Operand(ExternalReference::is_profiling_address(isolate())));
2417   ldrb(r9, MemOperand(r9, 0));
2418   cmp(r9, Operand(0));
2419   b(eq, &profiler_disabled);
2420 
2421   // Additional parameter is the address of the actual callback.
2422   mov(r3, Operand(thunk_ref));
2423   jmp(&end_profiler_check);
2424 
2425   bind(&profiler_disabled);
2426   Move(r3, function_address);
2427   bind(&end_profiler_check);
2428 
2429   // Allocate HandleScope in callee-save registers.
2430   mov(r9, Operand(next_address));
2431   ldr(r4, MemOperand(r9, kNextOffset));
2432   ldr(r5, MemOperand(r9, kLimitOffset));
2433   ldr(r6, MemOperand(r9, kLevelOffset));
2434   add(r6, r6, Operand(1));
2435   str(r6, MemOperand(r9, kLevelOffset));
2436 
2437   if (FLAG_log_timer_events) {
2438     FrameScope frame(this, StackFrame::MANUAL);
2439     PushSafepointRegisters();
2440     PrepareCallCFunction(1, r0);
2441     mov(r0, Operand(ExternalReference::isolate_address(isolate())));
2442     CallCFunction(ExternalReference::log_enter_external_function(isolate()), 1);
2443     PopSafepointRegisters();
2444   }
2445 
2446   // Native call returns to the DirectCEntry stub which redirects to the
2447   // return address pushed on stack (could have moved after GC).
2448   // DirectCEntry stub itself is generated early and never moves.
2449   DirectCEntryStub stub(isolate());
2450   stub.GenerateCall(this, r3);
2451 
2452   if (FLAG_log_timer_events) {
2453     FrameScope frame(this, StackFrame::MANUAL);
2454     PushSafepointRegisters();
2455     PrepareCallCFunction(1, r0);
2456     mov(r0, Operand(ExternalReference::isolate_address(isolate())));
2457     CallCFunction(ExternalReference::log_leave_external_function(isolate()), 1);
2458     PopSafepointRegisters();
2459   }
2460 
2461   Label promote_scheduled_exception;
2462   Label exception_handled;
2463   Label delete_allocated_handles;
2464   Label leave_exit_frame;
2465   Label return_value_loaded;
2466 
2467   // load value from ReturnValue
2468   ldr(r0, return_value_operand);
2469   bind(&return_value_loaded);
2470   // No more valid handles (the result handle was the last one). Restore
2471   // previous handle scope.
2472   str(r4, MemOperand(r9, kNextOffset));
2473   if (emit_debug_code()) {
2474     ldr(r1, MemOperand(r9, kLevelOffset));
2475     cmp(r1, r6);
2476     Check(eq, kUnexpectedLevelAfterReturnFromApiCall);
2477   }
2478   sub(r6, r6, Operand(1));
2479   str(r6, MemOperand(r9, kLevelOffset));
2480   ldr(ip, MemOperand(r9, kLimitOffset));
2481   cmp(r5, ip);
2482   b(ne, &delete_allocated_handles);
2483 
2484   // Check if the function scheduled an exception.
2485   bind(&leave_exit_frame);
2486   LoadRoot(r4, Heap::kTheHoleValueRootIndex);
2487   mov(ip, Operand(ExternalReference::scheduled_exception_address(isolate())));
2488   ldr(r5, MemOperand(ip));
2489   cmp(r4, r5);
2490   b(ne, &promote_scheduled_exception);
2491   bind(&exception_handled);
2492 
2493   bool restore_context = context_restore_operand != NULL;
2494   if (restore_context) {
2495     ldr(cp, *context_restore_operand);
2496   }
2497   // LeaveExitFrame expects unwind space to be in a register.
2498   mov(r4, Operand(stack_space));
2499   LeaveExitFrame(false, r4, !restore_context);
2500   mov(pc, lr);
2501 
2502   bind(&promote_scheduled_exception);
2503   {
2504     FrameScope frame(this, StackFrame::INTERNAL);
2505     CallExternalReference(
2506         ExternalReference(Runtime::kHiddenPromoteScheduledException, isolate()),
2507         0);
2508   }
2509   jmp(&exception_handled);
2510 
2511   // HandleScope limit has changed. Delete allocated extensions.
2512   bind(&delete_allocated_handles);
2513   str(r5, MemOperand(r9, kLimitOffset));
2514   mov(r4, r0);
2515   PrepareCallCFunction(1, r5);
2516   mov(r0, Operand(ExternalReference::isolate_address(isolate())));
2517   CallCFunction(
2518       ExternalReference::delete_handle_scope_extensions(isolate()), 1);
2519   mov(r0, r4);
2520   jmp(&leave_exit_frame);
2521 }
2522 
2523 
AllowThisStubCall(CodeStub * stub)2524 bool MacroAssembler::AllowThisStubCall(CodeStub* stub) {
2525   return has_frame_ || !stub->SometimesSetsUpAFrame();
2526 }
2527 
2528 
IndexFromHash(Register hash,Register index)2529 void MacroAssembler::IndexFromHash(Register hash, Register index) {
2530   // If the hash field contains an array index pick it out. The assert checks
2531   // that the constants for the maximum number of digits for an array index
2532   // cached in the hash field and the number of bits reserved for it does not
2533   // conflict.
2534   ASSERT(TenToThe(String::kMaxCachedArrayIndexLength) <
2535          (1 << String::kArrayIndexValueBits));
2536   DecodeFieldToSmi<String::ArrayIndexValueBits>(index, hash);
2537 }
2538 
2539 
SmiToDouble(LowDwVfpRegister value,Register smi)2540 void MacroAssembler::SmiToDouble(LowDwVfpRegister value, Register smi) {
2541   if (CpuFeatures::IsSupported(VFP3)) {
2542     vmov(value.low(), smi);
2543     vcvt_f64_s32(value, 1);
2544   } else {
2545     SmiUntag(ip, smi);
2546     vmov(value.low(), ip);
2547     vcvt_f64_s32(value, value.low());
2548   }
2549 }
2550 
2551 
TestDoubleIsInt32(DwVfpRegister double_input,LowDwVfpRegister double_scratch)2552 void MacroAssembler::TestDoubleIsInt32(DwVfpRegister double_input,
2553                                        LowDwVfpRegister double_scratch) {
2554   ASSERT(!double_input.is(double_scratch));
2555   vcvt_s32_f64(double_scratch.low(), double_input);
2556   vcvt_f64_s32(double_scratch, double_scratch.low());
2557   VFPCompareAndSetFlags(double_input, double_scratch);
2558 }
2559 
2560 
TryDoubleToInt32Exact(Register result,DwVfpRegister double_input,LowDwVfpRegister double_scratch)2561 void MacroAssembler::TryDoubleToInt32Exact(Register result,
2562                                            DwVfpRegister double_input,
2563                                            LowDwVfpRegister double_scratch) {
2564   ASSERT(!double_input.is(double_scratch));
2565   vcvt_s32_f64(double_scratch.low(), double_input);
2566   vmov(result, double_scratch.low());
2567   vcvt_f64_s32(double_scratch, double_scratch.low());
2568   VFPCompareAndSetFlags(double_input, double_scratch);
2569 }
2570 
2571 
TryInt32Floor(Register result,DwVfpRegister double_input,Register input_high,LowDwVfpRegister double_scratch,Label * done,Label * exact)2572 void MacroAssembler::TryInt32Floor(Register result,
2573                                    DwVfpRegister double_input,
2574                                    Register input_high,
2575                                    LowDwVfpRegister double_scratch,
2576                                    Label* done,
2577                                    Label* exact) {
2578   ASSERT(!result.is(input_high));
2579   ASSERT(!double_input.is(double_scratch));
2580   Label negative, exception;
2581 
2582   VmovHigh(input_high, double_input);
2583 
2584   // Test for NaN and infinities.
2585   Sbfx(result, input_high,
2586        HeapNumber::kExponentShift, HeapNumber::kExponentBits);
2587   cmp(result, Operand(-1));
2588   b(eq, &exception);
2589   // Test for values that can be exactly represented as a
2590   // signed 32-bit integer.
2591   TryDoubleToInt32Exact(result, double_input, double_scratch);
2592   // If exact, return (result already fetched).
2593   b(eq, exact);
2594   cmp(input_high, Operand::Zero());
2595   b(mi, &negative);
2596 
2597   // Input is in ]+0, +inf[.
2598   // If result equals 0x7fffffff input was out of range or
2599   // in ]0x7fffffff, 0x80000000[. We ignore this last case which
2600   // could fits into an int32, that means we always think input was
2601   // out of range and always go to exception.
2602   // If result < 0x7fffffff, go to done, result fetched.
2603   cmn(result, Operand(1));
2604   b(mi, &exception);
2605   b(done);
2606 
2607   // Input is in ]-inf, -0[.
2608   // If x is a non integer negative number,
2609   // floor(x) <=> round_to_zero(x) - 1.
2610   bind(&negative);
2611   sub(result, result, Operand(1), SetCC);
2612   // If result is still negative, go to done, result fetched.
2613   // Else, we had an overflow and we fall through exception.
2614   b(mi, done);
2615   bind(&exception);
2616 }
2617 
TryInlineTruncateDoubleToI(Register result,DwVfpRegister double_input,Label * done)2618 void MacroAssembler::TryInlineTruncateDoubleToI(Register result,
2619                                                 DwVfpRegister double_input,
2620                                                 Label* done) {
2621   LowDwVfpRegister double_scratch = kScratchDoubleReg;
2622   vcvt_s32_f64(double_scratch.low(), double_input);
2623   vmov(result, double_scratch.low());
2624 
2625   // If result is not saturated (0x7fffffff or 0x80000000), we are done.
2626   sub(ip, result, Operand(1));
2627   cmp(ip, Operand(0x7ffffffe));
2628   b(lt, done);
2629 }
2630 
2631 
TruncateDoubleToI(Register result,DwVfpRegister double_input)2632 void MacroAssembler::TruncateDoubleToI(Register result,
2633                                        DwVfpRegister double_input) {
2634   Label done;
2635 
2636   TryInlineTruncateDoubleToI(result, double_input, &done);
2637 
2638   // If we fell through then inline version didn't succeed - call stub instead.
2639   push(lr);
2640   sub(sp, sp, Operand(kDoubleSize));  // Put input on stack.
2641   vstr(double_input, MemOperand(sp, 0));
2642 
2643   DoubleToIStub stub(isolate(), sp, result, 0, true, true);
2644   CallStub(&stub);
2645 
2646   add(sp, sp, Operand(kDoubleSize));
2647   pop(lr);
2648 
2649   bind(&done);
2650 }
2651 
2652 
TruncateHeapNumberToI(Register result,Register object)2653 void MacroAssembler::TruncateHeapNumberToI(Register result,
2654                                            Register object) {
2655   Label done;
2656   LowDwVfpRegister double_scratch = kScratchDoubleReg;
2657   ASSERT(!result.is(object));
2658 
2659   vldr(double_scratch,
2660        MemOperand(object, HeapNumber::kValueOffset - kHeapObjectTag));
2661   TryInlineTruncateDoubleToI(result, double_scratch, &done);
2662 
2663   // If we fell through then inline version didn't succeed - call stub instead.
2664   push(lr);
2665   DoubleToIStub stub(isolate(),
2666                      object,
2667                      result,
2668                      HeapNumber::kValueOffset - kHeapObjectTag,
2669                      true,
2670                      true);
2671   CallStub(&stub);
2672   pop(lr);
2673 
2674   bind(&done);
2675 }
2676 
2677 
TruncateNumberToI(Register object,Register result,Register heap_number_map,Register scratch1,Label * not_number)2678 void MacroAssembler::TruncateNumberToI(Register object,
2679                                        Register result,
2680                                        Register heap_number_map,
2681                                        Register scratch1,
2682                                        Label* not_number) {
2683   Label done;
2684   ASSERT(!result.is(object));
2685 
2686   UntagAndJumpIfSmi(result, object, &done);
2687   JumpIfNotHeapNumber(object, heap_number_map, scratch1, not_number);
2688   TruncateHeapNumberToI(result, object);
2689 
2690   bind(&done);
2691 }
2692 
2693 
GetLeastBitsFromSmi(Register dst,Register src,int num_least_bits)2694 void MacroAssembler::GetLeastBitsFromSmi(Register dst,
2695                                          Register src,
2696                                          int num_least_bits) {
2697   if (CpuFeatures::IsSupported(ARMv7) && !predictable_code_size()) {
2698     ubfx(dst, src, kSmiTagSize, num_least_bits);
2699   } else {
2700     SmiUntag(dst, src);
2701     and_(dst, dst, Operand((1 << num_least_bits) - 1));
2702   }
2703 }
2704 
2705 
GetLeastBitsFromInt32(Register dst,Register src,int num_least_bits)2706 void MacroAssembler::GetLeastBitsFromInt32(Register dst,
2707                                            Register src,
2708                                            int num_least_bits) {
2709   and_(dst, src, Operand((1 << num_least_bits) - 1));
2710 }
2711 
2712 
CallRuntime(const Runtime::Function * f,int num_arguments,SaveFPRegsMode save_doubles)2713 void MacroAssembler::CallRuntime(const Runtime::Function* f,
2714                                  int num_arguments,
2715                                  SaveFPRegsMode save_doubles) {
2716   // All parameters are on the stack.  r0 has the return value after call.
2717 
2718   // If the expected number of arguments of the runtime function is
2719   // constant, we check that the actual number of arguments match the
2720   // expectation.
2721   CHECK(f->nargs < 0 || f->nargs == num_arguments);
2722 
2723   // TODO(1236192): Most runtime routines don't need the number of
2724   // arguments passed in because it is constant. At some point we
2725   // should remove this need and make the runtime routine entry code
2726   // smarter.
2727   mov(r0, Operand(num_arguments));
2728   mov(r1, Operand(ExternalReference(f, isolate())));
2729   CEntryStub stub(isolate(), 1, save_doubles);
2730   CallStub(&stub);
2731 }
2732 
2733 
CallExternalReference(const ExternalReference & ext,int num_arguments)2734 void MacroAssembler::CallExternalReference(const ExternalReference& ext,
2735                                            int num_arguments) {
2736   mov(r0, Operand(num_arguments));
2737   mov(r1, Operand(ext));
2738 
2739   CEntryStub stub(isolate(), 1);
2740   CallStub(&stub);
2741 }
2742 
2743 
TailCallExternalReference(const ExternalReference & ext,int num_arguments,int result_size)2744 void MacroAssembler::TailCallExternalReference(const ExternalReference& ext,
2745                                                int num_arguments,
2746                                                int result_size) {
2747   // TODO(1236192): Most runtime routines don't need the number of
2748   // arguments passed in because it is constant. At some point we
2749   // should remove this need and make the runtime routine entry code
2750   // smarter.
2751   mov(r0, Operand(num_arguments));
2752   JumpToExternalReference(ext);
2753 }
2754 
2755 
TailCallRuntime(Runtime::FunctionId fid,int num_arguments,int result_size)2756 void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid,
2757                                      int num_arguments,
2758                                      int result_size) {
2759   TailCallExternalReference(ExternalReference(fid, isolate()),
2760                             num_arguments,
2761                             result_size);
2762 }
2763 
2764 
JumpToExternalReference(const ExternalReference & builtin)2765 void MacroAssembler::JumpToExternalReference(const ExternalReference& builtin) {
2766 #if defined(__thumb__)
2767   // Thumb mode builtin.
2768   ASSERT((reinterpret_cast<intptr_t>(builtin.address()) & 1) == 1);
2769 #endif
2770   mov(r1, Operand(builtin));
2771   CEntryStub stub(isolate(), 1);
2772   Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
2773 }
2774 
2775 
InvokeBuiltin(Builtins::JavaScript id,InvokeFlag flag,const CallWrapper & call_wrapper)2776 void MacroAssembler::InvokeBuiltin(Builtins::JavaScript id,
2777                                    InvokeFlag flag,
2778                                    const CallWrapper& call_wrapper) {
2779   // You can't call a builtin without a valid frame.
2780   ASSERT(flag == JUMP_FUNCTION || has_frame());
2781 
2782   GetBuiltinEntry(r2, id);
2783   if (flag == CALL_FUNCTION) {
2784     call_wrapper.BeforeCall(CallSize(r2));
2785     Call(r2);
2786     call_wrapper.AfterCall();
2787   } else {
2788     ASSERT(flag == JUMP_FUNCTION);
2789     Jump(r2);
2790   }
2791 }
2792 
2793 
GetBuiltinFunction(Register target,Builtins::JavaScript id)2794 void MacroAssembler::GetBuiltinFunction(Register target,
2795                                         Builtins::JavaScript id) {
2796   // Load the builtins object into target register.
2797   ldr(target,
2798       MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
2799   ldr(target, FieldMemOperand(target, GlobalObject::kBuiltinsOffset));
2800   // Load the JavaScript builtin function from the builtins object.
2801   ldr(target, FieldMemOperand(target,
2802                           JSBuiltinsObject::OffsetOfFunctionWithId(id)));
2803 }
2804 
2805 
GetBuiltinEntry(Register target,Builtins::JavaScript id)2806 void MacroAssembler::GetBuiltinEntry(Register target, Builtins::JavaScript id) {
2807   ASSERT(!target.is(r1));
2808   GetBuiltinFunction(r1, id);
2809   // Load the code entry point from the builtins object.
2810   ldr(target, FieldMemOperand(r1, JSFunction::kCodeEntryOffset));
2811 }
2812 
2813 
SetCounter(StatsCounter * counter,int value,Register scratch1,Register scratch2)2814 void MacroAssembler::SetCounter(StatsCounter* counter, int value,
2815                                 Register scratch1, Register scratch2) {
2816   if (FLAG_native_code_counters && counter->Enabled()) {
2817     mov(scratch1, Operand(value));
2818     mov(scratch2, Operand(ExternalReference(counter)));
2819     str(scratch1, MemOperand(scratch2));
2820   }
2821 }
2822 
2823 
IncrementCounter(StatsCounter * counter,int value,Register scratch1,Register scratch2)2824 void MacroAssembler::IncrementCounter(StatsCounter* counter, int value,
2825                                       Register scratch1, Register scratch2) {
2826   ASSERT(value > 0);
2827   if (FLAG_native_code_counters && counter->Enabled()) {
2828     mov(scratch2, Operand(ExternalReference(counter)));
2829     ldr(scratch1, MemOperand(scratch2));
2830     add(scratch1, scratch1, Operand(value));
2831     str(scratch1, MemOperand(scratch2));
2832   }
2833 }
2834 
2835 
DecrementCounter(StatsCounter * counter,int value,Register scratch1,Register scratch2)2836 void MacroAssembler::DecrementCounter(StatsCounter* counter, int value,
2837                                       Register scratch1, Register scratch2) {
2838   ASSERT(value > 0);
2839   if (FLAG_native_code_counters && counter->Enabled()) {
2840     mov(scratch2, Operand(ExternalReference(counter)));
2841     ldr(scratch1, MemOperand(scratch2));
2842     sub(scratch1, scratch1, Operand(value));
2843     str(scratch1, MemOperand(scratch2));
2844   }
2845 }
2846 
2847 
Assert(Condition cond,BailoutReason reason)2848 void MacroAssembler::Assert(Condition cond, BailoutReason reason) {
2849   if (emit_debug_code())
2850     Check(cond, reason);
2851 }
2852 
2853 
AssertFastElements(Register elements)2854 void MacroAssembler::AssertFastElements(Register elements) {
2855   if (emit_debug_code()) {
2856     ASSERT(!elements.is(ip));
2857     Label ok;
2858     push(elements);
2859     ldr(elements, FieldMemOperand(elements, HeapObject::kMapOffset));
2860     LoadRoot(ip, Heap::kFixedArrayMapRootIndex);
2861     cmp(elements, ip);
2862     b(eq, &ok);
2863     LoadRoot(ip, Heap::kFixedDoubleArrayMapRootIndex);
2864     cmp(elements, ip);
2865     b(eq, &ok);
2866     LoadRoot(ip, Heap::kFixedCOWArrayMapRootIndex);
2867     cmp(elements, ip);
2868     b(eq, &ok);
2869     Abort(kJSObjectWithFastElementsMapHasSlowElements);
2870     bind(&ok);
2871     pop(elements);
2872   }
2873 }
2874 
2875 
Check(Condition cond,BailoutReason reason)2876 void MacroAssembler::Check(Condition cond, BailoutReason reason) {
2877   Label L;
2878   b(cond, &L);
2879   Abort(reason);
2880   // will not return here
2881   bind(&L);
2882 }
2883 
2884 
Abort(BailoutReason reason)2885 void MacroAssembler::Abort(BailoutReason reason) {
2886   Label abort_start;
2887   bind(&abort_start);
2888 #ifdef DEBUG
2889   const char* msg = GetBailoutReason(reason);
2890   if (msg != NULL) {
2891     RecordComment("Abort message: ");
2892     RecordComment(msg);
2893   }
2894 
2895   if (FLAG_trap_on_abort) {
2896     stop(msg);
2897     return;
2898   }
2899 #endif
2900 
2901   mov(r0, Operand(Smi::FromInt(reason)));
2902   push(r0);
2903 
2904   // Disable stub call restrictions to always allow calls to abort.
2905   if (!has_frame_) {
2906     // We don't actually want to generate a pile of code for this, so just
2907     // claim there is a stack frame, without generating one.
2908     FrameScope scope(this, StackFrame::NONE);
2909     CallRuntime(Runtime::kAbort, 1);
2910   } else {
2911     CallRuntime(Runtime::kAbort, 1);
2912   }
2913   // will not return here
2914   if (is_const_pool_blocked()) {
2915     // If the calling code cares about the exact number of
2916     // instructions generated, we insert padding here to keep the size
2917     // of the Abort macro constant.
2918     static const int kExpectedAbortInstructions = 7;
2919     int abort_instructions = InstructionsGeneratedSince(&abort_start);
2920     ASSERT(abort_instructions <= kExpectedAbortInstructions);
2921     while (abort_instructions++ < kExpectedAbortInstructions) {
2922       nop();
2923     }
2924   }
2925 }
2926 
2927 
LoadContext(Register dst,int context_chain_length)2928 void MacroAssembler::LoadContext(Register dst, int context_chain_length) {
2929   if (context_chain_length > 0) {
2930     // Move up the chain of contexts to the context containing the slot.
2931     ldr(dst, MemOperand(cp, Context::SlotOffset(Context::PREVIOUS_INDEX)));
2932     for (int i = 1; i < context_chain_length; i++) {
2933       ldr(dst, MemOperand(dst, Context::SlotOffset(Context::PREVIOUS_INDEX)));
2934     }
2935   } else {
2936     // Slot is in the current function context.  Move it into the
2937     // destination register in case we store into it (the write barrier
2938     // cannot be allowed to destroy the context in esi).
2939     mov(dst, cp);
2940   }
2941 }
2942 
2943 
LoadTransitionedArrayMapConditional(ElementsKind expected_kind,ElementsKind transitioned_kind,Register map_in_out,Register scratch,Label * no_map_match)2944 void MacroAssembler::LoadTransitionedArrayMapConditional(
2945     ElementsKind expected_kind,
2946     ElementsKind transitioned_kind,
2947     Register map_in_out,
2948     Register scratch,
2949     Label* no_map_match) {
2950   // Load the global or builtins object from the current context.
2951   ldr(scratch,
2952       MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
2953   ldr(scratch, FieldMemOperand(scratch, GlobalObject::kNativeContextOffset));
2954 
2955   // Check that the function's map is the same as the expected cached map.
2956   ldr(scratch,
2957       MemOperand(scratch,
2958                  Context::SlotOffset(Context::JS_ARRAY_MAPS_INDEX)));
2959   size_t offset = expected_kind * kPointerSize +
2960       FixedArrayBase::kHeaderSize;
2961   ldr(ip, FieldMemOperand(scratch, offset));
2962   cmp(map_in_out, ip);
2963   b(ne, no_map_match);
2964 
2965   // Use the transitioned cached map.
2966   offset = transitioned_kind * kPointerSize +
2967       FixedArrayBase::kHeaderSize;
2968   ldr(map_in_out, FieldMemOperand(scratch, offset));
2969 }
2970 
2971 
LoadGlobalFunction(int index,Register function)2972 void MacroAssembler::LoadGlobalFunction(int index, Register function) {
2973   // Load the global or builtins object from the current context.
2974   ldr(function,
2975       MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
2976   // Load the native context from the global or builtins object.
2977   ldr(function, FieldMemOperand(function,
2978                                 GlobalObject::kNativeContextOffset));
2979   // Load the function from the native context.
2980   ldr(function, MemOperand(function, Context::SlotOffset(index)));
2981 }
2982 
2983 
LoadGlobalFunctionInitialMap(Register function,Register map,Register scratch)2984 void MacroAssembler::LoadGlobalFunctionInitialMap(Register function,
2985                                                   Register map,
2986                                                   Register scratch) {
2987   // Load the initial map. The global functions all have initial maps.
2988   ldr(map, FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
2989   if (emit_debug_code()) {
2990     Label ok, fail;
2991     CheckMap(map, scratch, Heap::kMetaMapRootIndex, &fail, DO_SMI_CHECK);
2992     b(&ok);
2993     bind(&fail);
2994     Abort(kGlobalFunctionsMustHaveInitialMap);
2995     bind(&ok);
2996   }
2997 }
2998 
2999 
JumpIfNotPowerOfTwoOrZero(Register reg,Register scratch,Label * not_power_of_two_or_zero)3000 void MacroAssembler::JumpIfNotPowerOfTwoOrZero(
3001     Register reg,
3002     Register scratch,
3003     Label* not_power_of_two_or_zero) {
3004   sub(scratch, reg, Operand(1), SetCC);
3005   b(mi, not_power_of_two_or_zero);
3006   tst(scratch, reg);
3007   b(ne, not_power_of_two_or_zero);
3008 }
3009 
3010 
JumpIfNotPowerOfTwoOrZeroAndNeg(Register reg,Register scratch,Label * zero_and_neg,Label * not_power_of_two)3011 void MacroAssembler::JumpIfNotPowerOfTwoOrZeroAndNeg(
3012     Register reg,
3013     Register scratch,
3014     Label* zero_and_neg,
3015     Label* not_power_of_two) {
3016   sub(scratch, reg, Operand(1), SetCC);
3017   b(mi, zero_and_neg);
3018   tst(scratch, reg);
3019   b(ne, not_power_of_two);
3020 }
3021 
3022 
JumpIfNotBothSmi(Register reg1,Register reg2,Label * on_not_both_smi)3023 void MacroAssembler::JumpIfNotBothSmi(Register reg1,
3024                                       Register reg2,
3025                                       Label* on_not_both_smi) {
3026   STATIC_ASSERT(kSmiTag == 0);
3027   tst(reg1, Operand(kSmiTagMask));
3028   tst(reg2, Operand(kSmiTagMask), eq);
3029   b(ne, on_not_both_smi);
3030 }
3031 
3032 
UntagAndJumpIfSmi(Register dst,Register src,Label * smi_case)3033 void MacroAssembler::UntagAndJumpIfSmi(
3034     Register dst, Register src, Label* smi_case) {
3035   STATIC_ASSERT(kSmiTag == 0);
3036   SmiUntag(dst, src, SetCC);
3037   b(cc, smi_case);  // Shifter carry is not set for a smi.
3038 }
3039 
3040 
UntagAndJumpIfNotSmi(Register dst,Register src,Label * non_smi_case)3041 void MacroAssembler::UntagAndJumpIfNotSmi(
3042     Register dst, Register src, Label* non_smi_case) {
3043   STATIC_ASSERT(kSmiTag == 0);
3044   SmiUntag(dst, src, SetCC);
3045   b(cs, non_smi_case);  // Shifter carry is set for a non-smi.
3046 }
3047 
3048 
JumpIfEitherSmi(Register reg1,Register reg2,Label * on_either_smi)3049 void MacroAssembler::JumpIfEitherSmi(Register reg1,
3050                                      Register reg2,
3051                                      Label* on_either_smi) {
3052   STATIC_ASSERT(kSmiTag == 0);
3053   tst(reg1, Operand(kSmiTagMask));
3054   tst(reg2, Operand(kSmiTagMask), ne);
3055   b(eq, on_either_smi);
3056 }
3057 
3058 
AssertNotSmi(Register object)3059 void MacroAssembler::AssertNotSmi(Register object) {
3060   if (emit_debug_code()) {
3061     STATIC_ASSERT(kSmiTag == 0);
3062     tst(object, Operand(kSmiTagMask));
3063     Check(ne, kOperandIsASmi);
3064   }
3065 }
3066 
3067 
AssertSmi(Register object)3068 void MacroAssembler::AssertSmi(Register object) {
3069   if (emit_debug_code()) {
3070     STATIC_ASSERT(kSmiTag == 0);
3071     tst(object, Operand(kSmiTagMask));
3072     Check(eq, kOperandIsNotSmi);
3073   }
3074 }
3075 
3076 
AssertString(Register object)3077 void MacroAssembler::AssertString(Register object) {
3078   if (emit_debug_code()) {
3079     STATIC_ASSERT(kSmiTag == 0);
3080     tst(object, Operand(kSmiTagMask));
3081     Check(ne, kOperandIsASmiAndNotAString);
3082     push(object);
3083     ldr(object, FieldMemOperand(object, HeapObject::kMapOffset));
3084     CompareInstanceType(object, object, FIRST_NONSTRING_TYPE);
3085     pop(object);
3086     Check(lo, kOperandIsNotAString);
3087   }
3088 }
3089 
3090 
AssertName(Register object)3091 void MacroAssembler::AssertName(Register object) {
3092   if (emit_debug_code()) {
3093     STATIC_ASSERT(kSmiTag == 0);
3094     tst(object, Operand(kSmiTagMask));
3095     Check(ne, kOperandIsASmiAndNotAName);
3096     push(object);
3097     ldr(object, FieldMemOperand(object, HeapObject::kMapOffset));
3098     CompareInstanceType(object, object, LAST_NAME_TYPE);
3099     pop(object);
3100     Check(le, kOperandIsNotAName);
3101   }
3102 }
3103 
3104 
AssertUndefinedOrAllocationSite(Register object,Register scratch)3105 void MacroAssembler::AssertUndefinedOrAllocationSite(Register object,
3106                                                      Register scratch) {
3107   if (emit_debug_code()) {
3108     Label done_checking;
3109     AssertNotSmi(object);
3110     CompareRoot(object, Heap::kUndefinedValueRootIndex);
3111     b(eq, &done_checking);
3112     ldr(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
3113     CompareRoot(scratch, Heap::kAllocationSiteMapRootIndex);
3114     Assert(eq, kExpectedUndefinedOrCell);
3115     bind(&done_checking);
3116   }
3117 }
3118 
3119 
AssertIsRoot(Register reg,Heap::RootListIndex index)3120 void MacroAssembler::AssertIsRoot(Register reg, Heap::RootListIndex index) {
3121   if (emit_debug_code()) {
3122     CompareRoot(reg, index);
3123     Check(eq, kHeapNumberMapRegisterClobbered);
3124   }
3125 }
3126 
3127 
JumpIfNotHeapNumber(Register object,Register heap_number_map,Register scratch,Label * on_not_heap_number)3128 void MacroAssembler::JumpIfNotHeapNumber(Register object,
3129                                          Register heap_number_map,
3130                                          Register scratch,
3131                                          Label* on_not_heap_number) {
3132   ldr(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
3133   AssertIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
3134   cmp(scratch, heap_number_map);
3135   b(ne, on_not_heap_number);
3136 }
3137 
3138 
LookupNumberStringCache(Register object,Register result,Register scratch1,Register scratch2,Register scratch3,Label * not_found)3139 void MacroAssembler::LookupNumberStringCache(Register object,
3140                                              Register result,
3141                                              Register scratch1,
3142                                              Register scratch2,
3143                                              Register scratch3,
3144                                              Label* not_found) {
3145   // Use of registers. Register result is used as a temporary.
3146   Register number_string_cache = result;
3147   Register mask = scratch3;
3148 
3149   // Load the number string cache.
3150   LoadRoot(number_string_cache, Heap::kNumberStringCacheRootIndex);
3151 
3152   // Make the hash mask from the length of the number string cache. It
3153   // contains two elements (number and string) for each cache entry.
3154   ldr(mask, FieldMemOperand(number_string_cache, FixedArray::kLengthOffset));
3155   // Divide length by two (length is a smi).
3156   mov(mask, Operand(mask, ASR, kSmiTagSize + 1));
3157   sub(mask, mask, Operand(1));  // Make mask.
3158 
3159   // Calculate the entry in the number string cache. The hash value in the
3160   // number string cache for smis is just the smi value, and the hash for
3161   // doubles is the xor of the upper and lower words. See
3162   // Heap::GetNumberStringCache.
3163   Label is_smi;
3164   Label load_result_from_cache;
3165   JumpIfSmi(object, &is_smi);
3166   CheckMap(object,
3167            scratch1,
3168            Heap::kHeapNumberMapRootIndex,
3169            not_found,
3170            DONT_DO_SMI_CHECK);
3171 
3172   STATIC_ASSERT(8 == kDoubleSize);
3173   add(scratch1,
3174       object,
3175       Operand(HeapNumber::kValueOffset - kHeapObjectTag));
3176   ldm(ia, scratch1, scratch1.bit() | scratch2.bit());
3177   eor(scratch1, scratch1, Operand(scratch2));
3178   and_(scratch1, scratch1, Operand(mask));
3179 
3180   // Calculate address of entry in string cache: each entry consists
3181   // of two pointer sized fields.
3182   add(scratch1,
3183       number_string_cache,
3184       Operand(scratch1, LSL, kPointerSizeLog2 + 1));
3185 
3186   Register probe = mask;
3187   ldr(probe, FieldMemOperand(scratch1, FixedArray::kHeaderSize));
3188   JumpIfSmi(probe, not_found);
3189   sub(scratch2, object, Operand(kHeapObjectTag));
3190   vldr(d0, scratch2, HeapNumber::kValueOffset);
3191   sub(probe, probe, Operand(kHeapObjectTag));
3192   vldr(d1, probe, HeapNumber::kValueOffset);
3193   VFPCompareAndSetFlags(d0, d1);
3194   b(ne, not_found);  // The cache did not contain this value.
3195   b(&load_result_from_cache);
3196 
3197   bind(&is_smi);
3198   Register scratch = scratch1;
3199   and_(scratch, mask, Operand(object, ASR, 1));
3200   // Calculate address of entry in string cache: each entry consists
3201   // of two pointer sized fields.
3202   add(scratch,
3203       number_string_cache,
3204       Operand(scratch, LSL, kPointerSizeLog2 + 1));
3205 
3206   // Check if the entry is the smi we are looking for.
3207   ldr(probe, FieldMemOperand(scratch, FixedArray::kHeaderSize));
3208   cmp(object, probe);
3209   b(ne, not_found);
3210 
3211   // Get the result from the cache.
3212   bind(&load_result_from_cache);
3213   ldr(result, FieldMemOperand(scratch, FixedArray::kHeaderSize + kPointerSize));
3214   IncrementCounter(isolate()->counters()->number_to_string_native(),
3215                    1,
3216                    scratch1,
3217                    scratch2);
3218 }
3219 
3220 
JumpIfNonSmisNotBothSequentialAsciiStrings(Register first,Register second,Register scratch1,Register scratch2,Label * failure)3221 void MacroAssembler::JumpIfNonSmisNotBothSequentialAsciiStrings(
3222     Register first,
3223     Register second,
3224     Register scratch1,
3225     Register scratch2,
3226     Label* failure) {
3227   // Test that both first and second are sequential ASCII strings.
3228   // Assume that they are non-smis.
3229   ldr(scratch1, FieldMemOperand(first, HeapObject::kMapOffset));
3230   ldr(scratch2, FieldMemOperand(second, HeapObject::kMapOffset));
3231   ldrb(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset));
3232   ldrb(scratch2, FieldMemOperand(scratch2, Map::kInstanceTypeOffset));
3233 
3234   JumpIfBothInstanceTypesAreNotSequentialAscii(scratch1,
3235                                                scratch2,
3236                                                scratch1,
3237                                                scratch2,
3238                                                failure);
3239 }
3240 
JumpIfNotBothSequentialAsciiStrings(Register first,Register second,Register scratch1,Register scratch2,Label * failure)3241 void MacroAssembler::JumpIfNotBothSequentialAsciiStrings(Register first,
3242                                                          Register second,
3243                                                          Register scratch1,
3244                                                          Register scratch2,
3245                                                          Label* failure) {
3246   // Check that neither is a smi.
3247   and_(scratch1, first, Operand(second));
3248   JumpIfSmi(scratch1, failure);
3249   JumpIfNonSmisNotBothSequentialAsciiStrings(first,
3250                                              second,
3251                                              scratch1,
3252                                              scratch2,
3253                                              failure);
3254 }
3255 
3256 
JumpIfNotUniqueName(Register reg,Label * not_unique_name)3257 void MacroAssembler::JumpIfNotUniqueName(Register reg,
3258                                          Label* not_unique_name) {
3259   STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
3260   Label succeed;
3261   tst(reg, Operand(kIsNotStringMask | kIsNotInternalizedMask));
3262   b(eq, &succeed);
3263   cmp(reg, Operand(SYMBOL_TYPE));
3264   b(ne, not_unique_name);
3265 
3266   bind(&succeed);
3267 }
3268 
3269 
3270 // Allocates a heap number or jumps to the need_gc label if the young space
3271 // is full and a scavenge is needed.
AllocateHeapNumber(Register result,Register scratch1,Register scratch2,Register heap_number_map,Label * gc_required,TaggingMode tagging_mode)3272 void MacroAssembler::AllocateHeapNumber(Register result,
3273                                         Register scratch1,
3274                                         Register scratch2,
3275                                         Register heap_number_map,
3276                                         Label* gc_required,
3277                                         TaggingMode tagging_mode) {
3278   // Allocate an object in the heap for the heap number and tag it as a heap
3279   // object.
3280   Allocate(HeapNumber::kSize, result, scratch1, scratch2, gc_required,
3281            tagging_mode == TAG_RESULT ? TAG_OBJECT : NO_ALLOCATION_FLAGS);
3282 
3283   // Store heap number map in the allocated object.
3284   AssertIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
3285   if (tagging_mode == TAG_RESULT) {
3286     str(heap_number_map, FieldMemOperand(result, HeapObject::kMapOffset));
3287   } else {
3288     str(heap_number_map, MemOperand(result, HeapObject::kMapOffset));
3289   }
3290 }
3291 
3292 
AllocateHeapNumberWithValue(Register result,DwVfpRegister value,Register scratch1,Register scratch2,Register heap_number_map,Label * gc_required)3293 void MacroAssembler::AllocateHeapNumberWithValue(Register result,
3294                                                  DwVfpRegister value,
3295                                                  Register scratch1,
3296                                                  Register scratch2,
3297                                                  Register heap_number_map,
3298                                                  Label* gc_required) {
3299   AllocateHeapNumber(result, scratch1, scratch2, heap_number_map, gc_required);
3300   sub(scratch1, result, Operand(kHeapObjectTag));
3301   vstr(value, scratch1, HeapNumber::kValueOffset);
3302 }
3303 
3304 
3305 // Copies a fixed number of fields of heap objects from src to dst.
CopyFields(Register dst,Register src,LowDwVfpRegister double_scratch,int field_count)3306 void MacroAssembler::CopyFields(Register dst,
3307                                 Register src,
3308                                 LowDwVfpRegister double_scratch,
3309                                 int field_count) {
3310   int double_count = field_count / (DwVfpRegister::kSizeInBytes / kPointerSize);
3311   for (int i = 0; i < double_count; i++) {
3312     vldr(double_scratch, FieldMemOperand(src, i * DwVfpRegister::kSizeInBytes));
3313     vstr(double_scratch, FieldMemOperand(dst, i * DwVfpRegister::kSizeInBytes));
3314   }
3315 
3316   STATIC_ASSERT(SwVfpRegister::kSizeInBytes == kPointerSize);
3317   STATIC_ASSERT(2 * SwVfpRegister::kSizeInBytes == DwVfpRegister::kSizeInBytes);
3318 
3319   int remain = field_count % (DwVfpRegister::kSizeInBytes / kPointerSize);
3320   if (remain != 0) {
3321     vldr(double_scratch.low(),
3322          FieldMemOperand(src, (field_count - 1) * kPointerSize));
3323     vstr(double_scratch.low(),
3324          FieldMemOperand(dst, (field_count - 1) * kPointerSize));
3325   }
3326 }
3327 
3328 
CopyBytes(Register src,Register dst,Register length,Register scratch)3329 void MacroAssembler::CopyBytes(Register src,
3330                                Register dst,
3331                                Register length,
3332                                Register scratch) {
3333   Label align_loop_1, word_loop, byte_loop, byte_loop_1, done;
3334 
3335   // Align src before copying in word size chunks.
3336   cmp(length, Operand(kPointerSize));
3337   b(le, &byte_loop);
3338 
3339   bind(&align_loop_1);
3340   tst(src, Operand(kPointerSize - 1));
3341   b(eq, &word_loop);
3342   ldrb(scratch, MemOperand(src, 1, PostIndex));
3343   strb(scratch, MemOperand(dst, 1, PostIndex));
3344   sub(length, length, Operand(1), SetCC);
3345   b(&align_loop_1);
3346   // Copy bytes in word size chunks.
3347   bind(&word_loop);
3348   if (emit_debug_code()) {
3349     tst(src, Operand(kPointerSize - 1));
3350     Assert(eq, kExpectingAlignmentForCopyBytes);
3351   }
3352   cmp(length, Operand(kPointerSize));
3353   b(lt, &byte_loop);
3354   ldr(scratch, MemOperand(src, kPointerSize, PostIndex));
3355   if (CpuFeatures::IsSupported(UNALIGNED_ACCESSES)) {
3356     str(scratch, MemOperand(dst, kPointerSize, PostIndex));
3357   } else {
3358     strb(scratch, MemOperand(dst, 1, PostIndex));
3359     mov(scratch, Operand(scratch, LSR, 8));
3360     strb(scratch, MemOperand(dst, 1, PostIndex));
3361     mov(scratch, Operand(scratch, LSR, 8));
3362     strb(scratch, MemOperand(dst, 1, PostIndex));
3363     mov(scratch, Operand(scratch, LSR, 8));
3364     strb(scratch, MemOperand(dst, 1, PostIndex));
3365   }
3366   sub(length, length, Operand(kPointerSize));
3367   b(&word_loop);
3368 
3369   // Copy the last bytes if any left.
3370   bind(&byte_loop);
3371   cmp(length, Operand::Zero());
3372   b(eq, &done);
3373   bind(&byte_loop_1);
3374   ldrb(scratch, MemOperand(src, 1, PostIndex));
3375   strb(scratch, MemOperand(dst, 1, PostIndex));
3376   sub(length, length, Operand(1), SetCC);
3377   b(ne, &byte_loop_1);
3378   bind(&done);
3379 }
3380 
3381 
InitializeFieldsWithFiller(Register start_offset,Register end_offset,Register filler)3382 void MacroAssembler::InitializeFieldsWithFiller(Register start_offset,
3383                                                 Register end_offset,
3384                                                 Register filler) {
3385   Label loop, entry;
3386   b(&entry);
3387   bind(&loop);
3388   str(filler, MemOperand(start_offset, kPointerSize, PostIndex));
3389   bind(&entry);
3390   cmp(start_offset, end_offset);
3391   b(lt, &loop);
3392 }
3393 
3394 
CheckFor32DRegs(Register scratch)3395 void MacroAssembler::CheckFor32DRegs(Register scratch) {
3396   mov(scratch, Operand(ExternalReference::cpu_features()));
3397   ldr(scratch, MemOperand(scratch));
3398   tst(scratch, Operand(1u << VFP32DREGS));
3399 }
3400 
3401 
SaveFPRegs(Register location,Register scratch)3402 void MacroAssembler::SaveFPRegs(Register location, Register scratch) {
3403   CheckFor32DRegs(scratch);
3404   vstm(db_w, location, d16, d31, ne);
3405   sub(location, location, Operand(16 * kDoubleSize), LeaveCC, eq);
3406   vstm(db_w, location, d0, d15);
3407 }
3408 
3409 
RestoreFPRegs(Register location,Register scratch)3410 void MacroAssembler::RestoreFPRegs(Register location, Register scratch) {
3411   CheckFor32DRegs(scratch);
3412   vldm(ia_w, location, d0, d15);
3413   vldm(ia_w, location, d16, d31, ne);
3414   add(location, location, Operand(16 * kDoubleSize), LeaveCC, eq);
3415 }
3416 
3417 
JumpIfBothInstanceTypesAreNotSequentialAscii(Register first,Register second,Register scratch1,Register scratch2,Label * failure)3418 void MacroAssembler::JumpIfBothInstanceTypesAreNotSequentialAscii(
3419     Register first,
3420     Register second,
3421     Register scratch1,
3422     Register scratch2,
3423     Label* failure) {
3424   const int kFlatAsciiStringMask =
3425       kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask;
3426   const int kFlatAsciiStringTag =
3427       kStringTag | kOneByteStringTag | kSeqStringTag;
3428   and_(scratch1, first, Operand(kFlatAsciiStringMask));
3429   and_(scratch2, second, Operand(kFlatAsciiStringMask));
3430   cmp(scratch1, Operand(kFlatAsciiStringTag));
3431   // Ignore second test if first test failed.
3432   cmp(scratch2, Operand(kFlatAsciiStringTag), eq);
3433   b(ne, failure);
3434 }
3435 
3436 
JumpIfInstanceTypeIsNotSequentialAscii(Register type,Register scratch,Label * failure)3437 void MacroAssembler::JumpIfInstanceTypeIsNotSequentialAscii(Register type,
3438                                                             Register scratch,
3439                                                             Label* failure) {
3440   const int kFlatAsciiStringMask =
3441       kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask;
3442   const int kFlatAsciiStringTag =
3443       kStringTag | kOneByteStringTag | kSeqStringTag;
3444   and_(scratch, type, Operand(kFlatAsciiStringMask));
3445   cmp(scratch, Operand(kFlatAsciiStringTag));
3446   b(ne, failure);
3447 }
3448 
3449 static const int kRegisterPassedArguments = 4;
3450 
3451 
CalculateStackPassedWords(int num_reg_arguments,int num_double_arguments)3452 int MacroAssembler::CalculateStackPassedWords(int num_reg_arguments,
3453                                               int num_double_arguments) {
3454   int stack_passed_words = 0;
3455   if (use_eabi_hardfloat()) {
3456     // In the hard floating point calling convention, we can use
3457     // all double registers to pass doubles.
3458     if (num_double_arguments > DoubleRegister::NumRegisters()) {
3459       stack_passed_words +=
3460           2 * (num_double_arguments - DoubleRegister::NumRegisters());
3461     }
3462   } else {
3463     // In the soft floating point calling convention, every double
3464     // argument is passed using two registers.
3465     num_reg_arguments += 2 * num_double_arguments;
3466   }
3467   // Up to four simple arguments are passed in registers r0..r3.
3468   if (num_reg_arguments > kRegisterPassedArguments) {
3469     stack_passed_words += num_reg_arguments - kRegisterPassedArguments;
3470   }
3471   return stack_passed_words;
3472 }
3473 
3474 
EmitSeqStringSetCharCheck(Register string,Register index,Register value,uint32_t encoding_mask)3475 void MacroAssembler::EmitSeqStringSetCharCheck(Register string,
3476                                                Register index,
3477                                                Register value,
3478                                                uint32_t encoding_mask) {
3479   Label is_object;
3480   SmiTst(string);
3481   Check(ne, kNonObject);
3482 
3483   ldr(ip, FieldMemOperand(string, HeapObject::kMapOffset));
3484   ldrb(ip, FieldMemOperand(ip, Map::kInstanceTypeOffset));
3485 
3486   and_(ip, ip, Operand(kStringRepresentationMask | kStringEncodingMask));
3487   cmp(ip, Operand(encoding_mask));
3488   Check(eq, kUnexpectedStringType);
3489 
3490   // The index is assumed to be untagged coming in, tag it to compare with the
3491   // string length without using a temp register, it is restored at the end of
3492   // this function.
3493   Label index_tag_ok, index_tag_bad;
3494   TrySmiTag(index, index, &index_tag_bad);
3495   b(&index_tag_ok);
3496   bind(&index_tag_bad);
3497   Abort(kIndexIsTooLarge);
3498   bind(&index_tag_ok);
3499 
3500   ldr(ip, FieldMemOperand(string, String::kLengthOffset));
3501   cmp(index, ip);
3502   Check(lt, kIndexIsTooLarge);
3503 
3504   cmp(index, Operand(Smi::FromInt(0)));
3505   Check(ge, kIndexIsNegative);
3506 
3507   SmiUntag(index, index);
3508 }
3509 
3510 
PrepareCallCFunction(int num_reg_arguments,int num_double_arguments,Register scratch)3511 void MacroAssembler::PrepareCallCFunction(int num_reg_arguments,
3512                                           int num_double_arguments,
3513                                           Register scratch) {
3514   int frame_alignment = ActivationFrameAlignment();
3515   int stack_passed_arguments = CalculateStackPassedWords(
3516       num_reg_arguments, num_double_arguments);
3517   if (frame_alignment > kPointerSize) {
3518     // Make stack end at alignment and make room for num_arguments - 4 words
3519     // and the original value of sp.
3520     mov(scratch, sp);
3521     sub(sp, sp, Operand((stack_passed_arguments + 1) * kPointerSize));
3522     ASSERT(IsPowerOf2(frame_alignment));
3523     and_(sp, sp, Operand(-frame_alignment));
3524     str(scratch, MemOperand(sp, stack_passed_arguments * kPointerSize));
3525   } else {
3526     sub(sp, sp, Operand(stack_passed_arguments * kPointerSize));
3527   }
3528 }
3529 
3530 
PrepareCallCFunction(int num_reg_arguments,Register scratch)3531 void MacroAssembler::PrepareCallCFunction(int num_reg_arguments,
3532                                           Register scratch) {
3533   PrepareCallCFunction(num_reg_arguments, 0, scratch);
3534 }
3535 
3536 
MovToFloatParameter(DwVfpRegister src)3537 void MacroAssembler::MovToFloatParameter(DwVfpRegister src) {
3538   ASSERT(src.is(d0));
3539   if (!use_eabi_hardfloat()) {
3540     vmov(r0, r1, src);
3541   }
3542 }
3543 
3544 
3545 // On ARM this is just a synonym to make the purpose clear.
MovToFloatResult(DwVfpRegister src)3546 void MacroAssembler::MovToFloatResult(DwVfpRegister src) {
3547   MovToFloatParameter(src);
3548 }
3549 
3550 
MovToFloatParameters(DwVfpRegister src1,DwVfpRegister src2)3551 void MacroAssembler::MovToFloatParameters(DwVfpRegister src1,
3552                                           DwVfpRegister src2) {
3553   ASSERT(src1.is(d0));
3554   ASSERT(src2.is(d1));
3555   if (!use_eabi_hardfloat()) {
3556     vmov(r0, r1, src1);
3557     vmov(r2, r3, src2);
3558   }
3559 }
3560 
3561 
CallCFunction(ExternalReference function,int num_reg_arguments,int num_double_arguments)3562 void MacroAssembler::CallCFunction(ExternalReference function,
3563                                    int num_reg_arguments,
3564                                    int num_double_arguments) {
3565   mov(ip, Operand(function));
3566   CallCFunctionHelper(ip, num_reg_arguments, num_double_arguments);
3567 }
3568 
3569 
CallCFunction(Register function,int num_reg_arguments,int num_double_arguments)3570 void MacroAssembler::CallCFunction(Register function,
3571                                    int num_reg_arguments,
3572                                    int num_double_arguments) {
3573   CallCFunctionHelper(function, num_reg_arguments, num_double_arguments);
3574 }
3575 
3576 
CallCFunction(ExternalReference function,int num_arguments)3577 void MacroAssembler::CallCFunction(ExternalReference function,
3578                                    int num_arguments) {
3579   CallCFunction(function, num_arguments, 0);
3580 }
3581 
3582 
CallCFunction(Register function,int num_arguments)3583 void MacroAssembler::CallCFunction(Register function,
3584                                    int num_arguments) {
3585   CallCFunction(function, num_arguments, 0);
3586 }
3587 
3588 
CallCFunctionHelper(Register function,int num_reg_arguments,int num_double_arguments)3589 void MacroAssembler::CallCFunctionHelper(Register function,
3590                                          int num_reg_arguments,
3591                                          int num_double_arguments) {
3592   ASSERT(has_frame());
3593   // Make sure that the stack is aligned before calling a C function unless
3594   // running in the simulator. The simulator has its own alignment check which
3595   // provides more information.
3596 #if V8_HOST_ARCH_ARM
3597   if (emit_debug_code()) {
3598     int frame_alignment = OS::ActivationFrameAlignment();
3599     int frame_alignment_mask = frame_alignment - 1;
3600     if (frame_alignment > kPointerSize) {
3601       ASSERT(IsPowerOf2(frame_alignment));
3602       Label alignment_as_expected;
3603       tst(sp, Operand(frame_alignment_mask));
3604       b(eq, &alignment_as_expected);
3605       // Don't use Check here, as it will call Runtime_Abort possibly
3606       // re-entering here.
3607       stop("Unexpected alignment");
3608       bind(&alignment_as_expected);
3609     }
3610   }
3611 #endif
3612 
3613   // Just call directly. The function called cannot cause a GC, or
3614   // allow preemption, so the return address in the link register
3615   // stays correct.
3616   Call(function);
3617   int stack_passed_arguments = CalculateStackPassedWords(
3618       num_reg_arguments, num_double_arguments);
3619   if (ActivationFrameAlignment() > kPointerSize) {
3620     ldr(sp, MemOperand(sp, stack_passed_arguments * kPointerSize));
3621   } else {
3622     add(sp, sp, Operand(stack_passed_arguments * sizeof(kPointerSize)));
3623   }
3624 }
3625 
3626 
GetRelocatedValueLocation(Register ldr_location,Register result)3627 void MacroAssembler::GetRelocatedValueLocation(Register ldr_location,
3628                                                Register result) {
3629   const uint32_t kLdrOffsetMask = (1 << 12) - 1;
3630   ldr(result, MemOperand(ldr_location));
3631   if (emit_debug_code()) {
3632     // Check that the instruction is a ldr reg, [<pc or pp> + offset] .
3633     if (FLAG_enable_ool_constant_pool) {
3634       and_(result, result, Operand(kLdrPpPattern));
3635       cmp(result, Operand(kLdrPpPattern));
3636       Check(eq, kTheInstructionToPatchShouldBeALoadFromPp);
3637     } else {
3638       and_(result, result, Operand(kLdrPCPattern));
3639       cmp(result, Operand(kLdrPCPattern));
3640       Check(eq, kTheInstructionToPatchShouldBeALoadFromPc);
3641     }
3642     // Result was clobbered. Restore it.
3643     ldr(result, MemOperand(ldr_location));
3644   }
3645   // Get the address of the constant.
3646   and_(result, result, Operand(kLdrOffsetMask));
3647   if (FLAG_enable_ool_constant_pool) {
3648     add(result, pp, Operand(result));
3649   } else {
3650     add(result, ldr_location, Operand(result));
3651     add(result, result, Operand(Instruction::kPCReadOffset));
3652   }
3653 }
3654 
3655 
CheckPageFlag(Register object,Register scratch,int mask,Condition cc,Label * condition_met)3656 void MacroAssembler::CheckPageFlag(
3657     Register object,
3658     Register scratch,
3659     int mask,
3660     Condition cc,
3661     Label* condition_met) {
3662   Bfc(scratch, object, 0, kPageSizeBits);
3663   ldr(scratch, MemOperand(scratch, MemoryChunk::kFlagsOffset));
3664   tst(scratch, Operand(mask));
3665   b(cc, condition_met);
3666 }
3667 
3668 
CheckMapDeprecated(Handle<Map> map,Register scratch,Label * if_deprecated)3669 void MacroAssembler::CheckMapDeprecated(Handle<Map> map,
3670                                         Register scratch,
3671                                         Label* if_deprecated) {
3672   if (map->CanBeDeprecated()) {
3673     mov(scratch, Operand(map));
3674     ldr(scratch, FieldMemOperand(scratch, Map::kBitField3Offset));
3675     tst(scratch, Operand(Map::Deprecated::kMask));
3676     b(ne, if_deprecated);
3677   }
3678 }
3679 
3680 
JumpIfBlack(Register object,Register scratch0,Register scratch1,Label * on_black)3681 void MacroAssembler::JumpIfBlack(Register object,
3682                                  Register scratch0,
3683                                  Register scratch1,
3684                                  Label* on_black) {
3685   HasColor(object, scratch0, scratch1, on_black, 1, 0);  // kBlackBitPattern.
3686   ASSERT(strcmp(Marking::kBlackBitPattern, "10") == 0);
3687 }
3688 
3689 
HasColor(Register object,Register bitmap_scratch,Register mask_scratch,Label * has_color,int first_bit,int second_bit)3690 void MacroAssembler::HasColor(Register object,
3691                               Register bitmap_scratch,
3692                               Register mask_scratch,
3693                               Label* has_color,
3694                               int first_bit,
3695                               int second_bit) {
3696   ASSERT(!AreAliased(object, bitmap_scratch, mask_scratch, no_reg));
3697 
3698   GetMarkBits(object, bitmap_scratch, mask_scratch);
3699 
3700   Label other_color, word_boundary;
3701   ldr(ip, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
3702   tst(ip, Operand(mask_scratch));
3703   b(first_bit == 1 ? eq : ne, &other_color);
3704   // Shift left 1 by adding.
3705   add(mask_scratch, mask_scratch, Operand(mask_scratch), SetCC);
3706   b(eq, &word_boundary);
3707   tst(ip, Operand(mask_scratch));
3708   b(second_bit == 1 ? ne : eq, has_color);
3709   jmp(&other_color);
3710 
3711   bind(&word_boundary);
3712   ldr(ip, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize + kPointerSize));
3713   tst(ip, Operand(1));
3714   b(second_bit == 1 ? ne : eq, has_color);
3715   bind(&other_color);
3716 }
3717 
3718 
3719 // Detect some, but not all, common pointer-free objects.  This is used by the
3720 // incremental write barrier which doesn't care about oddballs (they are always
3721 // marked black immediately so this code is not hit).
JumpIfDataObject(Register value,Register scratch,Label * not_data_object)3722 void MacroAssembler::JumpIfDataObject(Register value,
3723                                       Register scratch,
3724                                       Label* not_data_object) {
3725   Label is_data_object;
3726   ldr(scratch, FieldMemOperand(value, HeapObject::kMapOffset));
3727   CompareRoot(scratch, Heap::kHeapNumberMapRootIndex);
3728   b(eq, &is_data_object);
3729   ASSERT(kIsIndirectStringTag == 1 && kIsIndirectStringMask == 1);
3730   ASSERT(kNotStringTag == 0x80 && kIsNotStringMask == 0x80);
3731   // If it's a string and it's not a cons string then it's an object containing
3732   // no GC pointers.
3733   ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
3734   tst(scratch, Operand(kIsIndirectStringMask | kIsNotStringMask));
3735   b(ne, not_data_object);
3736   bind(&is_data_object);
3737 }
3738 
3739 
GetMarkBits(Register addr_reg,Register bitmap_reg,Register mask_reg)3740 void MacroAssembler::GetMarkBits(Register addr_reg,
3741                                  Register bitmap_reg,
3742                                  Register mask_reg) {
3743   ASSERT(!AreAliased(addr_reg, bitmap_reg, mask_reg, no_reg));
3744   and_(bitmap_reg, addr_reg, Operand(~Page::kPageAlignmentMask));
3745   Ubfx(mask_reg, addr_reg, kPointerSizeLog2, Bitmap::kBitsPerCellLog2);
3746   const int kLowBits = kPointerSizeLog2 + Bitmap::kBitsPerCellLog2;
3747   Ubfx(ip, addr_reg, kLowBits, kPageSizeBits - kLowBits);
3748   add(bitmap_reg, bitmap_reg, Operand(ip, LSL, kPointerSizeLog2));
3749   mov(ip, Operand(1));
3750   mov(mask_reg, Operand(ip, LSL, mask_reg));
3751 }
3752 
3753 
EnsureNotWhite(Register value,Register bitmap_scratch,Register mask_scratch,Register load_scratch,Label * value_is_white_and_not_data)3754 void MacroAssembler::EnsureNotWhite(
3755     Register value,
3756     Register bitmap_scratch,
3757     Register mask_scratch,
3758     Register load_scratch,
3759     Label* value_is_white_and_not_data) {
3760   ASSERT(!AreAliased(value, bitmap_scratch, mask_scratch, ip));
3761   GetMarkBits(value, bitmap_scratch, mask_scratch);
3762 
3763   // If the value is black or grey we don't need to do anything.
3764   ASSERT(strcmp(Marking::kWhiteBitPattern, "00") == 0);
3765   ASSERT(strcmp(Marking::kBlackBitPattern, "10") == 0);
3766   ASSERT(strcmp(Marking::kGreyBitPattern, "11") == 0);
3767   ASSERT(strcmp(Marking::kImpossibleBitPattern, "01") == 0);
3768 
3769   Label done;
3770 
3771   // Since both black and grey have a 1 in the first position and white does
3772   // not have a 1 there we only need to check one bit.
3773   ldr(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
3774   tst(mask_scratch, load_scratch);
3775   b(ne, &done);
3776 
3777   if (emit_debug_code()) {
3778     // Check for impossible bit pattern.
3779     Label ok;
3780     // LSL may overflow, making the check conservative.
3781     tst(load_scratch, Operand(mask_scratch, LSL, 1));
3782     b(eq, &ok);
3783     stop("Impossible marking bit pattern");
3784     bind(&ok);
3785   }
3786 
3787   // Value is white.  We check whether it is data that doesn't need scanning.
3788   // Currently only checks for HeapNumber and non-cons strings.
3789   Register map = load_scratch;  // Holds map while checking type.
3790   Register length = load_scratch;  // Holds length of object after testing type.
3791   Label is_data_object;
3792 
3793   // Check for heap-number
3794   ldr(map, FieldMemOperand(value, HeapObject::kMapOffset));
3795   CompareRoot(map, Heap::kHeapNumberMapRootIndex);
3796   mov(length, Operand(HeapNumber::kSize), LeaveCC, eq);
3797   b(eq, &is_data_object);
3798 
3799   // Check for strings.
3800   ASSERT(kIsIndirectStringTag == 1 && kIsIndirectStringMask == 1);
3801   ASSERT(kNotStringTag == 0x80 && kIsNotStringMask == 0x80);
3802   // If it's a string and it's not a cons string then it's an object containing
3803   // no GC pointers.
3804   Register instance_type = load_scratch;
3805   ldrb(instance_type, FieldMemOperand(map, Map::kInstanceTypeOffset));
3806   tst(instance_type, Operand(kIsIndirectStringMask | kIsNotStringMask));
3807   b(ne, value_is_white_and_not_data);
3808   // It's a non-indirect (non-cons and non-slice) string.
3809   // If it's external, the length is just ExternalString::kSize.
3810   // Otherwise it's String::kHeaderSize + string->length() * (1 or 2).
3811   // External strings are the only ones with the kExternalStringTag bit
3812   // set.
3813   ASSERT_EQ(0, kSeqStringTag & kExternalStringTag);
3814   ASSERT_EQ(0, kConsStringTag & kExternalStringTag);
3815   tst(instance_type, Operand(kExternalStringTag));
3816   mov(length, Operand(ExternalString::kSize), LeaveCC, ne);
3817   b(ne, &is_data_object);
3818 
3819   // Sequential string, either ASCII or UC16.
3820   // For ASCII (char-size of 1) we shift the smi tag away to get the length.
3821   // For UC16 (char-size of 2) we just leave the smi tag in place, thereby
3822   // getting the length multiplied by 2.
3823   ASSERT(kOneByteStringTag == 4 && kStringEncodingMask == 4);
3824   ASSERT(kSmiTag == 0 && kSmiTagSize == 1);
3825   ldr(ip, FieldMemOperand(value, String::kLengthOffset));
3826   tst(instance_type, Operand(kStringEncodingMask));
3827   mov(ip, Operand(ip, LSR, 1), LeaveCC, ne);
3828   add(length, ip, Operand(SeqString::kHeaderSize + kObjectAlignmentMask));
3829   and_(length, length, Operand(~kObjectAlignmentMask));
3830 
3831   bind(&is_data_object);
3832   // Value is a data object, and it is white.  Mark it black.  Since we know
3833   // that the object is white we can make it black by flipping one bit.
3834   ldr(ip, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
3835   orr(ip, ip, Operand(mask_scratch));
3836   str(ip, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
3837 
3838   and_(bitmap_scratch, bitmap_scratch, Operand(~Page::kPageAlignmentMask));
3839   ldr(ip, MemOperand(bitmap_scratch, MemoryChunk::kLiveBytesOffset));
3840   add(ip, ip, Operand(length));
3841   str(ip, MemOperand(bitmap_scratch, MemoryChunk::kLiveBytesOffset));
3842 
3843   bind(&done);
3844 }
3845 
3846 
ClampUint8(Register output_reg,Register input_reg)3847 void MacroAssembler::ClampUint8(Register output_reg, Register input_reg) {
3848   Usat(output_reg, 8, Operand(input_reg));
3849 }
3850 
3851 
ClampDoubleToUint8(Register result_reg,DwVfpRegister input_reg,LowDwVfpRegister double_scratch)3852 void MacroAssembler::ClampDoubleToUint8(Register result_reg,
3853                                         DwVfpRegister input_reg,
3854                                         LowDwVfpRegister double_scratch) {
3855   Label done;
3856 
3857   // Handle inputs >= 255 (including +infinity).
3858   Vmov(double_scratch, 255.0, result_reg);
3859   mov(result_reg, Operand(255));
3860   VFPCompareAndSetFlags(input_reg, double_scratch);
3861   b(ge, &done);
3862 
3863   // For inputs < 255 (including negative) vcvt_u32_f64 with round-to-nearest
3864   // rounding mode will provide the correct result.
3865   vcvt_u32_f64(double_scratch.low(), input_reg, kFPSCRRounding);
3866   vmov(result_reg, double_scratch.low());
3867 
3868   bind(&done);
3869 }
3870 
3871 
LoadInstanceDescriptors(Register map,Register descriptors)3872 void MacroAssembler::LoadInstanceDescriptors(Register map,
3873                                              Register descriptors) {
3874   ldr(descriptors, FieldMemOperand(map, Map::kDescriptorsOffset));
3875 }
3876 
3877 
NumberOfOwnDescriptors(Register dst,Register map)3878 void MacroAssembler::NumberOfOwnDescriptors(Register dst, Register map) {
3879   ldr(dst, FieldMemOperand(map, Map::kBitField3Offset));
3880   DecodeField<Map::NumberOfOwnDescriptorsBits>(dst);
3881 }
3882 
3883 
EnumLength(Register dst,Register map)3884 void MacroAssembler::EnumLength(Register dst, Register map) {
3885   STATIC_ASSERT(Map::EnumLengthBits::kShift == 0);
3886   ldr(dst, FieldMemOperand(map, Map::kBitField3Offset));
3887   and_(dst, dst, Operand(Map::EnumLengthBits::kMask));
3888   SmiTag(dst);
3889 }
3890 
3891 
CheckEnumCache(Register null_value,Label * call_runtime)3892 void MacroAssembler::CheckEnumCache(Register null_value, Label* call_runtime) {
3893   Register  empty_fixed_array_value = r6;
3894   LoadRoot(empty_fixed_array_value, Heap::kEmptyFixedArrayRootIndex);
3895   Label next, start;
3896   mov(r2, r0);
3897 
3898   // Check if the enum length field is properly initialized, indicating that
3899   // there is an enum cache.
3900   ldr(r1, FieldMemOperand(r2, HeapObject::kMapOffset));
3901 
3902   EnumLength(r3, r1);
3903   cmp(r3, Operand(Smi::FromInt(kInvalidEnumCacheSentinel)));
3904   b(eq, call_runtime);
3905 
3906   jmp(&start);
3907 
3908   bind(&next);
3909   ldr(r1, FieldMemOperand(r2, HeapObject::kMapOffset));
3910 
3911   // For all objects but the receiver, check that the cache is empty.
3912   EnumLength(r3, r1);
3913   cmp(r3, Operand(Smi::FromInt(0)));
3914   b(ne, call_runtime);
3915 
3916   bind(&start);
3917 
3918   // Check that there are no elements. Register r2 contains the current JS
3919   // object we've reached through the prototype chain.
3920   Label no_elements;
3921   ldr(r2, FieldMemOperand(r2, JSObject::kElementsOffset));
3922   cmp(r2, empty_fixed_array_value);
3923   b(eq, &no_elements);
3924 
3925   // Second chance, the object may be using the empty slow element dictionary.
3926   CompareRoot(r2, Heap::kEmptySlowElementDictionaryRootIndex);
3927   b(ne, call_runtime);
3928 
3929   bind(&no_elements);
3930   ldr(r2, FieldMemOperand(r1, Map::kPrototypeOffset));
3931   cmp(r2, null_value);
3932   b(ne, &next);
3933 }
3934 
3935 
TestJSArrayForAllocationMemento(Register receiver_reg,Register scratch_reg,Label * no_memento_found)3936 void MacroAssembler::TestJSArrayForAllocationMemento(
3937     Register receiver_reg,
3938     Register scratch_reg,
3939     Label* no_memento_found) {
3940   ExternalReference new_space_start =
3941       ExternalReference::new_space_start(isolate());
3942   ExternalReference new_space_allocation_top =
3943       ExternalReference::new_space_allocation_top_address(isolate());
3944   add(scratch_reg, receiver_reg,
3945       Operand(JSArray::kSize + AllocationMemento::kSize - kHeapObjectTag));
3946   cmp(scratch_reg, Operand(new_space_start));
3947   b(lt, no_memento_found);
3948   mov(ip, Operand(new_space_allocation_top));
3949   ldr(ip, MemOperand(ip));
3950   cmp(scratch_reg, ip);
3951   b(gt, no_memento_found);
3952   ldr(scratch_reg, MemOperand(scratch_reg, -AllocationMemento::kSize));
3953   cmp(scratch_reg,
3954       Operand(isolate()->factory()->allocation_memento_map()));
3955 }
3956 
3957 
GetRegisterThatIsNotOneOf(Register reg1,Register reg2,Register reg3,Register reg4,Register reg5,Register reg6)3958 Register GetRegisterThatIsNotOneOf(Register reg1,
3959                                    Register reg2,
3960                                    Register reg3,
3961                                    Register reg4,
3962                                    Register reg5,
3963                                    Register reg6) {
3964   RegList regs = 0;
3965   if (reg1.is_valid()) regs |= reg1.bit();
3966   if (reg2.is_valid()) regs |= reg2.bit();
3967   if (reg3.is_valid()) regs |= reg3.bit();
3968   if (reg4.is_valid()) regs |= reg4.bit();
3969   if (reg5.is_valid()) regs |= reg5.bit();
3970   if (reg6.is_valid()) regs |= reg6.bit();
3971 
3972   for (int i = 0; i < Register::NumAllocatableRegisters(); i++) {
3973     Register candidate = Register::FromAllocationIndex(i);
3974     if (regs & candidate.bit()) continue;
3975     return candidate;
3976   }
3977   UNREACHABLE();
3978   return no_reg;
3979 }
3980 
3981 
JumpIfDictionaryInPrototypeChain(Register object,Register scratch0,Register scratch1,Label * found)3982 void MacroAssembler::JumpIfDictionaryInPrototypeChain(
3983     Register object,
3984     Register scratch0,
3985     Register scratch1,
3986     Label* found) {
3987   ASSERT(!scratch1.is(scratch0));
3988   Factory* factory = isolate()->factory();
3989   Register current = scratch0;
3990   Label loop_again;
3991 
3992   // scratch contained elements pointer.
3993   mov(current, object);
3994 
3995   // Loop based on the map going up the prototype chain.
3996   bind(&loop_again);
3997   ldr(current, FieldMemOperand(current, HeapObject::kMapOffset));
3998   ldr(scratch1, FieldMemOperand(current, Map::kBitField2Offset));
3999   DecodeField<Map::ElementsKindBits>(scratch1);
4000   cmp(scratch1, Operand(DICTIONARY_ELEMENTS));
4001   b(eq, found);
4002   ldr(current, FieldMemOperand(current, Map::kPrototypeOffset));
4003   cmp(current, Operand(factory->null_value()));
4004   b(ne, &loop_again);
4005 }
4006 
4007 
4008 #ifdef DEBUG
AreAliased(Register reg1,Register reg2,Register reg3,Register reg4,Register reg5,Register reg6)4009 bool AreAliased(Register reg1,
4010                 Register reg2,
4011                 Register reg3,
4012                 Register reg4,
4013                 Register reg5,
4014                 Register reg6) {
4015   int n_of_valid_regs = reg1.is_valid() + reg2.is_valid() +
4016     reg3.is_valid() + reg4.is_valid() + reg5.is_valid() + reg6.is_valid();
4017 
4018   RegList regs = 0;
4019   if (reg1.is_valid()) regs |= reg1.bit();
4020   if (reg2.is_valid()) regs |= reg2.bit();
4021   if (reg3.is_valid()) regs |= reg3.bit();
4022   if (reg4.is_valid()) regs |= reg4.bit();
4023   if (reg5.is_valid()) regs |= reg5.bit();
4024   if (reg6.is_valid()) regs |= reg6.bit();
4025   int n_of_non_aliasing_regs = NumRegs(regs);
4026 
4027   return n_of_valid_regs != n_of_non_aliasing_regs;
4028 }
4029 #endif
4030 
4031 
CodePatcher(byte * address,int instructions,FlushICache flush_cache)4032 CodePatcher::CodePatcher(byte* address,
4033                          int instructions,
4034                          FlushICache flush_cache)
4035     : address_(address),
4036       size_(instructions * Assembler::kInstrSize),
4037       masm_(NULL, address, size_ + Assembler::kGap),
4038       flush_cache_(flush_cache) {
4039   // Create a new macro assembler pointing to the address of the code to patch.
4040   // The size is adjusted with kGap on order for the assembler to generate size
4041   // bytes of instructions without failing with buffer size constraints.
4042   ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
4043 }
4044 
4045 
~CodePatcher()4046 CodePatcher::~CodePatcher() {
4047   // Indicate that code has changed.
4048   if (flush_cache_ == FLUSH) {
4049     CPU::FlushICache(address_, size_);
4050   }
4051 
4052   // Check that the code was patched as expected.
4053   ASSERT(masm_.pc_ == address_ + size_);
4054   ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
4055 }
4056 
4057 
Emit(Instr instr)4058 void CodePatcher::Emit(Instr instr) {
4059   masm()->emit(instr);
4060 }
4061 
4062 
Emit(Address addr)4063 void CodePatcher::Emit(Address addr) {
4064   masm()->emit(reinterpret_cast<Instr>(addr));
4065 }
4066 
4067 
EmitCondition(Condition cond)4068 void CodePatcher::EmitCondition(Condition cond) {
4069   Instr instr = Assembler::instr_at(masm_.pc_);
4070   instr = (instr & ~kCondMask) | cond;
4071   masm_.emit(instr);
4072 }
4073 
4074 
TruncatingDiv(Register result,Register dividend,int32_t divisor)4075 void MacroAssembler::TruncatingDiv(Register result,
4076                                    Register dividend,
4077                                    int32_t divisor) {
4078   ASSERT(!dividend.is(result));
4079   ASSERT(!dividend.is(ip));
4080   ASSERT(!result.is(ip));
4081   MultiplierAndShift ms(divisor);
4082   mov(ip, Operand(ms.multiplier()));
4083   smull(ip, result, dividend, ip);
4084   if (divisor > 0 && ms.multiplier() < 0) {
4085     add(result, result, Operand(dividend));
4086   }
4087   if (divisor < 0 && ms.multiplier() > 0) {
4088     sub(result, result, Operand(dividend));
4089   }
4090   if (ms.shift() > 0) mov(result, Operand(result, ASR, ms.shift()));
4091   add(result, result, Operand(dividend, LSR, 31));
4092 }
4093 
4094 
4095 } }  // namespace v8::internal
4096 
4097 #endif  // V8_TARGET_ARCH_ARM
4098