1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #ifndef V8_HEAP_INL_H_
6 #define V8_HEAP_INL_H_
7
8 #include <cmath>
9
10 #include "src/heap.h"
11 #include "src/heap-profiler.h"
12 #include "src/isolate.h"
13 #include "src/list-inl.h"
14 #include "src/objects.h"
15 #include "src/platform.h"
16 #include "src/store-buffer.h"
17 #include "src/store-buffer-inl.h"
18
19 namespace v8 {
20 namespace internal {
21
insert(HeapObject * target,int size)22 void PromotionQueue::insert(HeapObject* target, int size) {
23 if (emergency_stack_ != NULL) {
24 emergency_stack_->Add(Entry(target, size));
25 return;
26 }
27
28 if (NewSpacePage::IsAtStart(reinterpret_cast<Address>(rear_))) {
29 NewSpacePage* rear_page =
30 NewSpacePage::FromAddress(reinterpret_cast<Address>(rear_));
31 ASSERT(!rear_page->prev_page()->is_anchor());
32 rear_ = reinterpret_cast<intptr_t*>(rear_page->prev_page()->area_end());
33 ActivateGuardIfOnTheSamePage();
34 }
35
36 if (guard_) {
37 ASSERT(GetHeadPage() ==
38 Page::FromAllocationTop(reinterpret_cast<Address>(limit_)));
39
40 if ((rear_ - 2) < limit_) {
41 RelocateQueueHead();
42 emergency_stack_->Add(Entry(target, size));
43 return;
44 }
45 }
46
47 *(--rear_) = reinterpret_cast<intptr_t>(target);
48 *(--rear_) = size;
49 // Assert no overflow into live objects.
50 #ifdef DEBUG
51 SemiSpace::AssertValidRange(target->GetIsolate()->heap()->new_space()->top(),
52 reinterpret_cast<Address>(rear_));
53 #endif
54 }
55
56
ActivateGuardIfOnTheSamePage()57 void PromotionQueue::ActivateGuardIfOnTheSamePage() {
58 guard_ = guard_ ||
59 heap_->new_space()->active_space()->current_page()->address() ==
60 GetHeadPage()->address();
61 }
62
63
64 template<>
IsOneByte(Vector<const char> str,int chars)65 bool inline Heap::IsOneByte(Vector<const char> str, int chars) {
66 // TODO(dcarney): incorporate Latin-1 check when Latin-1 is supported?
67 // ASCII only check.
68 return chars == str.length();
69 }
70
71
72 template<>
IsOneByte(String * str,int chars)73 bool inline Heap::IsOneByte(String* str, int chars) {
74 return str->IsOneByteRepresentation();
75 }
76
77
AllocateInternalizedStringFromUtf8(Vector<const char> str,int chars,uint32_t hash_field)78 AllocationResult Heap::AllocateInternalizedStringFromUtf8(
79 Vector<const char> str, int chars, uint32_t hash_field) {
80 if (IsOneByte(str, chars)) {
81 return AllocateOneByteInternalizedString(
82 Vector<const uint8_t>::cast(str), hash_field);
83 }
84 return AllocateInternalizedStringImpl<false>(str, chars, hash_field);
85 }
86
87
88 template<typename T>
AllocateInternalizedStringImpl(T t,int chars,uint32_t hash_field)89 AllocationResult Heap::AllocateInternalizedStringImpl(
90 T t, int chars, uint32_t hash_field) {
91 if (IsOneByte(t, chars)) {
92 return AllocateInternalizedStringImpl<true>(t, chars, hash_field);
93 }
94 return AllocateInternalizedStringImpl<false>(t, chars, hash_field);
95 }
96
97
AllocateOneByteInternalizedString(Vector<const uint8_t> str,uint32_t hash_field)98 AllocationResult Heap::AllocateOneByteInternalizedString(
99 Vector<const uint8_t> str,
100 uint32_t hash_field) {
101 CHECK_GE(String::kMaxLength, str.length());
102 // Compute map and object size.
103 Map* map = ascii_internalized_string_map();
104 int size = SeqOneByteString::SizeFor(str.length());
105 AllocationSpace space = SelectSpace(size, OLD_DATA_SPACE, TENURED);
106
107 // Allocate string.
108 HeapObject* result;
109 { AllocationResult allocation = AllocateRaw(size, space, OLD_DATA_SPACE);
110 if (!allocation.To(&result)) return allocation;
111 }
112
113 // String maps are all immortal immovable objects.
114 result->set_map_no_write_barrier(map);
115 // Set length and hash fields of the allocated string.
116 String* answer = String::cast(result);
117 answer->set_length(str.length());
118 answer->set_hash_field(hash_field);
119
120 ASSERT_EQ(size, answer->Size());
121
122 // Fill in the characters.
123 MemCopy(answer->address() + SeqOneByteString::kHeaderSize, str.start(),
124 str.length());
125
126 return answer;
127 }
128
129
AllocateTwoByteInternalizedString(Vector<const uc16> str,uint32_t hash_field)130 AllocationResult Heap::AllocateTwoByteInternalizedString(Vector<const uc16> str,
131 uint32_t hash_field) {
132 CHECK_GE(String::kMaxLength, str.length());
133 // Compute map and object size.
134 Map* map = internalized_string_map();
135 int size = SeqTwoByteString::SizeFor(str.length());
136 AllocationSpace space = SelectSpace(size, OLD_DATA_SPACE, TENURED);
137
138 // Allocate string.
139 HeapObject* result;
140 { AllocationResult allocation = AllocateRaw(size, space, OLD_DATA_SPACE);
141 if (!allocation.To(&result)) return allocation;
142 }
143
144 result->set_map(map);
145 // Set length and hash fields of the allocated string.
146 String* answer = String::cast(result);
147 answer->set_length(str.length());
148 answer->set_hash_field(hash_field);
149
150 ASSERT_EQ(size, answer->Size());
151
152 // Fill in the characters.
153 MemCopy(answer->address() + SeqTwoByteString::kHeaderSize, str.start(),
154 str.length() * kUC16Size);
155
156 return answer;
157 }
158
CopyFixedArray(FixedArray * src)159 AllocationResult Heap::CopyFixedArray(FixedArray* src) {
160 if (src->length() == 0) return src;
161 return CopyFixedArrayWithMap(src, src->map());
162 }
163
164
CopyFixedDoubleArray(FixedDoubleArray * src)165 AllocationResult Heap::CopyFixedDoubleArray(FixedDoubleArray* src) {
166 if (src->length() == 0) return src;
167 return CopyFixedDoubleArrayWithMap(src, src->map());
168 }
169
170
CopyConstantPoolArray(ConstantPoolArray * src)171 AllocationResult Heap::CopyConstantPoolArray(ConstantPoolArray* src) {
172 if (src->length() == 0) return src;
173 return CopyConstantPoolArrayWithMap(src, src->map());
174 }
175
176
AllocateRaw(int size_in_bytes,AllocationSpace space,AllocationSpace retry_space)177 AllocationResult Heap::AllocateRaw(int size_in_bytes,
178 AllocationSpace space,
179 AllocationSpace retry_space) {
180 ASSERT(AllowHandleAllocation::IsAllowed());
181 ASSERT(AllowHeapAllocation::IsAllowed());
182 ASSERT(gc_state_ == NOT_IN_GC);
183 HeapProfiler* profiler = isolate_->heap_profiler();
184 #ifdef DEBUG
185 if (FLAG_gc_interval >= 0 &&
186 AllowAllocationFailure::IsAllowed(isolate_) &&
187 Heap::allocation_timeout_-- <= 0) {
188 return AllocationResult::Retry(space);
189 }
190 isolate_->counters()->objs_since_last_full()->Increment();
191 isolate_->counters()->objs_since_last_young()->Increment();
192 #endif
193
194 HeapObject* object;
195 AllocationResult allocation;
196 if (NEW_SPACE == space) {
197 allocation = new_space_.AllocateRaw(size_in_bytes);
198 if (always_allocate() &&
199 allocation.IsRetry() &&
200 retry_space != NEW_SPACE) {
201 space = retry_space;
202 } else {
203 if (profiler->is_tracking_allocations() && allocation.To(&object)) {
204 profiler->AllocationEvent(object->address(), size_in_bytes);
205 }
206 return allocation;
207 }
208 }
209
210 if (OLD_POINTER_SPACE == space) {
211 allocation = old_pointer_space_->AllocateRaw(size_in_bytes);
212 } else if (OLD_DATA_SPACE == space) {
213 allocation = old_data_space_->AllocateRaw(size_in_bytes);
214 } else if (CODE_SPACE == space) {
215 allocation = code_space_->AllocateRaw(size_in_bytes);
216 } else if (LO_SPACE == space) {
217 allocation = lo_space_->AllocateRaw(size_in_bytes, NOT_EXECUTABLE);
218 } else if (CELL_SPACE == space) {
219 allocation = cell_space_->AllocateRaw(size_in_bytes);
220 } else if (PROPERTY_CELL_SPACE == space) {
221 allocation = property_cell_space_->AllocateRaw(size_in_bytes);
222 } else {
223 ASSERT(MAP_SPACE == space);
224 allocation = map_space_->AllocateRaw(size_in_bytes);
225 }
226 if (allocation.IsRetry()) old_gen_exhausted_ = true;
227 if (profiler->is_tracking_allocations() && allocation.To(&object)) {
228 profiler->AllocationEvent(object->address(), size_in_bytes);
229 }
230 return allocation;
231 }
232
233
FinalizeExternalString(String * string)234 void Heap::FinalizeExternalString(String* string) {
235 ASSERT(string->IsExternalString());
236 v8::String::ExternalStringResourceBase** resource_addr =
237 reinterpret_cast<v8::String::ExternalStringResourceBase**>(
238 reinterpret_cast<byte*>(string) +
239 ExternalString::kResourceOffset -
240 kHeapObjectTag);
241
242 // Dispose of the C++ object if it has not already been disposed.
243 if (*resource_addr != NULL) {
244 (*resource_addr)->Dispose();
245 *resource_addr = NULL;
246 }
247 }
248
249
InNewSpace(Object * object)250 bool Heap::InNewSpace(Object* object) {
251 bool result = new_space_.Contains(object);
252 ASSERT(!result || // Either not in new space
253 gc_state_ != NOT_IN_GC || // ... or in the middle of GC
254 InToSpace(object)); // ... or in to-space (where we allocate).
255 return result;
256 }
257
258
InNewSpace(Address address)259 bool Heap::InNewSpace(Address address) {
260 return new_space_.Contains(address);
261 }
262
263
InFromSpace(Object * object)264 bool Heap::InFromSpace(Object* object) {
265 return new_space_.FromSpaceContains(object);
266 }
267
268
InToSpace(Object * object)269 bool Heap::InToSpace(Object* object) {
270 return new_space_.ToSpaceContains(object);
271 }
272
273
InOldPointerSpace(Address address)274 bool Heap::InOldPointerSpace(Address address) {
275 return old_pointer_space_->Contains(address);
276 }
277
278
InOldPointerSpace(Object * object)279 bool Heap::InOldPointerSpace(Object* object) {
280 return InOldPointerSpace(reinterpret_cast<Address>(object));
281 }
282
283
InOldDataSpace(Address address)284 bool Heap::InOldDataSpace(Address address) {
285 return old_data_space_->Contains(address);
286 }
287
288
InOldDataSpace(Object * object)289 bool Heap::InOldDataSpace(Object* object) {
290 return InOldDataSpace(reinterpret_cast<Address>(object));
291 }
292
293
OldGenerationAllocationLimitReached()294 bool Heap::OldGenerationAllocationLimitReached() {
295 if (!incremental_marking()->IsStopped()) return false;
296 return OldGenerationSpaceAvailable() < 0;
297 }
298
299
ShouldBePromoted(Address old_address,int object_size)300 bool Heap::ShouldBePromoted(Address old_address, int object_size) {
301 // An object should be promoted if:
302 // - the object has survived a scavenge operation or
303 // - to space is already 25% full.
304 NewSpacePage* page = NewSpacePage::FromAddress(old_address);
305 Address age_mark = new_space_.age_mark();
306 bool below_mark = page->IsFlagSet(MemoryChunk::NEW_SPACE_BELOW_AGE_MARK) &&
307 (!page->ContainsLimit(age_mark) || old_address < age_mark);
308 return below_mark || (new_space_.Size() + object_size) >=
309 (new_space_.EffectiveCapacity() >> 2);
310 }
311
312
RecordWrite(Address address,int offset)313 void Heap::RecordWrite(Address address, int offset) {
314 if (!InNewSpace(address)) store_buffer_.Mark(address + offset);
315 }
316
317
RecordWrites(Address address,int start,int len)318 void Heap::RecordWrites(Address address, int start, int len) {
319 if (!InNewSpace(address)) {
320 for (int i = 0; i < len; i++) {
321 store_buffer_.Mark(address + start + i * kPointerSize);
322 }
323 }
324 }
325
326
TargetSpace(HeapObject * object)327 OldSpace* Heap::TargetSpace(HeapObject* object) {
328 InstanceType type = object->map()->instance_type();
329 AllocationSpace space = TargetSpaceId(type);
330 return (space == OLD_POINTER_SPACE)
331 ? old_pointer_space_
332 : old_data_space_;
333 }
334
335
TargetSpaceId(InstanceType type)336 AllocationSpace Heap::TargetSpaceId(InstanceType type) {
337 // Heap numbers and sequential strings are promoted to old data space, all
338 // other object types are promoted to old pointer space. We do not use
339 // object->IsHeapNumber() and object->IsSeqString() because we already
340 // know that object has the heap object tag.
341
342 // These objects are never allocated in new space.
343 ASSERT(type != MAP_TYPE);
344 ASSERT(type != CODE_TYPE);
345 ASSERT(type != ODDBALL_TYPE);
346 ASSERT(type != CELL_TYPE);
347 ASSERT(type != PROPERTY_CELL_TYPE);
348
349 if (type <= LAST_NAME_TYPE) {
350 if (type == SYMBOL_TYPE) return OLD_POINTER_SPACE;
351 ASSERT(type < FIRST_NONSTRING_TYPE);
352 // There are four string representations: sequential strings, external
353 // strings, cons strings, and sliced strings.
354 // Only the latter two contain non-map-word pointers to heap objects.
355 return ((type & kIsIndirectStringMask) == kIsIndirectStringTag)
356 ? OLD_POINTER_SPACE
357 : OLD_DATA_SPACE;
358 } else {
359 return (type <= LAST_DATA_TYPE) ? OLD_DATA_SPACE : OLD_POINTER_SPACE;
360 }
361 }
362
363
AllowedToBeMigrated(HeapObject * obj,AllocationSpace dst)364 bool Heap::AllowedToBeMigrated(HeapObject* obj, AllocationSpace dst) {
365 // Object migration is governed by the following rules:
366 //
367 // 1) Objects in new-space can be migrated to one of the old spaces
368 // that matches their target space or they stay in new-space.
369 // 2) Objects in old-space stay in the same space when migrating.
370 // 3) Fillers (two or more words) can migrate due to left-trimming of
371 // fixed arrays in new-space, old-data-space and old-pointer-space.
372 // 4) Fillers (one word) can never migrate, they are skipped by
373 // incremental marking explicitly to prevent invalid pattern.
374 // 5) Short external strings can end up in old pointer space when a cons
375 // string in old pointer space is made external (String::MakeExternal).
376 //
377 // Since this function is used for debugging only, we do not place
378 // asserts here, but check everything explicitly.
379 if (obj->map() == one_pointer_filler_map()) return false;
380 InstanceType type = obj->map()->instance_type();
381 MemoryChunk* chunk = MemoryChunk::FromAddress(obj->address());
382 AllocationSpace src = chunk->owner()->identity();
383 switch (src) {
384 case NEW_SPACE:
385 return dst == src || dst == TargetSpaceId(type);
386 case OLD_POINTER_SPACE:
387 return dst == src &&
388 (dst == TargetSpaceId(type) || obj->IsFiller() ||
389 (obj->IsExternalString() && ExternalString::cast(obj)->is_short()));
390 case OLD_DATA_SPACE:
391 return dst == src && dst == TargetSpaceId(type);
392 case CODE_SPACE:
393 return dst == src && type == CODE_TYPE;
394 case MAP_SPACE:
395 case CELL_SPACE:
396 case PROPERTY_CELL_SPACE:
397 case LO_SPACE:
398 return false;
399 case INVALID_SPACE:
400 break;
401 }
402 UNREACHABLE();
403 return false;
404 }
405
406
CopyBlock(Address dst,Address src,int byte_size)407 void Heap::CopyBlock(Address dst, Address src, int byte_size) {
408 CopyWords(reinterpret_cast<Object**>(dst),
409 reinterpret_cast<Object**>(src),
410 static_cast<size_t>(byte_size / kPointerSize));
411 }
412
413
MoveBlock(Address dst,Address src,int byte_size)414 void Heap::MoveBlock(Address dst, Address src, int byte_size) {
415 ASSERT(IsAligned(byte_size, kPointerSize));
416
417 int size_in_words = byte_size / kPointerSize;
418
419 if ((dst < src) || (dst >= (src + byte_size))) {
420 Object** src_slot = reinterpret_cast<Object**>(src);
421 Object** dst_slot = reinterpret_cast<Object**>(dst);
422 Object** end_slot = src_slot + size_in_words;
423
424 while (src_slot != end_slot) {
425 *dst_slot++ = *src_slot++;
426 }
427 } else {
428 MemMove(dst, src, static_cast<size_t>(byte_size));
429 }
430 }
431
432
ScavengePointer(HeapObject ** p)433 void Heap::ScavengePointer(HeapObject** p) {
434 ScavengeObject(p, *p);
435 }
436
437
FindAllocationMemento(HeapObject * object)438 AllocationMemento* Heap::FindAllocationMemento(HeapObject* object) {
439 // Check if there is potentially a memento behind the object. If
440 // the last word of the momento is on another page we return
441 // immediately.
442 Address object_address = object->address();
443 Address memento_address = object_address + object->Size();
444 Address last_memento_word_address = memento_address + kPointerSize;
445 if (!NewSpacePage::OnSamePage(object_address,
446 last_memento_word_address)) {
447 return NULL;
448 }
449
450 HeapObject* candidate = HeapObject::FromAddress(memento_address);
451 if (candidate->map() != allocation_memento_map()) return NULL;
452
453 // Either the object is the last object in the new space, or there is another
454 // object of at least word size (the header map word) following it, so
455 // suffices to compare ptr and top here. Note that technically we do not have
456 // to compare with the current top pointer of the from space page during GC,
457 // since we always install filler objects above the top pointer of a from
458 // space page when performing a garbage collection. However, always performing
459 // the test makes it possible to have a single, unified version of
460 // FindAllocationMemento that is used both by the GC and the mutator.
461 Address top = NewSpaceTop();
462 ASSERT(memento_address == top ||
463 memento_address + HeapObject::kHeaderSize <= top ||
464 !NewSpacePage::OnSamePage(memento_address, top));
465 if (memento_address == top) return NULL;
466
467 AllocationMemento* memento = AllocationMemento::cast(candidate);
468 if (!memento->IsValid()) return NULL;
469 return memento;
470 }
471
472
UpdateAllocationSiteFeedback(HeapObject * object,ScratchpadSlotMode mode)473 void Heap::UpdateAllocationSiteFeedback(HeapObject* object,
474 ScratchpadSlotMode mode) {
475 Heap* heap = object->GetHeap();
476 ASSERT(heap->InFromSpace(object));
477
478 if (!FLAG_allocation_site_pretenuring ||
479 !AllocationSite::CanTrack(object->map()->instance_type())) return;
480
481 AllocationMemento* memento = heap->FindAllocationMemento(object);
482 if (memento == NULL) return;
483
484 if (memento->GetAllocationSite()->IncrementMementoFoundCount()) {
485 heap->AddAllocationSiteToScratchpad(memento->GetAllocationSite(), mode);
486 }
487 }
488
489
ScavengeObject(HeapObject ** p,HeapObject * object)490 void Heap::ScavengeObject(HeapObject** p, HeapObject* object) {
491 ASSERT(object->GetIsolate()->heap()->InFromSpace(object));
492
493 // We use the first word (where the map pointer usually is) of a heap
494 // object to record the forwarding pointer. A forwarding pointer can
495 // point to an old space, the code space, or the to space of the new
496 // generation.
497 MapWord first_word = object->map_word();
498
499 // If the first word is a forwarding address, the object has already been
500 // copied.
501 if (first_word.IsForwardingAddress()) {
502 HeapObject* dest = first_word.ToForwardingAddress();
503 ASSERT(object->GetIsolate()->heap()->InFromSpace(*p));
504 *p = dest;
505 return;
506 }
507
508 UpdateAllocationSiteFeedback(object, IGNORE_SCRATCHPAD_SLOT);
509
510 // AllocationMementos are unrooted and shouldn't survive a scavenge
511 ASSERT(object->map() != object->GetHeap()->allocation_memento_map());
512 // Call the slow part of scavenge object.
513 return ScavengeObjectSlow(p, object);
514 }
515
516
CollectGarbage(AllocationSpace space,const char * gc_reason,const v8::GCCallbackFlags callbackFlags)517 bool Heap::CollectGarbage(AllocationSpace space,
518 const char* gc_reason,
519 const v8::GCCallbackFlags callbackFlags) {
520 const char* collector_reason = NULL;
521 GarbageCollector collector = SelectGarbageCollector(space, &collector_reason);
522 return CollectGarbage(collector, gc_reason, collector_reason, callbackFlags);
523 }
524
525
isolate()526 Isolate* Heap::isolate() {
527 return reinterpret_cast<Isolate*>(reinterpret_cast<intptr_t>(this) -
528 reinterpret_cast<size_t>(reinterpret_cast<Isolate*>(4)->heap()) + 4);
529 }
530
531
532 // Calls the FUNCTION_CALL function and retries it up to three times
533 // to guarantee that any allocations performed during the call will
534 // succeed if there's enough memory.
535
536 // Warning: Do not use the identifiers __object__, __maybe_object__ or
537 // __scope__ in a call to this macro.
538
539 #define RETURN_OBJECT_UNLESS_RETRY(ISOLATE, RETURN_VALUE) \
540 if (__allocation__.To(&__object__)) { \
541 ASSERT(__object__ != (ISOLATE)->heap()->exception()); \
542 RETURN_VALUE; \
543 }
544
545 #define CALL_AND_RETRY(ISOLATE, FUNCTION_CALL, RETURN_VALUE, RETURN_EMPTY) \
546 do { \
547 AllocationResult __allocation__ = FUNCTION_CALL; \
548 Object* __object__ = NULL; \
549 RETURN_OBJECT_UNLESS_RETRY(ISOLATE, RETURN_VALUE) \
550 (ISOLATE)->heap()->CollectGarbage(__allocation__.RetrySpace(), \
551 "allocation failure"); \
552 __allocation__ = FUNCTION_CALL; \
553 RETURN_OBJECT_UNLESS_RETRY(ISOLATE, RETURN_VALUE) \
554 (ISOLATE)->counters()->gc_last_resort_from_handles()->Increment(); \
555 (ISOLATE)->heap()->CollectAllAvailableGarbage("last resort gc"); \
556 { \
557 AlwaysAllocateScope __scope__(ISOLATE); \
558 __allocation__ = FUNCTION_CALL; \
559 } \
560 RETURN_OBJECT_UNLESS_RETRY(ISOLATE, RETURN_VALUE) \
561 /* TODO(1181417): Fix this. */ \
562 v8::internal::Heap::FatalProcessOutOfMemory("CALL_AND_RETRY_LAST", true); \
563 RETURN_EMPTY; \
564 } while (false)
565
566 #define CALL_AND_RETRY_OR_DIE( \
567 ISOLATE, FUNCTION_CALL, RETURN_VALUE, RETURN_EMPTY) \
568 CALL_AND_RETRY( \
569 ISOLATE, \
570 FUNCTION_CALL, \
571 RETURN_VALUE, \
572 RETURN_EMPTY)
573
574 #define CALL_HEAP_FUNCTION(ISOLATE, FUNCTION_CALL, TYPE) \
575 CALL_AND_RETRY_OR_DIE(ISOLATE, \
576 FUNCTION_CALL, \
577 return Handle<TYPE>(TYPE::cast(__object__), ISOLATE), \
578 return Handle<TYPE>()) \
579
580
581 #define CALL_HEAP_FUNCTION_VOID(ISOLATE, FUNCTION_CALL) \
582 CALL_AND_RETRY_OR_DIE(ISOLATE, FUNCTION_CALL, return, return)
583
584
AddString(String * string)585 void ExternalStringTable::AddString(String* string) {
586 ASSERT(string->IsExternalString());
587 if (heap_->InNewSpace(string)) {
588 new_space_strings_.Add(string);
589 } else {
590 old_space_strings_.Add(string);
591 }
592 }
593
594
Iterate(ObjectVisitor * v)595 void ExternalStringTable::Iterate(ObjectVisitor* v) {
596 if (!new_space_strings_.is_empty()) {
597 Object** start = &new_space_strings_[0];
598 v->VisitPointers(start, start + new_space_strings_.length());
599 }
600 if (!old_space_strings_.is_empty()) {
601 Object** start = &old_space_strings_[0];
602 v->VisitPointers(start, start + old_space_strings_.length());
603 }
604 }
605
606
607 // Verify() is inline to avoid ifdef-s around its calls in release
608 // mode.
Verify()609 void ExternalStringTable::Verify() {
610 #ifdef DEBUG
611 for (int i = 0; i < new_space_strings_.length(); ++i) {
612 Object* obj = Object::cast(new_space_strings_[i]);
613 ASSERT(heap_->InNewSpace(obj));
614 ASSERT(obj != heap_->the_hole_value());
615 }
616 for (int i = 0; i < old_space_strings_.length(); ++i) {
617 Object* obj = Object::cast(old_space_strings_[i]);
618 ASSERT(!heap_->InNewSpace(obj));
619 ASSERT(obj != heap_->the_hole_value());
620 }
621 #endif
622 }
623
624
AddOldString(String * string)625 void ExternalStringTable::AddOldString(String* string) {
626 ASSERT(string->IsExternalString());
627 ASSERT(!heap_->InNewSpace(string));
628 old_space_strings_.Add(string);
629 }
630
631
ShrinkNewStrings(int position)632 void ExternalStringTable::ShrinkNewStrings(int position) {
633 new_space_strings_.Rewind(position);
634 #ifdef VERIFY_HEAP
635 if (FLAG_verify_heap) {
636 Verify();
637 }
638 #endif
639 }
640
641
ClearInstanceofCache()642 void Heap::ClearInstanceofCache() {
643 set_instanceof_cache_function(the_hole_value());
644 }
645
646
ToBoolean(bool condition)647 Object* Heap::ToBoolean(bool condition) {
648 return condition ? true_value() : false_value();
649 }
650
651
CompletelyClearInstanceofCache()652 void Heap::CompletelyClearInstanceofCache() {
653 set_instanceof_cache_map(the_hole_value());
654 set_instanceof_cache_function(the_hole_value());
655 }
656
657
AlwaysAllocateScope(Isolate * isolate)658 AlwaysAllocateScope::AlwaysAllocateScope(Isolate* isolate)
659 : heap_(isolate->heap()), daf_(isolate) {
660 // We shouldn't hit any nested scopes, because that requires
661 // non-handle code to call handle code. The code still works but
662 // performance will degrade, so we want to catch this situation
663 // in debug mode.
664 ASSERT(heap_->always_allocate_scope_depth_ == 0);
665 heap_->always_allocate_scope_depth_++;
666 }
667
668
~AlwaysAllocateScope()669 AlwaysAllocateScope::~AlwaysAllocateScope() {
670 heap_->always_allocate_scope_depth_--;
671 ASSERT(heap_->always_allocate_scope_depth_ == 0);
672 }
673
674
675 #ifdef VERIFY_HEAP
NoWeakObjectVerificationScope()676 NoWeakObjectVerificationScope::NoWeakObjectVerificationScope() {
677 Isolate* isolate = Isolate::Current();
678 isolate->heap()->no_weak_object_verification_scope_depth_++;
679 }
680
681
~NoWeakObjectVerificationScope()682 NoWeakObjectVerificationScope::~NoWeakObjectVerificationScope() {
683 Isolate* isolate = Isolate::Current();
684 isolate->heap()->no_weak_object_verification_scope_depth_--;
685 }
686 #endif
687
688
GCCallbacksScope(Heap * heap)689 GCCallbacksScope::GCCallbacksScope(Heap* heap) : heap_(heap) {
690 heap_->gc_callbacks_depth_++;
691 }
692
693
~GCCallbacksScope()694 GCCallbacksScope::~GCCallbacksScope() {
695 heap_->gc_callbacks_depth_--;
696 }
697
698
CheckReenter()699 bool GCCallbacksScope::CheckReenter() {
700 return heap_->gc_callbacks_depth_ == 1;
701 }
702
703
VisitPointers(Object ** start,Object ** end)704 void VerifyPointersVisitor::VisitPointers(Object** start, Object** end) {
705 for (Object** current = start; current < end; current++) {
706 if ((*current)->IsHeapObject()) {
707 HeapObject* object = HeapObject::cast(*current);
708 CHECK(object->GetIsolate()->heap()->Contains(object));
709 CHECK(object->map()->IsMap());
710 }
711 }
712 }
713
714
VisitPointers(Object ** start,Object ** end)715 void VerifySmisVisitor::VisitPointers(Object** start, Object** end) {
716 for (Object** current = start; current < end; current++) {
717 CHECK((*current)->IsSmi());
718 }
719 }
720
721
SizeOfHeapObjects()722 double GCTracer::SizeOfHeapObjects() {
723 return (static_cast<double>(heap_->SizeOfObjects())) / MB;
724 }
725
726
727 } } // namespace v8::internal
728
729 #endif // V8_HEAP_INL_H_
730