1 //===--- YAMLParser.cpp - Simple YAML parser ------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a YAML parser.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Support/YAMLParser.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/StringExtras.h"
17 #include "llvm/ADT/Twine.h"
18 #include "llvm/ADT/ilist.h"
19 #include "llvm/ADT/ilist_node.h"
20 #include "llvm/Support/ErrorHandling.h"
21 #include "llvm/Support/MemoryBuffer.h"
22 #include "llvm/Support/SourceMgr.h"
23 #include "llvm/Support/raw_ostream.h"
24
25 using namespace llvm;
26 using namespace yaml;
27
28 enum UnicodeEncodingForm {
29 UEF_UTF32_LE, ///< UTF-32 Little Endian
30 UEF_UTF32_BE, ///< UTF-32 Big Endian
31 UEF_UTF16_LE, ///< UTF-16 Little Endian
32 UEF_UTF16_BE, ///< UTF-16 Big Endian
33 UEF_UTF8, ///< UTF-8 or ascii.
34 UEF_Unknown ///< Not a valid Unicode encoding.
35 };
36
37 /// EncodingInfo - Holds the encoding type and length of the byte order mark if
38 /// it exists. Length is in {0, 2, 3, 4}.
39 typedef std::pair<UnicodeEncodingForm, unsigned> EncodingInfo;
40
41 /// getUnicodeEncoding - Reads up to the first 4 bytes to determine the Unicode
42 /// encoding form of \a Input.
43 ///
44 /// @param Input A string of length 0 or more.
45 /// @returns An EncodingInfo indicating the Unicode encoding form of the input
46 /// and how long the byte order mark is if one exists.
getUnicodeEncoding(StringRef Input)47 static EncodingInfo getUnicodeEncoding(StringRef Input) {
48 if (Input.size() == 0)
49 return std::make_pair(UEF_Unknown, 0);
50
51 switch (uint8_t(Input[0])) {
52 case 0x00:
53 if (Input.size() >= 4) {
54 if ( Input[1] == 0
55 && uint8_t(Input[2]) == 0xFE
56 && uint8_t(Input[3]) == 0xFF)
57 return std::make_pair(UEF_UTF32_BE, 4);
58 if (Input[1] == 0 && Input[2] == 0 && Input[3] != 0)
59 return std::make_pair(UEF_UTF32_BE, 0);
60 }
61
62 if (Input.size() >= 2 && Input[1] != 0)
63 return std::make_pair(UEF_UTF16_BE, 0);
64 return std::make_pair(UEF_Unknown, 0);
65 case 0xFF:
66 if ( Input.size() >= 4
67 && uint8_t(Input[1]) == 0xFE
68 && Input[2] == 0
69 && Input[3] == 0)
70 return std::make_pair(UEF_UTF32_LE, 4);
71
72 if (Input.size() >= 2 && uint8_t(Input[1]) == 0xFE)
73 return std::make_pair(UEF_UTF16_LE, 2);
74 return std::make_pair(UEF_Unknown, 0);
75 case 0xFE:
76 if (Input.size() >= 2 && uint8_t(Input[1]) == 0xFF)
77 return std::make_pair(UEF_UTF16_BE, 2);
78 return std::make_pair(UEF_Unknown, 0);
79 case 0xEF:
80 if ( Input.size() >= 3
81 && uint8_t(Input[1]) == 0xBB
82 && uint8_t(Input[2]) == 0xBF)
83 return std::make_pair(UEF_UTF8, 3);
84 return std::make_pair(UEF_Unknown, 0);
85 }
86
87 // It could still be utf-32 or utf-16.
88 if (Input.size() >= 4 && Input[1] == 0 && Input[2] == 0 && Input[3] == 0)
89 return std::make_pair(UEF_UTF32_LE, 0);
90
91 if (Input.size() >= 2 && Input[1] == 0)
92 return std::make_pair(UEF_UTF16_LE, 0);
93
94 return std::make_pair(UEF_UTF8, 0);
95 }
96
97 namespace llvm {
98 namespace yaml {
99 /// Pin the vtables to this file.
anchor()100 void Node::anchor() {}
anchor()101 void NullNode::anchor() {}
anchor()102 void ScalarNode::anchor() {}
anchor()103 void KeyValueNode::anchor() {}
anchor()104 void MappingNode::anchor() {}
anchor()105 void SequenceNode::anchor() {}
anchor()106 void AliasNode::anchor() {}
107
108 /// Token - A single YAML token.
109 struct Token : ilist_node<Token> {
110 enum TokenKind {
111 TK_Error, // Uninitialized token.
112 TK_StreamStart,
113 TK_StreamEnd,
114 TK_VersionDirective,
115 TK_TagDirective,
116 TK_DocumentStart,
117 TK_DocumentEnd,
118 TK_BlockEntry,
119 TK_BlockEnd,
120 TK_BlockSequenceStart,
121 TK_BlockMappingStart,
122 TK_FlowEntry,
123 TK_FlowSequenceStart,
124 TK_FlowSequenceEnd,
125 TK_FlowMappingStart,
126 TK_FlowMappingEnd,
127 TK_Key,
128 TK_Value,
129 TK_Scalar,
130 TK_Alias,
131 TK_Anchor,
132 TK_Tag
133 } Kind;
134
135 /// A string of length 0 or more whose begin() points to the logical location
136 /// of the token in the input.
137 StringRef Range;
138
Tokenllvm::yaml::Token139 Token() : Kind(TK_Error) {}
140 };
141 }
142 }
143
144 namespace llvm {
145 template<>
146 struct ilist_sentinel_traits<Token> {
createSentinelllvm::ilist_sentinel_traits147 Token *createSentinel() const {
148 return &Sentinel;
149 }
destroySentinelllvm::ilist_sentinel_traits150 static void destroySentinel(Token*) {}
151
provideInitialHeadllvm::ilist_sentinel_traits152 Token *provideInitialHead() const { return createSentinel(); }
ensureHeadllvm::ilist_sentinel_traits153 Token *ensureHead(Token*) const { return createSentinel(); }
noteHeadllvm::ilist_sentinel_traits154 static void noteHead(Token*, Token*) {}
155
156 private:
157 mutable Token Sentinel;
158 };
159
160 template<>
161 struct ilist_node_traits<Token> {
createNodellvm::ilist_node_traits162 Token *createNode(const Token &V) {
163 return new (Alloc.Allocate<Token>()) Token(V);
164 }
deleteNodellvm::ilist_node_traits165 static void deleteNode(Token *V) {}
166
addNodeToListllvm::ilist_node_traits167 void addNodeToList(Token *) {}
removeNodeFromListllvm::ilist_node_traits168 void removeNodeFromList(Token *) {}
transferNodesFromListllvm::ilist_node_traits169 void transferNodesFromList(ilist_node_traits & /*SrcTraits*/,
170 ilist_iterator<Token> /*first*/,
171 ilist_iterator<Token> /*last*/) {}
172
173 BumpPtrAllocator Alloc;
174 };
175 }
176
177 typedef ilist<Token> TokenQueueT;
178
179 namespace {
180 /// @brief This struct is used to track simple keys.
181 ///
182 /// Simple keys are handled by creating an entry in SimpleKeys for each Token
183 /// which could legally be the start of a simple key. When peekNext is called,
184 /// if the Token To be returned is referenced by a SimpleKey, we continue
185 /// tokenizing until that potential simple key has either been found to not be
186 /// a simple key (we moved on to the next line or went further than 1024 chars).
187 /// Or when we run into a Value, and then insert a Key token (and possibly
188 /// others) before the SimpleKey's Tok.
189 struct SimpleKey {
190 TokenQueueT::iterator Tok;
191 unsigned Column;
192 unsigned Line;
193 unsigned FlowLevel;
194 bool IsRequired;
195
operator ==__anonfe02cdc20111::SimpleKey196 bool operator ==(const SimpleKey &Other) {
197 return Tok == Other.Tok;
198 }
199 };
200 }
201
202 /// @brief The Unicode scalar value of a UTF-8 minimal well-formed code unit
203 /// subsequence and the subsequence's length in code units (uint8_t).
204 /// A length of 0 represents an error.
205 typedef std::pair<uint32_t, unsigned> UTF8Decoded;
206
decodeUTF8(StringRef Range)207 static UTF8Decoded decodeUTF8(StringRef Range) {
208 StringRef::iterator Position= Range.begin();
209 StringRef::iterator End = Range.end();
210 // 1 byte: [0x00, 0x7f]
211 // Bit pattern: 0xxxxxxx
212 if ((*Position & 0x80) == 0) {
213 return std::make_pair(*Position, 1);
214 }
215 // 2 bytes: [0x80, 0x7ff]
216 // Bit pattern: 110xxxxx 10xxxxxx
217 if (Position + 1 != End &&
218 ((*Position & 0xE0) == 0xC0) &&
219 ((*(Position + 1) & 0xC0) == 0x80)) {
220 uint32_t codepoint = ((*Position & 0x1F) << 6) |
221 (*(Position + 1) & 0x3F);
222 if (codepoint >= 0x80)
223 return std::make_pair(codepoint, 2);
224 }
225 // 3 bytes: [0x8000, 0xffff]
226 // Bit pattern: 1110xxxx 10xxxxxx 10xxxxxx
227 if (Position + 2 != End &&
228 ((*Position & 0xF0) == 0xE0) &&
229 ((*(Position + 1) & 0xC0) == 0x80) &&
230 ((*(Position + 2) & 0xC0) == 0x80)) {
231 uint32_t codepoint = ((*Position & 0x0F) << 12) |
232 ((*(Position + 1) & 0x3F) << 6) |
233 (*(Position + 2) & 0x3F);
234 // Codepoints between 0xD800 and 0xDFFF are invalid, as
235 // they are high / low surrogate halves used by UTF-16.
236 if (codepoint >= 0x800 &&
237 (codepoint < 0xD800 || codepoint > 0xDFFF))
238 return std::make_pair(codepoint, 3);
239 }
240 // 4 bytes: [0x10000, 0x10FFFF]
241 // Bit pattern: 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
242 if (Position + 3 != End &&
243 ((*Position & 0xF8) == 0xF0) &&
244 ((*(Position + 1) & 0xC0) == 0x80) &&
245 ((*(Position + 2) & 0xC0) == 0x80) &&
246 ((*(Position + 3) & 0xC0) == 0x80)) {
247 uint32_t codepoint = ((*Position & 0x07) << 18) |
248 ((*(Position + 1) & 0x3F) << 12) |
249 ((*(Position + 2) & 0x3F) << 6) |
250 (*(Position + 3) & 0x3F);
251 if (codepoint >= 0x10000 && codepoint <= 0x10FFFF)
252 return std::make_pair(codepoint, 4);
253 }
254 return std::make_pair(0, 0);
255 }
256
257 namespace llvm {
258 namespace yaml {
259 /// @brief Scans YAML tokens from a MemoryBuffer.
260 class Scanner {
261 public:
262 Scanner(const StringRef Input, SourceMgr &SM);
263 Scanner(MemoryBuffer *Buffer, SourceMgr &SM_);
264
265 /// @brief Parse the next token and return it without popping it.
266 Token &peekNext();
267
268 /// @brief Parse the next token and pop it from the queue.
269 Token getNext();
270
printError(SMLoc Loc,SourceMgr::DiagKind Kind,const Twine & Message,ArrayRef<SMRange> Ranges=None)271 void printError(SMLoc Loc, SourceMgr::DiagKind Kind, const Twine &Message,
272 ArrayRef<SMRange> Ranges = None) {
273 SM.PrintMessage(Loc, Kind, Message, Ranges);
274 }
275
setError(const Twine & Message,StringRef::iterator Position)276 void setError(const Twine &Message, StringRef::iterator Position) {
277 if (Current >= End)
278 Current = End - 1;
279
280 // Don't print out more errors after the first one we encounter. The rest
281 // are just the result of the first, and have no meaning.
282 if (!Failed)
283 printError(SMLoc::getFromPointer(Current), SourceMgr::DK_Error, Message);
284 Failed = true;
285 }
286
setError(const Twine & Message)287 void setError(const Twine &Message) {
288 setError(Message, Current);
289 }
290
291 /// @brief Returns true if an error occurred while parsing.
failed()292 bool failed() {
293 return Failed;
294 }
295
296 private:
currentInput()297 StringRef currentInput() {
298 return StringRef(Current, End - Current);
299 }
300
301 /// @brief Decode a UTF-8 minimal well-formed code unit subsequence starting
302 /// at \a Position.
303 ///
304 /// If the UTF-8 code units starting at Position do not form a well-formed
305 /// code unit subsequence, then the Unicode scalar value is 0, and the length
306 /// is 0.
decodeUTF8(StringRef::iterator Position)307 UTF8Decoded decodeUTF8(StringRef::iterator Position) {
308 return ::decodeUTF8(StringRef(Position, End - Position));
309 }
310
311 // The following functions are based on the gramar rules in the YAML spec. The
312 // style of the function names it meant to closely match how they are written
313 // in the spec. The number within the [] is the number of the grammar rule in
314 // the spec.
315 //
316 // See 4.2 [Production Naming Conventions] for the meaning of the prefixes.
317 //
318 // c-
319 // A production starting and ending with a special character.
320 // b-
321 // A production matching a single line break.
322 // nb-
323 // A production starting and ending with a non-break character.
324 // s-
325 // A production starting and ending with a white space character.
326 // ns-
327 // A production starting and ending with a non-space character.
328 // l-
329 // A production matching complete line(s).
330
331 /// @brief Skip a single nb-char[27] starting at Position.
332 ///
333 /// A nb-char is 0x9 | [0x20-0x7E] | 0x85 | [0xA0-0xD7FF] | [0xE000-0xFEFE]
334 /// | [0xFF00-0xFFFD] | [0x10000-0x10FFFF]
335 ///
336 /// @returns The code unit after the nb-char, or Position if it's not an
337 /// nb-char.
338 StringRef::iterator skip_nb_char(StringRef::iterator Position);
339
340 /// @brief Skip a single b-break[28] starting at Position.
341 ///
342 /// A b-break is 0xD 0xA | 0xD | 0xA
343 ///
344 /// @returns The code unit after the b-break, or Position if it's not a
345 /// b-break.
346 StringRef::iterator skip_b_break(StringRef::iterator Position);
347
348 /// @brief Skip a single s-white[33] starting at Position.
349 ///
350 /// A s-white is 0x20 | 0x9
351 ///
352 /// @returns The code unit after the s-white, or Position if it's not a
353 /// s-white.
354 StringRef::iterator skip_s_white(StringRef::iterator Position);
355
356 /// @brief Skip a single ns-char[34] starting at Position.
357 ///
358 /// A ns-char is nb-char - s-white
359 ///
360 /// @returns The code unit after the ns-char, or Position if it's not a
361 /// ns-char.
362 StringRef::iterator skip_ns_char(StringRef::iterator Position);
363
364 typedef StringRef::iterator (Scanner::*SkipWhileFunc)(StringRef::iterator);
365 /// @brief Skip minimal well-formed code unit subsequences until Func
366 /// returns its input.
367 ///
368 /// @returns The code unit after the last minimal well-formed code unit
369 /// subsequence that Func accepted.
370 StringRef::iterator skip_while( SkipWhileFunc Func
371 , StringRef::iterator Position);
372
373 /// @brief Scan ns-uri-char[39]s starting at Cur.
374 ///
375 /// This updates Cur and Column while scanning.
376 ///
377 /// @returns A StringRef starting at Cur which covers the longest contiguous
378 /// sequence of ns-uri-char.
379 StringRef scan_ns_uri_char();
380
381 /// @brief Consume a minimal well-formed code unit subsequence starting at
382 /// \a Cur. Return false if it is not the same Unicode scalar value as
383 /// \a Expected. This updates \a Column.
384 bool consume(uint32_t Expected);
385
386 /// @brief Skip \a Distance UTF-8 code units. Updates \a Cur and \a Column.
387 void skip(uint32_t Distance);
388
389 /// @brief Return true if the minimal well-formed code unit subsequence at
390 /// Pos is whitespace or a new line
391 bool isBlankOrBreak(StringRef::iterator Position);
392
393 /// @brief If IsSimpleKeyAllowed, create and push_back a new SimpleKey.
394 void saveSimpleKeyCandidate( TokenQueueT::iterator Tok
395 , unsigned AtColumn
396 , bool IsRequired);
397
398 /// @brief Remove simple keys that can no longer be valid simple keys.
399 ///
400 /// Invalid simple keys are not on the current line or are further than 1024
401 /// columns back.
402 void removeStaleSimpleKeyCandidates();
403
404 /// @brief Remove all simple keys on FlowLevel \a Level.
405 void removeSimpleKeyCandidatesOnFlowLevel(unsigned Level);
406
407 /// @brief Unroll indentation in \a Indents back to \a Col. Creates BlockEnd
408 /// tokens if needed.
409 bool unrollIndent(int ToColumn);
410
411 /// @brief Increase indent to \a Col. Creates \a Kind token at \a InsertPoint
412 /// if needed.
413 bool rollIndent( int ToColumn
414 , Token::TokenKind Kind
415 , TokenQueueT::iterator InsertPoint);
416
417 /// @brief Skip whitespace and comments until the start of the next token.
418 void scanToNextToken();
419
420 /// @brief Must be the first token generated.
421 bool scanStreamStart();
422
423 /// @brief Generate tokens needed to close out the stream.
424 bool scanStreamEnd();
425
426 /// @brief Scan a %BLAH directive.
427 bool scanDirective();
428
429 /// @brief Scan a ... or ---.
430 bool scanDocumentIndicator(bool IsStart);
431
432 /// @brief Scan a [ or { and generate the proper flow collection start token.
433 bool scanFlowCollectionStart(bool IsSequence);
434
435 /// @brief Scan a ] or } and generate the proper flow collection end token.
436 bool scanFlowCollectionEnd(bool IsSequence);
437
438 /// @brief Scan the , that separates entries in a flow collection.
439 bool scanFlowEntry();
440
441 /// @brief Scan the - that starts block sequence entries.
442 bool scanBlockEntry();
443
444 /// @brief Scan an explicit ? indicating a key.
445 bool scanKey();
446
447 /// @brief Scan an explicit : indicating a value.
448 bool scanValue();
449
450 /// @brief Scan a quoted scalar.
451 bool scanFlowScalar(bool IsDoubleQuoted);
452
453 /// @brief Scan an unquoted scalar.
454 bool scanPlainScalar();
455
456 /// @brief Scan an Alias or Anchor starting with * or &.
457 bool scanAliasOrAnchor(bool IsAlias);
458
459 /// @brief Scan a block scalar starting with | or >.
460 bool scanBlockScalar(bool IsLiteral);
461
462 /// @brief Scan a tag of the form !stuff.
463 bool scanTag();
464
465 /// @brief Dispatch to the next scanning function based on \a *Cur.
466 bool fetchMoreTokens();
467
468 /// @brief The SourceMgr used for diagnostics and buffer management.
469 SourceMgr &SM;
470
471 /// @brief The original input.
472 MemoryBuffer *InputBuffer;
473
474 /// @brief The current position of the scanner.
475 StringRef::iterator Current;
476
477 /// @brief The end of the input (one past the last character).
478 StringRef::iterator End;
479
480 /// @brief Current YAML indentation level in spaces.
481 int Indent;
482
483 /// @brief Current column number in Unicode code points.
484 unsigned Column;
485
486 /// @brief Current line number.
487 unsigned Line;
488
489 /// @brief How deep we are in flow style containers. 0 Means at block level.
490 unsigned FlowLevel;
491
492 /// @brief Are we at the start of the stream?
493 bool IsStartOfStream;
494
495 /// @brief Can the next token be the start of a simple key?
496 bool IsSimpleKeyAllowed;
497
498 /// @brief True if an error has occurred.
499 bool Failed;
500
501 /// @brief Queue of tokens. This is required to queue up tokens while looking
502 /// for the end of a simple key. And for cases where a single character
503 /// can produce multiple tokens (e.g. BlockEnd).
504 TokenQueueT TokenQueue;
505
506 /// @brief Indentation levels.
507 SmallVector<int, 4> Indents;
508
509 /// @brief Potential simple keys.
510 SmallVector<SimpleKey, 4> SimpleKeys;
511 };
512
513 } // end namespace yaml
514 } // end namespace llvm
515
516 /// encodeUTF8 - Encode \a UnicodeScalarValue in UTF-8 and append it to result.
encodeUTF8(uint32_t UnicodeScalarValue,SmallVectorImpl<char> & Result)517 static void encodeUTF8( uint32_t UnicodeScalarValue
518 , SmallVectorImpl<char> &Result) {
519 if (UnicodeScalarValue <= 0x7F) {
520 Result.push_back(UnicodeScalarValue & 0x7F);
521 } else if (UnicodeScalarValue <= 0x7FF) {
522 uint8_t FirstByte = 0xC0 | ((UnicodeScalarValue & 0x7C0) >> 6);
523 uint8_t SecondByte = 0x80 | (UnicodeScalarValue & 0x3F);
524 Result.push_back(FirstByte);
525 Result.push_back(SecondByte);
526 } else if (UnicodeScalarValue <= 0xFFFF) {
527 uint8_t FirstByte = 0xE0 | ((UnicodeScalarValue & 0xF000) >> 12);
528 uint8_t SecondByte = 0x80 | ((UnicodeScalarValue & 0xFC0) >> 6);
529 uint8_t ThirdByte = 0x80 | (UnicodeScalarValue & 0x3F);
530 Result.push_back(FirstByte);
531 Result.push_back(SecondByte);
532 Result.push_back(ThirdByte);
533 } else if (UnicodeScalarValue <= 0x10FFFF) {
534 uint8_t FirstByte = 0xF0 | ((UnicodeScalarValue & 0x1F0000) >> 18);
535 uint8_t SecondByte = 0x80 | ((UnicodeScalarValue & 0x3F000) >> 12);
536 uint8_t ThirdByte = 0x80 | ((UnicodeScalarValue & 0xFC0) >> 6);
537 uint8_t FourthByte = 0x80 | (UnicodeScalarValue & 0x3F);
538 Result.push_back(FirstByte);
539 Result.push_back(SecondByte);
540 Result.push_back(ThirdByte);
541 Result.push_back(FourthByte);
542 }
543 }
544
dumpTokens(StringRef Input,raw_ostream & OS)545 bool yaml::dumpTokens(StringRef Input, raw_ostream &OS) {
546 SourceMgr SM;
547 Scanner scanner(Input, SM);
548 while (true) {
549 Token T = scanner.getNext();
550 switch (T.Kind) {
551 case Token::TK_StreamStart:
552 OS << "Stream-Start: ";
553 break;
554 case Token::TK_StreamEnd:
555 OS << "Stream-End: ";
556 break;
557 case Token::TK_VersionDirective:
558 OS << "Version-Directive: ";
559 break;
560 case Token::TK_TagDirective:
561 OS << "Tag-Directive: ";
562 break;
563 case Token::TK_DocumentStart:
564 OS << "Document-Start: ";
565 break;
566 case Token::TK_DocumentEnd:
567 OS << "Document-End: ";
568 break;
569 case Token::TK_BlockEntry:
570 OS << "Block-Entry: ";
571 break;
572 case Token::TK_BlockEnd:
573 OS << "Block-End: ";
574 break;
575 case Token::TK_BlockSequenceStart:
576 OS << "Block-Sequence-Start: ";
577 break;
578 case Token::TK_BlockMappingStart:
579 OS << "Block-Mapping-Start: ";
580 break;
581 case Token::TK_FlowEntry:
582 OS << "Flow-Entry: ";
583 break;
584 case Token::TK_FlowSequenceStart:
585 OS << "Flow-Sequence-Start: ";
586 break;
587 case Token::TK_FlowSequenceEnd:
588 OS << "Flow-Sequence-End: ";
589 break;
590 case Token::TK_FlowMappingStart:
591 OS << "Flow-Mapping-Start: ";
592 break;
593 case Token::TK_FlowMappingEnd:
594 OS << "Flow-Mapping-End: ";
595 break;
596 case Token::TK_Key:
597 OS << "Key: ";
598 break;
599 case Token::TK_Value:
600 OS << "Value: ";
601 break;
602 case Token::TK_Scalar:
603 OS << "Scalar: ";
604 break;
605 case Token::TK_Alias:
606 OS << "Alias: ";
607 break;
608 case Token::TK_Anchor:
609 OS << "Anchor: ";
610 break;
611 case Token::TK_Tag:
612 OS << "Tag: ";
613 break;
614 case Token::TK_Error:
615 break;
616 }
617 OS << T.Range << "\n";
618 if (T.Kind == Token::TK_StreamEnd)
619 break;
620 else if (T.Kind == Token::TK_Error)
621 return false;
622 }
623 return true;
624 }
625
scanTokens(StringRef Input)626 bool yaml::scanTokens(StringRef Input) {
627 llvm::SourceMgr SM;
628 llvm::yaml::Scanner scanner(Input, SM);
629 for (;;) {
630 llvm::yaml::Token T = scanner.getNext();
631 if (T.Kind == Token::TK_StreamEnd)
632 break;
633 else if (T.Kind == Token::TK_Error)
634 return false;
635 }
636 return true;
637 }
638
escape(StringRef Input)639 std::string yaml::escape(StringRef Input) {
640 std::string EscapedInput;
641 for (StringRef::iterator i = Input.begin(), e = Input.end(); i != e; ++i) {
642 if (*i == '\\')
643 EscapedInput += "\\\\";
644 else if (*i == '"')
645 EscapedInput += "\\\"";
646 else if (*i == 0)
647 EscapedInput += "\\0";
648 else if (*i == 0x07)
649 EscapedInput += "\\a";
650 else if (*i == 0x08)
651 EscapedInput += "\\b";
652 else if (*i == 0x09)
653 EscapedInput += "\\t";
654 else if (*i == 0x0A)
655 EscapedInput += "\\n";
656 else if (*i == 0x0B)
657 EscapedInput += "\\v";
658 else if (*i == 0x0C)
659 EscapedInput += "\\f";
660 else if (*i == 0x0D)
661 EscapedInput += "\\r";
662 else if (*i == 0x1B)
663 EscapedInput += "\\e";
664 else if ((unsigned char)*i < 0x20) { // Control characters not handled above.
665 std::string HexStr = utohexstr(*i);
666 EscapedInput += "\\x" + std::string(2 - HexStr.size(), '0') + HexStr;
667 } else if (*i & 0x80) { // UTF-8 multiple code unit subsequence.
668 UTF8Decoded UnicodeScalarValue
669 = decodeUTF8(StringRef(i, Input.end() - i));
670 if (UnicodeScalarValue.second == 0) {
671 // Found invalid char.
672 SmallString<4> Val;
673 encodeUTF8(0xFFFD, Val);
674 EscapedInput.insert(EscapedInput.end(), Val.begin(), Val.end());
675 // FIXME: Error reporting.
676 return EscapedInput;
677 }
678 if (UnicodeScalarValue.first == 0x85)
679 EscapedInput += "\\N";
680 else if (UnicodeScalarValue.first == 0xA0)
681 EscapedInput += "\\_";
682 else if (UnicodeScalarValue.first == 0x2028)
683 EscapedInput += "\\L";
684 else if (UnicodeScalarValue.first == 0x2029)
685 EscapedInput += "\\P";
686 else {
687 std::string HexStr = utohexstr(UnicodeScalarValue.first);
688 if (HexStr.size() <= 2)
689 EscapedInput += "\\x" + std::string(2 - HexStr.size(), '0') + HexStr;
690 else if (HexStr.size() <= 4)
691 EscapedInput += "\\u" + std::string(4 - HexStr.size(), '0') + HexStr;
692 else if (HexStr.size() <= 8)
693 EscapedInput += "\\U" + std::string(8 - HexStr.size(), '0') + HexStr;
694 }
695 i += UnicodeScalarValue.second - 1;
696 } else
697 EscapedInput.push_back(*i);
698 }
699 return EscapedInput;
700 }
701
Scanner(StringRef Input,SourceMgr & sm)702 Scanner::Scanner(StringRef Input, SourceMgr &sm)
703 : SM(sm)
704 , Indent(-1)
705 , Column(0)
706 , Line(0)
707 , FlowLevel(0)
708 , IsStartOfStream(true)
709 , IsSimpleKeyAllowed(true)
710 , Failed(false) {
711 InputBuffer = MemoryBuffer::getMemBuffer(Input, "YAML");
712 SM.AddNewSourceBuffer(InputBuffer, SMLoc());
713 Current = InputBuffer->getBufferStart();
714 End = InputBuffer->getBufferEnd();
715 }
716
Scanner(MemoryBuffer * Buffer,SourceMgr & SM_)717 Scanner::Scanner(MemoryBuffer *Buffer, SourceMgr &SM_)
718 : SM(SM_)
719 , InputBuffer(Buffer)
720 , Current(InputBuffer->getBufferStart())
721 , End(InputBuffer->getBufferEnd())
722 , Indent(-1)
723 , Column(0)
724 , Line(0)
725 , FlowLevel(0)
726 , IsStartOfStream(true)
727 , IsSimpleKeyAllowed(true)
728 , Failed(false) {
729 SM.AddNewSourceBuffer(InputBuffer, SMLoc());
730 }
731
peekNext()732 Token &Scanner::peekNext() {
733 // If the current token is a possible simple key, keep parsing until we
734 // can confirm.
735 bool NeedMore = false;
736 while (true) {
737 if (TokenQueue.empty() || NeedMore) {
738 if (!fetchMoreTokens()) {
739 TokenQueue.clear();
740 TokenQueue.push_back(Token());
741 return TokenQueue.front();
742 }
743 }
744 assert(!TokenQueue.empty() &&
745 "fetchMoreTokens lied about getting tokens!");
746
747 removeStaleSimpleKeyCandidates();
748 SimpleKey SK;
749 SK.Tok = TokenQueue.front();
750 if (std::find(SimpleKeys.begin(), SimpleKeys.end(), SK)
751 == SimpleKeys.end())
752 break;
753 else
754 NeedMore = true;
755 }
756 return TokenQueue.front();
757 }
758
getNext()759 Token Scanner::getNext() {
760 Token Ret = peekNext();
761 // TokenQueue can be empty if there was an error getting the next token.
762 if (!TokenQueue.empty())
763 TokenQueue.pop_front();
764
765 // There cannot be any referenced Token's if the TokenQueue is empty. So do a
766 // quick deallocation of them all.
767 if (TokenQueue.empty()) {
768 TokenQueue.Alloc.Reset();
769 }
770
771 return Ret;
772 }
773
skip_nb_char(StringRef::iterator Position)774 StringRef::iterator Scanner::skip_nb_char(StringRef::iterator Position) {
775 if (Position == End)
776 return Position;
777 // Check 7 bit c-printable - b-char.
778 if ( *Position == 0x09
779 || (*Position >= 0x20 && *Position <= 0x7E))
780 return Position + 1;
781
782 // Check for valid UTF-8.
783 if (uint8_t(*Position) & 0x80) {
784 UTF8Decoded u8d = decodeUTF8(Position);
785 if ( u8d.second != 0
786 && u8d.first != 0xFEFF
787 && ( u8d.first == 0x85
788 || ( u8d.first >= 0xA0
789 && u8d.first <= 0xD7FF)
790 || ( u8d.first >= 0xE000
791 && u8d.first <= 0xFFFD)
792 || ( u8d.first >= 0x10000
793 && u8d.first <= 0x10FFFF)))
794 return Position + u8d.second;
795 }
796 return Position;
797 }
798
skip_b_break(StringRef::iterator Position)799 StringRef::iterator Scanner::skip_b_break(StringRef::iterator Position) {
800 if (Position == End)
801 return Position;
802 if (*Position == 0x0D) {
803 if (Position + 1 != End && *(Position + 1) == 0x0A)
804 return Position + 2;
805 return Position + 1;
806 }
807
808 if (*Position == 0x0A)
809 return Position + 1;
810 return Position;
811 }
812
813
skip_s_white(StringRef::iterator Position)814 StringRef::iterator Scanner::skip_s_white(StringRef::iterator Position) {
815 if (Position == End)
816 return Position;
817 if (*Position == ' ' || *Position == '\t')
818 return Position + 1;
819 return Position;
820 }
821
skip_ns_char(StringRef::iterator Position)822 StringRef::iterator Scanner::skip_ns_char(StringRef::iterator Position) {
823 if (Position == End)
824 return Position;
825 if (*Position == ' ' || *Position == '\t')
826 return Position;
827 return skip_nb_char(Position);
828 }
829
skip_while(SkipWhileFunc Func,StringRef::iterator Position)830 StringRef::iterator Scanner::skip_while( SkipWhileFunc Func
831 , StringRef::iterator Position) {
832 while (true) {
833 StringRef::iterator i = (this->*Func)(Position);
834 if (i == Position)
835 break;
836 Position = i;
837 }
838 return Position;
839 }
840
is_ns_hex_digit(const char C)841 static bool is_ns_hex_digit(const char C) {
842 return (C >= '0' && C <= '9')
843 || (C >= 'a' && C <= 'z')
844 || (C >= 'A' && C <= 'Z');
845 }
846
is_ns_word_char(const char C)847 static bool is_ns_word_char(const char C) {
848 return C == '-'
849 || (C >= 'a' && C <= 'z')
850 || (C >= 'A' && C <= 'Z');
851 }
852
scan_ns_uri_char()853 StringRef Scanner::scan_ns_uri_char() {
854 StringRef::iterator Start = Current;
855 while (true) {
856 if (Current == End)
857 break;
858 if (( *Current == '%'
859 && Current + 2 < End
860 && is_ns_hex_digit(*(Current + 1))
861 && is_ns_hex_digit(*(Current + 2)))
862 || is_ns_word_char(*Current)
863 || StringRef(Current, 1).find_first_of("#;/?:@&=+$,_.!~*'()[]")
864 != StringRef::npos) {
865 ++Current;
866 ++Column;
867 } else
868 break;
869 }
870 return StringRef(Start, Current - Start);
871 }
872
consume(uint32_t Expected)873 bool Scanner::consume(uint32_t Expected) {
874 if (Expected >= 0x80)
875 report_fatal_error("Not dealing with this yet");
876 if (Current == End)
877 return false;
878 if (uint8_t(*Current) >= 0x80)
879 report_fatal_error("Not dealing with this yet");
880 if (uint8_t(*Current) == Expected) {
881 ++Current;
882 ++Column;
883 return true;
884 }
885 return false;
886 }
887
skip(uint32_t Distance)888 void Scanner::skip(uint32_t Distance) {
889 Current += Distance;
890 Column += Distance;
891 assert(Current <= End && "Skipped past the end");
892 }
893
isBlankOrBreak(StringRef::iterator Position)894 bool Scanner::isBlankOrBreak(StringRef::iterator Position) {
895 if (Position == End)
896 return false;
897 if ( *Position == ' ' || *Position == '\t'
898 || *Position == '\r' || *Position == '\n')
899 return true;
900 return false;
901 }
902
saveSimpleKeyCandidate(TokenQueueT::iterator Tok,unsigned AtColumn,bool IsRequired)903 void Scanner::saveSimpleKeyCandidate( TokenQueueT::iterator Tok
904 , unsigned AtColumn
905 , bool IsRequired) {
906 if (IsSimpleKeyAllowed) {
907 SimpleKey SK;
908 SK.Tok = Tok;
909 SK.Line = Line;
910 SK.Column = AtColumn;
911 SK.IsRequired = IsRequired;
912 SK.FlowLevel = FlowLevel;
913 SimpleKeys.push_back(SK);
914 }
915 }
916
removeStaleSimpleKeyCandidates()917 void Scanner::removeStaleSimpleKeyCandidates() {
918 for (SmallVectorImpl<SimpleKey>::iterator i = SimpleKeys.begin();
919 i != SimpleKeys.end();) {
920 if (i->Line != Line || i->Column + 1024 < Column) {
921 if (i->IsRequired)
922 setError( "Could not find expected : for simple key"
923 , i->Tok->Range.begin());
924 i = SimpleKeys.erase(i);
925 } else
926 ++i;
927 }
928 }
929
removeSimpleKeyCandidatesOnFlowLevel(unsigned Level)930 void Scanner::removeSimpleKeyCandidatesOnFlowLevel(unsigned Level) {
931 if (!SimpleKeys.empty() && (SimpleKeys.end() - 1)->FlowLevel == Level)
932 SimpleKeys.pop_back();
933 }
934
unrollIndent(int ToColumn)935 bool Scanner::unrollIndent(int ToColumn) {
936 Token T;
937 // Indentation is ignored in flow.
938 if (FlowLevel != 0)
939 return true;
940
941 while (Indent > ToColumn) {
942 T.Kind = Token::TK_BlockEnd;
943 T.Range = StringRef(Current, 1);
944 TokenQueue.push_back(T);
945 Indent = Indents.pop_back_val();
946 }
947
948 return true;
949 }
950
rollIndent(int ToColumn,Token::TokenKind Kind,TokenQueueT::iterator InsertPoint)951 bool Scanner::rollIndent( int ToColumn
952 , Token::TokenKind Kind
953 , TokenQueueT::iterator InsertPoint) {
954 if (FlowLevel)
955 return true;
956 if (Indent < ToColumn) {
957 Indents.push_back(Indent);
958 Indent = ToColumn;
959
960 Token T;
961 T.Kind = Kind;
962 T.Range = StringRef(Current, 0);
963 TokenQueue.insert(InsertPoint, T);
964 }
965 return true;
966 }
967
scanToNextToken()968 void Scanner::scanToNextToken() {
969 while (true) {
970 while (*Current == ' ' || *Current == '\t') {
971 skip(1);
972 }
973
974 // Skip comment.
975 if (*Current == '#') {
976 while (true) {
977 // This may skip more than one byte, thus Column is only incremented
978 // for code points.
979 StringRef::iterator i = skip_nb_char(Current);
980 if (i == Current)
981 break;
982 Current = i;
983 ++Column;
984 }
985 }
986
987 // Skip EOL.
988 StringRef::iterator i = skip_b_break(Current);
989 if (i == Current)
990 break;
991 Current = i;
992 ++Line;
993 Column = 0;
994 // New lines may start a simple key.
995 if (!FlowLevel)
996 IsSimpleKeyAllowed = true;
997 }
998 }
999
scanStreamStart()1000 bool Scanner::scanStreamStart() {
1001 IsStartOfStream = false;
1002
1003 EncodingInfo EI = getUnicodeEncoding(currentInput());
1004
1005 Token T;
1006 T.Kind = Token::TK_StreamStart;
1007 T.Range = StringRef(Current, EI.second);
1008 TokenQueue.push_back(T);
1009 Current += EI.second;
1010 return true;
1011 }
1012
scanStreamEnd()1013 bool Scanner::scanStreamEnd() {
1014 // Force an ending new line if one isn't present.
1015 if (Column != 0) {
1016 Column = 0;
1017 ++Line;
1018 }
1019
1020 unrollIndent(-1);
1021 SimpleKeys.clear();
1022 IsSimpleKeyAllowed = false;
1023
1024 Token T;
1025 T.Kind = Token::TK_StreamEnd;
1026 T.Range = StringRef(Current, 0);
1027 TokenQueue.push_back(T);
1028 return true;
1029 }
1030
scanDirective()1031 bool Scanner::scanDirective() {
1032 // Reset the indentation level.
1033 unrollIndent(-1);
1034 SimpleKeys.clear();
1035 IsSimpleKeyAllowed = false;
1036
1037 StringRef::iterator Start = Current;
1038 consume('%');
1039 StringRef::iterator NameStart = Current;
1040 Current = skip_while(&Scanner::skip_ns_char, Current);
1041 StringRef Name(NameStart, Current - NameStart);
1042 Current = skip_while(&Scanner::skip_s_white, Current);
1043
1044 Token T;
1045 if (Name == "YAML") {
1046 Current = skip_while(&Scanner::skip_ns_char, Current);
1047 T.Kind = Token::TK_VersionDirective;
1048 T.Range = StringRef(Start, Current - Start);
1049 TokenQueue.push_back(T);
1050 return true;
1051 } else if(Name == "TAG") {
1052 Current = skip_while(&Scanner::skip_ns_char, Current);
1053 Current = skip_while(&Scanner::skip_s_white, Current);
1054 Current = skip_while(&Scanner::skip_ns_char, Current);
1055 T.Kind = Token::TK_TagDirective;
1056 T.Range = StringRef(Start, Current - Start);
1057 TokenQueue.push_back(T);
1058 return true;
1059 }
1060 return false;
1061 }
1062
scanDocumentIndicator(bool IsStart)1063 bool Scanner::scanDocumentIndicator(bool IsStart) {
1064 unrollIndent(-1);
1065 SimpleKeys.clear();
1066 IsSimpleKeyAllowed = false;
1067
1068 Token T;
1069 T.Kind = IsStart ? Token::TK_DocumentStart : Token::TK_DocumentEnd;
1070 T.Range = StringRef(Current, 3);
1071 skip(3);
1072 TokenQueue.push_back(T);
1073 return true;
1074 }
1075
scanFlowCollectionStart(bool IsSequence)1076 bool Scanner::scanFlowCollectionStart(bool IsSequence) {
1077 Token T;
1078 T.Kind = IsSequence ? Token::TK_FlowSequenceStart
1079 : Token::TK_FlowMappingStart;
1080 T.Range = StringRef(Current, 1);
1081 skip(1);
1082 TokenQueue.push_back(T);
1083
1084 // [ and { may begin a simple key.
1085 saveSimpleKeyCandidate(TokenQueue.back(), Column - 1, false);
1086
1087 // And may also be followed by a simple key.
1088 IsSimpleKeyAllowed = true;
1089 ++FlowLevel;
1090 return true;
1091 }
1092
scanFlowCollectionEnd(bool IsSequence)1093 bool Scanner::scanFlowCollectionEnd(bool IsSequence) {
1094 removeSimpleKeyCandidatesOnFlowLevel(FlowLevel);
1095 IsSimpleKeyAllowed = false;
1096 Token T;
1097 T.Kind = IsSequence ? Token::TK_FlowSequenceEnd
1098 : Token::TK_FlowMappingEnd;
1099 T.Range = StringRef(Current, 1);
1100 skip(1);
1101 TokenQueue.push_back(T);
1102 if (FlowLevel)
1103 --FlowLevel;
1104 return true;
1105 }
1106
scanFlowEntry()1107 bool Scanner::scanFlowEntry() {
1108 removeSimpleKeyCandidatesOnFlowLevel(FlowLevel);
1109 IsSimpleKeyAllowed = true;
1110 Token T;
1111 T.Kind = Token::TK_FlowEntry;
1112 T.Range = StringRef(Current, 1);
1113 skip(1);
1114 TokenQueue.push_back(T);
1115 return true;
1116 }
1117
scanBlockEntry()1118 bool Scanner::scanBlockEntry() {
1119 rollIndent(Column, Token::TK_BlockSequenceStart, TokenQueue.end());
1120 removeSimpleKeyCandidatesOnFlowLevel(FlowLevel);
1121 IsSimpleKeyAllowed = true;
1122 Token T;
1123 T.Kind = Token::TK_BlockEntry;
1124 T.Range = StringRef(Current, 1);
1125 skip(1);
1126 TokenQueue.push_back(T);
1127 return true;
1128 }
1129
scanKey()1130 bool Scanner::scanKey() {
1131 if (!FlowLevel)
1132 rollIndent(Column, Token::TK_BlockMappingStart, TokenQueue.end());
1133
1134 removeSimpleKeyCandidatesOnFlowLevel(FlowLevel);
1135 IsSimpleKeyAllowed = !FlowLevel;
1136
1137 Token T;
1138 T.Kind = Token::TK_Key;
1139 T.Range = StringRef(Current, 1);
1140 skip(1);
1141 TokenQueue.push_back(T);
1142 return true;
1143 }
1144
scanValue()1145 bool Scanner::scanValue() {
1146 // If the previous token could have been a simple key, insert the key token
1147 // into the token queue.
1148 if (!SimpleKeys.empty()) {
1149 SimpleKey SK = SimpleKeys.pop_back_val();
1150 Token T;
1151 T.Kind = Token::TK_Key;
1152 T.Range = SK.Tok->Range;
1153 TokenQueueT::iterator i, e;
1154 for (i = TokenQueue.begin(), e = TokenQueue.end(); i != e; ++i) {
1155 if (i == SK.Tok)
1156 break;
1157 }
1158 assert(i != e && "SimpleKey not in token queue!");
1159 i = TokenQueue.insert(i, T);
1160
1161 // We may also need to add a Block-Mapping-Start token.
1162 rollIndent(SK.Column, Token::TK_BlockMappingStart, i);
1163
1164 IsSimpleKeyAllowed = false;
1165 } else {
1166 if (!FlowLevel)
1167 rollIndent(Column, Token::TK_BlockMappingStart, TokenQueue.end());
1168 IsSimpleKeyAllowed = !FlowLevel;
1169 }
1170
1171 Token T;
1172 T.Kind = Token::TK_Value;
1173 T.Range = StringRef(Current, 1);
1174 skip(1);
1175 TokenQueue.push_back(T);
1176 return true;
1177 }
1178
1179 // Forbidding inlining improves performance by roughly 20%.
1180 // FIXME: Remove once llvm optimizes this to the faster version without hints.
1181 LLVM_ATTRIBUTE_NOINLINE static bool
1182 wasEscaped(StringRef::iterator First, StringRef::iterator Position);
1183
1184 // Returns whether a character at 'Position' was escaped with a leading '\'.
1185 // 'First' specifies the position of the first character in the string.
wasEscaped(StringRef::iterator First,StringRef::iterator Position)1186 static bool wasEscaped(StringRef::iterator First,
1187 StringRef::iterator Position) {
1188 assert(Position - 1 >= First);
1189 StringRef::iterator I = Position - 1;
1190 // We calculate the number of consecutive '\'s before the current position
1191 // by iterating backwards through our string.
1192 while (I >= First && *I == '\\') --I;
1193 // (Position - 1 - I) now contains the number of '\'s before the current
1194 // position. If it is odd, the character at 'Position' was escaped.
1195 return (Position - 1 - I) % 2 == 1;
1196 }
1197
scanFlowScalar(bool IsDoubleQuoted)1198 bool Scanner::scanFlowScalar(bool IsDoubleQuoted) {
1199 StringRef::iterator Start = Current;
1200 unsigned ColStart = Column;
1201 if (IsDoubleQuoted) {
1202 do {
1203 ++Current;
1204 while (Current != End && *Current != '"')
1205 ++Current;
1206 // Repeat until the previous character was not a '\' or was an escaped
1207 // backslash.
1208 } while ( Current != End
1209 && *(Current - 1) == '\\'
1210 && wasEscaped(Start + 1, Current));
1211 } else {
1212 skip(1);
1213 while (true) {
1214 // Skip a ' followed by another '.
1215 if (Current + 1 < End && *Current == '\'' && *(Current + 1) == '\'') {
1216 skip(2);
1217 continue;
1218 } else if (*Current == '\'')
1219 break;
1220 StringRef::iterator i = skip_nb_char(Current);
1221 if (i == Current) {
1222 i = skip_b_break(Current);
1223 if (i == Current)
1224 break;
1225 Current = i;
1226 Column = 0;
1227 ++Line;
1228 } else {
1229 if (i == End)
1230 break;
1231 Current = i;
1232 ++Column;
1233 }
1234 }
1235 }
1236
1237 if (Current == End) {
1238 setError("Expected quote at end of scalar", Current);
1239 return false;
1240 }
1241
1242 skip(1); // Skip ending quote.
1243 Token T;
1244 T.Kind = Token::TK_Scalar;
1245 T.Range = StringRef(Start, Current - Start);
1246 TokenQueue.push_back(T);
1247
1248 saveSimpleKeyCandidate(TokenQueue.back(), ColStart, false);
1249
1250 IsSimpleKeyAllowed = false;
1251
1252 return true;
1253 }
1254
scanPlainScalar()1255 bool Scanner::scanPlainScalar() {
1256 StringRef::iterator Start = Current;
1257 unsigned ColStart = Column;
1258 unsigned LeadingBlanks = 0;
1259 assert(Indent >= -1 && "Indent must be >= -1 !");
1260 unsigned indent = static_cast<unsigned>(Indent + 1);
1261 while (true) {
1262 if (*Current == '#')
1263 break;
1264
1265 while (!isBlankOrBreak(Current)) {
1266 if ( FlowLevel && *Current == ':'
1267 && !(isBlankOrBreak(Current + 1) || *(Current + 1) == ',')) {
1268 setError("Found unexpected ':' while scanning a plain scalar", Current);
1269 return false;
1270 }
1271
1272 // Check for the end of the plain scalar.
1273 if ( (*Current == ':' && isBlankOrBreak(Current + 1))
1274 || ( FlowLevel
1275 && (StringRef(Current, 1).find_first_of(",:?[]{}")
1276 != StringRef::npos)))
1277 break;
1278
1279 StringRef::iterator i = skip_nb_char(Current);
1280 if (i == Current)
1281 break;
1282 Current = i;
1283 ++Column;
1284 }
1285
1286 // Are we at the end?
1287 if (!isBlankOrBreak(Current))
1288 break;
1289
1290 // Eat blanks.
1291 StringRef::iterator Tmp = Current;
1292 while (isBlankOrBreak(Tmp)) {
1293 StringRef::iterator i = skip_s_white(Tmp);
1294 if (i != Tmp) {
1295 if (LeadingBlanks && (Column < indent) && *Tmp == '\t') {
1296 setError("Found invalid tab character in indentation", Tmp);
1297 return false;
1298 }
1299 Tmp = i;
1300 ++Column;
1301 } else {
1302 i = skip_b_break(Tmp);
1303 if (!LeadingBlanks)
1304 LeadingBlanks = 1;
1305 Tmp = i;
1306 Column = 0;
1307 ++Line;
1308 }
1309 }
1310
1311 if (!FlowLevel && Column < indent)
1312 break;
1313
1314 Current = Tmp;
1315 }
1316 if (Start == Current) {
1317 setError("Got empty plain scalar", Start);
1318 return false;
1319 }
1320 Token T;
1321 T.Kind = Token::TK_Scalar;
1322 T.Range = StringRef(Start, Current - Start);
1323 TokenQueue.push_back(T);
1324
1325 // Plain scalars can be simple keys.
1326 saveSimpleKeyCandidate(TokenQueue.back(), ColStart, false);
1327
1328 IsSimpleKeyAllowed = false;
1329
1330 return true;
1331 }
1332
scanAliasOrAnchor(bool IsAlias)1333 bool Scanner::scanAliasOrAnchor(bool IsAlias) {
1334 StringRef::iterator Start = Current;
1335 unsigned ColStart = Column;
1336 skip(1);
1337 while(true) {
1338 if ( *Current == '[' || *Current == ']'
1339 || *Current == '{' || *Current == '}'
1340 || *Current == ','
1341 || *Current == ':')
1342 break;
1343 StringRef::iterator i = skip_ns_char(Current);
1344 if (i == Current)
1345 break;
1346 Current = i;
1347 ++Column;
1348 }
1349
1350 if (Start == Current) {
1351 setError("Got empty alias or anchor", Start);
1352 return false;
1353 }
1354
1355 Token T;
1356 T.Kind = IsAlias ? Token::TK_Alias : Token::TK_Anchor;
1357 T.Range = StringRef(Start, Current - Start);
1358 TokenQueue.push_back(T);
1359
1360 // Alias and anchors can be simple keys.
1361 saveSimpleKeyCandidate(TokenQueue.back(), ColStart, false);
1362
1363 IsSimpleKeyAllowed = false;
1364
1365 return true;
1366 }
1367
scanBlockScalar(bool IsLiteral)1368 bool Scanner::scanBlockScalar(bool IsLiteral) {
1369 StringRef::iterator Start = Current;
1370 skip(1); // Eat | or >
1371 while(true) {
1372 StringRef::iterator i = skip_nb_char(Current);
1373 if (i == Current) {
1374 if (Column == 0)
1375 break;
1376 i = skip_b_break(Current);
1377 if (i != Current) {
1378 // We got a line break.
1379 Column = 0;
1380 ++Line;
1381 Current = i;
1382 continue;
1383 } else {
1384 // There was an error, which should already have been printed out.
1385 return false;
1386 }
1387 }
1388 Current = i;
1389 ++Column;
1390 }
1391
1392 if (Start == Current) {
1393 setError("Got empty block scalar", Start);
1394 return false;
1395 }
1396
1397 Token T;
1398 T.Kind = Token::TK_Scalar;
1399 T.Range = StringRef(Start, Current - Start);
1400 TokenQueue.push_back(T);
1401 return true;
1402 }
1403
scanTag()1404 bool Scanner::scanTag() {
1405 StringRef::iterator Start = Current;
1406 unsigned ColStart = Column;
1407 skip(1); // Eat !.
1408 if (Current == End || isBlankOrBreak(Current)); // An empty tag.
1409 else if (*Current == '<') {
1410 skip(1);
1411 scan_ns_uri_char();
1412 if (!consume('>'))
1413 return false;
1414 } else {
1415 // FIXME: Actually parse the c-ns-shorthand-tag rule.
1416 Current = skip_while(&Scanner::skip_ns_char, Current);
1417 }
1418
1419 Token T;
1420 T.Kind = Token::TK_Tag;
1421 T.Range = StringRef(Start, Current - Start);
1422 TokenQueue.push_back(T);
1423
1424 // Tags can be simple keys.
1425 saveSimpleKeyCandidate(TokenQueue.back(), ColStart, false);
1426
1427 IsSimpleKeyAllowed = false;
1428
1429 return true;
1430 }
1431
fetchMoreTokens()1432 bool Scanner::fetchMoreTokens() {
1433 if (IsStartOfStream)
1434 return scanStreamStart();
1435
1436 scanToNextToken();
1437
1438 if (Current == End)
1439 return scanStreamEnd();
1440
1441 removeStaleSimpleKeyCandidates();
1442
1443 unrollIndent(Column);
1444
1445 if (Column == 0 && *Current == '%')
1446 return scanDirective();
1447
1448 if (Column == 0 && Current + 4 <= End
1449 && *Current == '-'
1450 && *(Current + 1) == '-'
1451 && *(Current + 2) == '-'
1452 && (Current + 3 == End || isBlankOrBreak(Current + 3)))
1453 return scanDocumentIndicator(true);
1454
1455 if (Column == 0 && Current + 4 <= End
1456 && *Current == '.'
1457 && *(Current + 1) == '.'
1458 && *(Current + 2) == '.'
1459 && (Current + 3 == End || isBlankOrBreak(Current + 3)))
1460 return scanDocumentIndicator(false);
1461
1462 if (*Current == '[')
1463 return scanFlowCollectionStart(true);
1464
1465 if (*Current == '{')
1466 return scanFlowCollectionStart(false);
1467
1468 if (*Current == ']')
1469 return scanFlowCollectionEnd(true);
1470
1471 if (*Current == '}')
1472 return scanFlowCollectionEnd(false);
1473
1474 if (*Current == ',')
1475 return scanFlowEntry();
1476
1477 if (*Current == '-' && isBlankOrBreak(Current + 1))
1478 return scanBlockEntry();
1479
1480 if (*Current == '?' && (FlowLevel || isBlankOrBreak(Current + 1)))
1481 return scanKey();
1482
1483 if (*Current == ':' && (FlowLevel || isBlankOrBreak(Current + 1)))
1484 return scanValue();
1485
1486 if (*Current == '*')
1487 return scanAliasOrAnchor(true);
1488
1489 if (*Current == '&')
1490 return scanAliasOrAnchor(false);
1491
1492 if (*Current == '!')
1493 return scanTag();
1494
1495 if (*Current == '|' && !FlowLevel)
1496 return scanBlockScalar(true);
1497
1498 if (*Current == '>' && !FlowLevel)
1499 return scanBlockScalar(false);
1500
1501 if (*Current == '\'')
1502 return scanFlowScalar(false);
1503
1504 if (*Current == '"')
1505 return scanFlowScalar(true);
1506
1507 // Get a plain scalar.
1508 StringRef FirstChar(Current, 1);
1509 if (!(isBlankOrBreak(Current)
1510 || FirstChar.find_first_of("-?:,[]{}#&*!|>'\"%@`") != StringRef::npos)
1511 || (*Current == '-' && !isBlankOrBreak(Current + 1))
1512 || (!FlowLevel && (*Current == '?' || *Current == ':')
1513 && isBlankOrBreak(Current + 1))
1514 || (!FlowLevel && *Current == ':'
1515 && Current + 2 < End
1516 && *(Current + 1) == ':'
1517 && !isBlankOrBreak(Current + 2)))
1518 return scanPlainScalar();
1519
1520 setError("Unrecognized character while tokenizing.");
1521 return false;
1522 }
1523
Stream(StringRef Input,SourceMgr & SM)1524 Stream::Stream(StringRef Input, SourceMgr &SM)
1525 : scanner(new Scanner(Input, SM)), CurrentDoc() {}
1526
Stream(MemoryBuffer * InputBuffer,SourceMgr & SM)1527 Stream::Stream(MemoryBuffer *InputBuffer, SourceMgr &SM)
1528 : scanner(new Scanner(InputBuffer, SM)), CurrentDoc() {}
1529
~Stream()1530 Stream::~Stream() {}
1531
failed()1532 bool Stream::failed() { return scanner->failed(); }
1533
printError(Node * N,const Twine & Msg)1534 void Stream::printError(Node *N, const Twine &Msg) {
1535 SmallVector<SMRange, 1> Ranges;
1536 Ranges.push_back(N->getSourceRange());
1537 scanner->printError( N->getSourceRange().Start
1538 , SourceMgr::DK_Error
1539 , Msg
1540 , Ranges);
1541 }
1542
begin()1543 document_iterator Stream::begin() {
1544 if (CurrentDoc)
1545 report_fatal_error("Can only iterate over the stream once");
1546
1547 // Skip Stream-Start.
1548 scanner->getNext();
1549
1550 CurrentDoc.reset(new Document(*this));
1551 return document_iterator(CurrentDoc);
1552 }
1553
end()1554 document_iterator Stream::end() {
1555 return document_iterator();
1556 }
1557
skip()1558 void Stream::skip() {
1559 for (document_iterator i = begin(), e = end(); i != e; ++i)
1560 i->skip();
1561 }
1562
Node(unsigned int Type,std::unique_ptr<Document> & D,StringRef A,StringRef T)1563 Node::Node(unsigned int Type, std::unique_ptr<Document> &D, StringRef A,
1564 StringRef T)
1565 : Doc(D), TypeID(Type), Anchor(A), Tag(T) {
1566 SMLoc Start = SMLoc::getFromPointer(peekNext().Range.begin());
1567 SourceRange = SMRange(Start, Start);
1568 }
1569
getVerbatimTag() const1570 std::string Node::getVerbatimTag() const {
1571 StringRef Raw = getRawTag();
1572 if (!Raw.empty() && Raw != "!") {
1573 std::string Ret;
1574 if (Raw.find_last_of('!') == 0) {
1575 Ret = Doc->getTagMap().find("!")->second;
1576 Ret += Raw.substr(1);
1577 return std::move(Ret);
1578 } else if (Raw.startswith("!!")) {
1579 Ret = Doc->getTagMap().find("!!")->second;
1580 Ret += Raw.substr(2);
1581 return std::move(Ret);
1582 } else {
1583 StringRef TagHandle = Raw.substr(0, Raw.find_last_of('!') + 1);
1584 std::map<StringRef, StringRef>::const_iterator It =
1585 Doc->getTagMap().find(TagHandle);
1586 if (It != Doc->getTagMap().end())
1587 Ret = It->second;
1588 else {
1589 Token T;
1590 T.Kind = Token::TK_Tag;
1591 T.Range = TagHandle;
1592 setError(Twine("Unknown tag handle ") + TagHandle, T);
1593 }
1594 Ret += Raw.substr(Raw.find_last_of('!') + 1);
1595 return std::move(Ret);
1596 }
1597 }
1598
1599 switch (getType()) {
1600 case NK_Null:
1601 return "tag:yaml.org,2002:null";
1602 case NK_Scalar:
1603 // TODO: Tag resolution.
1604 return "tag:yaml.org,2002:str";
1605 case NK_Mapping:
1606 return "tag:yaml.org,2002:map";
1607 case NK_Sequence:
1608 return "tag:yaml.org,2002:seq";
1609 }
1610
1611 return "";
1612 }
1613
peekNext()1614 Token &Node::peekNext() {
1615 return Doc->peekNext();
1616 }
1617
getNext()1618 Token Node::getNext() {
1619 return Doc->getNext();
1620 }
1621
parseBlockNode()1622 Node *Node::parseBlockNode() {
1623 return Doc->parseBlockNode();
1624 }
1625
getAllocator()1626 BumpPtrAllocator &Node::getAllocator() {
1627 return Doc->NodeAllocator;
1628 }
1629
setError(const Twine & Msg,Token & Tok) const1630 void Node::setError(const Twine &Msg, Token &Tok) const {
1631 Doc->setError(Msg, Tok);
1632 }
1633
failed() const1634 bool Node::failed() const {
1635 return Doc->failed();
1636 }
1637
1638
1639
getValue(SmallVectorImpl<char> & Storage) const1640 StringRef ScalarNode::getValue(SmallVectorImpl<char> &Storage) const {
1641 // TODO: Handle newlines properly. We need to remove leading whitespace.
1642 if (Value[0] == '"') { // Double quoted.
1643 // Pull off the leading and trailing "s.
1644 StringRef UnquotedValue = Value.substr(1, Value.size() - 2);
1645 // Search for characters that would require unescaping the value.
1646 StringRef::size_type i = UnquotedValue.find_first_of("\\\r\n");
1647 if (i != StringRef::npos)
1648 return unescapeDoubleQuoted(UnquotedValue, i, Storage);
1649 return UnquotedValue;
1650 } else if (Value[0] == '\'') { // Single quoted.
1651 // Pull off the leading and trailing 's.
1652 StringRef UnquotedValue = Value.substr(1, Value.size() - 2);
1653 StringRef::size_type i = UnquotedValue.find('\'');
1654 if (i != StringRef::npos) {
1655 // We're going to need Storage.
1656 Storage.clear();
1657 Storage.reserve(UnquotedValue.size());
1658 for (; i != StringRef::npos; i = UnquotedValue.find('\'')) {
1659 StringRef Valid(UnquotedValue.begin(), i);
1660 Storage.insert(Storage.end(), Valid.begin(), Valid.end());
1661 Storage.push_back('\'');
1662 UnquotedValue = UnquotedValue.substr(i + 2);
1663 }
1664 Storage.insert(Storage.end(), UnquotedValue.begin(), UnquotedValue.end());
1665 return StringRef(Storage.begin(), Storage.size());
1666 }
1667 return UnquotedValue;
1668 }
1669 // Plain or block.
1670 return Value.rtrim(" ");
1671 }
1672
unescapeDoubleQuoted(StringRef UnquotedValue,StringRef::size_type i,SmallVectorImpl<char> & Storage) const1673 StringRef ScalarNode::unescapeDoubleQuoted( StringRef UnquotedValue
1674 , StringRef::size_type i
1675 , SmallVectorImpl<char> &Storage)
1676 const {
1677 // Use Storage to build proper value.
1678 Storage.clear();
1679 Storage.reserve(UnquotedValue.size());
1680 for (; i != StringRef::npos; i = UnquotedValue.find_first_of("\\\r\n")) {
1681 // Insert all previous chars into Storage.
1682 StringRef Valid(UnquotedValue.begin(), i);
1683 Storage.insert(Storage.end(), Valid.begin(), Valid.end());
1684 // Chop off inserted chars.
1685 UnquotedValue = UnquotedValue.substr(i);
1686
1687 assert(!UnquotedValue.empty() && "Can't be empty!");
1688
1689 // Parse escape or line break.
1690 switch (UnquotedValue[0]) {
1691 case '\r':
1692 case '\n':
1693 Storage.push_back('\n');
1694 if ( UnquotedValue.size() > 1
1695 && (UnquotedValue[1] == '\r' || UnquotedValue[1] == '\n'))
1696 UnquotedValue = UnquotedValue.substr(1);
1697 UnquotedValue = UnquotedValue.substr(1);
1698 break;
1699 default:
1700 if (UnquotedValue.size() == 1)
1701 // TODO: Report error.
1702 break;
1703 UnquotedValue = UnquotedValue.substr(1);
1704 switch (UnquotedValue[0]) {
1705 default: {
1706 Token T;
1707 T.Range = StringRef(UnquotedValue.begin(), 1);
1708 setError("Unrecognized escape code!", T);
1709 return "";
1710 }
1711 case '\r':
1712 case '\n':
1713 // Remove the new line.
1714 if ( UnquotedValue.size() > 1
1715 && (UnquotedValue[1] == '\r' || UnquotedValue[1] == '\n'))
1716 UnquotedValue = UnquotedValue.substr(1);
1717 // If this was just a single byte newline, it will get skipped
1718 // below.
1719 break;
1720 case '0':
1721 Storage.push_back(0x00);
1722 break;
1723 case 'a':
1724 Storage.push_back(0x07);
1725 break;
1726 case 'b':
1727 Storage.push_back(0x08);
1728 break;
1729 case 't':
1730 case 0x09:
1731 Storage.push_back(0x09);
1732 break;
1733 case 'n':
1734 Storage.push_back(0x0A);
1735 break;
1736 case 'v':
1737 Storage.push_back(0x0B);
1738 break;
1739 case 'f':
1740 Storage.push_back(0x0C);
1741 break;
1742 case 'r':
1743 Storage.push_back(0x0D);
1744 break;
1745 case 'e':
1746 Storage.push_back(0x1B);
1747 break;
1748 case ' ':
1749 Storage.push_back(0x20);
1750 break;
1751 case '"':
1752 Storage.push_back(0x22);
1753 break;
1754 case '/':
1755 Storage.push_back(0x2F);
1756 break;
1757 case '\\':
1758 Storage.push_back(0x5C);
1759 break;
1760 case 'N':
1761 encodeUTF8(0x85, Storage);
1762 break;
1763 case '_':
1764 encodeUTF8(0xA0, Storage);
1765 break;
1766 case 'L':
1767 encodeUTF8(0x2028, Storage);
1768 break;
1769 case 'P':
1770 encodeUTF8(0x2029, Storage);
1771 break;
1772 case 'x': {
1773 if (UnquotedValue.size() < 3)
1774 // TODO: Report error.
1775 break;
1776 unsigned int UnicodeScalarValue;
1777 if (UnquotedValue.substr(1, 2).getAsInteger(16, UnicodeScalarValue))
1778 // TODO: Report error.
1779 UnicodeScalarValue = 0xFFFD;
1780 encodeUTF8(UnicodeScalarValue, Storage);
1781 UnquotedValue = UnquotedValue.substr(2);
1782 break;
1783 }
1784 case 'u': {
1785 if (UnquotedValue.size() < 5)
1786 // TODO: Report error.
1787 break;
1788 unsigned int UnicodeScalarValue;
1789 if (UnquotedValue.substr(1, 4).getAsInteger(16, UnicodeScalarValue))
1790 // TODO: Report error.
1791 UnicodeScalarValue = 0xFFFD;
1792 encodeUTF8(UnicodeScalarValue, Storage);
1793 UnquotedValue = UnquotedValue.substr(4);
1794 break;
1795 }
1796 case 'U': {
1797 if (UnquotedValue.size() < 9)
1798 // TODO: Report error.
1799 break;
1800 unsigned int UnicodeScalarValue;
1801 if (UnquotedValue.substr(1, 8).getAsInteger(16, UnicodeScalarValue))
1802 // TODO: Report error.
1803 UnicodeScalarValue = 0xFFFD;
1804 encodeUTF8(UnicodeScalarValue, Storage);
1805 UnquotedValue = UnquotedValue.substr(8);
1806 break;
1807 }
1808 }
1809 UnquotedValue = UnquotedValue.substr(1);
1810 }
1811 }
1812 Storage.insert(Storage.end(), UnquotedValue.begin(), UnquotedValue.end());
1813 return StringRef(Storage.begin(), Storage.size());
1814 }
1815
getKey()1816 Node *KeyValueNode::getKey() {
1817 if (Key)
1818 return Key;
1819 // Handle implicit null keys.
1820 {
1821 Token &t = peekNext();
1822 if ( t.Kind == Token::TK_BlockEnd
1823 || t.Kind == Token::TK_Value
1824 || t.Kind == Token::TK_Error) {
1825 return Key = new (getAllocator()) NullNode(Doc);
1826 }
1827 if (t.Kind == Token::TK_Key)
1828 getNext(); // skip TK_Key.
1829 }
1830
1831 // Handle explicit null keys.
1832 Token &t = peekNext();
1833 if (t.Kind == Token::TK_BlockEnd || t.Kind == Token::TK_Value) {
1834 return Key = new (getAllocator()) NullNode(Doc);
1835 }
1836
1837 // We've got a normal key.
1838 return Key = parseBlockNode();
1839 }
1840
getValue()1841 Node *KeyValueNode::getValue() {
1842 if (Value)
1843 return Value;
1844 getKey()->skip();
1845 if (failed())
1846 return Value = new (getAllocator()) NullNode(Doc);
1847
1848 // Handle implicit null values.
1849 {
1850 Token &t = peekNext();
1851 if ( t.Kind == Token::TK_BlockEnd
1852 || t.Kind == Token::TK_FlowMappingEnd
1853 || t.Kind == Token::TK_Key
1854 || t.Kind == Token::TK_FlowEntry
1855 || t.Kind == Token::TK_Error) {
1856 return Value = new (getAllocator()) NullNode(Doc);
1857 }
1858
1859 if (t.Kind != Token::TK_Value) {
1860 setError("Unexpected token in Key Value.", t);
1861 return Value = new (getAllocator()) NullNode(Doc);
1862 }
1863 getNext(); // skip TK_Value.
1864 }
1865
1866 // Handle explicit null values.
1867 Token &t = peekNext();
1868 if (t.Kind == Token::TK_BlockEnd || t.Kind == Token::TK_Key) {
1869 return Value = new (getAllocator()) NullNode(Doc);
1870 }
1871
1872 // We got a normal value.
1873 return Value = parseBlockNode();
1874 }
1875
increment()1876 void MappingNode::increment() {
1877 if (failed()) {
1878 IsAtEnd = true;
1879 CurrentEntry = nullptr;
1880 return;
1881 }
1882 if (CurrentEntry) {
1883 CurrentEntry->skip();
1884 if (Type == MT_Inline) {
1885 IsAtEnd = true;
1886 CurrentEntry = nullptr;
1887 return;
1888 }
1889 }
1890 Token T = peekNext();
1891 if (T.Kind == Token::TK_Key || T.Kind == Token::TK_Scalar) {
1892 // KeyValueNode eats the TK_Key. That way it can detect null keys.
1893 CurrentEntry = new (getAllocator()) KeyValueNode(Doc);
1894 } else if (Type == MT_Block) {
1895 switch (T.Kind) {
1896 case Token::TK_BlockEnd:
1897 getNext();
1898 IsAtEnd = true;
1899 CurrentEntry = nullptr;
1900 break;
1901 default:
1902 setError("Unexpected token. Expected Key or Block End", T);
1903 case Token::TK_Error:
1904 IsAtEnd = true;
1905 CurrentEntry = nullptr;
1906 }
1907 } else {
1908 switch (T.Kind) {
1909 case Token::TK_FlowEntry:
1910 // Eat the flow entry and recurse.
1911 getNext();
1912 return increment();
1913 case Token::TK_FlowMappingEnd:
1914 getNext();
1915 case Token::TK_Error:
1916 // Set this to end iterator.
1917 IsAtEnd = true;
1918 CurrentEntry = nullptr;
1919 break;
1920 default:
1921 setError( "Unexpected token. Expected Key, Flow Entry, or Flow "
1922 "Mapping End."
1923 , T);
1924 IsAtEnd = true;
1925 CurrentEntry = nullptr;
1926 }
1927 }
1928 }
1929
increment()1930 void SequenceNode::increment() {
1931 if (failed()) {
1932 IsAtEnd = true;
1933 CurrentEntry = nullptr;
1934 return;
1935 }
1936 if (CurrentEntry)
1937 CurrentEntry->skip();
1938 Token T = peekNext();
1939 if (SeqType == ST_Block) {
1940 switch (T.Kind) {
1941 case Token::TK_BlockEntry:
1942 getNext();
1943 CurrentEntry = parseBlockNode();
1944 if (!CurrentEntry) { // An error occurred.
1945 IsAtEnd = true;
1946 CurrentEntry = nullptr;
1947 }
1948 break;
1949 case Token::TK_BlockEnd:
1950 getNext();
1951 IsAtEnd = true;
1952 CurrentEntry = nullptr;
1953 break;
1954 default:
1955 setError( "Unexpected token. Expected Block Entry or Block End."
1956 , T);
1957 case Token::TK_Error:
1958 IsAtEnd = true;
1959 CurrentEntry = nullptr;
1960 }
1961 } else if (SeqType == ST_Indentless) {
1962 switch (T.Kind) {
1963 case Token::TK_BlockEntry:
1964 getNext();
1965 CurrentEntry = parseBlockNode();
1966 if (!CurrentEntry) { // An error occurred.
1967 IsAtEnd = true;
1968 CurrentEntry = nullptr;
1969 }
1970 break;
1971 default:
1972 case Token::TK_Error:
1973 IsAtEnd = true;
1974 CurrentEntry = nullptr;
1975 }
1976 } else if (SeqType == ST_Flow) {
1977 switch (T.Kind) {
1978 case Token::TK_FlowEntry:
1979 // Eat the flow entry and recurse.
1980 getNext();
1981 WasPreviousTokenFlowEntry = true;
1982 return increment();
1983 case Token::TK_FlowSequenceEnd:
1984 getNext();
1985 case Token::TK_Error:
1986 // Set this to end iterator.
1987 IsAtEnd = true;
1988 CurrentEntry = nullptr;
1989 break;
1990 case Token::TK_StreamEnd:
1991 case Token::TK_DocumentEnd:
1992 case Token::TK_DocumentStart:
1993 setError("Could not find closing ]!", T);
1994 // Set this to end iterator.
1995 IsAtEnd = true;
1996 CurrentEntry = nullptr;
1997 break;
1998 default:
1999 if (!WasPreviousTokenFlowEntry) {
2000 setError("Expected , between entries!", T);
2001 IsAtEnd = true;
2002 CurrentEntry = nullptr;
2003 break;
2004 }
2005 // Otherwise it must be a flow entry.
2006 CurrentEntry = parseBlockNode();
2007 if (!CurrentEntry) {
2008 IsAtEnd = true;
2009 }
2010 WasPreviousTokenFlowEntry = false;
2011 break;
2012 }
2013 }
2014 }
2015
Document(Stream & S)2016 Document::Document(Stream &S) : stream(S), Root(nullptr) {
2017 // Tag maps starts with two default mappings.
2018 TagMap["!"] = "!";
2019 TagMap["!!"] = "tag:yaml.org,2002:";
2020
2021 if (parseDirectives())
2022 expectToken(Token::TK_DocumentStart);
2023 Token &T = peekNext();
2024 if (T.Kind == Token::TK_DocumentStart)
2025 getNext();
2026 }
2027
skip()2028 bool Document::skip() {
2029 if (stream.scanner->failed())
2030 return false;
2031 if (!Root)
2032 getRoot();
2033 Root->skip();
2034 Token &T = peekNext();
2035 if (T.Kind == Token::TK_StreamEnd)
2036 return false;
2037 if (T.Kind == Token::TK_DocumentEnd) {
2038 getNext();
2039 return skip();
2040 }
2041 return true;
2042 }
2043
peekNext()2044 Token &Document::peekNext() {
2045 return stream.scanner->peekNext();
2046 }
2047
getNext()2048 Token Document::getNext() {
2049 return stream.scanner->getNext();
2050 }
2051
setError(const Twine & Message,Token & Location) const2052 void Document::setError(const Twine &Message, Token &Location) const {
2053 stream.scanner->setError(Message, Location.Range.begin());
2054 }
2055
failed() const2056 bool Document::failed() const {
2057 return stream.scanner->failed();
2058 }
2059
parseBlockNode()2060 Node *Document::parseBlockNode() {
2061 Token T = peekNext();
2062 // Handle properties.
2063 Token AnchorInfo;
2064 Token TagInfo;
2065 parse_property:
2066 switch (T.Kind) {
2067 case Token::TK_Alias:
2068 getNext();
2069 return new (NodeAllocator) AliasNode(stream.CurrentDoc, T.Range.substr(1));
2070 case Token::TK_Anchor:
2071 if (AnchorInfo.Kind == Token::TK_Anchor) {
2072 setError("Already encountered an anchor for this node!", T);
2073 return nullptr;
2074 }
2075 AnchorInfo = getNext(); // Consume TK_Anchor.
2076 T = peekNext();
2077 goto parse_property;
2078 case Token::TK_Tag:
2079 if (TagInfo.Kind == Token::TK_Tag) {
2080 setError("Already encountered a tag for this node!", T);
2081 return nullptr;
2082 }
2083 TagInfo = getNext(); // Consume TK_Tag.
2084 T = peekNext();
2085 goto parse_property;
2086 default:
2087 break;
2088 }
2089
2090 switch (T.Kind) {
2091 case Token::TK_BlockEntry:
2092 // We got an unindented BlockEntry sequence. This is not terminated with
2093 // a BlockEnd.
2094 // Don't eat the TK_BlockEntry, SequenceNode needs it.
2095 return new (NodeAllocator) SequenceNode( stream.CurrentDoc
2096 , AnchorInfo.Range.substr(1)
2097 , TagInfo.Range
2098 , SequenceNode::ST_Indentless);
2099 case Token::TK_BlockSequenceStart:
2100 getNext();
2101 return new (NodeAllocator)
2102 SequenceNode( stream.CurrentDoc
2103 , AnchorInfo.Range.substr(1)
2104 , TagInfo.Range
2105 , SequenceNode::ST_Block);
2106 case Token::TK_BlockMappingStart:
2107 getNext();
2108 return new (NodeAllocator)
2109 MappingNode( stream.CurrentDoc
2110 , AnchorInfo.Range.substr(1)
2111 , TagInfo.Range
2112 , MappingNode::MT_Block);
2113 case Token::TK_FlowSequenceStart:
2114 getNext();
2115 return new (NodeAllocator)
2116 SequenceNode( stream.CurrentDoc
2117 , AnchorInfo.Range.substr(1)
2118 , TagInfo.Range
2119 , SequenceNode::ST_Flow);
2120 case Token::TK_FlowMappingStart:
2121 getNext();
2122 return new (NodeAllocator)
2123 MappingNode( stream.CurrentDoc
2124 , AnchorInfo.Range.substr(1)
2125 , TagInfo.Range
2126 , MappingNode::MT_Flow);
2127 case Token::TK_Scalar:
2128 getNext();
2129 return new (NodeAllocator)
2130 ScalarNode( stream.CurrentDoc
2131 , AnchorInfo.Range.substr(1)
2132 , TagInfo.Range
2133 , T.Range);
2134 case Token::TK_Key:
2135 // Don't eat the TK_Key, KeyValueNode expects it.
2136 return new (NodeAllocator)
2137 MappingNode( stream.CurrentDoc
2138 , AnchorInfo.Range.substr(1)
2139 , TagInfo.Range
2140 , MappingNode::MT_Inline);
2141 case Token::TK_DocumentStart:
2142 case Token::TK_DocumentEnd:
2143 case Token::TK_StreamEnd:
2144 default:
2145 // TODO: Properly handle tags. "[!!str ]" should resolve to !!str "", not
2146 // !!null null.
2147 return new (NodeAllocator) NullNode(stream.CurrentDoc);
2148 case Token::TK_Error:
2149 return nullptr;
2150 }
2151 llvm_unreachable("Control flow shouldn't reach here.");
2152 return nullptr;
2153 }
2154
parseDirectives()2155 bool Document::parseDirectives() {
2156 bool isDirective = false;
2157 while (true) {
2158 Token T = peekNext();
2159 if (T.Kind == Token::TK_TagDirective) {
2160 parseTAGDirective();
2161 isDirective = true;
2162 } else if (T.Kind == Token::TK_VersionDirective) {
2163 parseYAMLDirective();
2164 isDirective = true;
2165 } else
2166 break;
2167 }
2168 return isDirective;
2169 }
2170
parseYAMLDirective()2171 void Document::parseYAMLDirective() {
2172 getNext(); // Eat %YAML <version>
2173 }
2174
parseTAGDirective()2175 void Document::parseTAGDirective() {
2176 Token Tag = getNext(); // %TAG <handle> <prefix>
2177 StringRef T = Tag.Range;
2178 // Strip %TAG
2179 T = T.substr(T.find_first_of(" \t")).ltrim(" \t");
2180 std::size_t HandleEnd = T.find_first_of(" \t");
2181 StringRef TagHandle = T.substr(0, HandleEnd);
2182 StringRef TagPrefix = T.substr(HandleEnd).ltrim(" \t");
2183 TagMap[TagHandle] = TagPrefix;
2184 }
2185
expectToken(int TK)2186 bool Document::expectToken(int TK) {
2187 Token T = getNext();
2188 if (T.Kind != TK) {
2189 setError("Unexpected token", T);
2190 return false;
2191 }
2192 return true;
2193 }
2194