• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /**
2  * @file op_model_p4.c
3  * P4 model-specific MSR operations
4  *
5  * @remark Copyright 2002 OProfile authors
6  * @remark Read the file COPYING
7  *
8  * @author Graydon Hoare
9  */
10 
11 #include "op_x86_model.h"
12 #include "op_msr.h"
13 #include "op_apic.h"
14 #include "op_arch.h"
15 
16 #define NUM_EVENTS 39
17 
18 #define NUM_COUNTERS_NON_HT 8
19 #define NUM_ESCRS_NON_HT 45
20 #define NUM_CCCRS_NON_HT 18
21 #define NUM_CONTROLS_NON_HT (NUM_ESCRS_NON_HT + NUM_CCCRS_NON_HT)
22 
23 #define NUM_COUNTERS_HT2 4
24 #define NUM_ESCRS_HT2 23
25 #define NUM_CCCRS_HT2 9
26 #define NUM_CONTROLS_HT2 (NUM_ESCRS_HT2 + NUM_CCCRS_HT2)
27 
28 static unsigned int num_counters = NUM_COUNTERS_NON_HT;
29 
30 
31 /* this has to be checked dynamically since the
32    hyper-threadedness of a chip is discovered at
33    kernel boot-time. */
setup_num_counters(void)34 static inline void setup_num_counters(void)
35 {
36 #ifdef HT_SUPPORT
37 	if (smp_num_siblings == 2)
38 		num_counters = NUM_COUNTERS_HT2;
39 #endif
40 }
41 
addr_increment(void)42 static int inline addr_increment(void)
43 {
44 #ifdef HT_SUPPORT
45 	return smp_num_siblings == 2 ? 2 : 1;
46 #else
47 	return 1;
48 #endif
49 }
50 
51 
52 /* tables to simulate simplified hardware view of p4 registers */
53 struct p4_counter_binding {
54 	int virt_counter;
55 	int counter_address;
56 	int cccr_address;
57 };
58 
59 struct p4_event_binding {
60 	/* value to put in CCCR */
61 	int escr_select;
62 	/* value to put in ESCR */
63 	int event_select;
64 	struct {
65 		/* for this counter... */
66 		int virt_counter;
67 		/* use this ESCR       */
68 		int escr_address;
69 	} bindings[2];
70 };
71 
72 /* nb: these CTR_* defines are a duplicate of defines in
73    event/i386.p4*events. */
74 
75 
76 #define CTR_BPU_0      (1 << 0)
77 #define CTR_MS_0       (1 << 1)
78 #define CTR_FLAME_0    (1 << 2)
79 #define CTR_IQ_4       (1 << 3)
80 #define CTR_BPU_2      (1 << 4)
81 #define CTR_MS_2       (1 << 5)
82 #define CTR_FLAME_2    (1 << 6)
83 #define CTR_IQ_5       (1 << 7)
84 
85 static struct p4_counter_binding p4_counters[NUM_COUNTERS_NON_HT] = {
86 	{ CTR_BPU_0,   MSR_P4_BPU_PERFCTR0,   MSR_P4_BPU_CCCR0 },
87 	{ CTR_MS_0,    MSR_P4_MS_PERFCTR0,    MSR_P4_MS_CCCR0 },
88 	{ CTR_FLAME_0, MSR_P4_FLAME_PERFCTR0, MSR_P4_FLAME_CCCR0 },
89 	{ CTR_IQ_4,    MSR_P4_IQ_PERFCTR4,    MSR_P4_IQ_CCCR4 },
90 	{ CTR_BPU_2,   MSR_P4_BPU_PERFCTR2,   MSR_P4_BPU_CCCR2 },
91 	{ CTR_MS_2,    MSR_P4_MS_PERFCTR2,    MSR_P4_MS_CCCR2 },
92 	{ CTR_FLAME_2, MSR_P4_FLAME_PERFCTR2, MSR_P4_FLAME_CCCR2 },
93 	{ CTR_IQ_5,    MSR_P4_IQ_PERFCTR5,    MSR_P4_IQ_CCCR5 }
94 };
95 
96 #define NUM_UNUSED_CCCRS	NUM_CCCRS_NON_HT - NUM_COUNTERS_NON_HT
97 
98 /* All cccr we don't use. */
99 static int p4_unused_cccr[NUM_UNUSED_CCCRS] = {
100 	MSR_P4_BPU_CCCR1, 	MSR_P4_BPU_CCCR3,
101 	MSR_P4_MS_CCCR1, 	MSR_P4_MS_CCCR3,
102 	MSR_P4_FLAME_CCCR1, 	MSR_P4_FLAME_CCCR3,
103 	MSR_P4_IQ_CCCR0, 	MSR_P4_IQ_CCCR1,
104 	MSR_P4_IQ_CCCR2, 	MSR_P4_IQ_CCCR3
105 };
106 
107 /* p4 event codes in libop/op_event.h are indices into this table. */
108 
109 static struct p4_event_binding p4_events[NUM_EVENTS] = {
110 
111 	{ /* BRANCH_RETIRED */
112 		0x05, 0x06,
113 		{ {CTR_IQ_4, MSR_P4_CRU_ESCR2},
114 		  {CTR_IQ_5, MSR_P4_CRU_ESCR3} }
115 	},
116 
117 	{ /* MISPRED_BRANCH_RETIRED */
118 		0x04, 0x03,
119 		{ { CTR_IQ_4, MSR_P4_CRU_ESCR0},
120 		  { CTR_IQ_5, MSR_P4_CRU_ESCR1} }
121 	},
122 
123 	{ /* TC_DELIVER_MODE */
124 		0x01, 0x01,
125 		{ { CTR_MS_0, MSR_P4_TC_ESCR0},
126 		  { CTR_MS_2, MSR_P4_TC_ESCR1} }
127 	},
128 
129 	{ /* BPU_FETCH_REQUEST */
130 		0x00, 0x03,
131 		{ { CTR_BPU_0, MSR_P4_BPU_ESCR0},
132 		  { CTR_BPU_2, MSR_P4_BPU_ESCR1} }
133 	},
134 
135 	{ /* ITLB_REFERENCE */
136 		0x03, 0x18,
137 		{ { CTR_BPU_0, MSR_P4_ITLB_ESCR0},
138 		  { CTR_BPU_2, MSR_P4_ITLB_ESCR1} }
139 	},
140 
141 	{ /* MEMORY_CANCEL */
142 		0x05, 0x02,
143 		{ { CTR_FLAME_0, MSR_P4_DAC_ESCR0},
144 		  { CTR_FLAME_2, MSR_P4_DAC_ESCR1} }
145 	},
146 
147 	{ /* MEMORY_COMPLETE */
148 		0x02, 0x08,
149 		{ { CTR_FLAME_0, MSR_P4_SAAT_ESCR0},
150 		  { CTR_FLAME_2, MSR_P4_SAAT_ESCR1} }
151 	},
152 
153 	{ /* LOAD_PORT_REPLAY */
154 		0x02, 0x04,
155 		{ { CTR_FLAME_0, MSR_P4_SAAT_ESCR0},
156 		  { CTR_FLAME_2, MSR_P4_SAAT_ESCR1} }
157 	},
158 
159 	{ /* STORE_PORT_REPLAY */
160 		0x02, 0x05,
161 		{ { CTR_FLAME_0, MSR_P4_SAAT_ESCR0},
162 		  { CTR_FLAME_2, MSR_P4_SAAT_ESCR1} }
163 	},
164 
165 	{ /* MOB_LOAD_REPLAY */
166 		0x02, 0x03,
167 		{ { CTR_BPU_0, MSR_P4_MOB_ESCR0},
168 		  { CTR_BPU_2, MSR_P4_MOB_ESCR1} }
169 	},
170 
171 	{ /* PAGE_WALK_TYPE */
172 		0x04, 0x01,
173 		{ { CTR_BPU_0, MSR_P4_PMH_ESCR0},
174 		  { CTR_BPU_2, MSR_P4_PMH_ESCR1} }
175 	},
176 
177 	{ /* BSQ_CACHE_REFERENCE */
178 		0x07, 0x0c,
179 		{ { CTR_BPU_0, MSR_P4_BSU_ESCR0},
180 		  { CTR_BPU_2, MSR_P4_BSU_ESCR1} }
181 	},
182 
183 	/* intel doc vol 3 table A-1: P4 and xeon with cpuid signature < 0xf27
184 	 * doen't allow MSR_FSB_ESCR1 so only counter 0 is available */
185 	{ /* IOQ_ALLOCATION */
186 		0x06, 0x03,
187 		{ { CTR_BPU_0, MSR_P4_FSB_ESCR0},
188 		  { 0, 0 } }
189 	},
190 
191 	{ /* IOQ_ACTIVE_ENTRIES */
192 		0x06, 0x1a,
193 		{ { CTR_BPU_2, MSR_P4_FSB_ESCR1},
194 		  { 0, 0 } }
195 	},
196 
197 	{ /* FSB_DATA_ACTIVITY */
198 		0x06, 0x17,
199 		{ { CTR_BPU_0, MSR_P4_FSB_ESCR0},
200 		  { CTR_BPU_2, MSR_P4_FSB_ESCR1} }
201 	},
202 
203 	{ /* BSQ_ALLOCATION */
204 		0x07, 0x05,
205 		{ { CTR_BPU_0, MSR_P4_BSU_ESCR0},
206 		  { 0, 0 } }
207 	},
208 
209 	{ /* BSQ_ACTIVE_ENTRIES */
210 		0x07, 0x06,
211 		/* FIXME intel doc don't say which ESCR1 to use, using
212 		   BSU_ESCR1 is a sensible guess but will need validation */
213 		{ { CTR_BPU_2, MSR_P4_BSU_ESCR1 },
214 		  { 0, 0 } }
215 	},
216 
217 	{ /* X87_ASSIST */
218 		0x05, 0x03,
219 		{ { CTR_IQ_4, MSR_P4_CRU_ESCR2},
220 		  { CTR_IQ_5, MSR_P4_CRU_ESCR3} }
221 	},
222 
223 	{ /* SSE_INPUT_ASSIST */
224 		0x01, 0x34,
225 		{ { CTR_FLAME_0, MSR_P4_FIRM_ESCR0},
226 		  { CTR_FLAME_2, MSR_P4_FIRM_ESCR1} }
227 	},
228 
229 	{ /* PACKED_SP_UOP */
230 		0x01, 0x08,
231 		{ { CTR_FLAME_0, MSR_P4_FIRM_ESCR0},
232 		  { CTR_FLAME_2, MSR_P4_FIRM_ESCR1} }
233 	},
234 
235 	{ /* PACKED_DP_UOP */
236 		0x01, 0x0c,
237 		{ { CTR_FLAME_0, MSR_P4_FIRM_ESCR0},
238 		  { CTR_FLAME_2, MSR_P4_FIRM_ESCR1} }
239 	},
240 
241 	{ /* SCALAR_SP_UOP */
242 		0x01, 0x0a,
243 		{ { CTR_FLAME_0, MSR_P4_FIRM_ESCR0},
244 		  { CTR_FLAME_2, MSR_P4_FIRM_ESCR1} }
245 	},
246 
247 	{ /* SCALAR_DP_UOP */
248 		0x01, 0x0e,
249 		{ { CTR_FLAME_0, MSR_P4_FIRM_ESCR0},
250 		  { CTR_FLAME_2, MSR_P4_FIRM_ESCR1} }
251 	},
252 
253 	{ /* 64BIT_MMX_UOP */
254 		0x01, 0x02,
255 		{ { CTR_FLAME_0, MSR_P4_FIRM_ESCR0},
256 		  { CTR_FLAME_2, MSR_P4_FIRM_ESCR1} }
257 	},
258 
259 	{ /* 128BIT_MMX_UOP */
260 		0x01, 0x1a,
261 		{ { CTR_FLAME_0, MSR_P4_FIRM_ESCR0},
262 		  { CTR_FLAME_2, MSR_P4_FIRM_ESCR1} }
263 	},
264 
265 	{ /* X87_FP_UOP */
266 		0x01, 0x04,
267 		{ { CTR_FLAME_0, MSR_P4_FIRM_ESCR0},
268 		  { CTR_FLAME_2, MSR_P4_FIRM_ESCR1} }
269 	},
270 
271 	{ /* X87_SIMD_MOVES_UOP */
272 		0x01, 0x2e,
273 		{ { CTR_FLAME_0, MSR_P4_FIRM_ESCR0},
274 		  { CTR_FLAME_2, MSR_P4_FIRM_ESCR1} }
275 	},
276 
277 	{ /* MACHINE_CLEAR */
278 		0x05, 0x02,
279 		{ { CTR_IQ_4, MSR_P4_CRU_ESCR2},
280 		  { CTR_IQ_5, MSR_P4_CRU_ESCR3} }
281 	},
282 
283 	{ /* GLOBAL_POWER_EVENTS */
284 		0x06, 0x13 /* older manual says 0x05, newer 0x13 */,
285 		{ { CTR_BPU_0, MSR_P4_FSB_ESCR0},
286 		  { CTR_BPU_2, MSR_P4_FSB_ESCR1} }
287 	},
288 
289 	{ /* TC_MS_XFER */
290 		0x00, 0x05,
291 		{ { CTR_MS_0, MSR_P4_MS_ESCR0},
292 		  { CTR_MS_2, MSR_P4_MS_ESCR1} }
293 	},
294 
295 	{ /* UOP_QUEUE_WRITES */
296 		0x00, 0x09,
297 		{ { CTR_MS_0, MSR_P4_MS_ESCR0},
298 		  { CTR_MS_2, MSR_P4_MS_ESCR1} }
299 	},
300 
301 	{ /* FRONT_END_EVENT */
302 		0x05, 0x08,
303 		{ { CTR_IQ_4, MSR_P4_CRU_ESCR2},
304 		  { CTR_IQ_5, MSR_P4_CRU_ESCR3} }
305 	},
306 
307 	{ /* EXECUTION_EVENT */
308 		0x05, 0x0c,
309 		{ { CTR_IQ_4, MSR_P4_CRU_ESCR2},
310 		  { CTR_IQ_5, MSR_P4_CRU_ESCR3} }
311 	},
312 
313 	{ /* REPLAY_EVENT */
314 		0x05, 0x09,
315 		{ { CTR_IQ_4, MSR_P4_CRU_ESCR2},
316 		  { CTR_IQ_5, MSR_P4_CRU_ESCR3} }
317 	},
318 
319 	{ /* INSTR_RETIRED */
320 		0x04, 0x02,
321 		{ { CTR_IQ_4, MSR_P4_CRU_ESCR0},
322 		  { CTR_IQ_5, MSR_P4_CRU_ESCR1} }
323 	},
324 
325 	{ /* UOPS_RETIRED */
326 		0x04, 0x01,
327 		{ { CTR_IQ_4, MSR_P4_CRU_ESCR0},
328 		  { CTR_IQ_5, MSR_P4_CRU_ESCR1} }
329 	},
330 
331 	{ /* UOP_TYPE */
332 		0x02, 0x02,
333 		{ { CTR_IQ_4, MSR_P4_RAT_ESCR0},
334 		  { CTR_IQ_5, MSR_P4_RAT_ESCR1} }
335 	},
336 
337 	{ /* RETIRED_MISPRED_BRANCH_TYPE */
338 		0x02, 0x05,
339 		{ { CTR_MS_0, MSR_P4_TBPU_ESCR0},
340 		  { CTR_MS_2, MSR_P4_TBPU_ESCR1} }
341 	},
342 
343 	{ /* RETIRED_BRANCH_TYPE */
344 		0x02, 0x04,
345 		{ { CTR_MS_0, MSR_P4_TBPU_ESCR0},
346 		  { CTR_MS_2, MSR_P4_TBPU_ESCR1} }
347 	}
348 };
349 
350 
351 #define MISC_PMC_ENABLED_P(x) ((x) & 1 << 7)
352 
353 #define ESCR_RESERVED_BITS 0x80000003
354 #define ESCR_CLEAR(escr) ((escr) &= ESCR_RESERVED_BITS)
355 #define ESCR_SET_USR_0(escr, usr) ((escr) |= (((usr) & 1) << 2))
356 #define ESCR_SET_OS_0(escr, os) ((escr) |= (((os) & 1) << 3))
357 #define ESCR_SET_USR_1(escr, usr) ((escr) |= (((usr) & 1)))
358 #define ESCR_SET_OS_1(escr, os) ((escr) |= (((os) & 1) << 1))
359 #define ESCR_SET_EVENT_SELECT(escr, sel) ((escr) |= (((sel) & 0x3f) << 25))
360 #define ESCR_SET_EVENT_MASK(escr, mask) ((escr) |= (((mask) & 0xffff) << 9))
361 #define ESCR_READ(escr, high, ev, i) do {rdmsr(ev->bindings[(i)].escr_address, (escr), (high));} while (0)
362 #define ESCR_WRITE(escr, high, ev, i) do {wrmsr(ev->bindings[(i)].escr_address, (escr), (high));} while (0)
363 
364 #define CCCR_RESERVED_BITS 0x38030FFF
365 #define CCCR_CLEAR(cccr) ((cccr) &= CCCR_RESERVED_BITS)
366 #define CCCR_SET_REQUIRED_BITS(cccr) ((cccr) |= 0x00030000)
367 #define CCCR_SET_ESCR_SELECT(cccr, sel) ((cccr) |= (((sel) & 0x07) << 13))
368 #define CCCR_SET_PMI_OVF_0(cccr) ((cccr) |= (1 << 26))
369 #define CCCR_SET_PMI_OVF_1(cccr) ((cccr) |= (1 << 27))
370 #define CCCR_SET_ENABLE(cccr) ((cccr) |= (1 << 12))
371 #define CCCR_SET_DISABLE(cccr) ((cccr) &= ~(1 << 12))
372 #define CCCR_READ(low, high, i) do {rdmsr(p4_counters[(i)].cccr_address, (low), (high));} while (0)
373 #define CCCR_WRITE(low, high, i) do {wrmsr(p4_counters[(i)].cccr_address, (low), (high));} while (0)
374 #define CCCR_OVF_P(cccr) ((cccr) & (1U << 31))
375 #define CCCR_CLEAR_OVF(cccr) ((cccr) &= (~(1U << 31)))
376 
377 #define CTR_READ(l, h, i) do {rdmsr(p4_counters[(i)].counter_address, (l), (h));} while (0)
378 #define CTR_WRITE(l, i) do {wrmsr(p4_counters[(i)].counter_address, -(u32)(l), -1);} while (0)
379 #define CTR_OVERFLOW_P(ctr) (!((ctr) & 0x80000000))
380 
381 
382 /* this assigns a "stagger" to the current CPU, which is used throughout
383    the code in this module as an extra array offset, to select the "even"
384    or "odd" part of all the divided resources. */
get_stagger(void)385 static unsigned int get_stagger(void)
386 {
387 #ifdef HT_SUPPORT
388 	int cpu;
389 	if (smp_num_siblings > 1) {
390 		cpu = smp_processor_id();
391 		return (cpu_sibling_map[cpu] > cpu) ? 0 : 1;
392 	}
393 #endif
394 	return 0;
395 }
396 
397 
398 /* finally, mediate access to a real hardware counter
399    by passing a "virtual" counter numer to this macro,
400    along with your stagger setting. */
401 #define VIRT_CTR(stagger, i) ((i) + ((num_counters) * (stagger)))
402 
403 
p4_fill_in_addresses(struct op_msrs * const msrs)404 static void p4_fill_in_addresses(struct op_msrs * const msrs)
405 {
406 	unsigned int i;
407 	unsigned int addr, stag;
408 
409 	setup_num_counters();
410 	stag = get_stagger();
411 
412 	/* the counter registers we pay attention to */
413 	for (i = 0; i < num_counters; ++i) {
414 		msrs->counters.addrs[i] =
415 			p4_counters[VIRT_CTR(stag, i)].counter_address;
416 	}
417 
418 	/* FIXME: bad feeling, we don't save the 10 counters we don't use. */
419 
420 	/* 18 CCCR registers */
421 	for (i = 0, addr = MSR_P4_BPU_CCCR0 + stag;
422 	     addr <= MSR_P4_IQ_CCCR5; ++i, addr += addr_increment()) {
423 		msrs->controls.addrs[i] = addr;
424 	}
425 
426 	/* 43 ESCR registers in three or four discontiguous group */
427 	for (addr = MSR_P4_BSU_ESCR0 + stag;
428 	     addr < MSR_P4_IQ_ESCR0; ++i, addr += addr_increment()) {
429 		msrs->controls.addrs[i] = addr;
430 	}
431 
432 	/* no IQ_ESCR0/1 on some models, we save a seconde time BSU_ESCR0/1
433 	 * to avoid special case in nmi_{save|restore}_registers() */
434 	if (boot_cpu_data.x86_model >= 0x3) {
435 		for (addr = MSR_P4_BSU_ESCR0 + stag;
436 		     addr <= MSR_P4_BSU_ESCR1; ++i, addr += addr_increment()) {
437 			msrs->controls.addrs[i] = addr;
438 		}
439 	} else {
440 		for (addr = MSR_P4_IQ_ESCR0 + stag;
441 		     addr <= MSR_P4_IQ_ESCR1; ++i, addr += addr_increment()) {
442 			msrs->controls.addrs[i] = addr;
443 		}
444 	}
445 
446 	for (addr = MSR_P4_RAT_ESCR0 + stag;
447 	     addr <= MSR_P4_SSU_ESCR0; ++i, addr += addr_increment()) {
448 		msrs->controls.addrs[i] = addr;
449 	}
450 
451 	for (addr = MSR_P4_MS_ESCR0 + stag;
452 	     addr <= MSR_P4_TC_ESCR1; ++i, addr += addr_increment()) {
453 		msrs->controls.addrs[i] = addr;
454 	}
455 
456 	for (addr = MSR_P4_IX_ESCR0 + stag;
457 	     addr <= MSR_P4_CRU_ESCR3; ++i, addr += addr_increment()) {
458 		msrs->controls.addrs[i] = addr;
459 	}
460 
461 	/* there are 2 remaining non-contiguously located ESCRs */
462 
463 	if (num_counters == NUM_COUNTERS_NON_HT) {
464 		/* standard non-HT CPUs handle both remaining ESCRs*/
465 		msrs->controls.addrs[i++] = MSR_P4_CRU_ESCR5;
466 		msrs->controls.addrs[i++] = MSR_P4_CRU_ESCR4;
467 
468 	} else if (stag == 0) {
469 		/* HT CPUs give the first remainder to the even thread, as
470 		   the 32nd control register */
471 		msrs->controls.addrs[i++] = MSR_P4_CRU_ESCR4;
472 
473 	} else {
474 		/* and two copies of the second to the odd thread,
475 		   for the 22st and 23nd control registers */
476 		msrs->controls.addrs[i++] = MSR_P4_CRU_ESCR5;
477 		msrs->controls.addrs[i++] = MSR_P4_CRU_ESCR5;
478 	}
479 }
480 
481 
pmc_setup_one_p4_counter(unsigned int ctr)482 static void pmc_setup_one_p4_counter(unsigned int ctr)
483 {
484 	int i;
485 	int const maxbind = 2;
486 	unsigned int cccr = 0;
487 	unsigned int escr = 0;
488 	unsigned int high = 0;
489 	unsigned int counter_bit;
490 	struct p4_event_binding * ev = NULL;
491 	unsigned int stag;
492 
493 	stag = get_stagger();
494 
495 	/* convert from counter *number* to counter *bit* */
496 	counter_bit = 1 << VIRT_CTR(stag, ctr);
497 
498 	/* find our event binding structure. */
499 	if (sysctl.ctr[ctr].event <= 0 || sysctl.ctr[ctr].event > NUM_EVENTS) {
500 		printk(KERN_ERR
501 		       "oprofile: P4 event code 0x%x out of range\n",
502 		       sysctl.ctr[ctr].event);
503 		return;
504 	}
505 
506 	ev = &(p4_events[sysctl.ctr[ctr].event - 1]);
507 
508 	for (i = 0; i < maxbind; i++) {
509 		if (ev->bindings[i].virt_counter & counter_bit) {
510 
511 			/* modify ESCR */
512 			ESCR_READ(escr, high, ev, i);
513 			ESCR_CLEAR(escr);
514 			if (stag == 0) {
515 				ESCR_SET_USR_0(escr, sysctl.ctr[ctr].user);
516 				ESCR_SET_OS_0(escr, sysctl.ctr[ctr].kernel);
517 			} else {
518 				ESCR_SET_USR_1(escr, sysctl.ctr[ctr].user);
519 				ESCR_SET_OS_1(escr, sysctl.ctr[ctr].kernel);
520 			}
521 			ESCR_SET_EVENT_SELECT(escr, ev->event_select);
522 			ESCR_SET_EVENT_MASK(escr, sysctl.ctr[ctr].unit_mask);
523 			ESCR_WRITE(escr, high, ev, i);
524 
525 			/* modify CCCR */
526 			CCCR_READ(cccr, high, VIRT_CTR(stag, ctr));
527 			CCCR_CLEAR(cccr);
528 			CCCR_SET_REQUIRED_BITS(cccr);
529 			CCCR_SET_ESCR_SELECT(cccr, ev->escr_select);
530 			if (stag == 0) {
531 				CCCR_SET_PMI_OVF_0(cccr);
532 			} else {
533 				CCCR_SET_PMI_OVF_1(cccr);
534 			}
535 			CCCR_WRITE(cccr, high, VIRT_CTR(stag, ctr));
536 			return;
537 		}
538 	}
539 
540 	printk(KERN_ERR
541 	       "oprofile: P4 event code 0x%x no binding, ctr %d\n",
542 	       sysctl.ctr[ctr].event, ctr);
543 }
544 
545 
p4_setup_ctrs(struct op_msrs const * const msrs)546 static void p4_setup_ctrs(struct op_msrs const * const msrs)
547 {
548 	unsigned int i;
549 	unsigned int low, high;
550 	unsigned int addr;
551 	unsigned int stag;
552 
553 	stag = get_stagger();
554 
555 	rdmsr(MSR_IA32_MISC_ENABLE, low, high);
556 	if (!MISC_PMC_ENABLED_P(low)) {
557 		printk(KERN_ERR "oprofile: P4 PMC not available\n");
558 		return;
559 	}
560 
561 	/* clear the cccrs we will use */
562 	for (i = 0 ; i < num_counters ; i++) {
563 		rdmsr(p4_counters[VIRT_CTR(stag, i)].cccr_address, low, high);
564 		CCCR_CLEAR(low);
565 		CCCR_SET_REQUIRED_BITS(low);
566 		wrmsr(p4_counters[VIRT_CTR(stag, i)].cccr_address, low, high);
567 	}
568 
569 	/* clear cccrs outside our concern */
570 	for (i = stag ; i < NUM_UNUSED_CCCRS ; i += addr_increment()) {
571 		rdmsr(p4_unused_cccr[i], low, high);
572 		CCCR_CLEAR(low);
573 		CCCR_SET_REQUIRED_BITS(low);
574 		wrmsr(p4_unused_cccr[i], low, high);
575 	}
576 
577 	/* clear all escrs (including those outside our concern) */
578 	for (addr = MSR_P4_BSU_ESCR0 + stag;
579 	     addr <  MSR_P4_IQ_ESCR0; addr += addr_increment()) {
580 		wrmsr(addr, 0, 0);
581 	}
582 
583 	/* On older models clear also MSR_P4_IQ_ESCR0/1 */
584 	if (boot_cpu_data.x86_model < 0x3) {
585 		wrmsr(MSR_P4_IQ_ESCR0, 0, 0);
586 		wrmsr(MSR_P4_IQ_ESCR1, 0, 0);
587 	}
588 
589 	for (addr = MSR_P4_RAT_ESCR0 + stag;
590 	     addr <= MSR_P4_SSU_ESCR0; ++i, addr += addr_increment()) {
591 		wrmsr(addr, 0, 0);
592 	}
593 
594 	for (addr = MSR_P4_MS_ESCR0 + stag;
595 	     addr <= MSR_P4_TC_ESCR1; addr += addr_increment()) {
596 		wrmsr(addr, 0, 0);
597 	}
598 
599 	for (addr = MSR_P4_IX_ESCR0 + stag;
600 	     addr <= MSR_P4_CRU_ESCR3; addr += addr_increment()) {
601 		wrmsr(addr, 0, 0);
602 	}
603 
604 	if (num_counters == NUM_COUNTERS_NON_HT) {
605 		wrmsr(MSR_P4_CRU_ESCR4, 0, 0);
606 		wrmsr(MSR_P4_CRU_ESCR5, 0, 0);
607 	} else if (stag == 0) {
608 		wrmsr(MSR_P4_CRU_ESCR4, 0, 0);
609 	} else {
610 		wrmsr(MSR_P4_CRU_ESCR5, 0, 0);
611 	}
612 
613 	/* setup all counters */
614 	for (i = 0 ; i < num_counters ; ++i) {
615 		if (sysctl.ctr[i].event) {
616 			pmc_setup_one_p4_counter(i);
617 			CTR_WRITE(sysctl.ctr[i].count, VIRT_CTR(stag, i));
618 		}
619 	}
620 }
621 
622 
p4_check_ctrs(unsigned int const cpu,struct op_msrs const * const msrs,struct pt_regs * const regs)623 static void p4_check_ctrs(unsigned int const cpu,
624 			  struct op_msrs const * const msrs,
625 			  struct pt_regs * const regs)
626 {
627 	unsigned long ctr, low, high, stag, real;
628 	int i;
629 
630 	stag = get_stagger();
631 
632 	for (i = 0; i < num_counters; ++i) {
633 
634 		if (!sysctl.ctr[i].enabled)
635 			continue;
636 
637 		/*
638 		 * there is some eccentricity in the hardware which
639 		 * requires that we perform 2 extra corrections:
640 		 *
641 		 * - check both the CCCR:OVF flag for overflow and the
642 		 *   counter high bit for un-flagged overflows.
643 		 *
644 		 * - write the counter back twice to ensure it gets
645 		 *   updated properly.
646 		 *
647 		 * the former seems to be related to extra NMIs happening
648 		 * during the current NMI; the latter is reported as errata
649 		 * N15 in intel doc 249199-029, pentium 4 specification
650 		 * update, though their suggested work-around does not
651 		 * appear to solve the problem.
652 		 */
653 
654 		real = VIRT_CTR(stag, i);
655 
656 		CCCR_READ(low, high, real);
657  		CTR_READ(ctr, high, real);
658 		if (CCCR_OVF_P(low) || CTR_OVERFLOW_P(ctr)) {
659 			op_do_profile(cpu, instruction_pointer(regs), IRQ_ENABLED(regs), i);
660  			CTR_WRITE(oprof_data[cpu].ctr_count[i], real);
661 			CCCR_CLEAR_OVF(low);
662 			CCCR_WRITE(low, high, real);
663  			CTR_WRITE(oprof_data[cpu].ctr_count[i], real);
664 		}
665 	}
666 
667 	/* P4 quirk: you have to re-unmask the apic vector */
668 	apic_write(APIC_LVTPC, apic_read(APIC_LVTPC) & ~APIC_LVT_MASKED);
669 }
670 
671 
p4_start(struct op_msrs const * const msrs)672 static void p4_start(struct op_msrs const * const msrs)
673 {
674 	unsigned int low, high, stag;
675 	int i;
676 
677 	stag = get_stagger();
678 
679 	for (i = 0; i < num_counters; ++i) {
680 		if (!sysctl.ctr[i].enabled)
681 			continue;
682 		CCCR_READ(low, high, VIRT_CTR(stag, i));
683 		CCCR_SET_ENABLE(low);
684 		CCCR_WRITE(low, high, VIRT_CTR(stag, i));
685 	}
686 }
687 
688 
p4_stop(struct op_msrs const * const msrs)689 static void p4_stop(struct op_msrs const * const msrs)
690 {
691 	unsigned int low, high, stag;
692 	int i;
693 
694 	stag = get_stagger();
695 
696 	for (i = 0; i < num_counters; ++i) {
697 		/* FIXME: 2.6 driver doesn't do that ? */
698 		if (!sysctl.ctr[i].enabled)
699 			continue;
700 		CCCR_READ(low, high, VIRT_CTR(stag, i));
701 		CCCR_SET_DISABLE(low);
702 		CCCR_WRITE(low, high, VIRT_CTR(stag, i));
703 	}
704 }
705 
706 #ifdef HT_SUPPORT
707 
708 struct op_x86_model_spec const op_p4_ht2_spec = {
709 	.num_counters = NUM_COUNTERS_HT2,
710 	.num_controls = NUM_CONTROLS_HT2,
711 	.fill_in_addresses = &p4_fill_in_addresses,
712 	.setup_ctrs = &p4_setup_ctrs,
713 	.check_ctrs = &p4_check_ctrs,
714 	.start = &p4_start,
715 	.stop = &p4_stop
716 };
717 #endif
718 
719 struct op_x86_model_spec const op_p4_spec = {
720 	.num_counters = NUM_COUNTERS_NON_HT,
721 	.num_controls = NUM_CONTROLS_NON_HT,
722 	.fill_in_addresses = &p4_fill_in_addresses,
723 	.setup_ctrs = &p4_setup_ctrs,
724 	.check_ctrs = &p4_check_ctrs,
725 	.start = &p4_start,
726 	.stop = &p4_stop
727 };
728